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Abstract

We analyze the effects of human capital adjustment cost on social mobility in an envi-
ronment with incomplete capital market. We find that a higher adjustment cost for human
capital acquisition slows down the social mobility and results in a persistent inequality
across generations. A low depreciation cost of human capital by contributing to longer
life of the capital could further aggravate this process of slower social mobility. A capital
income tax could have a regressive effects in economies with longer lived human capital.
The quantitative analysis of our model suggests that the human capital adjustment cost is
nontrivial to reproduce the observed persistence of inequality and social mobility. A wel-
fare analysis suggests that economies with higher adjustment cost experience lower steady
state welfare. This loss of welfare in high adjustment cost economies could be mitigated
by human capital subsidy in the form of a lower capital income tax.
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1. Introduction

It is an open question whether the son of a poor farmer will become a high paid

executive manager. The evidence during the last two decades points to the direction

that such social mobility is slow (Machin, 2004). Clark and Cummins (2012) establish

that there is considerable persistence in the wealth status of households in England

from 1800 to 2012. They predict that it will take another 200 years to complete

the process of social mobility. Our paper aims to understand the determinants of
such mobility in an environment with incomplete markets where human capital is

the driver of growth and it is costly to adjust human capital. The seminal paper of

Becker and Tomes (1979) draws the conclusion that a stable distribution of income

could be explained by individual and market lucks. Their crucial assumption is

that the credit market is perfect implying that individuals with low wealth and high

marginal product of capital could borrow from individuals with the opposite trait.

This tends to equalize the differences in wealth. The residual inequality is then

mostly attributed to luck. Since then a considerable literature (e.g., Loury, 1981,

Banerjee and Newman, 1993, Galore and Zeira, 1993, Benabou, 1996, Mulligan,

1997, Bandyopadhyay and Basu, 2005, Bandyopadhyay and Tang, 2011) has evolved

emphasizing the role of credit market imperfection in perpetuating the inequality.

In this paper, we explore how some factors are important to the investment

climate such as adjustment costs could affect social mobility. As in Loury (1981),

Galor and Zeira (1993) and Benabou (2000, 2002), we develop a scenario with missing

credit and insurance markets. Individuals differ in terms of initial distribution of

human capital and abilities. The differences in abilities are due to idiosyncratic

shocks to productivity which cannot be hedged using an insurance market. We

demonstrate that in such a scenario the presence of adjustment cost of human capital

could impede the process of social mobility.

The human capital adjustment cost is modeled as a rising marginal cost schedule

for investment in human capital. Such an adjustment cost can arise due to a number

of reasons. First, there could be basic human inertia to respond to change and

adjust to new opportunities or environment. An example of such inertia is that an
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adult finds a better job opportunity with a higher pay in a region different from her

home town but due to friends and family ties, she is reluctant to move (Alesina and

Giuliano, 2010). Second, this adjustment cost could be attributed to market based

factors such as higher cost of advanced education compared to primary schooling or

a higher employment adjustment cost as in Hansen and Sargent (1980).

Why does a higher adjustment cost impede social mobility? When the credit

market is missing, investment opportunities (which is investment in human capital

in our model) facing individuals are limited to the resources that they have in hand.

Given a production function with private diminishing returns to reproducible human

capital, poor with lower human capital have a higher marginal product than rich.

Thus, their relative growth potential is higher compared to rich. However, if capital

adjustment cost is present, this growth of the poor will be impeded because poor

face a higher marginal cost of investment when they try to grow. Thus adjustment

cost will slowdown the process of social mobility leading to a higher persistence

of human capital inequality in the aggregate. The central point of our paper is

to demonstrate that a society facing such a costly adjustment of human capital

could experience persistent inequality and low social mobility measured by the serial

correlation between the wealth of current and future generations. The role of this

type of human capital adjustment cost has been ignored in the inequality and social

mobility literature and this is precisely where our paper contributes.

In addition to adjustment cost, we also look at the role of the depreciation

cost of human capital in determining social mobility. A lower depreciation of human

capital makes a generation inherit a lot of capital from its predecessors. This lowers

the marginal return to investment further when adjustment cost is already present.

Thus, it particularly hurts poor’s incentive to invest in education and could lower

social mobility even more. An example of such low depreciation of human capital

is the transfer of knowledge of a primitive farming technology in a less developed

country from one generation to another which could provide little incentive to the

current generation to learn new technology of farming.

We set up an incomplete market model in which households are heterogenous

in terms of initial human capital and ability. They receive a warm-glow utility from
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investing in child’s education in the spirit of Galor and Zeira (1993). As in Loury

(1981) human capital is the only form of reproducible capital in the economy. Idio-

syncratic productivity shocks together with initial difference in human capital could

give rise to current cross-sectional inequality and such inequality transmits from one

generation to another. The absence of credit and insurance markets prevents agents

from mitigating negative idiosyncratic shocks. An unlucky agent suffering a bad

productivity shock invests less resources to child’s education which means that the

child inherits less human capital. How quickly the offspring gets over this disadvan-

tage depends on how costly it is to adjust the human capital. We develop closed

form formula for the endogenous law of motion of inequality. The key theoretical

result based on this closed form solution is that the persistence of inequality is higher

in economies with a higher adjustment cost either in terms of a steeper curvature

of the marginal cost of investment or a lower depreciation cost of capital. To the

best of our knowledge, our closed form solution for the law of motion of growth and

cross sectional variance in the presence of incomplete depreciation of human capital

is novel and new to the literature.

Our calibration exercise suggests that the human capital adjustment cost has to

be kept at a nontrivial level to reproduce the observed degree of social mobility, long-

run inequality and growth. The calibrated social mobility parameter accords well

with the slow social mobility predicted by Clark and Cummins (2012) and others.

An adult’s response to luck matches well with the well known move to opportunity

(MTO) programme in North America (reported by Katz et al., 2001). The sensitivity

analysis with key parameters such as adjustment cost and depreciation rate suggests

that the persistence of inequality is consistently higher in economies with higher

adjustment cost and lower depreciation of capital. Impulse responses of human

capital with respect to initial luck differences suggest that the social mobility is

slower in economies with higher adjustment cost, higher share of capital and a lower

total factor productivity. These are all consistent with our key theoretical results.

Higher adjustment cost not only slows down the social mobility but it also ad-

versely affects societal welfare. We demonstrate this by deriving the steady state

social welfare function and simulating it for alternative adjustment cost parameters.
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A subsidy to human capital in the form of a lower capital income tax could mitigate

this loss of welfare in high adjustment cost economies.

The paper is organized as follows. Section 2 presents the model and the dynamics

and equilibrium of individual wealth accumulation. Section 3 reports the quantitative

analysis of the model and the welfare analysis. Section 4 concludes.

2. The model

2.1. Preference and technology

Consider a continuum heterogeneous households i ∈ [0, 1] in overlapping genera-

tions. Each household i consists of an adult of generation t attached to a child. A

child only inherits human capital from her parents and does not make any decision as

her consumption is already included in that of her parents. Adult, at date t employs

a unit raw labour into the production process which translates into hit effi ciency

units (human capital) for the production of final goods and services to earn income

(yit) using the following Cobb-Douglas production function:

yit = a1ϕit (ht)
1−α (hit)

α (1)

where a1 > 0 is simply an exogenous productivity parameter, α ∈ (0, 1), ht rep-

resents the aggregate stock of knowledge in the spirit of Arrow (1962) and Romer

(1986) which is given to the adult.1 Individuals are subject to an i.i.d. idiosyncratic

productivity shocks (ϕit) which drive their total marginal productivity. The idio-

syncratic shock ϕit follows the process: lnϕit ∼ N(−υ2/2, υ2). The child at date t
behaves as an adult at t+ 1.

2.1.1. Utility function and budget constraint

Agents care about their own consumption (cit) and the human capital stock of

their children (hit+1), which can be justified by "joy of giving". In other words, the

1Such a technology basically means that there is private diminishing returns but social constant
returns to human capital.
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utility of the adult at date t is given by:2

u (cit, hit+1) = ln cit + β lnhit+1 (2)

where 0 < β < 1 is the degree of parental altruism, hit+1 represents the human capital

of the offspring of agent i. At the end of the period, parents allocate income between

current consumption (cit) and saving (sit). The latter is used for investment in human

capital accumulation of the offspring as shown in (4). The budget constraint is thus

given by:

cit + sit = yit (3)

2.1.2. Technology of human capital production

The human capital is the only form of reproducible input in our model. The stock

of human capital inherited by the current adult from her predecessors determines her

state of technological knowledge which she can modify to advance the technological

frontier. This modification can be done by investing in education or R&D. The

production of the next period human capital (hit+1) takes place with the aid of two

factors: (i) past human capital (hit), (ii) investment in schooling (sit):

hit+1 = a2h
1−θ
it ((1− δ)hit + sit)

θ (4)

where θ ∈ (0, 1), δ ∈ (0, 1) and a2 > 0. The human capital production function is

in spirit to Benabou (2002) except for the inclusion of the depreciation parameter

δ. The parameter θ determines the curvature of the marginal return to investment

(∂hit+1/∂sit) which we ascribe to adjustment cost. The marginal return to investment

is given by:

2The choice of a logarithmic utility function and altruistic agents with a "joy of giving" motive
is merely for simplicity. Also see Glomm and Ravikumar (1992), Galor and Zeira (1993), Saint-Paul
and Verdier (1993) and Benabou, 2000) for similar settings. A version of dynastic altruism model
as in Barro (1974) (with complete depreciation of human capital) with physical capital and labour
are worked out in the Appendix C of this paper.
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∂hit+1/∂sit = a2θ/ (1− δ + sit/hit)
1−θ (5)

Inverse of this marginal return to investment is the marginal cost of investment which

is therefore rising in investment per unit of human capital (sit/hit). The fact that θ

is a fraction is fundamental for a rising marginal cost of investment. Such a rising

marginal cost reflects the adjustment cost of investment in human capital. Hereafter,

we call θ as the adjustment cost parameter.

Figure 1 plots the marginal return to investment, ∂hit+1/∂sit against sit/hit for

θ = 0.8 (our baseline value in the calibration later) and θ = 0.6.3 Lower θ makes

the investment return schedule shift downward with a steeper curvature. This steep

decrease in marginal return to investment due to lower θ is ascribed to a higher

adjustment cost of human capital. If θ reaches the upper bound of unity, there

is zero adjustment cost and the investment technology reverts to a standard linear

depreciation rule. This notion of θ as the degree of human capital adjustment cost

is borrowed from the standard capital adjustment cost technology used in Lucas and

Prescott, 1971, Basu, 1987, and Basu et al., 2012).

The inclusion of the depreciation cost parameter δ in the human capital produc-

tion function is novel in our paper, and in this respect it differs from Benabou’s

(2002) human capital technology. This depreciation cost determines how much hu-

man capital the child inherits from her parents. Thus even if parents undertake zero

investment in child’s education, unlike Benabou (2000) the child still inherits some

human capital in proportion to (1 − δ)hit. Viewed from this perspective, one may

think of 1 − δ as the degree of intergenerational spillover knowledge as in Mankiw,
Romer and Weil (1992) and Bandyopadhyay and Basu (2005).

The lower rate of depreciation of human capital makes the capital last longer

which contributes to a lower marginal return to investment and thus higher marginal

cost as seen from Figure 2. Unlike a change in θ, the marginal return to investment

is less sensitive to a change in δ. A lower rate of depreciation lowers the intercept of

3The other two parameters a2 and δ are fixed at their baseline levels of 0.03 and 1.655 respectively.
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Figure 1: Effect of a change in θ on the marginal return to investment

the marginal return to investment schedule (which is a2θ/ (1− δ)1−θ ) and it flattens
its slope. The marginal rate of return to investment (∂hit+1/∂sit) thus undergoes

a downward shift in response to a lower δ. A lower depreciation cost makes the

current generation inherit a lot of human capital from ancestors which provides them

less incentive to investment because of its negative effect on the marginal return to

investment.

Lower θ and lower δ thus drive down the return to investment, raise the marginal

cost of investment and thus discourage the adult’s incentive to invest in schooling

or learn a new technology. The central point of this paper is that both these factors

contribute to less social mobility and persistent inequality.

2.2. Initial distribution of human capital

At the beginning, each adult of the initial generation is endowed with human

capital hi0. The distribution of hi0 takes a known probability distribution,

lnhi0 ∼ N(µ0, σ
2
0) (6)

and it evolves over time along an equilibrium trajectory.
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Figure 2: Effect of a change in δ on the marginal return to investment

2.3. Equilibrium

In equilibrium, all individuals behave optimally and the aggregate consistency

conditions hold.

Optimality: An adult of cohort t solves the following problem, obtained by
substituting (3), (4) and (2),

max
sit

ln (yit − sit) + β ln ((1− δ)hit + sit)
θ (7)

taking as given hit. The optimization yields the following optimal investment func-

tions,

sit = (yitθβ − (1− δ)hit) / (1 + θβ) (8)

An adult’s optimal investment decision constitutes both new investment plus a re-

placement of depreciated capital. Note that a lower rate of depreciation depresses

current investment because it lowers the marginal return to investment.4

4To see it, check from (4) that ∂hit+1/∂sit is positively related to δ.
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Aggregate Consistency: (i) ct ≡
∫
citdi, st ≡

∫
sitdi, yt ≡

∫
yitdi, ht ≡

∫
hitdi

where the left hand side variable in each of them means the aggregate. (ii) The

aggregate budget constraint is thus given by:5

ct + st = yt (9)

2.4. Individual optimal human capital accumulation

The ith individual optimal human capital accumulation is given by, from (1), (4)

and (8),

hit+1 = φhit
(
1− δ + a1ϕith

1−α
t hα−1it

)θ
(10)

where

φ ≡ a2 (θβ/ (1 + θβ))θ

Thus, the ith individual offspring’s human capital is determined by both the depre-

ciation and adjustment cost of human capital and her parent’s income.

2.5. Are children poor due to bad luck or poor parents?

We start with the age-old question: How does inequality transmit through gen-

erations through past lucks and initial conditions? To see this clearly, loglinearize

(10) around a balanced growth path where all agents are identical in terms of luck

and human capital ϕit = ϕ = 1 and hit = ht, respectively. One gets6:

lnhit+1 ' ξ + (1− α)χ lnht + % lnhit + χ lnϕit (11)

5We use the operators
∫
and E interchangeably in the text to denote aggregation across indi-

viduals.
6See Appendix A for details on the derivation.
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where

ξ ≡ lnφ+ θ ln (1− δ + a1) (12)

% ≡ 1− χ(1− α) ∈ (0, 1) (13)

χ ≡ θa1/ (1− δ + a1) ∈ (0, 1) (14)

Since we can do the same for the jth individual,

∆hit+1=% (∆ lnhit) + χ (∆ lnϕit) (15)

where ∆hit+1 ≡ lnhit+1 − lnhjt+1, ∆hit ≡ lnhit − lnhjt and ∆ϕit ≡ lnϕit − lnϕjt.

When the capital market is incomplete, difference in initial human capital of the

first generation as well as difference in lucks play a central role in transmitting initial

inequality through generations. The first term in (15) shows the effect of difference

in human capital of parents while the second term captures the effect of parent’s luck

on the wealth inequality of their kids. Both differences in initial human capital and

lucks transmit through generations. How they impact future generations depend on

the parameters % and χ, which in turn depend on the structural parameters. The

initial difference in wealth has a decaying effect on the wealth difference of successive

generations. The rate of decay is determined by % ∈ (0, 1). A larger % makes the

initial inequality have a persistent effect and thus slows down social mobility.7 It is

easy to verify that % is larger if adjustment cost is higher (lower θ) or depreciation

cost (δ) is lower.

2.5.1. Depreciation, TFP and Social Mobility

If depreciation rate is 100% (δ = 1), the TFP parameter a1 has no effect on

the transmission of inequality. To see this clearly, note that a1 influences the social

mobility through the term χ in (14); when δ = 1, χ is independent of a1. However,

in case of incomplete depreciation (0 < δ < 1), a lower a1 slows down social mobility.

7The social mobility is purely determined by the inverse of % (see Benabou, 2002), which is also
the focal point of this paper.
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To see the intuition, think of a lower a1 as a higher tax on capital.8 Such a tax

discourages investment. It hurts poor households more than the rich because poor

have a higher marginal product of capital to start with due to diminishing returns

to investment and incomplete markets. Start from a scenario, where rich (i with

ht/hit < 1 ) and poor (j with ht/hjt > 1) have the same luck, the relative marginal

investment returns of rich to poor (based on (1), (5) and (8)) is given by,

∂hit+1/∂sit
∂hjt+1/∂sjt

=

(
a1ϕ (ht/hit)

1−α + 1− δ
a1ϕ (ht/hjt)

1−α + 1− δ

)1−θ
(16)

which is less than unity. If a capital income tax is in place (lower a1), it will boost the
above relative marginal investment returns of rich further. Thus the convergence will

be slower. Note that if there is complete depreciation (δ = 1) this relative marginal

product is independent of a1.

2.6. Distributional Dynamics

We are now ready to characterize the dynamics of the cross sectional variance of

human capital:

Proposition 1. Given the initial cross sectional inequality characterized by (6) and
(10), the dynamics of inequality and growth are given by the following laws of motion
respectively,

σ2t+1 = θ2 ln
κ2 exp

(
θ−2σ2t

)
+ (a1)

2 exp
((

0.5ω + λ2
)
σ2t + υ2

)
+ 2κa1 exp ((0.5ω + λ/θ)σ2t )

(κ+ a1 exp (0.5ωσ2t ))
2

(17)

and

γt+1 = lnφ+ 0.5 (1/θ − 1)
(
σ2t − σ2t+1

)
+ θ ln

(
κ+ a1 exp

(
0.5ωσ2t

))
(18)

8Define the capital income tax rate as τ . Re-parameterize a1 as 1− τ .
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where

γt+1 ≡ lnht+1 − lnht

κ ≡ 1− δ, λ ≡ 1/θ + α− 1 > 0

ω ≡ (α− 1) (2/θ + α− 2) < 0

Proof. See Appendix B.
The social mobility and the dynamics of (the cross-sectional) wealth inequality

are, therefore, characterized jointly by four crucial parameters, namely θ, δ, α and

a1. The dynamics of inequality is determined by its own history. It is not influenced

by growth. On the other hand, the growth rate depends on the current and past

inequality. This is evident by the fact that σ2t+1 is a function of σ
2
t alone while γt+1

depends on σ2t+1 and σ
2
t .

For comparative statics results, take the loglinear version in (11), which implies

the following inequality dynamics (see Appendix A),9

σ2t+1 = %2σ2t + χ2υ2 (19)

The dynamics of income inequality (σ2t,y) can then be derived from (1) and (19),

σ2t+1,y = %2σ2t,y + υ2
(
1− %2 + α2χ2

)
(20)

The capital share parameter, α, and the adjustment cost parameter, θ, have oppos-

ing effects on the persistence of inequality. When α is higher, the relative growth

potential of the poor with respect to rich (due to poor’s higher marginal product) is

dampened which means that the process of convergence between rich and the poor

will be slower. This explains why the initial inequality will tend to persist when α

9Because of its highly nonlinear nature, it is diffi cult to ascertain the comparative statics effects
of these four underlying parameters. We study them numerically in the next section. The numerical
comparative results accord with the loglinearized version.
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is higher.10 On the other hand, a higher adjustment cost (lower θ) will make the

process of convergence between the poor and the rich slower because it is costly

for the poor to invest. This technological disadvantage imposed by capital adjust-

ment cost is compounded by the credit market imperfection which makes the social

mobility slower and inequality more persistent.11 These effects of θ and α on the

social mobility are remarkably robust to alternative environments. In Appendix C,

we outline a model with dynastic altruism as in Barro (1974) and derive the same

results.

Why does a lower depreciation rate make the inequality process more persistent?

When human capital depreciates slowly, it makes the current capital stock to have

a stronger negative effect on investment as shown in Figure 2 and eq. (8). Such a

negative effect on investment arises due to a higher marginal cost of investment when

capital is long lived. Since investment is the only vehicle for social mobility, lower

investment in human capital caused by low depreciation slows down this process of

social mobility and makes the inequality more persistent. The following proposition

summarizes the results for the social mobility.

Proposition 2. A higher degree of adjustment cost (lower θ), lower depreciation
cost (δ) and a higher capital share α make the social mobility slower and the inequality
process more persistent.

We next turn to the relationship between the short run dynamics of growth and

inequality. The loglinear version of the growth equation is given by (see Appendix

A),

γt+1 = lnφ+ θ [ln (1− δ + a1)] + 0.5υ2χ (χ− 1) + 0.5σ2t% (%− 1) (21)

The growth rate (γt+1) at t + 1 responds inversely to state of cross sectional

inequality (σ2t ). The strength of this negative association depends positively on the

10The inverse relationship between rate of convergence and the capital share parameter is well
known in the convergence literature (see for example, Benabou, 2002).
11When α is close to unity, the adjustment cost ceases to play any role in determining the

inequality persistence because the poor do not have any relative advantage in terms of higher
marginal product.
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degree of adjustment cost in human capital. This inverse relationship is not surprising

in a model with imperfect credit market. In such models, due to diminishing returns

to capital, α ∈ (0, 1), the poor have a higher marginal product than the rich in

the economy. When they cannot borrow from the rich who have a lower marginal

product and invest due to the credit market imperfection, Pareto effi ciency cannot be

achieved. Therefore, in such an economy higher inequality corresponds to a greater

ineffi ciency and thus lower growth.

2.7. Long-run inequality and growth

Until now we explored how initial differences in human capital, luck, depreciation

and adjustment costs determine the transmission of inequality across generations.

We found that initial inequality tends to lose importance while other parameters

including θ, δ, α govern the intergenerational transmission of inequality. We now

formally establish that the long-run inequality and growth are independent of initial

wealth difference and determined crucially by these parameters.

The steady-state inequality and growth based on the closed form solutions (17)

and (18) are given by the following expressions (derived in the appendix) respectively:

σ2 = θ2 ln
κ2 exp

(
θ−2σ2

)
+ (a1)

2 exp
((

0.5ω + λ2
)
σ2 + υ2

)
+ 2κa1 exp ((0.5ω + λ/θ)σ2)

(κ+ a1 exp (0.5ωσ2))2

(22)

and

γ = lnφ+ θ ln
{
κ+ a1 exp

(
0.5ωσ2

)}
(23)

The steady-state equivalents based on the log-linearized version of the model have

simpler expressions. Considering (19),

σ2 = χ2υ2/
(
1− %2

)
(24)

The steady-state income inequality (σ2y) based on (20) is:
12

12Note that when δ = 1, all of the loglinearized and the exact solutions converge. For instance,
the steady-state inequality in both (22) and (24) will reduce to σ2 = υ2θ/ ((1− α) (2− (1− α) θ)).
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σ2y = υ2
(
1− %2 + α2χ2

)
/
(
1− %2

)
(25)

Finally, the long-run growth rate is given by, from (21) and (24):

γ = lnφ+ θ [ln (1− δ + a1)] + 0.5υ2χ (χ− (1 + %)) / (1 + %) (26)

Inequality in the long-run is thus mainly the result of individuals’ differences in

human capital investment decision as a response to differences in luck. We summarize

these results in terms of the following proposition:

Proposition 3. The long-run distribution of wealth (σ2) is a function of initial dis-
tribution in luck (υ2) and independent of the initial distribution of σ20 whereas σ

2

increases in α and decreases with respect θ, δ and a1.

Proof. See (24) and (25).
Higher capital share (α) slows down the convergence between rich and poor and

thus not surprisingly it promotes long run inequality. What is surprising is that θ, δ

and a1 have opposite effects on social mobility (%) and long run inequality (σ2). For

example, a lower θ, δ, a1 raise % (slowing down social mobility) but it also lowers the

long run inequality σ2. To see the reasons for this asymmetry check the following two

expressions for elasticities of child’s human capital with respect to parent’s human

capital and parent’s luck based on (11):

∂ lnhit+1/∂ lnhit = % (27)

∂ lnhit+1/∂ lnϕit = χ (28)

These two elasticities behave exactly opposite in response to change in θ, δ or a1.

Since the long run variance of inequality is determined by luck (but not by the initial

level of inequality), the luck effect finally dominates and this explains the asymmetry

of comparative statics behavior of σ2 and %.
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3. Quantitative analysis

In this section, we numerically examine (17) and (22) to determine the role of θ

and δ in social mobility, inequality dynamics and balanced growth respectively. We

first construct parameter values which reasonably reflect actual economies. Assuming

a psychological discount factor of 0.96, we set β = 0.9630 ≈ 0.3, in a period of 30

years (de la Croix and Michel, 2002, p.255).13

There are five technology parameters, namely a1, a2, α, δ and θ. Following Barro,

Mankiw and Sala-i-Martin, 1995 , we set α = 0.5. The choices of υ2 = 0.38, a1 = 1.96

and a2 = 1.655 are made to target a steady state variance of the log wealth (σ2)

equal to 0.2422 and the variance of log of income (σ2y) equal to 0.441 and a long-run

annual average growth rate of about 1.79 percent of the US economy for the last

125 years.14 The remaining two parameters δ and θ are chosen to target the social

mobility parameter % as in (27) and the wealth elasticity with respect to luck, χ

based on (28). Regarding % the estimates for intergenerational persistence measured

by wealth elasticity vary considerably in the literature.15 Our baseline estimate of

social mobility is 0.73 which is in line with the estimates of Mazumder and Clark

and Cummins (2012).

The wealth elasticity with respect to luck, χ is an indicator of agent’s response

to luck or opportunity. We use the response rate of households from the well known

move to opportunity programme (MTO) as reported by Katz et al., (2001) as a

proxy for the agent’s response to luck. Katz et al. (2001) report that about 48%

to 62% households living in high poverty region in Boston move through the MTO

programme. Fixing δ = 0.03 and θ = 0.8 as in Basu et al. (2012 ), we get an estimate

for this response to luck around 0.53 which is in the range of Katz et al.’s (2001)

13A psychological discount factor of 0.96 matches a 4.17 percent rate of time preference ρ in an
infinite lived agent model. That is, β = 1/ (1 + ρ) = 1/(1 + .0417) = 0.96.
14Assuming a lognormal distribution of income, the mean-median ratio implies 0.44 average

log-income variance for the United States for the years 1991, 1994, 1997, and 2000, based on
Luxembourg Income Study (UNU-WIDER, 2007).
15Note that %2 ' ρ ≡ ∂σ2t+1/∂σ

2
t (Appendix B) . % in each table is calculated based on the

loglinearized version (11) which is close to the estimate based on the exact solution (17).
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study.16 Table 1 summarizes the baseline parameter values.

Tables 2, 3 and 4 show the effects of adjustment cost, depreciation costs and

the TFP on social mobility, inequality and growth based on the exact closed form

solutions (17), (18). Higher adjustment cost and lower depreciation cost (lower θ,

lower δ, lower a1), slow down social mobility (higher %). On the other hand, the

same factors contribute to a lower long-run growth rate (γ) and lower steady state

inequality for the reasons mentioned earlier.

16To the best of our knowledge for the adjustment cost parameter there is no direct estimate
available in the extant literature except Basu et al. (2012) . However, Basu et al. employ physical
capital adjustment cost technology while in the present setting we have a human capital adjustment
cost technology. However, the same calibrated value for θ generates a plausible estimate for the
response to luck.
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Table 1: Benchmark values

Preference and technology parameters: β = 0.3, a1 = 1.96, a2 = 1.655
Production and policy parameter: α = 0.5, θ = 0.8, δ = 0.03
Inequality parameter υ2 = 0.38

Table 2: Effects of adjustment cost on inequality, mobility and growth

Adjustment cost (θ) % σ2 γ
0.9 0.6990 0.2793 0.0477
0.85 0.7157 0.2605 0.0317
0.8 0.7324 0.2422 0.0179
0.75 0.7491 0.2243 0.0066
0.7 0.7659 0.2069 -0.0021
0.6 0.7993 0.1732 -0.0108

Figure 3 demonstrates the effects of changes in adjustment and depreciation costs

respectively on the distributional dynamics. Given the baseline values of other pa-

rameters, a higher adjustment cost (from θ = 0.8 to θ = 0.6) slows down the social

mobility by about 10 generations. A lower rate of depreciation by 2% slows down

the convergence by about 4 generations.

Figure 4 compares growth dynamics with respect to changes in δ, θ and a1. The

growth dynamics is driven by the distributional dynamics shown in (18). The figure

shows transitional dynamics following a 1% shock to inequality from its steady-state

Table 3: Effects of depreciation cost on inequality, mobility and growth

Depreciation cost (δ) % σ2 γ
0.2 0.7159 0.2581 -0.0341
0.15 0.7210 0.2532 -0.0184
0.13 0.7230 0.2513 -0.0122
0.10 0.7259 0.2485 -0.003
0.05 0.7306 0.244 0.012
0.03 0.7324 0.2422 0.0179
0.01 0.7342 0.2405 0.0238
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Table 4: Effects of TFP on inequality, mobility and growth

TFP (a1) % σ2 γ
1.68 0.7464 0.2290 -0.0591
1.82 0.7391 0.2359 -0.0196
1.96 0.7324 0.2422 0.0179
2.0 0.7306 0.2480 0.0538
2.1 0.7264 0.2533 0.0880
2.24 0.7209 0.2582 0.1208
2.52 0.7112 0.2627 0.1524

level. The sudden rise in inequality results in a sharp fall in growth, initially. But

eventually it starts to pick up as inequality declines towards its steady-state. The

speed of convergence is lower for higher adjustment cost (lower θ), lower depreciation

and TFP (a1).

3.1. Effect of luck on social mobility

Parent’s luck impacts the difference in wealth of their children immediately through

the optimal investment function (8). This inequality transmits to the future gener-

ations through adjustment of human capital stock. If it is costly to adjust human

capital, luck effect of parents could persist over generations. To see this, start from

a steady state where all agents are identical in terms of human capital and let the

initial generations experience some lucks (say, ith family enjoys a good luck and jth

family suffers a bad luck). Figures 3 and 4 plot (15) the impulse responses of 0.1

standard deviation difference in such luck on the time path of dynastic inequality for

two values of the adjustment cost parameters (θ = 0.8 and θ = 0.6). When θ = 0.8

convergence occurs after 20 generations whereas it takes more than 25 generations

to converge when θ = 0.6. This reinforces our earlier result that a higher adjustment

cost slows down social mobility.

Figure 5 plots the same impulse responses when α is increased from its baseline

value. Such an increase in α slows down convergence considerably for well known

reasons mentioned earlier. The social mobility slows down for at least 10 generations

in response to such an increase.
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Figure 3: Adjustment, depreciation costs and TFP, with inequality dynamics.

Figure 4: Adjustment, depreciation costs and TFP, with growth dynamics.
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Figure 5: Effect of a difference in luck on human capital when θ = 0.6 and θ = 0.8

Figure 6: Effect of a difference in luck on human capital when α = 0.5 and α = 0.7
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Figure 7: Effect of a difference in luck on human capital when a1 = 1.96 and a1 = 3.5

A change in depreciation alone has an insignificant effect on the transmission of

inequality (plots of which we omit here for brevity). However, incomplete depreci-

ation greatly influences the effect of TFP on social mobility for reasons mentioned

earlier. Figure 7 demonstrates the effect of a lower a1 on the impulse responses with

respect to luck. In response to such a lower TFP, the social mobility is thwarted for

at least 17 generations for the reasons mentioned earlier.

3.2. Welfare effect of adjustment cost and public policy implications

Our model suggests that a higher adjustment cost of human capital slows down

social mobility. What is the implication for such slow mobility for social welfare? To

properly address this issue, we need to have the right welfare metric. In the overlap-

ping generations setting, adults born at different times attain different felicity levels.

Thus the evaluation of social welfare also depends on the weights that the social

planner assigns to various generations. For our present experiment, we assume that

the social planner uses the same discount factor as the private agents to aggregate

utilities across generations. It turns out that the comparative statics properties of

social welfare is robust to the choice of the social planner’s discount factor.
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The social welfare is calculated in three steps. In the first step, the tth cohort’s

welfare (wit = ln cit+β lnhit+1) is computed using the loglinearized decision rules for

cit and hit+1. In the second step, we compute the aggregate welfare (wt =
∫
i
witdi).

In the final step, we work out the social welfare (W0) of all generations born since

date 0 using a social discount rate ρ as follows:

W0 =
∑∞

t=0 ρ
twt (29)

In Appendix D, we have shown that the social welfare function (29) is given by:

W0 = q1 +
(1 + β) ρ

(1− ρ)2
ln(1 + γ) +

1 + β

1− ρ lnh0 +
m2

(1− %2ρ)
σ20 (30)

where q1 and m2 are constants,

q1 ≡
(

ln
a1 + 1− δ

1 + θβ
+ βξ − 0.5 (n2 + βχ) υ2

)
(1− ρ)−1

+σ2ρ
(
1− %2

)
m2/

(
(1− ρ)

(
1− %2ρ

))
m2 ≡ −0.5 (1 + n1 + β%)

An important observation based on the social welfare function (30) is that the

steady state welfare depends positively on the steady state growth rate (γ) as well as

the initial capital stock stock (h0) but negatively on the initial inequality of human

capital (σ20). The negative relation between initial inequality and welfare reflects the

usual effi ciency loss due to the imperfection in the credit markets, which prevents the

effi cient amount of investment to be undertaken in the economy. A higher adjustment

cost (lower θ) by slowing down social mobility makes this adverse effect of initial

inequality stronger. Recall that a higher adjustment cost (lower θ) slows down the

social mobility (higher %). Figure 8 plots the social welfare against θ fixing the other

parameters at the baseline levels. The relationship is clearly monotonic suggesting

that a higher adjustment cost lowers the social welfare.

This loss of welfare in high adjustment cost economies can be mitigated by a

possible subsidy to human capital which promotes the total factor productivity. The
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Figure 8: Adjustment cost and social welfare

government can lower the capital income tax, for instance, which boosts a1. We have

seen earlier that a lower capital income tax also promotes social mobility. Figure 9

shows that it also stimulates social welfare through the usual growth channel as seen

from Table 4.
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Figure 9: TFP and social welfare

4. Conclusion

This paper has developed models that analyze the distributional effects of human

capital adjustment cost within an incomplete market and a heterogeneous economy.

The source of endogenous inequality is missing credit and insurance markets. When

individuals cannot perfectly insure themselves from future income uncertainty and,

the credit market is imperfect, inequality persists. The dynamics of aggregate vari-

ables and inequality are jointly determined. The presence of a higher adjustment

cost and lower depreciation cost for human capital slows down social mobility and

results in a persistent inequality across generations. A lower TFP aggravates social

immobility further when there is incomplete depreciation of capital. The quantita-

tive analysis of our model suggests that the human capital adjustment cost has to be

nontrivial to reconcile long run growth, inequality and social mobility. Social welfare

is unambiguously lower in high adjustment cost economies with lower social mobility.

A possible extension of our work is to examine the role of government redistributive

policy in determining social mobility in an environment where it is costly to adjust

human capital.
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Appendix

A. Derivation of the loglinear form

To derive (11), first rewrite the ith individual optimal human capital accumula-

tion (10) as

lnhit+1 = lnφ+ lnhit + θ ln
(
1− δ + a1ϕit (hit/ht)

α−1) (A.1)

Applying the first order Taylor expansion in (A.2) around hit+1 = ht+1, hit = ht and

ϕit = ϕ = 1, one obtains

lnhit+1 ' lnφ+ θ ln (1− δ + a1) + lnhit + (α− 1)χ ln h̃it + χ lnϕit (A.2)

where ln h̃it ≡ lnhit − lnht, χ ≡ θa1/ (1− δ + a1) and % ≡ 1 − χ(1 − α), which is

rewritten as (11).

To derive the loglinearized version of the growth eqs. (21) and (26), aggregate

(A.2),

E [lnhit+1] = lnφ+ θ ln (1− δ + a1) + E [lnhit] + (α− 1)χE
[
ln h̃it

]
+ χE [lnϕit]

lnht+1 − 0.5σ2t+1 = lnφ+ θ ln (1− δ + a1) +
(
lnht − 0.5σ2t

)
− 0.5 (α− 1)χσ2t − 0.5χυ2

(A.3)

since E [lnhit] = lnht − 0.5σ2t . Rearranging and simplifying this, one obtains,

γt+1 = lnφ+ θ [ln (1− δ + a1)]− 0.5 (1 + (α− 1)χ)σ2t − 0.5χυ2 + 0.5σ2t+1 (A.4)

where γt+1 ≡ lnht+1 − lnht. Substituting (19) into the above yields:

γt+1 = lnφ+ θ [ln (1− δ + a1)] + 0.5χ (χ− 1) υ2 + 0.5% (%− 1)σ2t
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B. Aggregation and distribution dynamics

In this section we derive (17) from (10). We can also rewrite (10) as

(hit+1)
ς = φς

(
hςitκ+ εtϕith

κ+ς
it

)
(B.5)

where ς ≡ 1/θ, κ ≡ α− 1, κ ≡ 1− δ and εt ≡ a1h
1−α
t .

Recall that first ϕit and hit are assumed to have lognormal distributions:

lnϕit ∼ N(−υ2/2, υ2) (B.6)

lnhit ∼ N(µt, σ
2
t ) (B.7)

And, from a normal-lognormal relationship, we have:

E [hit] ≡ ht = eµt+0.5σ
2
t (B.8)

var [hit] =
(
eσ

2
t − 1

)
e2µt+σ

2
t (B.9)

If hit, then (hit)
x is also lognormal for any constant x.

ln (hit)
x ∼ N(xµt, x

2σ2t ) (B.10)

Thus, considering (B.10), (B.8) and (B.9), we have:

E [(hit)
x] = (ht)

x e0.5σ
2
tx(x−1) (B.11)

var [(hit)
x] = (ht)

2x eσ
2
tx(x−1)

(
ex

2σ2t − 1
)

(B.12)

We now apply (B.11) and (B.12) to derive the following important relations that

we use latter on:
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E [(hit+1)
ς ] = hςt+1e

0.5ς(ς−1)σ2t+1 (B.13)

E [hςit] = hςte
0.5ς(ς−1)σ2t (B.14)

E
[
hς+κit

]
= hς+κt e0.5(ς+κ)(ς+κ−1)σ

2
t (B.15)

E
[
h2ς+κit

]
= h2ς+κt e0.5(2ς+κ)(2ς+κ−1)σ

2
t (B.16)

E [ϕit] = 1 (B.17)

var
[
hςit+1

]
= h2ςt+1e

ς(ς−1)σ2t+1
(
eς

2σ2t+1 − 1
)

(B.18)

var [ϕit] =
(
eυ

2 − 1
)

(B.19)

var [hςit] = h2ςt e
ς(ς−1)σ2t

(
eς

2σ2t − 1
)

(B.20)

var
[
hς+κit

]
= h

2(ς+κ)
t e(ς+κ)(ς+κ−1)σ

2
t

(
e(ς+κ)

2σ2t − 1
)

(B.21)

Then, aggregate (B.5) from both side to derive the aggregate human capital:

E [(hit+1)
ς ] = φ1/θ E

[
hςitκ+ εtϕith

ς+κ
it

]
= φ1/θ

{
κE [hςit] + εt E

[
hς+κit

]}
Substituting (B.13), (B.14) and (B.15) into the above,

hςt+1e
0.5ς(ς−1)σ2t+1 = φς

{
κhςte

0.5ς(ς−1)σ2t + εth
ς+κ
t e0.5(ς+κ)(ς+κ−1)σ

2
t

}
= φςhςt

{
κe0.5ς(ς−1)σ

2
t + a1e

0.5[ς(ς−1)+ςκ+κ(ς+κ−1)]σ2t
}

Thus, the aggregate human capital is given by:

hςt+1e
0.5ς(ς−1)σ2t+1 = φςhςte

0.5ς(ς−1)σ2t
{
κ+ a1e

0.5κ(2ς+κ−1)σ2t
}

(B.22)
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To derive the distributional dynamics, take the variance from both sides of (B.5),

var [(hi,t+1)
ς ] = φ2ς var

[
hςitκ+ εtϕith

ς+κ
it

]
= φ2ς

[
κ2 var [hςit] + ε2t var

[
ϕith

ς+κ
it

]
+ 2κεt cov

(
hςit, ϕith

ς+κ
it

)]
(B.23)

Using (B.14), (B.15), (B.16) and (B.17), the cov term is computed as follows:

cov
(
hςit, ϕith

ς+κ
it

)
= E

[
hςitϕith

ς+κ
it

]
− E [hςit] E

[
ϕith

ς+κ
it

]
= E

[
h2ς+κit

]
− E [hςit] E

[
hς+κit

]
= h2ς+κt e0.5(2ς+κ)(2ς+κ−1)σ

2
t − hςte0.5ς(ς−1)σ

2
thς+κt e0.5(ς+κ)(ς+κ−1)σ

2
t

= h2ς+κt e0.5(κ(2ς+κ−1)+2ς(ς−1))σ
2
t

(
eς(ς+κ)σ

2
t − 1

)
(B.24)

The second term in the right hand side of (B.23) is computed as,17

var
[
ϕith

ς+κ
it

]
= (E [ϕit])

2 var
[
hς+κit

]
+ var [ϕit]

((
E
[
hς+κit

])2
+ var

[
hς+κit

])
= var

[
hς+κit

]
(1 + var [ϕit]) + var [ϕit]

(
E
[
hς+κit

])2
since E [ϕit] = 1.

Substituting (B.15), (B.19) and (B.21) into the above yields:

17If x and y are independent, the variance of their product is:

var [xy] = (E [x])
2
var [y] + (E [y])

2
var [x] + var [y] var [x]

30



var
[
ϕith

ς+κ
it

]
= h

2(ς+κ)
t e(ς+κ)(ς+κ−1)σ

2
t

(
e(ς+κ)

2σ2t − 1
)(

1 +
(
eυ

2 − 1
))

+
(
eυ

2 − 1
)
h
2(ς+κ)
t e(ς+κ)(ς+κ−1)σ

2
t

= h
2(ς+κ)
t e(ς+κ)(ς+κ−1)σ

2
t

((
e(ς+κ)

2σ2t − 1
)
eυ

2

+
(
eυ

2 − 1
))

= h
2(ς+κ)
t e(κ(2ς+κ−1)+ς(ς−1))σ

2
t

(
e(ς+κ)

2σ2t eυ
2 − 1

)
(B.25)

Then, substituting, (B.18), (B.20), (B.24) and (B.25) into (B.23) yields:

h2ςt+1e
ς(ς−1)σ2t+1

(
eς

2σ2t+1 − 1
)

= φ2ς


h2ςκ2t eς(ς−1)σ

2
t

(
eς

2σ2t − 1
)

+ε2t

{
h
2(ς+κ)
t e[κ(2ς+κ−1)+ς(ς−1)]σ

2
t

(
e(ς+κ)

2σ2t eυ
2 − 1

)}
+2κεt

{
h2ς+κt e0.5[κ(2ς+κ−1)+2ς(ς−1)]σ

2
t

(
eς(ς+κ)σ

2
t − 1

)}
 (B.26)

Finally, substituting (B.22) into the above, we get :

φ2ςh2ςt e
ς(ς−1)σ2t

{
κ+ a1e

0.5κ(2ς+κ−1)σ2t
}2 (

eς
2σ2t+1 − 1

)

= φ2ςh2ςt


κ2eς(ς−1)σ

2
t

(
eς

2σ2t − 1
)

+(a1)
2
{
e[κ(2ς+κ−1)+ς(ς−1)]σ

2
t

(
e(ς+κ)

2σ2t eυ
2 − 1

)}
+2κa1

{
e0.5[κ(2ς+κ−1)+2ς(ς−1)]σ

2
t

(
eςκσ

2
t − 1

)}
 (B.27)

since εt ≡ a1h
−κ
t .

Considering,(
κ+ a1e

0.5κ(2ς+κ−1)σ2t
)2

= κ2 + 2κa1e
0.5κ(2ς+κ−1)σ2t + (a1)

2e(κ(2ς+κ−1))σ
2
t

further simplifying (B.27) gives
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eς
2σ2t+1 =

κ2eς
2σ2t + (a1)

2
(
eκ(2ς+κ−1)σ

2
t e(ς+κ)

2σ2t eυ
2
)

+ 2κa1

(
e0.5κ(2ς+κ−1)σ

2
t eς(ς+κ)σ

2
t

)
(
κ+ a1e0.5κ(2ς+κ−1)σ

2
t

)2
Alternatively,

eθ
−2σ2t+1 =

κ2eθ
−2σ2t + (a1)

2
(
e[(α−1)(2/θ+α−2)+(1/θ+α−1)

2]σ2t+υ2
)

+ 2κa1

(
e[0.5(α−1)(2/θ+α−2)+(1/θ+α−1)/θ]σ

2
t

)
(
κ+ a1e0.5(α−1)(2/θ+α−2)σ

2
t

)2
after substituting ς ≡ 1/θ, κ ≡ α− 1. Or,

eθ
−2σ2t+1 =

κ2eθ
−2σ2t + (a1)

2
(
e(ω+λ

2)σ2t+υ2
)

+ 2κa1

(
e(0.5ω+λ/θ)σ

2
t

)
(
κ+ a1e0.5ωσ

2
t

)2 (B.28)

where

ω ≡ (α− 1) (2/θ + α− 2) < 0, λ ≡ 1/θ + α− 1 > 0

as given by (17).

B.1. Steady State

The steady-state inequality and growth are given by the following equations,

considering (B.22) and (B.28), respectively:

σ2 = θ2 ln
κ2 exp

(
θ−2σ2

)
+ (a1)

2υ2 exp
((
ω + λ2

)
σ2
)

+ 2κa1 exp ((0.5ω + λ/θ)σ2)

(κ+ a1 exp (0.5ωσ2))2

(B.29)

and

γ = lnφ+ θ ln
{

1− δ + a1 exp
(
0.5ωσ2

)}
(B.30)

where γ ≡ ln (ht+1/h) and σ2 = σ2t+1 = σ2t .
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B.2. Social mobility

The social mobility parameter, ψ, is derived by simply taking the first derivative

of (B.28):

ψ ≡ ∂σ2t+1/∂σ
2
t

=

(
κ2θ−2 exp(θ−2σ2t ) + (a1)

2b1b2 exp(b2σ
2
t ) + 2κa1b3 exp(b3σ

2
t )

κ2 exp(θ−2σ2t ) + (a1)2b1 exp(b2σ2t ) + 2κa1 exp(b3σ2t )
− a1ω exp(0.5ωσ2t )

κ+ a1 exp(0.5ωσ2t )

)
θ2

where

b1 ≡ exp
(
υ2
)
, b2 ≡ ω + λ2, b3 ≡ 0.5ω + λ/θ

C. A model of dynastic altruism with labour and capital

In this appendix, we show that the key result that a higher adjustment cost

slows down social mobility continues to hold in a model with dynastic altruism as in

Barro (1974) with labour and physical capital. Each generation lives one period and

discounts the future generation’s utility by β. The ith agent born at date t has the

utility function:

vit = ln cit + b ln(1− lg,it − lh,it) + βEtvit+1 (C.31)

where lg,it is labour time spend on good production, lh,it is labour time spent on

child’s education and b ∈ (0, 1) is the relative importance of leisure in utility. The

total time is normalized at unity. We assume for simplicity that the technology of

goods production requires a fixed amount of raw labour time (say 8 hours a day) and

the adult has no choice to allocate more or less time to it. Thus fix lg,it = l. The

remaining time can be allocated freely between leisure and child’s education. The

goods production function is thus:

xit = ϑit (lhit)
$ (kit)

η (ht)
ε (C.32)
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where ϑit is idiosyncratic shock; kit is physical capital and the production function

obeys constant returns to scale property meaning $ + η + ε = 1.

The human capital production function is specified as (assuming δ = 1 for ana-

lytical tractability).

hit+1 = h1−θit (sitlh,it)
θ (C.33)

The effective investment in human capital is the raw labour (lh,it) spent on children

times resources (sit) spent on schooling.

Although parents cannot borrow against their offspring’s human capital because

of the immutable moral hazard and adverse selection issues, they have an access to

an international credit market to finance their purchase of physical capital, kit at a

fixed interest rate r∗. The adult fully pays off the loan with interest before the end

of their life. All physical capital is used up in the production process and nothing is

left for the upcoming generation. The optimal purchase of capital is thus given by

the equality between the marginal product of physical capital and the user cost of

capital, which means,

∂xit/∂kit = r∗ + δk (C.34)

where δk is the rate of depreciation of physical capital.18 The adult’s value added

(yit) after paying off the loan servicing and the user costs of capital is given by,

yit = xit − (r∗ + δk)kit (C.35)

Substituting out kit using (C.34) and (C.32), equation (C.35) can be rewritten

as:

18To see this arbitrage condition, note that the adult’s choice of physical capital solves the static
maximization problem:

max
kit

[xit + (1− δk)kit − (1 + r∗)kit]
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yit = fϕit (hit)
α (ht)

1−α

where ϕit ≡ (ϑit)
1/(1−η), f ≡ l$/(1−η) (η/ (r∗ + δk))

η/(1−η) (1− η) and α ≡ $/ (1− η).

The ith adult is thus subject to the budget constraint:

cit + sit = yit (C.36)

and she maximizes (C.31), subject to (C.33) and (C.36), taking ϕit, l and ht as given.

The value function for this problem can be written as:

v(hit, zit) = max
hit+1

[
ln

{
yit −

(hit+1)
1/θ

lh,it (hit)
(1−θ)/θ

}
+ b ln(1− l − lh,it) + β Et v(hit+1, zit+1)

]
(C.37)

The proof mimics Basu (1987). Conjecture that the value function is loglinear in

state variables as follows:

v(hit, zit) = π0 + π1 lnhit + π2 ln zit (C.38)

where zit ≡ fϕith
1−α
t . Plugging (C.38) into the value function (C.37),

π0 + π1 lnhit + π2 ln zit (C.39)

= max
hit+1

[
ln

{
yit −

(hit+1)
1/θ

lh,it (hit)
(1−θ)/θ

}
+ b ln(1− l − lh,it) + β {π0 + π1 lnhit+1 + ln zit+1}

]

We will use the method of undetermined coeffi cients to solve for πi which only

matters for determining the decision rule of investment. Conjecture that lh,it is time

invariant and is equal to lh,i .

Differentiating with respect to hit+1 and rearranging terms one gets:

hit+1 = (π1βθ/ (1 + π1βθ))
θ (hit)

αθ+1−θ (lh,it)
θ (zit)

θ (C.40)
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Plugging (C.40) into (C.39) and comparing the left hand side and right hand side

coeffi cients of the value function we can uniquely solve π1 as follows:

π1 =
α

1− β(αθ + 1− θ)

which after plugging into (C.40) we get,

hit+1 = (αβθ/ (1− β(1− θ)))θ (hit)
αθ+1−θ (lh,i)

θ (zit)
θ (C.41)

Next solve lh,i by noting the fact that

lh,i = arg max[b ln(1− l − lh,i) + βπ1θ ln lh,i]

which gives

lh,i = βπ1θ(1− l)/ (b+ βπ1θ) =
βαθ(1− l)

b− bβ(αθ + 1− θ) + βαθ
(C.42)

Time devoted to education is thus a constant confirming our conjecture. Note that

lh,i is also increasing in θ.

C.1. Distributional dynamics

Based on (C.41) the social mobility equation is given by,

lnhit+1 = p+ (αθ + 1− θ) lnhit + θ(ln zit) (C.43)

where

p ≡ θ ln

(
βαθ(1− l)

b− bβ(αθ + 1− θ) + βαθ

)
+ θ ln (αβθ/ (1− β(1− θ)))

Note that (C.43) takes the same form as (11) where the social mobility parameter

is the same as % when δ = 1. The dynamics of cross sectional variance of wealth

based on (C.43) is given by,
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σ2t+1 = (αθ + 1− θ)2σ2t + θ2υ2 (C.44)

which display similar properties as in our baseline "joy of giving" utility function.
Higher adjustment cost (lower θ) and a higher human capital share parameter (α)

slows down social mobility and raises the persistence of inequality as before.

C.1.1. Long run inequality and growth

Long run inequality based on (C.44) is given by:

σ2 =
θ2υ2

1− (αθ + 1− θ)2 (C.45)

To get the long run growth, aggregate (C.43) :

E [lnhit+1] = p+ (αθ + 1− θ) E [lnhit] + θE
[
ln fϕith

1−α
t

]
= p+ ln f + (αθ + 1− θ) E [lnhit] + θ(1− α) lnht + θE [lnϕit]

lnht+1 − 0.5σ2t+1 = p+ ln f + (αθ + 1− θ)(lnht − 0.5σ2t ) + θ(1− α) lnht − 0.5υ2θ

Along a balanced growth path, σ2t+1 = σ2t = σ2 as in (C.45) and γ ≡ lnht+1 − lnht,

this means,

γ = p+ ln f + 0.5θ(1− α)σ2 − 0.5υ2θ

D. Steady state welfare

The date t welfare of the ith adult is given by:

wit = ln cit + β lnhit+1 (D.46)

The term lnhit+1 is given by the loglinearized optimal decision rule for human capital

accumulation (11).The optimal consumption rule (ln cit) is derived from (3) and (8),
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cit = yit − ((yitθβ − (1− δ)hit) / (1 + θβ)) (D.47)

which after loglinearization will yield

ln cit = n0 + (1 + n1) lnhit − n1 lnht + n2 lnϕit (D.48)

where19

n0 ≡ ln
(a1 + (1− δ))

1 + θβ

n1 ≡
1− δ + αa1
a1 + 1− δ

n2 ≡
a1

a1 + 1− δ

Plugging (11) and (D.48) on (D.46), the date t welfare of the ith household is

given by,

wit = n0+βξ+(β (1− α)χ− n1) lnht+(1 + n1 + β%) lnhit+(βχ+ n2) lnϕit (D.49)

The social welfare at t is then given by:

wt =
∫
i
wit = E [wit]

= n0 + βξ + (β (1− α)χ− n1) lnht + (1 + n1 + β%) E [lnhit] + (βχ+ n2) E [lnϕit]

= n0 + βξ + (β (1− α)χ− n1) lnht + (1 + n1 + β%)
(
lnht − 0.5σ2t

)
− 0.5 (βχ+ n2) υ

2

= m0 +m1 lnht +m2σ
2
t

19To obtain (D.48) first rewrite (D.47) after substituting for yit

ln (cit/ht) = ln (1 + θβ)
−1
+ ln (hit/ht) + ln

(
a1ϕit (hit/ht)

α−1
+ (1− δ)

)
Then, loglinearize this at constant points ct/ht, and ht/ht = ϕt = 1.
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where

m0 ≡ n0 + βξ − 0.5 (n2 + βχ) υ2

m1 ≡ 1 + β

m2 ≡ −0.5 (1 + n1 + β%)

Now the social planner aggregates the welfare of all generations using own dis-

count factor (ρ). The social welfare at date 0 is, then,

W0 =
∑∞

t=0 ρ
twt =

∑∞
t=0 ρ

t
(
m0 +m1 lnht +m2σ

2
t

)
=

m0

1− ρ +m1

∑∞
t=0 ρ

t lnht +m2

∑∞
t=0 ρ

tσ2t

=
m0

1− ρ +m1

∑∞
t=0 ρ

t lnh0(1 + γ)t +m2

∑∞
t=0 ρ

tσ2t

=
m0

1− ρ +m1 lnh0
∑∞

t=0 ρ
t +m1 ln(1 + γ)

(∑∞
t=0 ρ

tt
)

+m2

∑∞
t=0 ρ

tσ2t

=
m0

1− ρ +
m1 lnh0

1− ρ +
m1ρ

(1− ρ)2
ln(1 + γ) +m2

∑∞
t=0 ρ

t
(
%2t
(
σ20 − σ2

)
+ σ2

)
=

m0

1− ρ +
m1 lnh0

1− ρ +
m1ρ

(1− ρ)2
ln(1 + γ) +

m2σ
2

(1− ρ)
+

m2

(1− %2ρ)

(
σ20 − σ2

)
= q1 +

m1ρ

(1− ρ)2
ln(1 + γ) +

m1 lnh0
1− ρ +

m2

(1− %2ρ)
σ20

since

σ2t = %2σ2t−1 + χ2υ2 ⇒ σ2t = %2t
(
σ20 − σ2

)
+ σ2

where

q1 ≡
(

ln
a1 + 1− δ

1 + θβ
+ βξ − 0.5 (n2 + βχ) υ2

)
/ (1− ρ)

+σ2ρ
(
1− %2

)
m2/

(
(1− ρ)

(
1− %2ρ

))
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and σ2 = χ2υ2/ (1− %2).
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