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Abstract

We develop a quantitative theory of labor quality based on the division of the labor
force between unskilled and skilled workers, and investments in the quality of skilled
labor. We use the theory to quantify the importance labor quality and Total Factor
Productivity for cross-country income differences. A central ingredient in our analysis
is the observed achievement levels (talent) constructed from PISA scores in a sample
of 59 countries. Our findings imply that the cross-country differences in the quality
of labor are almost twice as large as the conventional measures using Mincer returns.
Thus, the implied disparities in TFP levels are smaller. The elasticity of output per
worker with respect to TFP is about 2.3. We find no support for the hypothesis of
skill-biased technology differences across countries.
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1 Introduction

It is well known by now that the observed cross-country differences in output per worker

are large. For example, the richest countries in the world economy are about 30-40 times

more productive than their poorest counterparts; see Hall and Jones (1999), McGrattan and

Schmitz (2000), Prescott and Parente (2000), among others.

One potential reason why countries differ in their output per worker might be differences

in labor input per worker, or labor quality. As direct measures of achievement of individuals

entering a nation’s labor force have been unavailable, the literature has inferred workers’

skills by human capital levels constructed using Mincerian returns to schooling. Standard

development accounting procedures impute cross-country differences in the quality of labor

to differences in such human capital levels. These studies attribute roughly 10 percent of

the output per worker differences to differences in the quality of labor across countries; see

Caselli (2005) for a review.

In this paper, we take an alternative, more direct approach to the measurement of labor

quality. We use the observed test scores from the Programme for International Student

Assessment (PISA) in conjunction with a dynamic model to compute the labor quality in

each country. The PISA is an internationally standardized assessment that is organized

and conducted by OECD. The tests are administered to 15-year old individuals in schools

and provide an alternative quantification of skills during the schooling period. The first

advantage of PISA is the assessment of young people near the end of compulsory schooling.

It captures students of the same age in each country independently of the structure of

national school systems. By contrast, other studies focus on testing students in specific

grades which may be distorted by the fact that countries may differ in their grade-entry ages

and grade-repetition rules. The second advantage of PISA is that the tests are constructed

to evaluate a range of relevant skills that capture how well young adults are prepared to

meet future work challenges, by being able to analyze, reason, and communicate their ideas

effectively. While previous studies are curriculum-based, PISA tests the young adults’ ability

to “use their knowledge and skills in order meet real-life challenges” (OECD 2001, p. 16).

By design, PISA provides single comparable measure of skills for each country that can be

used to index skills of individuals prior to their entry into the labor force.

We develop a parsimonious model where countries differ in two key dimensions – talent
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heterogeneity and Total Factor Productivity (TFP). We use the PISA achievement score and

our model to construct a measure of labor quality, and quantify its role in accounting for the

cross-country differences in output per worker. Our main questions are: how large are the

differences in implied labor quality across countries? What are the resulting magnitudes of

TFP differences?

Our model has a representative household with a continuum of members. The members

are heterogeneous and are born with some innate efficiency units of labor or talent. The

household divides each cohort in two groups: skilled workers and unskilled workers. Con-

verting a member of the household into a skilled worker is costly: it requires time (foregone

earnings) and goods. As more goods are invested, the higher is the resulting quality of

each skilled worker. Quality an unskilled worker is just the talent he was born with. The

production technology uses capital, unskilled labor and skilled labor as factors of produc-

tion. Labor of both types includes the fraction of each worker type and the quality of each

worker type. Thus, while the distribution of talent is exogenous in our model, labor quality

is endogenous. When the elasticity of substitution between labor types is in the empirically

plausible range, we show that an increase in TFP increases the fraction of skilled workers as

well as investments in their quality. In this sense, differences in TFP not only have a direct

effect on the output per worker, but also an indirect effect via labor quality.

In a sample of 59 countries, we measure talent by the observed PISA score. We calibrate

two other critical parameters in the model – the importance of goods in the enhancement

of the quality of skilled labor and the share of unskilled labor in the aggregate technology

– using only the U.S. data to deliver the observed expenditures per tertiary student as a

fraction of GDP per worker, and the fraction of the population with secondary education or

less. We then examine the quantitative implications of the observed cross-country differences

in PISA scores for the differences in output per worker and for the differences in the fraction

of labor that is unskilled. We subsequently quantify the role of TFP, along with the PISA

scores, in accounting for the output and the division of labor across countries.

Our findings indicate that the use of PISA scores leads to substantially larger differences

in labor quality across countries than in standard analyses based on Mincerian returns. Using

Mincerian returns, labor quality in the poorest 10 percent of the countries in our sample is

about 86 percent of the quality in the richest 10 percent of the countries. In our model,

labor quality in the poorest 10 percent is only about 46 percent of the quality in the richest
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10 percent. Our finding on labor quality differences is similar to that in Schoellman (2011)

who uses data on immigrants in the U.S. to infer variation in labor quality, exploiting the

fact that immigrants from richer countries earn higher returns to schooling than immigrants

from poorer countries. He concludes that labor quality differences between poor and rich

countries are twice as large as those under conventional measures using Mincer returns; e.g.

Hall and Jones (1999), Hendricks (2002). Hence, the TFP differences emerging from our

model are smaller than those emerging from standard analyses. In terms of elasticities, the

elasticity of output per worker with respect to TFP is 2.35 in our model. The TFP elasticity

is 1.5 in the standard growth model, and roughly 1.7 under a measure of labor quality based

on Mincer returns, as this variable is correlated with output per worker.

Our paper is closely related to Manuelli and Seshadri (2010) and Erosa, Koreshkova, and

Restuccia (2010), who examine the role of human capital in explaining cross-country income

differences. Manuelli and Seshadri (2010) develop a model of human capital acquisition in

early childhood, via schooling and over the life cycle, where investments of goods in human

capital formation play a central role. They argue that TFP differences are quantitatively

small and that measured differences in output largely reflect differences in unmeasured labor

quality. The TFP elasticity of output per worker in their model is roughly 6.5. Erosa

et al. (2010) develop a model where heterogenous households invest in the quantity and

quality of schooling. Using data on earnings inequality and its persistence across generations

to calibrate their model, these authors find TFP differences similar in magnitude to ours

(around 2). Indeed, our results are quite close to those in Erosa et al. (2010), as a modest

variation of the key parameter in their model would yield our elasticity estimates (see Erosa

et al. (2010), Table 5). Overall, our findings contribute to estimates of potential variation of

labor quality across countries. We argue that observable variation in talent via PISA scores

combined with our model of division of labor and investment in the quality of skilled workers

goes a long way towards capturing the variation of labor quality and its interplay with TFP

differences.

Our paper is organized as follows. Section 2 presents in detail the data we use in the

paper, with particular emphasis on data from the PISA program. Section 3 develops the

theoretical framework. Section 7 discusses the parameterization of the model and its mapping

to data. In section 5, we perform a number of hypothetical experiments to highlight how

the model works. Section 6 presents the basic findings from our experiments. In section
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7 we evaluate in detail the quantitative importance of TFP and how our findings compare

with those emerging from standard analyses. In section 8 issues, we study the implications

our framework for related issues of interest: skill premia and the possibility of skill-biased

technology differences across countries. Finally, section 10 concludes.

2 Data

We summarize below the central aspects of data that pertain to our study. We concentrate

on PISA scores, enrollment rates, the division of labor between unskilled and skilled workers,

and corresponding observations on output per worker.

2.1 PISA

The PISA is an assessment that was jointly developed by participating economies. In this

paper, we use the last assessments by PISA which were carried out in 2009 and include 65

economies. PISA tests abilities in mathematics, reading and science. The study is orga-

nized and conducted by the OECD, ensuring as much comparability among participants as

possible.1

The PISA sampled students between 15 years and 3 months and 16 years and 2 months

old. Only students that are enrolled in an educational institution, regardless of the grade

level or type of institution in which they were enrolled are sampled. The average age of

OECD country students participating in PISA was 15 years and 8 months, varying by a

maximum of only 2 months among the participating countries.2

The performance tests lasted for two hours and were taken using paper and pencil. They

include both multiple-choice items and questions that require students to construct their

own responses. The PISA aims to test not merely the mastery of the school curriculum, but

also important knowledge and skills needed in adult life (OECD 2000, pp. 8). Each subject

was tested at differing levels of difficulty in order to represent a coherent and comprehensive

1For detailed information on the PISA study and its database, see the PISA homepage at
www.pisa.oecd.org.

2The PISA sampling procedure ensured that a representative sample of the target population was tested
in each country. Most PISA countries employed a two-stage stratified sampling technique. The first is step
consists on drawing a random sample of schools, and in the second stage students are randomly sampled in
each of these schools making sure that each 15-year-old student in a school has equal probability of selection.
This procedure typically yield a sample of between 4,500 and 10,000 students per country.
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indicator of the continuum of students’ abilities. Using item response theory, PISA mapped

performance in each subject on a scale with an international mean of 500 test-score points

across the OECD countries and an international standard deviation of 100 test-score points.

We consider fifty nine countries participating in the PISA 2009 study. These are: Alba-

nia*, Argentina*, Australia, Austria, Belgium, Brazil*, Bulgaria*, Canada, Chile, Colom-

bia*, Croatia*, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hong

Kong-China*, Hungary, Iceland, Indonesia*, Ireland, Israel, Italy, Japan, Jordan*, Kaza-

khstan*, Korea, Kyrgyz Republic*, Latvia*, Lithuania*, Luxembourg, Macao-China*, Mex-

ico, The Netherlands, New Zealand, Norway, Panama*, Peru*, Poland, Portugal, Romania*,

Russian Federation*, Republic of Serbia*, Singapore*, Slovak Republic, Slovenia, Spain,

Sweden, Switzerland, Thailand*, Trinidad and Tobago*, Tunisia*, Turkey, UAE-Dubai*,

United Kingdom, United States, Uruguay*. Those marked with a “*” are non-OECD coun-

tries.3 We report results using the Math test score. We note, however, that the correlation

of student performance between the three subjects is substantial; 0.95 between reading and

math, 0.98 between reading and science, and 0.97 between math and science.

2.2 Related Data

To characterize facts on cross-country relationship between test scores and economic devel-

opment, we also use country level data on the countries’ GDP per worker in 2007 (PPP)

taken from the Penn World Tables 7.0. Since the the tests are administered to 15 year-old

individuals, and in some countries a non-trivial fraction of them are not at school, we also

document and subsequently use the enrollment rates at school at that age provided by the

PISA study.

Our framework has central implications for the division of the labor force between skilled

and unskilled workers. For the data counterpart of these concepts, we also consider data

from Barro and Lee (2001). We define skilled individuals as those with strictly more than

high school education, whereas unskilled people are their complement.

3We exclude from the total list of PISA participating countries China-Shangai and China-Taipei, given
the focus on only one urban area. We also exclude Liechtenstein, Montenegro and Azerbaijan, as we lack
data for these countries on the composition of the labor force. Finally, we also exclude Qatar, due to its
outlier character in terms of output per worker.
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Figure 1: Mean PISA Scores (Math) and GDP per worker.
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Figure 2: Enrollment Rates (15 years old) and GDP per worker.
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Figure 3: Fraction Unskilled and GDP per worker.

2.3 Facts Summary

Table 1 and Figures 1, 2 and 3 summarize main features from the data. We note first

that there are substantial differences in PISA scores across countries. The ratio of the 90th

percentile to the 10th percentile is about 1.4, with a maximum gap of a factor of about 1.7,

between Hong Kong and the Kyrgyz Republic. The gap between the United States and the

Kyrgyz Republic is a factor of nearly 1.5.

Second, there is a positive relationship between enrollment rates and output per worker,

with a correlation in the sample of about 0.50. About 80 percent of individuals at 15 are at

school in Uruguay, whereas all of them are in school in Finland and the U.S. At the bottom

of the distribution, only about 64 percent of 15-year old individuals are at school in Turkey.

Third, there is a strong and positive relationship between PISA scores and output per

worker. Richer countries have are, on average, high achievement scores. As Table 1 indicates,

the correlation between mean math score and output per worker is almost 0.8. Differences

in output per worker, however, dwarf observed differences in PISA scores. For instance, the

gap between the U.S. and Argentina is a factor of nearly 1.3 in PISA scores, whereas the
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gap in output per worker is about 3.5.

Finally, the data reveals a negative relationship between output per worker and the

fraction of unskilled individuals. While about 98 percent of workers in Indonesia (the lowest

observation in our sample) are unskilled at an output per worker level of about 9 percent of

the U.S., only 69 percent of workers are unskilled in the U.S. The correlation between the

fraction of unskilled workers and output per worker is about -0.47.

3 Theoretical Framework

There is a single representative household in the economy. The household comprises at time

t a continuum of members of total size Lt, who value only consumption. The size of the

household (population) grows at the constant rate (gL). The household is infinitely lived

and maximizes

∞∑
t=0

βtLt log(Ct/Lt), (1)

where β ∈ (0, 1) and Ct denotes total household consumption at date t.

Endowments Each household member is born with z units of talent. The talent is

distributed with support in Z = [0, z̄], with cdf G(z) and density g(z), which is invariant

to population growth. Household members have one unit of time which he/she supplies

inelastically. Depending upon his type, each household member can be a skilled or unskilled

worker. We describe below this decision and the associated incomes in detail. The household

is also endowed with an initial capital stock K0 > 0.

Technology There is a representative firm that operates a constant returns to scale

technology. This technology requires three inputs: capitalK, and two types of labor services:

skilled labor S and unskilled labor U . Output (Y ) is given by

Y = F (K,U, S;A) = A Kα[µUρ + (1− µ)Sρ](1−α)/ρ (2)

where A stands for a Total Factor Productivity parameter, and ρ ∈ (−∞, 1). The elasticity

of substitution between skilled and unskilled labor is 1/1− ρ. Output per worker, y ≡ Y/L,

is given by

9



y = A kαl1−α, (3)

with l ≡ [µuρ + (1− µ)sρ]1/ρ, u ≡ U/L and s ≡ S/L.

The representative firm behaves competitively and faces rental prices R, WS, WU for the

use of capital, skilled and unskilled labor, respectively. Capital depreciates at the rate δ.

The Household Problem We assume that the segregation of individuals by skill is

costly. This segregation only applies to newborns, and cannot be changed once a household

member has been assigned to either pool. Converting one newborn into a skilled worker

requires goods, and implies foregone earnings for a period. If a newborn household member

is selected for the unskilled labor pool at t, her talent is contemporaneously transformed into

efficiency units of unskilled labor, and her income is given by WU,tz.

If she becomes part of the skilled pool instead, it takes one period to contribute to skilled

labor. The household invests xt consumption goods in the ‘quality’ of her efficiency units, an

amount common to all household members. Investing xt implies that her talent is amplified

by the factor ht+1, where ht+1 = xϕt , ϕ ∈ (0, 1). Her contribution to household’s income is

then given at t + 1 by WS,t+1zht+1. It follows that only individuals with sufficiently high

levels of talent become skilled. Given rental prices, there exists a unique threshold ẑt such

that newborn household members with talent below this threshold become unskilled workers

at t, and those with talent above it are skilled workers, from t+ 1 on.

If there are Nt ≡ gLLt−1 newborns in each period, and Nt(1 − G(ẑt)) newborns become

skilled, the household invests a total of Ntxt(1−G(ẑt)) goods at t to amplify their talent with

quality ht+1. Then, the aggregate quantities of unskilled and skilled labor evolve according

to

Ut = Ut−1 + Nt

∫ ẑt

0

zg(z)dz︸ ︷︷ ︸
Additions to unskilled labor

(4)

St = St−1 +Nt−1ht

∫ z̄

ẑt−1

zg(z)dz︸ ︷︷ ︸
Additions to skilled labor

(5)

We also assume that the cost for the household of transforming one unit of consumption

into investment, is potentially different from one. We represent these costs by an exogenous
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barrier pt ≥ 1.

The problem of the household is to choose sequences of consumption, the fractions of

household members who are skilled and unskilled, the quantity of goods allocated to affect

the productivity of each skilled member, and the amount of capital to carry over to the next

period. Formally the household problem is to select {Ct, It, ẑt, xt}∞0 to maximize (1) subject

to (4), (5),

Ct + It +Nt(1−G(ẑt))xt = (WU,tUt +WS,tSt) +RtKt,

ht+1 = xϕt ,

Kt+1 = (1− δ)Kt +
It
pt

with

N0, S0, U−1, K0 > 0.

The solution to the household problem is then characterized by the following First Order

Conditions:

pt
Ct/Lt

= β
[Rt+1 + (1− δ)pt+1]

Ct+1/Lt+1

(6)

WU,t ẑt + xt
Ct/Lt

= β
WS,t+1 ẑt x

ϕ
t

Ct+1/Lt+1

(7)

1−G(ẑt)

Ct/Lt

= β
WS,t+1

( ∫ z̄

ẑt+1
zg(z)dz

)
ϕ xϕ−1

t

Ct+1/Lt+1

(8)

Condition (6) is the standard Euler equation for capital accumulation. Condition (7)

states that the discounted compensation of the household member with marginal skill ẑt at t,

weighted by the marginal utility of consumption at t+1, must be equal to the compensation

of an unskilled household member plus the cost of skill conversion, xt, weighted by the

marginal utility of consumption at t. Finally, condition (8) states that the marginal cost of

investing one unit of the consumption good in the quality of a skilled worker must equal its

discounted marginal benefit. This benefit depends on the rental price of skilled labor at t+1

and the ‘raw’ addition member to the pool of skilled labor at t+ 1,
∫ z̄

ẑt
zg(z)dz.
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Equilibrium In competitive equilibrium, the markets must clear and factor prices are

paid their marginal products. Equilibrium in the markets for unskilled and skilled labor

implies

U∗
t = U∗

t−1 +Nt

∫ ẑ∗t

0

zg(z)dz (9)

S∗
t = S∗

t−1 +Nt−1h
∗
t

∫ z̄

ẑ∗t−1

zg(z)dz, (10)

for all t = 0, 1, 2, ..., where a ‘∗’ over a variable denotes its equilibrium value. Equilibrium

in the goods market implies

C∗
t + I∗t +Nt(1−G(ẑ∗t ))x

∗
t = Y ∗

t ,

Factor prices equal

W ∗
U,t =

∂F (K∗
t , S

∗
t , U

∗
t )

∂Ut

(11)

W ∗
S,t =

∂F (K∗
t , S

∗
t , U

∗
t )

∂St

(12)

R∗
t =

∂F (K∗
t , S

∗
t , U

∗
t )

∂Kt

(13)

for all t = 0, 1, 2, ... It is now possible to define a competitive equilibrium. A competitive

equilibrium is a collection of sequences {C∗
t , K

∗
t , ẑ

∗
t , x

∗
t ,W

∗
U,t,W

∗
S,t, R

∗
t}∞0 , such that (i) given

{W ∗
U,t,W

∗
S,t, R

∗
t}∞0 , the sequences {C∗

t , K
∗
t , x

∗
t , ẑ

∗
t , }∞0 solve the household problem; (ii) factor

prices are competitive for all t; (iii) markets clear for all t.

3.1 Balanced Growth

Along a balanced growth path, aggregate investment of both types as well as output, con-

sumption, skilled and unskilled labor grow at the constant population growth rate gL. Factor

prices, capital per worker (k ≡ K/L), investment per new skilled worker x, and the threshold

ẑ are constant.
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Note that the laws of motion for unskilled labor imply that unskilled labor per worker

(u ≡ U/L) equals
∫ ẑ∗

0
zg(z)dz along the balanced growth path. Similarly, skilled labor per

worker, (s ≡ S/N), equals

s∗ =
h∗

∫ z̄

ẑ∗
zg(z)dz

1 + gL

Given the properties of the aggregate technology, we can write Y = Lf(k, s, u). Hence,

along the balanced growth path, (6) and competitive factor prices imply

∂f(k∗, s∗, u∗)

∂k
= p

(
1

β
− (1− δ)

)
. (14)

Similarly, condition (7) and competitive prices imply

∂f(k∗, s∗, u∗)

∂u
ẑ + x∗ = β

∂f(k∗, s∗, u∗)

∂s
ẑ∗ x∗ϕ (15)

Likewise,

(1−G(ẑ∗)) = β
∂f(k∗, s∗, u∗)

∂s

[∫ z̄

ẑ

zg(z)dz

]
ϕ x∗ϕ−1 (16)

Hence, (14), (15) and (16) can be used to solve for a steady-state equilibrium. They

determine the steady-state capital stocks per worker of both types, the threshold value ẑ∗

and the investment in labor quality x∗.

How changes in TFP and investment barriers affect the allocation of talent and then, the

segregation of individuals between skilled and unskilled workers? We show below that under

empirically plausible conditions, economies with low TFP and high investment barriers are

characterized by a lower fraction of skilled individuals than their counterparts.

Assumption 1 The density g(.) is log-concave.

Proposition 1 Let ρ ∈ [0, 1). Assume that assumption 1 holds. Then,

1. There is a unique steady state with ẑ∗ > 0 and x∗ > 0.

2. An increase in TFP (a reduction in investment barrier) implies:

• a reduction in ẑ∗, if ρ ∈ (0, 1);
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• no effects on ẑ∗, if ρ = 0.

(Cobb Douglas case)

• No effects on ẑ∗ if ϕ→ 0.

Proof. See Appendix.

The above proposition is important in many respects and some comments are in order.

First, it provide conditions under which a unique steady state exists. This is naturally

important for the quantitative analysis that we conduct later. These conditions are sufficient,

and easily satisfied. Many widely used distributions satisfy the log-concavity requirement;

this family includes the uniform, the exponential, the normal and the gamma distributions.

Second, the proposition shows that the relative fraction of skilled workers and investment

in their quality always increases with an increase in TFP (reduction of investment barrier)

when the parameter restrictions are satisfied. Thus, whether or not these forces account

for the magnitudes of changes empirically observed is a quantitative issue. It is worth

emphasizing here that a host of empirical estimates of the elasticity of substitution between

skilled and labor fall in the range required. For the limiting case of the Cobb-Douglas

production function, changes in TFP or relative investment prices have no effects on the

skill segregation. Finally, investments in goods are essential for any steady-state effects of

TFP or relative investment prices on skill segregation. In the absence of such investments,

changes in these parameters are neutral.

4 Parameter Values

We start by setting the model period equal to four years, a compromise regarding the time

it takes to become a skilled worker. To calibrate parameter values we use the U.S. as a

benchmark. We later explain what aspects of our parameterization change for the cross-

country analysis.

Preferences and Demographics We choose the discount factor so that the steady

state annual interest rate equals 6%. This implies a discount factor (β) equal to 0.9433,

or about 0.792 at the four-year frequency. We set the growth rate in population equal to
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the annual value of about 0.9%, calculated using the population figures in the Penn World

Tables 7.0.

Technology We set the capital share (α) in the aggregate production function to stan-

dard value of 0.33. Empirical studies indicate an elasticity of substitution between skilled

and unskilled labor of around 1.5 (Katz and Murphy (1992), Heckman, Lochner, and Taber

(1998)). Then, we select the parameter ρ in the aggregate production technology to ρ = 1/3.

The depreciation rate is set to 4% on an annual basis. We normalize the Total Factor Pro-

ductivity level (A) and relative investment prices to 1.0.

From the technology side, the curvature parameter in the production of skills (ϕ) and the

share parameter in the production function (µ) remain to be set. We choose these parameters

so that in stationary equilibrium the model reproduces two empirical targets. The first target

is the fraction of unskilled workers in the U.S. from Barro and Lee (2001). This amounts to

about 68.7%, and corresponds to the fraction of the population with completed secondary

education or less, aged 15 years or older. The second target are expenditures per tertiary

student as a fraction of GDP per worker (at PPP values). This fraction amounted to 28.7%

in 2004, and is taken from the UNESCO 2007 World Education Indicators report. This

procedure implies ϕ = 0.30 and µ = 0.54.

Talent We calibrate the distribution of talent using PISA data. We assume that the

distribution of talent is a Gamma distribution with parameters κ and θ. We choose κ and

θ in order to reproduce the observed mean and coefficient of variation in the PISA test for

Mathematics for the U.S.

Table 2 and 3 below shows the resulting parameter values. It is not problematic for

the model to reproduce the data, as the Table illustrates. The table also shows that our

parametric Gamma approximation to the distribution is very good, as it generates multiple

percentiles of the distribution quite well.

5 Model Mechanics

We explore in this section the long-run effects of a number of changes in the calibrated

parameters of the benchmark economy. In doing so, we highlight the role of different forces
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at work, and help the reader understand the main results in subsequent sections.

Specifically, we consider the following empirically-motivated departures from the bench-

mark case. We consider a reduction in the mean talent, an increase in the dispersion of

talent, as well as a reduction in TFP. We first entertain all these changes in isolation. We

then combine all these changes.

The motivation for the experiments that follow is straightforward. We documented in

section 2 substantial differences in PISA scores across countries and the correlation between

the PISA scores and output per worker. In addition, since there are within-country variation

in test scores that may matter in context of our environment, we also assess the effects of

changes in dispersion. Finally, the variation in TFP, in conjunction with changes in the

distribution of PISA scores, contributes to assessing the relative importance of TFP for

output variation and the the division of labor across countries.

A Reduction in Mean Talent In our first experiment, we consider a reduction in the

mean math score the level in the 10th percentile country in the cross-country distribution

of PISA scores. Results are summarized in Table 4. Intuitively, all else remaining the

same, a reduction in the mean talent leads to a reduction in the value of investing in the

quality of the average skilled worker (see equations 8 or 16). Hence, as Table 4 shows, this

reduction leads to a reduction in the investments in skilled workers x and to an increase

in the threshold ẑ across steady states, which in turn implies an increase in the fraction of

unskilled workers. Given these changes, the wage premium (WS/WU) increases as the ratio

of skilled to unskilled labor declines.

Quantitatively, the effects of the reduction in mean talent on output per worker can be

substantial. Reducing the mean from the benchmark case to the bottom 10th percentile

implies a reduction of about 18%. The corresponding decline in output across steady states

is about 26%.

An Increase in Dispersion of Talent Within-country dispersion in PISA scores

varies inversely with the level of economic development. Hence, in our second experiment we

consider an increase in the coefficient of variation of talent to the level in the 90th percentile

country in the cross-country distribution of this variable. We increase the coefficient of

variation from the benchmark value of 0.19 to 0.23. Table 4 shows that this change leads to
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an increase in the number of unskilled individuals across steady states. This reduction also

results in an increase in the investments on skilled workers. This is intuitive: an increase in

dispersion, all else equal, implies an increase in the talent of those at top tail of the talent

distribution; i.e. skilled workers. Quantitatively, as Table 4 shows, the most significant

changes are in the fraction of unskilled workers. Output, however, increases mildly by about

1.4%.

A Reduction in Total Factor Productivity Reducing the value of TFP leads to

the results discussed in Proposition 1. As goods are an input for the quality of skills and

since the elasticity of substitution between labor inputs is higher than 1, the reduction in

TFP leads to an increase in the threshold ẑ and to a reduction in the quality of skilled labor.

This translates into an increase in the steady-state value of unskilled labor, and an increase

in the wage premium.

Quantitatively, the magnitude of the effects in Table 4 are substantial. Reducing the

value of TFP by 50 percent implies an increase in the fraction of unskilled workers of about

5%, a reduction in the quality of skilled labor of about 29% and a reduction in output

of nearly 70%. As we elaborate later, reductions of TFP of these magnitudes are indeed

required to account for the output per worker gaps in our sample.

All Together Now The last row in Table 4 shows the combined effects of all changes

simultaneously. As a poor country in our sample is similar to this hypothetical scenario, the

combined effects are illustrative of the quantitative implications of our model. The table

shows that when all changes are combined, the fraction of unskilled labor increases by 8%,

the quality of skilled labor drops by about a third, and output drops by about almost 78%.

The table also demonstrates that the changes in TFP capture the bulk of the effects on

output and the composition of the labor force.

6 Findings

We investigate in this section the extent to which the forces in our model can account for the

observed differences in the division of labor in our sample of countries, and the corresponding

differences in output per worker and the quality of labor.
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Our analysis explicitly takes into account the international heterogeneity in enrollment

rates that we documented earlier. Only a fraction of γ ∈ (0, 1) of the unskilled pool in

the model can be converted into skilled workers – those who are at school at age 15 in the

data. We assign to the rest of the cohort (fraction 1− γ) a common set of skills, zmin. This

procedure implies that the stationary values of unskilled and skilled labor per worker obey,

respectively,

u∗ = (1− γ)zmin + γ

∫ ẑ∗

zmin

zg(z)dz,

s∗ =
γ

1 + gL
h∗

∫ ∞

ẑ∗
zg(z)dz.

For each country, γ is the fraction of the population that is 15 years old and is enrolled in

the educational system, as reported in PISA data. We set zmin for each country equal to the

10th percentile of the PISA Math test score for that country. We subsequently investigate

the sensitivity of our results to these choices.

The values of the country-specific population growth rates are those reported in the Penn

World Tables 7.0.

We conduct two sets of experiments below. First, we assign to each country the dis-

tribution of talent parameterized from PISA data, and compute stationary equilibria. The

results and their relation to data are reported in Table 5. Second, we add variation in relative

investment prices and TFP across countries. We use the investment prices reported in the

Penn World Tables 7.0, and find the relative TFP levels such that the output per worker

in the model is the same as in the data. The second experiment shows the consequences

of all of the driving forces in our model and the results are reported in Table 6. For both

experiments, we organize our results according to the observed distribution of output per

worker ; e.g. poorest 10% countries versus richest 10% countries.

Variation in PISA Scores Our results indicate that adding only the variation in

PISA scores leads to lower investments in the quality of skilled labor and a higher fraction of

unskilled labor in poorer countries. In turn, these changes lead to lower values of aggregate

capital in poorer economies, and given the effects on labor inputs, result in lower values of

output.
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Quantitatively, variation in the PISA scores implies that the quality of skilled labor (h) in

the poorest 10% of countries is about 88% of that in the richest 10% (see Table 5). Similarly,

the fraction of unskilled labor in the poorest 10% is about 5.5% higher than that in the the

richest 10%. Output per worker, as a result, is about 60% in the poorest 10% relative to the

richest 10%.

As Table 5 demonstrates, the model generates about 40% of the gap in the fraction

of unskilled workers between the poorest 10% and the richest 10%. In terms of output per

worker, the productivity in the richest 10% of the countries is about 1.7 times as high as that

in the poorest 10%; the corresponding ratio in the data is more than 8. As in the previous

literature, there is still an ample role for TFP differences across countries to account for

observed income differences.

Variation in Technology and PISA Scores When we add technology variation

(i.e., TFP variation and observed variation in relative price of investment) to the observed

variation in PISA scores, we find that our framework can now account for a substantial

fraction of the differences in the division of labor across countries (see Table 6). With TFP

levels that match the output per worker levels exactly, the model captures about 80% of the

differences in the fraction of unskilled workers between the poorest 10% and the richest 10%.

Thus, with technology differences and their interplay with the PISA score differences, the

model can go a long way toward understanding the cross-country differences in the division

of the labor.

Table 6 illustrates how large TFP differences need to be in order to account of the

output per worker differences. TFP at the poorest 10% is about four-tenths of that at the

richest 10%. Not surprisingly, the quality of skilled workers is now substantially lower in

poorer countries (only 56% relative to richer countries) since TFP has an indirect effect on

the division of labor and the investment in skilled workers. These changes in quality and

division of labor result in smaller differences in TFP than those that emerge from standard

analyses. We elaborate on this issue in the next section.
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7 TFP and Economic Development

We now use our model to assess the relative importance of Total Factor Productivity vis-

a-vis other factors in accounting for the differences in output per worker across countries.

We also provide a comparison of the findings from our model with standard findings in the

development literature.

The Relative Importance of TFP Recall that differences in talent, relative prices

and TFP are not enough to reproduce differences in the division of the labor force.We now

force the model to reproduce exactly both the levels of output per worker and the fraction

of unskilled workers. Specifically, we introduce an implicit tax (wedge) in the model, so that

in conjunction with TFP variation and PISA scores, the model can jointly reproduce output

per worker differences in our sample and the division of the labor force by skill in stationary

equilibrium, country by country. The tax wedge affects the conversion of talent into skilled

labor: if the household transfers an individual with talent z to the skilled pool at t, the

contribution to household income at t+ 1 is now

WS,t+1 z ht+1 (1− τ),

where τ is the tax wedge. Tax collections are returned to the household in a lump-sum

manner.

We present the results in Table 7. As the table shows, differences in TFP are smaller

relative to those in Table 6. The model requires higher tax wedges in poorer countries than in

rich countries. These country-specific wedges lead to wider differences between rich and poor

countries in the values of the aggregate labor input. These larger cross-country differences in

aggregate labor, in turn, lead to TFP differences across countries that are smaller. In Table

7, TFP at the poorest 10% countries is about 43% of the richest 10% countries whereas in

Table 6 the corresponding number is only 40% when the model was not forced to reprooduce

the cross-country variation in the division of labor.

Tables 5, 6 and 7 show the progression of the magnitude of the labor input across exper-

iments. The first experiment (‘variation in PISA scores only’) indicates that the labor input

at the poorest 10% countries is about 65% of the labor input at the richest 10% countries.

When variation in technology is added in the second experiment, and TFP is chosen to
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match output per worker differences, the corresponding figure for labor input is about 51%;

matching also the division of labor by skill in the third experiment leads to a labor input

of 46%. In our model, more than half of the rich to poor ratio of labor input per worker is

delivered by (measured) differences in achievement as of age 15 (i.e., PISA scores) and the

rest is due to the combined effects of TFP, relative prices, tax wedges and their interplay

with achievement scores.

Summing up, matching the division of labor within countries leads to smaller TFP dif-

ferences between rich and poor countries. Quantitatively, however, the bulk of the resulting

TFP differences are already captured when we force the model to reproduce output per

worker across countries. Matching the division of labor exactly contributes only modestly

to reducing the implied TFP gaps across countries.

Comparison with Standard Exercises We now compare the predictions of our

model with those resulting from the one-sector growth model with differences in labor qual-

ity across economies. These differences in labor quality are in turn driven by differences in

years of schooling via Mincerian returns.

Recall that in our model, output per worker (y) can be written as

y = Akαl1−α,

where k is capital per worker and l is labor per worker. This provides the basis for a

comparison with findings from the standard one-sector model; the central difference between

our model and the standard one is in the notion of labor per worker.

As in Hall and Jones (1999), Caselli (2005) and others, suppose that labor per worker in

each country is given by

l = expψ(s),

where ψ is a function of years of schooling (s), determined by rates of return that vary with

average years of schooling in consistency with empirical estimates; Psacharopoulos (2004).

Specifically, we set ψ(s) = 0.134 s for s ∈ [0, 4], ψ(s) = 0.134 4 + 0.101 (s− 4) for s ∈ (4, 8],

and ψ(s) = 0.134 × 4 + 0.101 × 4 + 0.068 × (8 − s) for s > 8. We use the average years

of schooling in each country as reported by Barro and Lee (2001). All other parameters in
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the model are as set previously in Section . We input into the one-sector growth model the

relative prices of investment from Penn World Tables 7.0 and find the levels of TFP that

reproduce the observed relative levels of output per worker.

Results are presented in Table 8, where we also present for comparison the corresponding

results from our model when we match the division of labor by skill as well as when we do

not. As the table indicates, the implied differences in TFP are much larger in the one-sector

growth model with labor quality measured via Mincerian returns. In the one-sector growth

model, TFP at the poorest 10% countries is about 28% of the richest 10% countries (Panel

A); to contrast, the ratio in our model is 42.5% when we match the division of labor by skill

(Panel C). Clearly, the larger TFP differences are due to the differences in the value of labor

input in the two cases. In the one-sector growth model, labor quality is about 86% at the

poorest 10% relative to the richest 10% whereas our model generates differences 46%.

A related way to illustrate our findings is to calculate the elasticity of output per worker

across countries with respect to TFP. As it is well known, the one-sector growth model

without labor quality adjustments implies an elasticity of 1.5. With labor quality mesured

via Mincerian returns, we estimate an elasticity of 1.69 since labor quality is correlated with

output per worker. Our model implies elasticities substantially larger, of about 2.31 when

we do not match the division of labor in each country, and of about 2.35 when we do.

Summary In our model, TFP not only has the standard effect on output but also an

indirect effect on our measure of labor input through the division of labor by skill and the

augmenting of skilled labor. In other words, labor in our setup is a function of TFP. This

important feature is reflected in our finding of an elasticity of output per worker with respect

to TFP that is larger than the one obtained using the standard growth model. We conclude

from our findings that the explicit consideration of achievement scores considerably reduces

the importance of TFP in our understanding of cross-country income differences. We should

emphasize, however, that our findings still attribute a central role to TFP differences. As

Table 8 shows, TFP differences between the richest 10% and the poorest 10% countries are

in excess of a factor of two.
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8 Skill Premia

In this section, we investigate and discuss the implications of our model for the relative

earnings of skilled to unskilled workers, or skill premia. This is important, as it reflects on

the importance of the economic mechanisms that our paper highlights for data that we do

not explicitly target.

We take measures of skill premia from Fernandez, Guner, and Knowles (2005). The data

used by the authors are calculated directly from national surveys from 1990 to 1997. The

countries included are Argentina, Australia, Belgium, Bolivia, Brazil, Canada, Chile, Colom-

bia, Costa Rica, Czech Republic, Denmark, Ecuador, Finland, France, Germany, Hungary,

Israel, Italy, Luxembourg, Mexico, Netherlands, Norway, Panama, Paraguay, Peru, Poland,

Slovakia, Spain, Sweden, Taiwan, United Kingdom, Uruguay, United States and Venezuela.

Strictly, this is a subset of the broad set of countries of our benchmark group. The skill pre-

mium is defined as the ratio of earnings (labor income) per worker, for skilled male workers

to unskilled ones.4 A skilled worker is an individual who has more years of education than

those required to complete secondary school. Therefore, this definition is consistent with

the data we use on educational attaintment. Figure 4 plots skill premia (relative to the U.S.

value) against output per worker for each country (relative to the U.S.). As the figure shows,

there is a negative correlation between these two variables, with a correlation coefficient of

−0.75. The skill premium in the poorer countries of this subsample is substantially higher

than in richer countries. Table 9 indicates that the skill premium in the poorest ten percent

of countries is about 2.4 times the skill premium in the richest ten percent.

We now construct a notion of skill premia within our model that is consistent with the

data we focus on. Recall that earnings of an unskilled worker are given by W ∗
Uz, whereas the

earnings of a skilled worker are given byW ∗
Szh

∗. Then, the skill premium (SP) defined as the

ratio of per-worker earnings of skilled workers to per-worker earnings of unskilled workers,

is given by

SP =
(W ∗

S h
∗ ∫ z̄

ẑ∗
zg(z)dz)/(1−G(ẑ∗))

(W ∗
U

∫ ẑ∗

0
zg(z)dz)/G(ẑ∗)

We can rewrite the above as an expression that involves relative wages, augmented skills

4In their sample, workers are husbands of age between 36 and 45 years old.
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Figure 4: Skill Premia (relative to U.S.) and GDP per worker.

(h), and conditional expectations of talent:

SP =

(
W ∗

S

W ∗
U

)
h∗

(
E(z|z ≥ ẑ∗)

E(z|z < ẑ∗)

)
We note that the notion of skill premia consistent with the data is not just relative

wages. Hence, changes in the division of the labor force by skill will generate movements

in all components components above. Notice that an increase in the fraction of unskilled

workers (i.e. an increase in ẑ∗) reduces the ratio of the conditional expectations of talent,

but increases relative wages. Henceforth, changes in skill premia implied by the model are

the result of countervailing forces.

Findings In line with our benchmark analysis, we conduct two types of experiments

using only data from the restricted sample of countries. First, along with differences in

PISA scores, we consider technology variation, forcing the model to reproduce differences in

output per worker via TFP differences. In our second experiment, in addition to technology

variation, we introduce tax wedges in order to reproduce the division of labor by skill.
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Table 9 shows the performance of the model in terms of skill premia and its components.

When we consider only technology variation within our restricted sample, the model does

not perform well in terms of the observed differences in the division of the labor force by

skill. As Table 9 demonstrates, this performance is effectively worse than in our benchmark

case. In terms of skill premia, the model does not generate substantial differences across

countries. In the data, skill premia at the top 10% poorest countries is about 144% higher

than at the richest 10%; in the model it is just 11.8%.

When the model is forced to reproduce the division of labor by skill along output per

worker via productivity differences, it generates a higher skill premia at the top 10% poorest

countries that is about 107% higher than the richest 10%, and about 59.3 higher at the richest

20% versus the bottom 20%. We conclude that forcing the model to reproduce the division

of labor by skill goes a long way towards accounting for skill premia. As we discussed earlier,

accounting for the observed division of labor is not critical in quantifying the importance of

productivity for income differences in our model. Nevertheless, reproducing the division of

labor appears key in accounting for variation in skill premia.

8.1 Skill-Biased Technology Differences?

In recent work, Caselli and Coleman (2006) and Hendricks (2008) conclude that differences

in technology across countries are skill biased in a cross-section of countries. To arrive to this

conclusion, these authors used measures of skilled and unskilled labor inputs constructed us-

ing Mincerian returns, and implied skill premia determined by skill prices from an aggregate

production function with imperfect labor substitutability (CES).

Our model and the skill premia data in this section are ideal to review these findings. Does

the aggregate technology vary in a systematic way across countries? Is the importance of

unskilled labor (µ) negatively correlated with output per worker? To answer these questions,

we allow µ to change across countries in order to reproduce the division of the labor force,

country by country, alongside the observed differences in talent and in technology (TFP) to

generate observed levels of output per worker. When we do so, we find that the weight of

unskilled labor in technology is indeed higher in poorer countries: it is about 0.56 in the

richest 10% of countries whereas it is about 0.69 in the poorest 10%. However, the model

does not generate in this case differences in skill premia of the same magnitudes of those
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observed in our sample. The model implies that skill premia in the poorest 10% is only 14%

higher than in richest 10%. This is not surprising: a higher level of µ in poorer countries

implies that the wage ratio component of skill premia is lower there.

If instead we force the model to reproduce both the division of labor by skill and skill

premia, via wedges as before and variation in µ, we find that the weight of unskilled labor in

technology is slightly higher in richer countries than in poorer countries: about 0.61 in the

richest 10% of countries versus 0.69 in the poorest 10%. These findings lead us to conclude

that our model in conjunction with evidence on skill premia do not support the conclusion of

skill-biased differences in technology across countries. In a nutshell, this conclusion follows

from the effects that our model features have on the size of skilled and unskilled labor

across countries. Cross-country differences in talent, in conjunction with the effects on the

division of labor by skill driven by technology differences and wedges plus the corresponding

investments in skill quality, can go a long way in accounting for variation in skill premia. No

skill-biased technology differences seem critical.

9 Discussion

9.1 A Counterfactual Exercise

One way to assess the impact of differences in talent across countries is to conduct a “policy”

exercise where we assign to the poorest country in the sample the PISA distribution of a

rich one, the United States.

The poorest country in our sample is the Kirgyz Republic (Kyrgyzstan), which inciden-

tally has the lowest mean value of PISA (math) in the sample. This country has an output

per-worker of just about 5.6 % of the United States in our data (the U.S. is richer by a factor

of of nearly 17). Our model implies that assigning Kyrgyzstan the PISA distribution of the

U.S., leaving all else (e.g. TFP) the same, would lead to a a level of output per worker that

is about 63.5% higher than in the benchmark situation. This results in a level of output

per worker of about 9.1% of the U.S. (the U.S. would be richer by a factor of of nearly 17).

Since the capital to output ratio is unchanged across steady-states, the experiment implies a

change in the labor input of Kyrgyzstan of also about 63.5%, which stems from an increase

in both the unskilled and skilled labor inputs. The fraction of unskilled workers drops by

about 5%.
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9.2 PISA as Labor Quality

Suppose that instead of using our theory of labor quality, we just simply use the mean levels

of PISA scores as a measure of each country’s labor input. What would be the consequences

for relative TFP’s, etc, in this case? To answer this question, we assign the mean levels of

PISA scores as each country’s labor input, and then proceed to find the level of TFP in each

country that reproduces the empirical level of output per worker. Results are displayed in

Table 10. The elasticity of output with respect to TFP now becomes 1.83

9.3 Amplification Effects: No Investments in Quality

What are the implications in terms of the amplifying role of TFP differences associated to

investments in the quality of skilled workers? To answer this question, we set the parameter

ϕ to zero, eliminating as a result any investment incentive for the representative household

in each economy. We then proceed to find the relative levels of TFP that reproduce the

empirical levels of output per worker. Results are displayed in Table 10. The elasticity of

output with respect to TFP now becomes 1.88

9.4 High Elasticity of Substitution

Recently, authors such as Gancia, Mueller, and Zilibotti (2011) and others, have argued

that the elasticity of substitution between skilled and unskilled labor is higher than the

conventional value that we use. They estimate elasticities in the range of 1.4-2.5. We ask:

what are the consequences for our findings of assuming a high value for this elasticity?

We proceed to set such elasticity to the highest value in the range mentioned (2.5), which

corresponds to a value of ρ = 0.6. We recalibrate the model under this assumption, and

proceed to find the relative levels of TFP that reproduce the empirical levels of output per

worker. Results are displayed in Table 10. The elasticity of output with respect to TFP now

slightly increases to 2.34

10 Conclusion
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11 Appendix

Proof of Proposition 1

We start by defining the marginal products for our specification of the production tech-

nology. Output per worker is given by

y = F (K,U, S;A)/L = A kαl1−α

with l ≡ [µuρ + (1− µ)sρ]1/ρ.

Hence, the marginal products of capital (MPK), skilled labor (MPS) and unskilled labor

(MPU) are, respectively:

MPK = Aαk̃α−1, (17)

MPS = A(1− α)k̃α[µ+ (1− µ)s̃ρ]
1−ρ
ρ s̃ρ−1(1− µ), (18)

MPU = A(1− α)k̃α[µ+ (1− µ)s̃ρ]
1−ρ
ρ µ, (19)

with k̃ ≡ k/l and s̃ ≡ s/u.

The model implies in steady state (balanced growth path):5

MPK = p

(
1

β
− (1− δ)

)
. (20)

MPU ẑ + x = β MPS ẑ xϕ (21)

1 = β MPS E(z|z ≥ ẑ) ϕ xϕ−1 (22)

Notice that equation (20) sets the stationary capital to labor ratio as a function of

preference and technology parameters, as well as TFP and relative prices. Hence, k̃ ≡
B(A, p). Hence, we can rewrite (21) and (22) as the marginal products of skilled and unskilled

labor in steady state as

5To simplify notation, we omit from now on the (∗) notation for equilibrium values.
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MPS = T (A,P )[µ+ (1− µ)s̃ρ]
1−ρ
ρ s̃ρ−1(1− µ), (23)

MPU = T (a, p)[µ+ (1− µ)s̃ρ]
1−ρ
ρ µ, (24)

with T (A, p) ≡ A(1 − α)B(A, p)α. Clearly, T (A, p) is strictly decreasing in p and strictly

increasing in A.

Using equations (21) and (22), after manipulations we can write:

1 = β xϕ
(
MPS

MPU

) [
1− ϕ

E(z|z ≥ ẑ)

ẑ

]
(25)

Given the CES technology, we have:

MPS

MPU
=

1− µ

µ
[f(ẑ)]ρ−1 xϕ(ρ−1) (26)

where f(ẑ) is defined as

f(ẑ) ≡
∫ z̄

ẑ
zdG(z)∫ ẑ

0
zdG(z)

Note that the function f(ẑ) satisfies important properties: f ′ < 0, limẑ→0 f(ẑ) = +∞,

and limẑ→∞ f(ẑ) = 0.

Using (26) and (22) in equation (25), after manipulation, we get

[f(ẑ)]1−ρ =
β(1− µ)

µ
T (A, p)

ρϕ
1−ϕ D(ẑ)ρϕ

[
1− ϕ

E(z|z ≥ ẑ)

ẑ

]
(27)

where D(.) is an strictly increasing function of ẑ.

Equation (27) allows us to establish the uniqueness and properties of the threshold ẑ.

First, for ρ ∈ [0, 1) and from the properties of f(ẑ), the left-hand side is a non increasing

function of ẑ; for ρ ∈ (0, 1) is strictly decreasing, approaching 0 as ẑ → ∞, and ∞ as

ẑ → 0. The right-hand side of (27) is monotonically increasing and eventually positive if two

conditions are met. First, E(z|z≥ẑ)
ẑ

must be a decreasing function of ẑ. Lemma 1 below shows

that this is indeed the case under log-concavity of the density g(.). Second, the right-hand

side is eventually positive if

lim
ẑ→z̄

E(z|z ≥ ẑ)

ẑ
<

1

ϕ
,
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which is satisfied as the limit above equals 1. Hence, by the intermediate value theorem,

there is a unique value ẑ > 0 that solves (27). The fact that x is strictly positive follows

from this, and the fact that marginal products are positive, using either (21) or (22). Figure

A1 depicts the solution for the threshold ẑ.

Three central properties of the solution follow. First, from (27), in the limiting case of

ρ = 0 (Cobb-Douglas case), the threshold ẑ is independent of TFP and relative investment

prices. Second, as ρ ∈ (0, 1), and increase in TFP (a reduction in p) implies a reduction in

the threshold ẑ and viceversa. Figure A2 provides an illustration of this result. Finally, the

threshold is independent of TFP and investment prices in the limiting case of ϕ = 0. �

Lemma 1: E(z|z≥ẑ)
ẑ

is decreasing in ẑ if the density g(.) is log-concave.

Proof. Let

ψ(ẑ) =
E(z|z ≥ ẑ)

ẑ

Then, ψ′(ẑ) < 0 iff

∂E(z|z ≥ ẑ)

∂ẑ
<
E(z|z ≥ ẑ)

ẑ

The derivative above is less or equal than one by Proposition 2 in Burdett (1996) if and

only if

∫
ẑ

(1−G(ẑ))dz

is log-concave. Log-concavity of the density g(.) ensures this. Furthermore, E(z|z≥ẑ)
ẑ

> 1.

Hence,

∂E(z|z ≥ ẑ)

∂ẑ
≤ 1 <

E(z|z ≥ ẑ)

ẑ

and the result follows.
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Table 1: Summary Statistics
Statistic PISA Score Unskilled (%) Enrollment (%) Output Per-Worker

Mean 464 0.81 0.92 46,646
Median 483 0.82 0.98 42,988
St. Deviation 57 0.09 0.10 26,034
90th/10th Ratio 1.39 1.32 1.26 5.21
80th/20th Ratio 1.24 1.19 1.18 3.51
Corr (x, Y/N) 0.79 -0.47 0.50 1.00

Note: Entries show summary statistics for the data we consider. For the corre-
lation in the last row, x stands for the countries’ mean PISA score, fraction of
unskilled workers, enrollment rates and output per worker.

Table 2: Parameter Values
Parameter Value

Discount Factor (β) 0.96
Population Growth Rate (gL) 0.009
Substitution Elasticity (1/(1− ρ)) 1.50
Capital Share (α) 0.33
Depreciation Rate (δ) 0.04
Share of Unskilled Labor (µ) 0.54
Skill Curvature Parameter (ϕ) 0.30
Gamma Distribution (θ) 17.6
Gamma Distribution (κ) 27.7

Table 3: Empirical Targets: Model and Data
Statistic Model Data

Fraction of Unskilled workers 0.69 0.69
Expenditure per tertiary student 0.29 0.29
Mean Math score 487 487
Coeff. Variation Math score 0.19 0.19

Talent Distribution
Median 481 488
10th percentile 373 368
25th percentile 422 425
75th percentile 546 551
90th percentile 607 609

33



Table 4: Model Mechanics
Fraction Quality Wage Premium Output
Unskilled (h) (Ws/Wu)

Benchmark 100.0 100.0 100.0 100.0
Reduction in Means (A) 101.3 92.0 108.6 74.5
Increase in Dispersion (B) 102.5 101.8 99.3 101.4
Reduction in TFP (C) 105.2 70.7 141.2 29.1
A-C Together 108.1 66.3 151.2 22.1

Table 5: Differences in PISA Scores
Poor (Bottom 10%) Poor (Bottom 20%) Poor (Bottom 25%)
vs. Rich (Top 10%) vs. Rich (Top 20% ) vs. Rich (Top 25%)

% Unskilled
Model 105.5 104.3 104.3
Data 114.1 113.6 111.7

Output per worker
Model 59.2 67.3 66.4
Data 12.1 17.3 19.7

Augmented Skill (h) 87.6 90.7 90.4
Labor Input 65.4 70.8 70.7
Capital (K) 49.8 61.9 59.3
TFP 100.0 100.0 100.0

Table 6: Differences in Technology and PISA Scores
Poor (Bottom 10%) Poor (Bottom 20%) Poor (Bottom 25%)
vs. Rich (Top 10%) vs. Rich (Top 20% ) vs. Rich (Top 25%)

% Unskilled
Model 111.7 109.7 109.2
Data 114.1 113.6 111.7

Output per worker
Model 12.1 17.3 19.7
Data 12.1 17.3 19.7

Augmented Skill (h) 55.5 61.3 63.6
Labor Input 50.8 57.0 58.2
Capital (K) 10.6 16.1 17.6
TFP 39.6 45.5 49.2
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Table 7: Matching the Division of Labor by Skill
Poor (Bottom 10%) Poor (Bottom 20%) Poor (Bottom 25%)
vs. Rich (Top 10%) vs. Rich (Top 20% ) vs. Rich (Top 25%)

% Unskilled
Model 114.1 113.6 111.7
Data 114.1 113.6 111.7

Output per worker
Model 12.1 17.3 19.7
Data 12.1 17.3 19.7

Augmented Skill (h) 56.3 61.9 64.1
Labor Input 46.0 52.3 54.4
Capital (K) 10.6 16.1 17.6
TFP 42.5 48.2 51.4

Tax Wedge (Rich, %) 28.0 24.7 26.1
Tax Wedge (Poor, %) 47.0 44.1 41.3

Table 8: Comparison with One-Sector Growth Model
Poor (Bottom 10%) Poor (Bottom 20%) Poor (Bottom 25%)
vs. Rich (Top 10%) vs. Rich (Top 20% ) vs. Rich (Top 25%)

Panel A: Growth Model
Labor Input 85.9 86.9 88.6
Capital (K) 10.6 16.1 17.6
TFP 28.0 34.4 37.2

Panel B: This paper
(Matching Y/L only)
Labor Input 50.8 57.0 58.2
Capital (K) 10.6 16.1 17.6
TFP 39.6 45.5 49.2

Panel C: This paper
(Matching Division of Labor)
Labor Input 46.0 52.3 54.4
Capital (K) 10.6 16.1 17.6
TFP 42.5 48.2 51.4
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Table 9: Implications for Skill Premia
Poor (Bottom 10%) Poor (Bottom 20%) Poor (Bottom 25%)
vs. Rich (Top 10%) vs. Rich (Top 20% ) vs. Rich (Top 25%)

Panel A: Data
(Restricted Sample)
% Unskilled 123.7 115.8 112.1
Skill Premium 244.1 205.5 201.5

Panel B: Matching Y/L only
% Unskilled 107.1 109.4 108.3
Wage Ratio 161.7 153.6 147.0
Augmented Skill (h) 62.4 65.9 68.9
Skill Premium 111.8 112.1 110.5

Panel C: Matching
Division of Labor
% Unskilled 123.7 115.8 112.1
Wage Ratio 288.2 212.9 190.3
Augmented Skill (h) 62.6 66.2 69.3
Skill Premium 207.0 159.3 146.1

36



Table 10: Sensitivity
Poor (Bottom 10%) Poor (Bottom 20%) Poor (Bottom 25%)
vs. Rich (Top 10%) vs. Rich (Top 20% ) vs. Rich (Top 25%)

Panel A: This paper
(Matching Y/L only)
Labor Input 50.8 57.0 58.2
Capital (K) 10.6 16.1 17.6
TFP 39.6 45.5 49.2

Panel B: PISA as Labor Input
Labor Input 74.2 77.6 77.5
Capital (K) 10.6 16.1 17.6
TFP 30.8 37.1 40.7

Panel C: ϕ = 0
Labor Input 70.2 74.5 74.6
Capital (K) 10.6 16.1 17.6
TFP 31.9 38.0 41.7

Panel D: High Substitution
Elasticity
Labor Input 50.0 56.7 58.6
Capital (K) 10.6 16.1 17.6
TFP 40.1 47.8 51.6
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