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Abstract

Long run growth is estimated either by averaging log output di�erence (STM) or �tting a
trendline to log output (DTM). Also there is evidence that log-per-capita GDP has long memory
I(d) characteristics and very often the numerical value of the average growth estimate di�ers
across these models. In this paper, we show the growth estimates are sensitive to the pre-
estimated value of d. It also suggests a correction method for the sensitivity.of the growth
estimates. Using 100 yrs of Maddison Data, we �nd that across 30 countries, the FGLS and
OLS estimates of STM are less sensitive than the estimates from the DTM. STM also produces
a signi�cantly lower growth rate estimates than �tting a deterministic trend line.



1 Introduction

To analyse long run growth (rate) one has to describe how to measure it. A standard approach

is to take the average of the annual growth rates that in essence is the log-di�erence between of

the initial and the �nal output. This procedure works best for a when the log-output process is

a stochastic trend model (STM). Alternatively since the initial and �nal output may be some

distance from the trend path of output, it may be preferable to use the growth rate obtained

by regressing the log percapita GDP series against a constant and a linear trend (DTM). This

performs well when the residuals are stationary. A growing literature points to the fact that

the true log-output process could be a long memory process (I(d)) of some order d1 (which can

be estimated). The traditional procedure of computing long run growth rate works �ne if the

di�erencing parameter d takes watershed values such as 0 (in case DTM) or 1 (in case of STM).

However, due to the low power of many long memory tests, in principle it may be di�cult to

di�cult to distinguish between I(0) process and an I(d) process with d close to zero or between

a I(1) process and an I(d) with d close to 1. The aim of this paper is to demonstrate that

the estimate of growth rate is highly sensitive to a small change in the di�erencing parameter

d. Thus if the true process for GDP is driven by long memory, this sensitivity of the long run

growth estimate to a minute change in d makes the conventional estimate of the growth rate

very unreliable. Indeed, very often the numerical value of the average growth estimate di�ers

across these models even for large samples.

This paper investigates the whether the growth estimates from these models changes dra-

matically when d di�ers from 0 (or 1) by a small magnitude. We show that this deviation is

more signi�cant when d is near 0 rather than 1. Often a practitioner can use a Feasible Gen-

eralised Least Squares (FGLS) estimates for the STM and the DTM obtained by plugging in a

pre-estimate of the long memory parameter bd0. We show that the FGLS growth rate estimates
are also sensitive when bd0 di�ers from actual d by a small magnitude. The problem is more

1Michelacci and Za�aroni (2000) (MZ) proposed that the log-output precess is a DTM with a long-memory
fractionally integrated (I(d)) error process. They use a log-periodogram regression estimate, by Geweke and
Porter-Hudak (GPH) (1983) and could not reject the hypothesis that all the OECD countries are non-stationary.
Silverberg and Verspagen (2001) using STM also �nds long memory in the log-PCGDP process. Further analysis
in the literature shows that there is strong evidence in favour of an integration order between 0 and 1 in most
of the countries in the sample. (Dolado, Gonzalo and Mayoral (2002a), Dolado et al (2002b) etc).
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when bd0 underestimates d:
More precisely, if b�r �bd0� and b�r (d) are the estimated growth rates at the pre-estimated

value bd0 and the true value d respectively, we ask the question how large is the di�erenceb�r �bd0� � b�r (d) compared to bd0 � d: A measure of such deviation, Br �bd0� is constructed by
normalising the derivative of b�r (d) at bd0: We call the estimate sensitive when the probability
of such deviation is `large'. We derive the distributional properties of Br

�bd0� which provides
a criterion of being `large'. This in the spirit of Banerjee and Magnus (1999) who develops a

similar statistic for AR(1) process2. This analysis is di�erent from Canjels and Watson (1997)

or Boswijk and Franses (2006) which focus on con�dence bounds for di�erent growth rate

estimates under AR(1) process. They do not address the issue if the point estimate of growth

itself is sensitive to small changes to the memory parameter ( the AR(1) coe�cient in their

case).

The contribution of this paper is intended to go beyond the derivation of the sensitivity

statistic and its application to the issue of growth estimate. We ask the question: if b�r �bd0�
turns out to be sensitive, is there a point bd1 near bd0 where the estimate b�r �bd1� is less sensitive,
in the sense of Br

�bd1� being `small'. We de�ne the least sensitive estimate bd1 by using a
Stochastic Newton-Raphson type method with a correction factor CF (bd0). This correction
factor then can be used iteratively (i.e. bdj = bdj�1�CFr �bdj�1� ) to produce the least sensitive
growth estimates. We provide the distribution of the correction factor CFr

�bdj� which helps us
to formulate a stopping rule for this iteration procedure, although convergence is not guaranteed

because of the irregular changes in shape of the distribution of CFr

�bdj� with respect to dj:
We make use of the GDP per capita (PCGDP) data (in USD) which is obtained from

Maddison's Total Economy Database (http://www.ggdc.net) website for with 100 observations

approximately (1902-2003). We estimate the long run growth rates using two di�erent models,

a linear trend model and a stochastic di�erence model. Comparing the STM and DTM, we

observe that growth estimates (OLS and FGLS) from the STM are generally lower than the

DTM (24/23 of the 30 countries studied) with a signi�cant median di�erence of 16 basis points.

Recall, the OLS estimate of long run growth from STM is an average of annual growth rates.

2Banerjee and Magnus (1999) gives the sensitivity measures for the predictor against ARMA disturbances.
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Using our methodology, we show that the long-run PCGDP growth rates (OLS and FGLS)

estimated from the DTM are very `sensitive' to misspeci�ication of the long memory parameter

d. In comparison, OLS estimates of STM are less-sensitive to deviations from bd0; than the
estimates of DTM (with exception of small economies like Venezuela and Portugal). The

sensitive growth rates are then corrected using our proposed method of correction. In some

cases the correction procedure fails to converge. Some countries like India has widely varying

growth-rate estimates, depending on how and which model the estimate is arrived at.

Therefore less sensitive growth rates are produced by models which also lower growth rates

than the more sensitive estimates.

The paper is organised as follows: section 2 gives the preliminaries; section 3 de�nes a

sensitivity statistic, and develops the least sensitive estimate along with its statistical proper-

ties; section 4, analyses the growth estimates for sensitivity and corrects for them; section 5

concludes.

2 Preliminaries

Let us consider the following model with data (y0;X0) such that:

y0;t = x
0
0;t� + "0;t (t = 1; :::; T ); (1)

where "0;t are distributed as distributed as I(d) process:

"0;t = �
�dut (2)

with innovations u1; : : : ; uT � i.i.d. (0; �2).

There are if we have a pre-estimator of d with bd0 we transform the model (1) to use a

Feasible GLS estimator. Let the transformed data be

yt

�bd0� = �bd0y0;t and x0t
�bd0� = �bd0x00;t:
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The estimator bd0 can be either be bd0 = 0; in which case we use the OLS estimate or bd0 = 1;
in which case we can use the �rst di�erence estimate or if bd0 = bdG an usual estimator like
the GPH estimator or the Whittle estimator (bd0 = bdW ), we can transform the model using

fractional di�erencing. Therefore the transformed model is given by

�
bd0y0;t = �bd0x00;t� +�bd0"0;t (3)

yt

�bd0� = x0t �bd0� � + "t;
where "t are distributed as I(d� bd0) process:

"t = �
�(d�bd0)ut (4)

We can write the variance matrix of the process as,


 (�) =
T�1X
h=0

!h (�)T
(h); i = 1; 2: (5)

where we denote by T(h); 0 � h � T � 1, the T � T symmetric Toeplitz matrix with

T
(h)
(i;j) =

8><>: 1 if ji� jj = h;

0 otherwise:
;

such that � = d� bd0: The coe�cients !h(�); are given by the autocovariance generating function:
g(�; z) =

�
(1� z)

�
1� z�1

����
=

1X
h=�1

!h (�) z
h:

Letting X =
�
x0t

�bd0�� and y =�yt �bd0��, we can write the GLS estimator using the trans-
formed model (3) as: b� (d) = �X0 [
 (�)]�1X

��1
X0 [
 (�)]�1 y:

When the unknown longmemory parameter d is exactly equal to its pre-estimated value bd0; i.e.
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at d = bd0; we have the feasible GLS (FGLS) estimator
b� �bd0� = (X0X)

�1
X0y:

since 
 (0) = I: Note that if bd0 = 1; the constant is not identi�ed in the transformed model
(3).

Theorem 1 Let �2
(�) be the covariance matrix of u1; : : : ; uT . Then the T � T symmetric

matrix A(j); j = 1; 2 as:

A(1) =
@
 (�)

@�

����
�=0

=
T�1X
t=1

1

t
T(t); (6)

A(2) =
@2
 (�)

@�2

����
�=0

=
�2

3
I+

T�1X
t=1

4 (t	(t) + 
) + 2

t2
T(t); (7)

where 	(t) = �0(t)
�(t)

is the polygamma function and 
 is the Euler's constant.

Proof of Theorem 1: See Appendix.

We shall consider general linear combinations of the slope estimates

b�r (d) = r0b� (d) :
In particular individual �k can be obtained by choosing appropriate r vectors. We also de�ne

the vectors:

c(1)r

�bd0�0 = r0 (X0X)
�1
X0A(1)M;

c(2)r

�bd0�0 = r0 (X0X)
�1
X0 �A(2) � 2A(1) (I�M)A(1)

�
M;

where M = I�X(X0X)�1X0 is the usual idempotent matrix.

In order to derive our sensitivity measures and a method of correction we shall use the

derivatives of the b� (d) w.r.t. d: The following lemma will be useful in deriving some of the
distributional properties:
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Lemma 2 Let the �rst and second derivatives of b�r �bd0� w.r.t. � be:
b(j)r

�bd0� = @j b�r (d)
@dj

�����
d=bd0

; j=1,2

then 0B@ b
(1)
r

�bd0�
b
(2)
r

�bd0�
1CA =

0B@ c
(1)
r

�bd0�0 y
c
(2)
r

�bd0�0 y
1CA '

0B@
0B@ 0

0

1CA ; �2
0B@ �21 (�) �12 (�)

�12 (�) �22 (�)

1CA
1CA :

where �21 (�) = c
(1)
r

�bd0�0
(�)c(1)r �bd0�, �22 (�) = c(2)r �bd0�0
(�)c(2)r �bd0� and
�12 (�) = c

(1)
r

�bd0�0
(�)c(2)r �bd0� :
If the distribution of u is normal then the joint-distribution of b

(1)
r

�bd0� and b(2)r �bd0� is also
normal.

3 Sensitivity of the FGLS

If the true value of d is equal to the pre-estimated value bd0 then the FGLS estimator will be
equal to the GLS estimator. Majority of the time this will not be the case, since either the

pre-estimator is an estimator with statistical error or we can choose the wrong bd0 to transform
the model. So we want to study the case when the true value of the long memory parameter

d is away from bd0; and ask the question how di�erent b� (d) from b� �bd0� : To do this we use
sensitivity analysis similar to the analysis by Banerjee and Magnus (1999) for OLS estimates

against short memory processes like the ARMA. This article will go further and discuss a

method of correction for the slope estimate if it is sensitive.

3.1 Measuring sensitivity

Developing b�r (d) in a Taylor expansion gives:
b�r (d)� b�r �bd0� = �d� bd0� @b�r (d)

@d

�����
d=bd0

+ � � � : (8)
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We would consider b�r (d) and b�r �bd0� to be \almost equal" if
�
d� bd0� @b�r (d)

@d

�����
d=bd0

� 0

and a su�cient condition for this is that

@b�r (d)
@d

�����
d=bd0

= b(1)r

�bd0� = 0: (9)

We shall consider general linear combinations of the slope estimates b�r (d). We de�ne the
sensitivity of the b�r (d) with respect to the di�erence between d and bd0; i.e. � = d� bd0. as:

Br

�bd0� = b
(1)
r

�bd0�
b� �bd0�rc(1)r �bd0�0 c(1)r �bd0� ; (10)

where b�2 �bd0� = y0My=(T � k) is the estimated variance of the modi�ed model 3.
Since the sensitivity measure b

(1)
r

�bd0� will generally be random variables therefore we shall
normalise we study the following probabilities as a measure of \closeness" to zero,

�r

�
d : bd0� = Pr

d�bd0
����Br �bd0���� � z� �bd0�� ; (11)

where Prd�bd0 is the probability measure associated with the random variable ut � I
�
d� bd0� :

The cuto� point z�

�bd0� is obtained assuming that d = bd0 :
�r

�bd0 : bd0� = Pr
0

����Br �bd0���� � z� �bd0�� = � , 0 < � < 1: (12)

where Pr0 is the probability measure associated with white noise. The next section we shall

evaluate the distribution of Br

�bd0� : We shall usually take � = 0:05 for empirical purposes.
In large sample, since plim b�2 �bd0� = �2; Br �bd0� is normally distributed in large sample.
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That is

Br

�bd0� ' N (0; 1) ; if d = bd0 :

In small sample, we should note that Br

�bd0� is not a standard t�dist since the numerator and
the denominator are not independent. So when T is small we have to use IMHOF procedure

to compute the distribution of Br

�bd0�2 as a ratio of two quadratic forms. In our empirical
application � = 0:05; so z0:95

�bd0� = 1:96 in large samples. Therefore as a rule of thumb if
���Br �bd0���� > 1:96

we shall conclude that the FGLS estimator b�r �bd0� is sensitive. The probability curves are
given by (asymptotically)

�r

�
d : bd0� = Pr

d�bd0
����Br �bd0���� � 1:96� :

3.2 Correcting sensitivity

The question remains, what should we do if the sensitivity is \large" and we must conclude

that the FGLS estimator b�r �bd0� is sensitive? One possible solution is to �nd bd1 as the solution
to the equation

@b�r (d)
@d

�����
d=bd1

� b(1)r
�bd1� = 0; (13)

which gives us the least sensitive statistic b�r �bd1� : Then bd1 is the new estimate for the long
memory parameter and b�r �bd1� the least sensitive FGLS estimator for �r:To �nd the unknown
point bd1, we solve the set of equations using a One-Step Newton-Raphson procedure by approx-
imating at bd1: Using a Taylor's expansion b(1)r �bd1� around bd0 and ignoring the higher orders
we have,

b(1)r

�bd1� = b(1)r �bd0�+ �bd1 � bd0� b(2)r �bd0� (14)
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Hence by (13) we have

bd1 = bd0 � b(1)r
�bd0�

b
(2)
r

�bd0� = bd0 � CFr �bd0� :
where CFr

�bd0� is the correction factor. Therefore we can write the new estimate of the long-
memory parameter d as: bd1 = bd0 � CFr �bd0� : (15)

Then the new estimate is calculated using b�r �bd1� : Further extension of the one-step method
can be done by using a recursive procedure by computing b�r �bdj� ;where bdj the jth iterate is
obtained conditional on the j � 1th iterate bdj�1: This iteration is computed using the following
equation: bdj = bdj�1 � CFr �bdj� : (16)

The stopping rule will be such that bdj � bdj�1:
Since the sensitivity measure CFr

�bdj� will generally be random variables, we study the

following probabilities as a measure of \closeness" to zero,

Pr
0

�
cf�

�bdj�1� < CFr �bdj� < cf1�� �bdj�1�� ; (17)

where Pr0 is the probability measure associated with the random variable ut � iid and cf�
�bdj�

is cuto� from the distribution of CFr

�bdj� :
The following theorem gives us the distribution of CFr

�bd0� under normality;
Theorem 3 The distribution of CFr

�bd0� is given by:
F (cf) =

1

2
+

r
2

�
arctan

0@�2 (�) cf � � (�)�1 (�)
�1 (�)

q
1� � (�)2

1A ;
where � (�) = �12(�)

�1(�)�2(�)
:

The theorem shows that CF is a symmetric random variable around zero, i.e. the median

of CF = 0. Also CF does not have higher moments, so we cannot compute the standard
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deviations but we can compute the � and 1� � percentiles as follows:

cf� =
�1
�2

�
�+

p
1� �2

�
tan

r
�

2

�
�� 1

2

�
= �cf1��:

Therefore the stopping rule for the iterative correction method is given by:

bdj�1 + cf� < bdj < bdj�1 + cf1��:
Again in our empirical section we take � = 0:05.

This condition gives us the stopping rule for the iteration, but the convergence is not guar-

anteed which depends on the data and the starting point bd0: Spall (2000) provides conditions
for global convergence of such stochastic Newton-Raphson method, but it is di�cult to ensure

them as the higher moments of CF (bdj) do not exist. Therefore the possibility of �nding a
locally insensitive point depending on the starting value bd0. This is less of a problem as we

are looking for a locally insensitive point in the analysis. Though we can compare one or more

`insensitive' points by starting from di�erent bd0. More problematically non-convergence might
also be an issue.

3.3 Simulation

We study the properties of the sensitivity curve �r

�
d : bd0� and the sensitivity correction dis-

tribution cf�

�
d : bd0� by using the following models

yt = �1 + �2t+ "0;t; : (18)

yt = �1 + "0;t; t = 1; :::; 100: (19)

where "0;t � I (d) process with normal innovations.

We study the properties of b�2 using �2 �d : bd0� and cf95(d : bd0): Figure 1.1 and 1.2 shows
the sensitivity curves �2

�
d : bd0� and Figure 2.1 and 2.2 shows the 5th and the 95th percentiles

of the correction distribution of model (18) and (19) respectively. It is to be noted that the
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sensitivity increases as d > bd0, this implies that underestimation of the long memory parameter
makes the model estimates more sensitive. The probability of sensitivity can be as high as 90%.

The correction distribution cf95(d : bd0) and cf05(d : bd0) shows that, the bounds are highly
irregular implying that convergence of the correction procedure can be a problem: In our em-

pirical models we do �nd the problem of convergence with the correction procedure.

[Insert Figure 1.1 and Figure 1.2]

[Insert Figure 2.1 and Figure 2.2]

4 Empirical model and analysis

We make use of the GDP per capita (PCGDP) data (in USD) for the years from 1902 to 2003,

which is obtained from Maddison's Total Economy Database (http://www.ggdc.net) website.

We will make use of the existing work and model log of PCGDP (yt) as a deterministic

trend model (DTM):

yt = �1 + �2t+ "1;t; t = 1902; :::; 2003: (20)

where �2 is the deterministic long-run growth rate of the country. We assume that the error

term "1;t follows a I(d) process in all the models as de�ned in 2.

We shall consider the OLS estimates b�2 (0) and the FGLS estimates b�2 �bdG� and b�2 �bdW�
where bdG is the usual GPH estimate and bdW is the Whittle estimate (see Phillips and Shimotsu,

2005, Shimotsu 20103) of the longmemory parameter d: We compute the corresponding sensi-

tivity statistic B2 (0), B2

�bdG� and B2 �bdW� to check for sensitivity for the growth estimates.
If these are sensitive, as a next step we use the correction procedure to correct for the growth

rates as described in the previous section.

The second model we use is the stochastic growth model (STM), i.e.

�yt = �1 + "2;t; t = 1903; :::; 2003: (21)

3Thanks to Katsumi Shimotsu for providing the matlab code for the proccedure (http://www.econ.hit-
u.ac.jp/~shimotsu/Site/Matlab Codes.html).
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where �yt = yt�yt�1 is the annual growth rates of each country and �1 is the long-run average

growth rate. We assume that the error term "2;t follows a I(d) process in all the models as

de�ned in (2).

As with the �rst model we shall consider the OLS estimates b�1 (0) and the FGLS estimatesb�1 �bdG� and b�1 �bdW� where bdG is the usual GPH estimate and bdW is the Whittle estimate of

the long-memory parameter d. We analyse the sensitivity of the growth rates and correct them

if needed as before.

Note that since model (21) can be obtained from (20) by di�erencing u
(2)
t = �u

(1)
t and

�1 = �2:

4.1 Results

Consider the results of the DTM (20) for the Unites States of America (USA). The OLS

estimates in Table 1. i.e. bd0 = 0; which shows that B2 (0) = 2.40. This means the OLS

estimator for long run growth b�2 (0) = 1.976% is sensitive to long memory. As a next step, we

use our correction method and we see that d61 = 0.105 (i.e. it took 61 steps to converge), and

B2 (d61) = -1.558 with b�2 (d61) = 1.9831%. Now if we consider the FGLS estimator with the

GPH parameter (Table 2) bdG = 0.462, the growth rate is b�2 �bdG� = 1.9848% with the sensitivity
statistic B2

�bdG� = -8.315 which makes it even more sensitive than the OLS estimated rate.

Correcting for the long-memory parameter get d27 = -0.012 with growth rate 1.9745% and

B2 (�0:012) = 0.3921. Similarly the Whittle estimator (Table 3) is bdW = 0.713 with b�2 �bdG� =
1.971% and B2(bdW ) = -8.910, correcting that in 13 steps gives us d13 = {0.009 with growth rate
of 1.975% and corresponding B2 (�0:009) =0.975. This means that the United States PCGDP

is modelled as a DTM has the least sensitive growth rate of 1.975% with sensitivity level of

B2 (�0:012) = 0.3921. One might argue that the initial estimates (1.976%, 1.9848% and 1.987%

under di�erent estimated values of d) of the growth rates are not that di�erent in case of USA,

so practically it does not matter. But this might not be the case for all countries. For example,

the initial estimates for United Kingdom are OLS: b�2 (0) = 1.601%, GPH: b�2 (0:737) = 1.547%
and Whittle b�2 (0:915) = 1.523%. After correction the most stable growth rate turns out to be
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1.601% the OLS growth rate. The initial estimates of Portugal's long run growth OLS: b�2 (0) =
2.779%, GPH: b�2 (1:301) = 2.494% and Whittle b�2 (1:188) = 2.539%. After correction the most
stable growth rate turns out to be 2.792% at d = 0:07. Uruguay's OLS estimate (at 1.102%) is

stable but the FGLS estimates are not. Indonesia with initial estimates of 1.494%, 1.123% and

1.133% and India with initial growth estimates of 0.887% 0.550% and 0.525% does not have any

insensitive estimates even after 100 iterations. This implies long-run growth estimates for India

are sensitive to stochastic shocks and we should be careful about interpreting India's growth

trajectory.

Next we consider the stochastic growth model. Again take the example of USA. The average

of the annual growth rate (OLS estimate) in Table 4 show that the long run growth b�1 (0) =
1.8637% but is insensitive to long memory B1(0) = 0.3071. The GPH estimator (in Table

5) bdG = -0.4385 gives a growth rate of 1.7743% which is sensitive B1(bdG) = 2.1297 but the

correction method fails to converge (in 100 steps). The Whittle estimator (in Table 6) is

insensitive, bdW = -0.176, with b�1 �bdW� = 1.824% and B1(bdW ) = 1.0177. From the analysis

of both the models B1 (�0:015) = -0.214, is the least among the other sensitivity measure, so

the best possible stable long run growth is 1.974%. Though it is to be noted that the growth

estimates from the stochastic model are very di�erent from the linear trend model.

Comparing the estimates of the two models, a important observation is that almost all the

OLS estimates of stochastic growth model are insensitive to longmemory parameters than the

DTM (with exception of small economies like Venezuela and Portugal). Table 7 summarises

the sensitivity results. Secondly, LS growth estimates from STM are generally lower than

the linear trend model (24 out of 30 for OLS, 23 out of 30 for FGLS with both GPH and

Whittle Estimates). The median di�erence for the OLS estimate is -0.16 (-16 basis points) and

is statistically signi�cant using a signtest. The same is true for the FGLS estimate di�erence.

Using the correction method on the OLS as proposed, 21 out of 26, growth estimates from STM

are lower than the DTM. The same is true for the FGLS estimates. So even after correcting for

sensitivity the stochastic model produces lower growth estimates than the trend model. Figure

3, demonstrates this using a kernel density estimate for the growth rates obtained from STM
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and DTM using OLS.

[Insert Figure 3]

[Insert Table 7]

Therefore less sensitive growth rates are produced by models which also have lower estimated

growth rates than the more sensitive estimates.

5 Conclusion

We develop a method of sensitivity of slope estimates when the error process is a long memory

process. we argue that the long run growth estimates when the log-output process is an I(d)

process is sensitive to the estimates of the long memory parameters. The implication of a

sensitive numerical estimate of the growth has implications to the evaluation of the long run

economic trajectory of countries. We also provide a methodology to correct for the sensitivity

of the growth estimates. One of the major �nding is that a stochastic growth model, which

averages the annual growth rates are less sensitive to long memory parameter misspeci�cation

than the deterministic trend model. But the growth estimates from the stochastic growth model

are signi�cantly lower than the growth estimates of the deterministic trend model.

Appendix

Proof of Lemma 1: Let z = exp (�ix) ; then (1� z) (1� z�1) = 2 sin2
�
x
2

�
where i=

p
�1:

Consider the function [(1� z) (1� z�1)]�d : Let the power series expansion be

�
(1� z)

�
1� z�1

���d
=

1X
h=0

!h (d) exp (ixh) :

14



Note that !h (d) can be obtained from by using the Integral transform:

1

2�

Z 2�

0

�
(1� z)

�
1� z�1

���d
exp (�ixh) dx = !h (d)

4�d

�

Z �

0

sin�2d (x) exp (�ixh) dx = !h (d) ; (22)

since the Fourier coe�cients of the sine part of the transform is zero, then

4�d

�

Z �

0

sin�2d (x) cos (2hx) = !h (d) :

Then by (Erd�elyi et.al (1953, p. 12) we have

!h (d) =
(�1)h�(1� 2d)

�(�d� h+ 1)�(�d+ h+ 1) : (23)

Now note that

@j [(1� z) (1� z�1)]�d

@dj

�����
d=0

=
�
log (1� z)

�
1� z�1

��j
; j =; 1; 2:

Di�erentiation under the integral sign in (22) on both sides gives

@j!h (d)

@dj

����
d=0

=
1

2�

Z 2�

0

�
log (1� z)

�
1� z�1

��j
exp (�ixh) dx;

=
1

2�

Z 2�

0

h
log 2 sin2

�x
2

�ij
exp (�ixh) dxd=0; j = 1; 2:

From (23) we get

@!h (d)

@d

����
d=0

=

8><>: 0; if h = 0

1
h
; h > 0

and

@2!h (d)

@d2

����
d=0

=

8><>:
�2

3
; if h = 0

2+4h(	(h)+
)
h2

h > 0
:

QED.
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Proof of Theorem 2:

De�ne @j
(�)�1

@�j
= A(j) (�) and be (�) = �y �Xb� (�)� : Then,

@b�(�)
@�

= �
�
X0
 (�)�1X

��1
XA(1) (�)be (�) :

Hence, at � = 0

b(1)r = �r0 (X0X)
�1
X0A(1)be = �r0 (X0X)

�1
X0A(1)My = c(1)r

�bd0�y = c(1)r �bd0�u:

@2b�(�)
@�2

= �
"
@
�
X0
 (�)�1X

��1
@�

X0A(1) (�) +
�
X0
 (�)�1X

��1
X0A(2) (�)

#be (�)
+
�
X0
 (�)�1X

��1
X0A(1) (�)X

@b�(�)
@�

= �

264 @(X0
(�)�1X)
�1

@�
X0A(1) (�) +

�
X0
 (�)�1X

��1
X0A(2) (�)

+
�
X0
 (�)�1X

��1
X0A(1) (�)X

�
X0
 (�)�1X

��1
X0A(1) (�)

375be (�)

= �

266664
�
�
X0
 (�)�1X

��1
X0A(1) (�)X

�
X0
 (�)�1X

��1
XA(1) (�)

+
�
X0
 (�)�1X

��1
X0A(2) (�)

�
�
X0
 (�)�1X

��1
X0A(1) (�)X

�
X0
 (�)�1X

��1
XA(1) (�)

377775be (�)

then at � = 0

b(2)r = �r0

264 � (X0X)�1X0A(1)X (X0X)�1XA(1) + (X0X)�1XA(2)

� (X0X)�1XA(1)X (X0X)�1XA(1)

375be
= r0 (X0X)

�1
X0
h
A(2) � 2A(1)X (X0X)

�1
X0A(1)

ibe
= r0 (X0X)

�1
X0
h
A(2) � 2A(1)X (X0X)

�1
X0A(1)

i
My = c(2)r

�bd0�y = c(2)r �bd0�u:
Since "t = �

�(d�bd0)ut the result follows.
Proof of Theorem 3: See Appendix.

Following Hinkley (1969) if (u1; u2) � BN(0; 0; �21; �22; �) and let u = u1
u2
; the the distribution

16



of u is given by

F (u) = 2L
 

�2u� ��1p
u2�22 � 2u�2��1 + �21

!
;

where

L (�) = 1

4
+

1p
2�
arctan

 r
�2

1� �2

!
:

Therefore,

F (u) =
1

2
+

r
2

�
arctan

0@s(�2u� ��1)2
(1� �2)�21

1A :
QED.
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Figure 1.1: Sensitivity curves model 19.

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

d

DTM

d0

π 2(d
­d

) ;
d

0)
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1.2: Sensitivity curves model 18.
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Figure 2.1: The 95th percentile of CF (d; bd0)
of model 19.
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Tables

Table 1: Deterministic Trend Model: OLS

�2(0)% B2(0) bdI �2(bdI)% B2(bdI) I
Austria 2.3171 3.1533 -0.0368 2.3053 1.5316 3

Belgium 1.9142 2.4304 0.0763 1.9226 -0.3789 4

Denmark 2.1168 3.2342 0.1112 2.1265 -1.9388 12

Finland 2.7844 5.4000 0.0774 2.7998 1.2360 8

France 2.2970 2.9296 -0.0319 2.2901 0.2065 3

Germany 2.1755 3.2877 0.1100 2.1967 -1.5011 6

Italy 2.4902 2.2630 0.0629 2.4991 0.7676 4

Netherlands 1.9714 1.8908 0.0000 1.9714 1.8908 1

Norway 2.7681 2.9401 -0.0229 2.7658 -1.6391 3

Sweden 2.3802 6.6223 -0.0336 2.3721 -0.4683 11

Switzerland 2.0832 6.1103 0.1354 2.1127 -1.8748 22

United Kingdom 1.6009 1.3180 0.0000 1.6009 1.3180 1

Portugal 2.7790 3.3911 0.0688 2.7922 0.3030 6

Spain 2.3463 1.2383 0.0000 2.3463 1.2383 1

Australia 1.7300 1.2764 0.0000 1.7300 1.2764 1

New Zealand 1.4422 4.2694 -0.0192 1.4393 0.4206 11

Canada 2.0818 3.6145 0.1104 2.0973 -1.5883 4

United States 1.9756 2.4025 0.1047 1.9831 -1.5580 62

Argentina 1.0836 3.5511 -0.0108 1.0823 1.2125 41

Brazil 2.3954 5.8406 0.1241 2.4202 -1.4601 8

Chile 1.3479 -2.4072 -4.0595 100

Colombia 1.8016 5.2301 0.1152 1.8115 -1.7992 14

Mexico 1.7877 3.7227 0.0627 1.7987 1.4856 4

Peru 1.6451 1.5733 0.0000 1.6451 1.5733 1

Uruguay 1.1019 0.7317 0.0000 1.1019 0.7317 1

Venezuela 2.7468 2.2336 7.0760 100

India 0.8874 -3.0952 65535.0000 100

Indonesia 1.4938 -2.6293 -3.9698 100

Japan 3.2889 2.4898 -0.0427 3.2770 0.6349 9

Philippines 1.1800 -1.7705 0.0000 1.1800 -1.7705 1
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Table 2: Deterministic Trend Model: FGLS with GPH estimates

bdG �2(bdG)% B2(bdG) bdI �2(bdI)% Br(bdI) I
Austria 0.7767 2.2419 -8.8507 0.0681 2.3339 0.5008 4

Belgium 1.1637 1.7254 -9.2531 0.0619 1.9214 0.5034 9

Denmark 0.9859 2.0774 -9.1614 0.1034 2.1260 -1.4726 28

Finland 0.7447 2.8176 -8.8243 0.1244 2.8073 -1.9120 6

France 0.8288 2.2612 -8.9521 0.1144 2.3153 -1.9518 8

Germany 0.6386 2.1851 -8.6536 0.1002 2.1952 -0.9141 2

Italy 0.8254 2.4277 -8.9652 0.0981 2.5030 -1.3252 4

Netherlands 0.7630 1.9235 -8.9410 -0.0164 1.9694 0.4722 7

Norway 0.6937 2.7444 -8.8634 -0.0219 2.7659 -1.3579 3

Sweden 0.9789 2.4594 -9.0978 0.1320 2.4072 -1.9564 66

Switzerland 1.0664 2.2038 -9.1727 0.1358 2.1128 -1.8971 23

United Kingdom 0.7366 1.5474 -8.9771 0.0017 1.6010 1.5186 9

Portugal 1.3013 2.4936 -9.2774 0.0929 2.7953 -1.1830 4

Spain 1.3302 1.9243 -9.3112 -0.0538 2.3385 -1.9032 5

Australia 1.1829 1.6112 -9.3124 0.0040 1.7302 1.6429 8

New Zealand 0.9872 1.4581 -9.1526 0.0804 1.4529 0.4431 10

Canada 0.5971 2.1069 -8.6351 0.0983 2.0959 -0.8326 45

United States 0.4616 1.9848 -8.3155 -0.0122 1.9745 0.3921 28

Argentina 0.5405 1.1299 -8.5189 -0.0121 1.0822 0.9261 10

Brazil 0.9780 2.4262 -9.0601 0.1279 2.4208 -1.6852 6

Chile 0.6611 1.2403 -8.9877 0.0653 1.3394 -1.7094 2

Colombia 0.5740 1.8176 -8.6147 0.1155 1.8115 -1.8198 17

Mexico 1.1504 1.7102 -9.2163 0.1154 1.8061 -1.9426 11

Peru 1.0050 1.8830 -9.1748 0.0023 1.6453 1.9163 5

Uruguay -0.2272 1.0934 -9.2765 -4.5993 100

Venezuela 0.8176 3.2350 -8.6860 -0.0053 2.7451 1.7467 3

India 1.1556 0.5499 -9.3847 9.3527 100

Indonesia 1.1125 1.1229 -8.9875 -8.5446 100

Japan 1.0387 3.1003 -9.0607 -0.0223 3.2830 1.8445 4

Philippines 0.4154 1.1680 -7.9953 -9.0530 100
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Table 3: Deterministic Trend Model: FGLS with Whittle estimates

bdW �2(bdW )% B2(bdW ) bdI �2(bdI)% Br(bdI) I
Austria 0.9295 2.1849 -9.0039 -0.0454 2.3023 0.7277 3

Belgium 1.1530 1.7286 -9.2472 0.0729 1.9223 -0.1708 9

Denmark 1.0022 2.0752 -9.1735 0.1112 2.1265 -1.9393 24

Finland 0.9704 2.7951 -9.0832 0.0990 2.8034 -0.3111 12

France 1.2585 2.1523 -9.2738 -0.0177 2.2933 1.7783 4

Germany 0.8608 2.1449 -8.9632 0.1160 2.1976 -1.8459 6

Italy 0.9904 2.3828 -9.1085 0.0641 2.4993 0.6994 3

Netherlands 0.9141 1.8941 -9.0900 -0.0177 1.9692 0.3298 11

Norway 0.9426 2.7126 -9.1355 0.1061 2.7749 -1.8130 18

Sweden 1.2050 2.4503 -9.2720 0.1319 2.4072 -1.9533 61

Switzerland 1.0493 2.2036 -9.1591 0.1367 2.1130 -1.9475 13

United Kingdom 0.9148 1.5225 -9.1491 0.0013 1.6010 1.4664 7

Portugal 1.1881 2.5390 -9.2152 0.0692 2.7922 0.2785 5

Spain 1.2513 1.9628 -9.2766 -0.0426 2.3404 -0.9032 4

Australia 1.0008 1.6420 -9.2045 -0.0119 1.7294 -0.6885 5

New Zealand 0.9838 1.4583 -9.1498 -0.0221 1.4389 -0.3399 19

Canada 0.9101 2.0790 -9.0679 0.0274 100

United States 0.7133 1.9720 -8.8949 0.1114 1.9834 -1.9559 20

Argentina 0.9920 1.1376 -9.1602 -0.0220 1.0810 -1.2502 45

Brazil 1.0581 2.4172 -9.1282 0.1319 2.4215 -1.9171 9

Chile 0.7216 1.2299 -9.0589 -4.0595 100

Colombia 0.8499 1.8050 -9.0377 0.1174 1.8116 -1.9312 12

Mexico 1.2571 1.6848 -9.2781 0.1152 1.8061 -1.9325 17

Peru 0.9233 1.8622 -9.0945 -0.0180 1.6436 -0.9397 7

Uruguay 0.4705 1.1040 -8.3960 -4.6220 100

Venezuela 1.3207 3.5947 -9.3746 7.0760 100

India 1.2448 0.5253 -9.4150 2.7781 0.2447 -0.4986 9

Indonesia 1.1334 1.1161 -8.9949 -3.9698 100

Japan 1.1919 3.0319 -9.1629 -0.0635 3.2705 -0.9568 4

Philippines 0.6873 1.1732 -8.7004 0.0263 1.1776 0.3769 3
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Table 4: Stochastic Trend Model: OLS

�1(0)% B1(0) bdI �1(bdI)% B1(bdI) I
Austria 1.9557 0.5397 0.0000 1.9557 0.5397 1

Belgium 1.7182 0.7430 0.0000 1.7182 0.7430 1

Denmark 1.9769 0.5282 0.0000 1.9769 0.5282 1

Finland 2.5311 0.6044 0.0000 2.5311 0.6044 1

France 2.0435 0.5717 0.0000 2.0435 0.5717 1

Germany 1.8708 0.4761 0.0000 1.8708 0.4761 1

Italy 2.3294 0.3473 0.0000 2.3294 0.3473 1

Netherlands 1.7843 0.5679 0.0000 1.7843 0.5679 1

Norway 2.5841 1.2945 0.0000 2.5841 1.2945 1

Sweden 2.1345 0.7768 0.0000 2.1345 0.7768 1

Switzerland 1.7540 1.6197 0.0000 1.7540 1.6197 1

United Kingdom 1.5342 0.5618 0.0000 1.5342 0.5618 1

Portugal 2.3658 2.0410 0.1026 2.4146 -0.0912 2

Spain 2.2064 0.5576 0.0000 2.2064 0.5576 1

Australia 1.7891 -1.1833 0.0000 1.7891 -1.1833 1

New Zealand 1.3619 -0.2766 0.0000 1.3619 -0.2766 1

Canada 1.9232 0.3811 0.0000 1.9232 0.3811 1

United States 1.8637 0.3071 0.0000 1.8637 0.3071 1

Argentina 1.0272 -0.4305 0.0000 1.0272 -0.4305 1

Brazil 2.0317 1.9206 0.0000 2.0317 1.9206 1

Chile 1.5482 -0.3319 0.0000 1.5482 -0.3319 1

Colombia 1.6180 1.4060 0.0000 1.6180 1.4060 1

Mexico 1.6502 -0.1182 0.0000 1.6502 -0.1182 1

Peru 1.6499 -0.5485 0.0000 1.6499 -0.5485 1

Uruguay 0.9632 0.7217 0.0000 0.9632 0.7217 1

Venezuela 2.0788 2.1791 2.8000 100

India 1.1820 -1.5541 0.0000 1.1820 -1.5541 1

Indonesia 2.2254 0.0612 0.0000 2.2254 0.0612 1

Japan 2.9046 0.8647 0.0000 2.9046 0.8647 1

Philippines 2.2882 0.0889 0.0000 2.2882 0.0889 1
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Table 5: Stochastic Trend Model: FGLS with GPH estimates

bdG �1(bdG)% B1(bdG) bdI �1(bdI)% Br(bdI) I
Austria -0.2902 1.6196 1.3439 -0.2902 1.6196 1.3439 1

Belgium 0.3365 1.7083 -0.3614 0.3365 1.7083 -0.3614 1

Denmark 0.1477 1.9963 0.3866 0.1477 1.9963 0.3866 1

Finland -0.0793 2.5120 1.0601 -0.0793 2.5120 1.0601 1

France -0.1237 1.9868 1.0017 -0.1237 1.9868 1.0017 1

Germany -0.3293 1.7723 1.0991 -0.3293 1.7723 1.0991 1

Italy -0.1257 2.3121 0.6912 -0.1257 2.3121 0.6912 1

Netherlands -0.2111 1.6291 1.2050 -0.2111 1.6291 1.2050 1

Norway -0.3498 2.0193 4.0031 0.4349 2.5983 1.2316 2

Sweden 0.1663 2.1629 0.7213 0.1663 2.1629 0.7213 1

Switzerland -0.0028 1.7525 1.6138 -0.0028 1.7525 1.6138 1

United Kingdom -0.1875 1.4335 2.5903 0.3229 1.4961 -0.6111 2

Portugal 0.5365 2.3155 0.0025 0.5365 2.3155 0.0025 1

Spain 0.3298 2.1359 -1.1007 0.3298 2.1359 -1.1007 1

Australia 0.1730 1.7527 -0.5249 0.1730 1.7527 -0.5249 1

New Zealand -0.0048 1.3624 -0.2553 -0.0048 1.3624 -0.2553 1

Canada -0.3456 1.7326 2.0340 0.9819 1.8510 1.3961 2

United States -0.4385 1.7743 2.1297 3.1288 100

Argentina -0.3456 1.9985 -0.6030 -0.3456 1.9985 -0.6030 1

Brazil 0.3557 2.1422 1.4812 0.3557 2.1422 1.4812 1

Chile -0.2427 1.4384 0.9552 -0.2427 1.4384 0.9552 1

Colombia 0.0484 1.6312 1.3732 0.0484 1.6312 1.3732 1

Mexico 0.2388 1.6661 0.5963 0.2388 1.6661 0.5963 1

Peru 0.0076 1.6484 -0.4305 0.0076 1.6484 -0.4305 1

Uruguay -0.5730 0.9220 1.2056 -0.5730 0.9220 1.2056 1

Venezuela -0.0002 2.0785 2.1738 2.8002 100

India 0.5130 0.8412 -2.2149 5.8035 0.1896 0.8045 2

Indonesia 0.0654 2.2243 -0.5502 0.0654 2.2243 -0.5502 1

Japan 0.0497 2.9304 0.6442 0.0497 2.9304 0.6442 1

Philippines 0.3388 2.4008 1.9757 -0.2281 2.4806 0.1519 2
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Table 6: Stochastic Trend Model: FGLS with Whittle estimates

bdW �1(bdW )% B1(bdW ) bdI �1(bdI)% Br(bdI) I
Austria -0.0522 1.9270 0.8327 -0.0522 1.9270 0.8327 1

Belgium 0.1356 1.7349 -0.5076 0.1356 1.7349 -0.5076 1

Denmark 0.0024 1.9773 0.5194 0.0024 1.9773 0.5194 1

Finland -0.0171 2.5271 0.7088 -0.0171 2.5271 0.7088 1

France 0.2738 2.0769 0.1260 0.2738 2.0769 0.1260 1

Germany -0.1190 1.8198 0.7088 -0.1190 1.8198 0.7088 1

Italy -0.0107 2.3276 0.3656 -0.0107 2.3276 0.3656 1

Netherlands -0.0730 1.7509 0.8489 -0.0730 1.7509 0.8489 1

Norway -0.0309 2.5701 1.5800 -0.0309 2.5701 1.5800 1

Sweden 0.1838 2.1653 0.7770 0.1838 2.1653 0.7770 1

Switzerland 0.0372 1.7718 1.6495 0.0372 1.7718 1.6495 1

United Kingdom -0.0702 1.5166 1.6245 -0.0702 1.5166 1.6245 1

Portugal 0.1748 2.4241 -0.5921 0.1748 2.4241 -0.5921 1

Spain 0.2565 2.1671 -1.2761 0.2565 2.1671 -1.2761 1

Australia 0.0045 1.7878 -1.2181 0.0045 1.7878 -1.2181 1

New Zealand -0.0431 1.3677 -0.0737 -0.0431 1.3677 -0.0737 1

Canada -0.0766 1.9076 0.7510 -0.0766 1.9076 0.7510 1

United States -0.2391 1.8039 1.2699 -0.2391 1.8039 1.2699 1

Argentina -0.0719 1.0569 -0.9138 -0.0719 1.0569 -0.9138 1

Brazil 0.0698 2.0676 1.5964 0.0698 2.0676 1.5964 1

Chile -0.2872 1.3417 1.1048 -0.2872 1.3417 1.1048 1

Colombia -0.1193 1.5783 1.6524 -0.1193 1.5783 1.6524 1

Mexico 0.2483 1.6668 0.6168 0.2483 1.6668 0.6168 1

Peru -0.0734 1.6790 -1.0666 -0.0734 1.6790 -1.0666 1

Uruguay -0.4743 0.8450 1.0184 -0.4743 0.8450 1.0184 1

Venezuela 0.3257 2.4962 3.3685 -0.1017 1.9463 0.7272 16

India 0.2252 1.0402 -2.9253 0.7979 0.6746 -1.8103 2

Indonesia 0.2430 2.1997 -0.2876 0.2430 2.1997 -0.2876 1

Japan 0.1893 2.9765 0.3587 0.1893 2.9765 0.3587 1

Philippines 0.0886 2.3033 1.0599 0.0886 2.3033 1.0599 1

# of sensitive
estimates

# of failed
corrections

STM using OLS 2/30 1/30
STM using GPH 7/30 2/30
STM using Whittle 2/30 0/30
DTM using OLS 23/30 4/30
DTM using GPH 30/30 4/30
DTM using Whittle 30/30 5/30

Table 7: Summary of sensitivity of growth estimates for STM and DTM using OLS and FGLS
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