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Abstract.

The paper provides a theoretical analysis of the problem of the uninsured
in the healthcare industry as a coordination failure in a dynamic game with
imperfect information. It is argued that if su¢ cient information is available, co-
ordination failure can be avoided without centralized intervention. A necessary
and su¢ cient condition on the information structure of the game is derived for
decentralized decision making to yield a unique and e¢ cient outcome if individ-
uals reason using as a process of iterated dominance.
JEL Classi�cation: .
Key Words: Coordination Failure, Dominance Solvability, Best Response

Conditional Action, Dominant Conditional Action, ��- linked information chain;
��- linked information net

1 Introduction

We will study the relationship between ine¢ ciencies that can arise in a particular
type of sequential game with incomplete information and the relationship of the
information structure of the game and the possibility of an ine¢ cient outcome.
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The game is motivated by markets with signi�cant economies of scale and/or
markets in which signi�cant positive network externalities are present.

2 The Model

2.1 Notation

Let the group of agents be given by N = f1; 2; 3; :::; ng, n � 2. The individuals
move sequentially1 1 acting �rst followed by 2 and then by 3 and so on. For j 2
N , b(j) 2 f1; 0g represents j�s move to purchase health insurance (b(j) = 1) or
not to purchase health insurance (b(j) = 0). The vector b = (b(1); b(2); ::::; b(n))
is an action pro�le. We will let b�j = (b(1); b(2); ::::; b(j � 1)), denote moves
that have occurred before j plays. b�j will be called the j-truncated action
pro�le. Individual utilities are determined by the bene�t received by the in-
dividual � > 0 (assumed to be the same for all individuals) and the price of
insurance. We assume that insurance is priced at average cost with the technol-
ogy satisfying economies of scale. Thus, the average cost and hence the price,
p; paid by individuals for insurance declines as the number of buyers increase.
In particular, we will assume p is a strictly decreasing and positive real valued
function on the real line with p(0) = 1 and p(1) = 0. This implies that the
action pro�le b determines individual payo¤s with the net payo¤ of individual
j being given by:

fj(b) = [� � p(be)]b(j):

This results in the payo¤ vector f(b) = (f1(b); f2(b); :::; fn(b)):
Under our assumptions there exists a unique positive real number � such

that � � p(�) = 0: � represents a �tipping" point. If more than � individuals
"buy" then it makes sense for all individuals to buy insurance and if less than
� individuals buy then the status quo of not buying is better for all individuals.
We will assume that (i) � > 1: some coordination between individuals is

necessary to improve on the status quo. (ii) � < n: it is possible to improve on
the status quo through coordination. We will con�ne our analysis to the generic
case2 where � is not an integer.3 �� will denote d�e ; the integer larger than �:
Because the number of people �buying" is an integer �� will, e¤ectively, be the
tipping point of our model.

1This is an assumption made to allow us to adopt a simpler notation and can be easily
relaxed to allow for the case where some individuals play simultaneously. Rather than assum-
ing, as we do, that if j0 > j00 then j0 plays after j00, our arguments will remain valid for the
case where if j0 > j00 then j0 does not play before j).

2The probability of � being an integer has probability zero (is not generic) and a slight
perturbation of the model will always result in the generic case.

3We will comment briely on the implications of � being an integer.
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2.2 The Information Structure

Every individual, j, before making a move receives a piece of information4

I(j; b)represented by either an empty set (no-information) or an integer sum-
marizing the history of purchases by individuals who have moved before j: This
information, is in general, anonymous, aggregative and (possibly) asymmetric
and incomplete can be described as follows:
Each j 2 N is associated with an unique number k(j) 2 f0; 1; ::::; j� 1g and

the information I(j; b) is given by:

I(j; b) = jfi : i � k(j) and b(j) = 1gj

In absence of ambiguity I(j; b) will be shortened to I(j):
We will make two assumptions about the information structure:
A1. k(j) is common knowledge.
A2. Individuals moving later have at least as much information as those who

move earlier (i.e., j � j0 implies k(j) � k(j0)).

Remark 1 Information is modeled as becoming available with a lag. Individual
j receives a report about how many individuals who have moved before individ-
ual k(j)+1 have �bought�insurance and no information about how individuals
after k(j) have moved: Furthermore, individual j does not know which of these
individuals in f1; 2:::; k(j)g have bought insurance. Note that k(j) = 0 implies
I(j; b) = ;: This tells us that j receives no information before she moves. On
the other hand, k(j) > 0 and I(j; b) = 0 gives j the information that of the
�rst k(j) individuals about whose purchases j has received a report none have
bought the insurance. Individual j receives a report as to how many individuals
�bought� insurance. Individual j does not know which of the individuals in in
f1; 2; ....,k(j)g have bought.

We illustrate this by showing the three possible information structures for
the case where n = 3:
Example 1. N={1,2,3}; k(1) = 0, k(2) = 0; k(3) = 0:
Example 2. N={1,2,3}; k(1) = 0, k(2) = 0; k(3) = 1:
Example 3. N={1,2,3}; k(1) = 0, k(2) = 0; k(3) = 2:
Example 4. N={1,2,3}; k(1) = 0, k(2) = 1; k(3) = 2:
In Example 4 information becomes immediately available and each individ-

ual knows the complete aggregate decision making history of actions that have
occurred before she moves; Example 1 is the polar opposite case where the lag
in the information becoming available is �more than two periods�and thus nei-
ther of the three individuals have any information when they move. Example
2 and 3 represents an intermediate cases where 1 and 2 receive no information
at all . In Example 2, the information becomes available with a one period lag
and individual 3 gets informed about what 1 has done before she moves. In
Example 3 �more� information becomes available after a lag than in Example

4This includes the possibility of some individuals receiving �no information."
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2. While 1 and 2 still receive no information representing a delay in the avail-
ability of information, when it does become available after 2 periods, �more�of
it becomes available in Example 3 than in Example 2 and while 3 receives an
aggregate report about the actions of both 1 and 2 in example 3, she receives a
report only about the action of individual 1 in Example 1.
The information structures can be seen as being the vector k = (k(1); k(2); :::k(n)):

Two information structure can be compared by comparing the associated k vec-
tors with ks which are larger in a vector sense representing a greater availability
of information. In our examples above, there is a clear ranking of the informa-
tion structures of the four examples: as one moves from Example 1 to 2 to 3 and
�nally to 4 the information available to the individuals increases. In general,
with three or more individuals, some comparisons between information struc-
tures may not be possible and the structures would in general be quasi-ordered.5

2.3 The Normal Form Game.

If k(j) 6= 0, a strategy for j is a jk(j)j + 1 dimensional binary vector a(j) =
(a1(j); a2(j); :::; ak(j)+1(j)) of conditional actions representing which of the two
moves (buy or not buy) the individual would choose when she receives the
information I(j) 2 f0; 1; :::; k(j) + 1g: al(j) the lth co-ordinate of j�s strategy.
al(j) is j�s move b(j) if the pre-requisite I(j) = l � 1 is satis�ed.
If I(j) = ;, then the individual�s strategy is a unidimensional vector given

by a(j) = b(j) and represents the move that the individual would make with
the information.
We will adopt the usual notation a = (a(j); a(�j)) to denote a strategy

pro�le with a(�j) being a possible contingency representing strategies adopted
by individuals other than j. We will also use a�j to denote the j-truncated
contingency describing the strategies of all individuals who move before j. a�j

determines I(j) which together with a(j) determines b(j):
A payo¤ function for the normal form game is the mapping F of strategy

pro�les to payo¤ pro�les. F (a) can be thought of as a composition of two func-
tions b = g(a) from strategy pro�les to moves and f(b) = (f1(b); f2(b); :::; fn(b))
from moves to individual payo¤s with j�s payo¤ being Fj(a) = fj(b(a)).

Remark 2 The function g has a recursive structure: the truncated contingency
a�j determines the truncated pro�le of moves b�j of all the individuals who play
before j. This gives us I(j) which together with a(j) determines b(j):

For any strategy pro�le a the lth co-ordinate of j�s strategy al(j) is on the
path of play i¤ I(j,b)=I(j,g(a))=l-1 (i.e., the prerequisite for the lth co-ordinate
is satis�ed.) Otherwise, we will say al(j) is o¤ the path of play.
Proposition 3 is a direct consequence of the recursive structure of the game

while Proposition 4 follows from our assumption that p is strictly decreasing
and � is not an integer.

5For instance consider the model with three individuals with information structures (0; 0; 2)
and (0; 1; 1):

4



Proposition 3 Starting from any strategy pro�le changes in any set of indi-
vidual strategies o¤ the path of play does not a¤ect the payo¤s of any individual
.

Proposition 4 Starting from any strategy pro�le changes in any one individual
j�s strategy on the path of play always a¤ects payo¤ of that individual.

3 Equilibrium and Coordination Failure

Given any normal form game G, a strategy a(j) of individual j is a best re-
sponse strategy for the contingency a(�j) if and only if for all a0(j), Fj(a) =
Fj(a(j); a(�j)) � Fj(a

0(j); a(�j)): A pure strategy Nash equilibrium (PSNE)
can then be de�ned in the usual way as a strategy pro�le a such that for all
individuals h, a(h) is a best response strategy for the contingency a(�h): The
associated payo¤ of PSNEs are pure strategy Nash equilibrium outcomes (PS-
NEOs). Given that our normal form game may have di¤erent PSNEOs we will
focus on analyzing conditions on the information structure of the model which
under decentralized rational decision making would lead to the elimination of in-
e¢ cient Nash equilibria and leave only those PSNEs whose PSNEO gives every
individual the maximum utility: (� � c(n)):
We will assume that rational individuals in making their decisions will use

the process of iterated dominance described below:
A strategy a0(j) is dominated by a strategy a(j) if j�s payo¤ is just as large

under a(j) as under a0(j) under every contingency and is strictly larger for
some contingency.6

Consider our normal form game G0 and let R be a function which gives us
the game G1 = R(G0) obtained by eliminating all the dominated strategies of all
the individuals. Rational individuals would know that other individuals being
rational would never play these dominated strategies. Thus it is possible to
generate a sequence of games G0, G1, G2::::where Gh+1 = R(Gh): If Gp = R(Gp)
we will call the game irreducible and given that for each individual the number
of strategies is �nite such an irreducible game will always exist. We will analyze
the sequence {G0, G1, G2; ::::;Gm} where Gm is the "�rst" irreducible game in
the sequence.7

G0 is dominance solvable i¤ Gm has a unique PSNEO.
This process of iterated dominance leads us to only one PSNEO or to more

than one. If it leads to just one PSNEO we can have greater con�dence that this
outcome will occur and the question arises as to whether this outcome is welfare
maximizing (e¢ cient). Since there is only one e¢ cient outcome of the game,
if there is more than one PSNEO some form of coordination failure remains a
possibility.

6For all a(�j), Fj(a) � Fj(a
0(j); a(�j)) and for some a(�j), Fj(a(j); a(�j)) >

Fj(a
0(j); a(�j)):

7All games in the sequence after Gm areidentical to Gm and all games in the sequence from
G0 to Gm are di¤erent from each other.
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Weak Coordination Failure: Decentralized rational decision making may lead
to weak coordination failure i¤ Gm has a PSNE a� such that for some j :
Fj(a

�) 6= � � c(n):
Strong Coordination Failure: Decentralized rational decision making may

lead to strong coordination failure i¤ Gm has a PSNE a� such that for all j :
Fj(a

�) = 0:
Under weak coordination failure the maximum possible payo¤ in our model is

not received (in an equilibrium) by some individual. Under strong coordination
failure, in some equilibrium, every individual receives the status quo payo¤ and
the bene�ts from cooperation are completely lost.

Proposition 5 If there exists a strategy pro�le a in Gm such that for all individ-
uals, all co-ordinates less than or equal to the second co-ordinate are zero, then
decentralized rational decision making may lead to strong coordination failure.

Proof. In this pro�le a the path of play gives us the status quo. The change
in her strategy by any individual o¤ the path of play (Proposition 3) does not
alter the outcome. A change in any individuals strategy on the path of play
necessarily consists of changing the �rst co-ordinate of the strategy from 0 to 1:
However, given that both the �rst and second co-ordinates of the strategies of
all other individuals are 0, �� � 2, implies that such a change will reduce the
payo¤ of the individual making the change. Thus, a is a Nash equilibrium and
the status quo is PSNEO of Gm.

While a strong coordination failure implies weak coordination failure, is the
converse true? It clear that if G0 is not dominance solvable weak coordination
failure will occur. What is the relation between the information structure of the
game, dominance solvability and coordination failure? In the rest of the paper
we provide a complete set of answers to these question.

4 ��-Linked Information Chains

Whether there is coordination failure or not depends on the amount of informa-
tion that individual players, j, have prior to making their move and the extent
to which the information structure of the model allows this information to �lter
through to players who play after j. This can be described using the following
concepts of an information cover of an individual and of a ��-linked chain.

js information covers j0 i¤ j0 � k(j):
Thus, j�s information covers j0 if j0�s knowledge about the aggregate history

of the game and the impact if any of j0s action on this aggregate information
�lters through to player j.

Remark 6 If j�s information covers j0 it is clear from our de�nition that j�s
information also covers all j00 < j:
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A �-linked information chain is an ordered set (i1; i2::::; i�) of members of
N such that k(ip�1) � ip for all p = 2; :::; �:
Clearly, the existence of a �-linked chain would imply the existence of such

a �0-linked chain if �0 < �:
The following sets (de�ned recursively) are related to the existence of a �-

linked chain:

K�(1) = fj : k(j) � � � 1g
K�(2) = fj0 : k(j0) � � � 2 and there exists j 2 K�(1) such that j0 � k(j)g

::::

K�(h) = fj0 : k(j0) � � � h and there exists j 2 K�(h� 1) such that j0 � k(j)g
:::

K�(�) = fj0 : k(j) � 0 and there exists j 2 K�(� � 1) such that j0 � k(j)g

If a �-linked chain (i1; i2::::; i�) exists, K�(1);K�(2); ::::;K�(�) are all non-
empty with i� 2 K�(�):

8 Also, if K�(�) 6= ? it is clearly possible9 , using the
de�nition of K�(�); to choose i� 2 K�(�), � = �; � � 1; :::; 2; 1 such that a �-
linked information chain (i1; i2::::; i�) of members of N is formed with k(ip�1) �
ip being true for for all p = 2; :::; �: Thus, non-emptyness of K�(�) is necessary
and su¢ cient for the existence of a �-linked chain.

Proposition 7 A �-linked information chain is exists i¤ K�(�) 6= ?:

The information structure of the game completely determines the cover
structure and the cover structure together with �� (the tipping point) deter-
mines whether a ��-linked information net exists. We will argue that the ex-
istence and nonexistence of a ��-linked net determines whether or not there is
coordination failure. We illustrate this below using examples designed bring out
the nature of this relationship.
Consider the four examples used earlier with N = f1; 2; 3g:
In Example 4 we had k(3) = 2, k(2) = 1; k(1) = 0: Thus 3 covers 2 and

3 and 2 cover 1 and a �-linked information chains for � = 1; 2; 3 exist. In
this case, even with �� = 3 the normal form game is dominance solvable with
one buying when ever he sees two people have bought (in the �rst round of
elimination of dominated strategies), k(:) being common knowledge, 2 recognizes
this buying when ever he sees person 1 buying (this is the second round of
iterated elimination of dominated strategies) and �nally 1 recognizing that if she
buys all others will also buy goes ahead and buys. This type of argument with
two steps instead of three would be true if �� = 210 Thus with this information
structure all the individuals would buy and coordination failure would not occur.
In Example 3 we had k(1) = 0, k(2) = 0; k(3) = 2: If �� = 3 the game
would not be dominance solvable but it would be dominance solvable if �� = 2.

8Note that k(i1) � � � 1:
9 If K�(�) is empty and K�(� + 1) will also be empty.
10Recall that �� � 2:
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Two di¤erent 2-linked information chains (3; 2) and (3; 1) exist while a 3-linked
information chain does not.11

In Example 2 with k(1) = 0, k(2) = 0; k(3) = 1:The game would be not
be dominance solvable for �� = 3 and a 2-linked information chain does not
exist. However, (3; 1) is a 2-linked information chain and the game is dominance
solvable with �� = 2:
The game in Example 1 is not dominance solvable for � � 2 and contain no

2-linked or 3-linked information chains.
Examples 1 to 4 provide the intuition underlying the following theorem:
Theorem The following statements are equivalent:
1. G0 is dominance solvable.
2. Gm has a unique PSNEO with Fj = � � c(n)
3. Weak Coordination Failure does not occur.
4. Strong Coordination Failure does not occur.
5. A ��-linked information chain exists.
6. K��(�

�) 6= ?

5 Lemmas and Proofs

To prove our principal result we will need to analyze the relationship between
conditional moves along the path of play and undominated strategies. To do
this we introduce three concepts: Null Prerequisite (NP), BRCA (Best Response
Conditional Action) and DCA (Dominant Conditional Action) in a game. A null
prerequisite in a game is a prerequisite that is not possible in that game; a BRCA
is a conditional action that is a best response to some (possible) contingency in
the game and a DCA is a conditional action that represents a best response to all
possible contingencies that can arise in the game. During the process of iterative
removal of dominated strategies, co-ordinates in a strategy with NPs become
irrelevant and both types of best response conditional actions are preserved. We
will show that a BRCA of an individual is present in some undominated strategy
of that individual and that a DCA populates all undominated strategies of the
individual.
Let G 2 {G0, G1, G2; ::::;Gm}
NP: The l th co-ordinate of individual j, al(j) has a null prerequisite (NP)

in G i¤ there does not exist a strategy pro�le in G for which the prerequisite for
al(j) is satis�ed.
BRCA: The entry in the l th co-ordinate of individual j�s strategy a�l (j) is a

BRCA for the pro�le a� = (a�(j); a�(�j)) in G i¤ a�l (j) is the l
th co-ordinate

of a best response strategy a�(j) for the contingency a�(�j) and for the strategy
pro�le a�, a�l (j) is on the path of play.

DCA: The entry in the l th co-ordinate of individual j�s strategy, a��l (j) is
a DCA in G i¤ it is a BRCA for all pro�les a for which a��l (j) is on the path
of play.

11This is so because k(2) = 0:
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Since during the process of iterated dominance strategies get removed, a
contingency that does not occur in a game never occurs in any other game that
follows it in the iterative process. This gives us the following lemma:

Lemma 8 Let Gh 2 {G0, G1, ::::;Gm}. If the lth co-ordinate of individual j�s
strategy, al(j) has a NP in Gh then the lth co-ordinate of individual j�s strategy,
has a NP in Gh+1:

Remark 9 Note that by Proposition 3 and the de�nition of a BRCA, the con-
ditional action a�l (j) is on the path of play for the pro�le a

� implies that the
prerequisite I(j) = l�1 is satis�ed both for the contingency a�(�j) and for the
j-truncated contingency a��j :

The following lemma provides a complete characterization of undominated
strategies in a game in terms of BRCAs and NPs.

Lemma 10 (Weak Persistence Lemma) Let G 2 {G0, G1, ::::;Gm} and let k(j)+
1 � l. (i) If a�(j) = (a�1(j); a�2(j); ::::; a�k(j)+1(j)) is a strategy such that for all co-
ordinates l 2 f1; 2; :::a�k(j)+1(j)g with a non-null pre-requisite in G, if a�l (j) is a
BRCA, then a�(j) is undominated in G. (ii) If a strategy a�(j) is undominated
in G then a�(j) = (a�1(j); a

�
2(j); ::::; a

�
k(j)+1(j)) is such that either a

�
l (j) is a

BRCA of j in G or a�l (j) has has a null prerequisite in G.

Proof. (i) Assume to the contrary that a strategy a(j) dominates a�(j): By
the de�nition of dominance, for every possible contingency a(�j) of j in G, j�s
payo¤must be at least as large with a(j) as with a�(j) and for some contingency
it must be larger. Consider any non-null co-ordinate, l. For some contingency,
by our hypothesis, a�l (j) is a best response to this contingency and therefore if
al(j) 6= a�l (j), the payo¤ for individual j would be lower under a(j). Hence,
it must be the case that for all non-null contingencies al(j) = a�l (j). Since all
other co-ordinates have null contingencies and are never on the path of play,
it follows that for all contigencies a�(j) and a(j) have the same payo¤. This
contradicts the assumption that for some contingency the payo¤ for j from a(j)
is larger than from a�(j):
(ii) Assume to the contrary that for some undominated strategy a�(j) there

exists an a�l (j) such that a
�
l (j) is neither a BRCA of j in G nor has a null

prerequisite in G. Construct a strategy a��(j) from a�(j) by replacing every
co-ordinate with a non-null pre-requisite for which the lth co-ordinate is not
a BRCA in a�(j) with a BRCA.12 Note that for the strategy a��(j) that we
have constructed from a�(j), all co-ordinates that have non-null prerequisites
are BRCAs.13 Since the values of the �null co-ordinates�do not matter for the
12This is possible because by the violation of NP at the lthco-ordinate there exists some

pro�le satisfying the pre-requisite for coordinate l: For any such contingency we can �nd the
BRCA.
13Note that j has a strategy with the co-ordinates a��l as constructed. This is so because

as one moves along the sequence of games G0;G1; ::::;Gm using iterative removal of strategies,
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outcome of the game, it follows that a��(j) dominates a�(j):14 a contradiction.

The following is a consequence of Lemma 10:

Lemma 11 (Strong Persistence Lemma) Let Gh 2 {G0, G1, ::::;Gm} and k(j)+
1 � l. (i) If eal(j) is a DCA of j in Gh then for all strategies of j in Gh+1,eal(j) occupies the lth co-ordinate. (ii) If eal(j) occupies the lth co-ordinate of all
strategies of j in Gh+1 then either the lth co-ordinate j has a NP in Gh or eal(j)
is a DCA in Gh .

Proof. (i) Since a DCA is a BRCA it necessarily violates NP for the lth co-
ordinate of j in Gh and by Lemma 10 (i), for some undominated strategy, eal(j)
occupies the lth co-ordinate. However, since the NP is violated for the lth co-
ordinate of j in Gh; by Lemma 10 (ii), using the de�nition of DCA, it must be
the case that all strategies of j in Gh+1, eal occupies the lth co-ordinate.
(ii) Note that eal(j) occupies the lth co-ordinate in all of j�s strategies in

Gh+1, in our case, this implies that al(j) occupies the lth co-ordinate for some
of j�s strategies in Gh15 and any such strategy must be undominated in Gh:
By Lemma 10(ii), eal(j) is either a BRCA of j in Gh or has a null prerequisite in
Gh: Since eal(j) occupies the lth co-ordinate of all the strategies of j in Gh and
if the pre-requisite of the lth co-ordinate is non-null it follows by Lemma 10(i)
that eal(j) is a DCA.
The following sets of �buy� and �not buy� strategies for any game G will

play an important role in our analysis by ensuring that the pre-requisites for
certain speci�c co-ordinates are non-null and allowing us to fully exploit the
weak and strong persistence lemmas. The �buy set" is a set of strategy pro�les
for which all individuals buy with the information that to the extent that they
are aware all previous players have bought and have bought. Similarly, the �not
buy�set is a set of strategy pro�les for which all individuals do not buy based
on the information that to the extent that they are aware all previous players
have not bought bought.

B = fa : For all j, ak(j)+1(j) = 1g
NB = fa : For all j, a0(j) = 0g

contingencies present in later games are present in earlier games and therefore a BRCA in
game Gh+1 would necessarily be a BRCA in game Gh for h = 1; 2:::m: Hence one can use, (i)
of this lemma and the game G0 (in which there are no null prerequisites) to show the existence
of a strategy with these BRCAs in game G.
14Recall that conditional actions can take only two values 1 and 0. This implies that if a

non-null co-ordinate is not a BRCA (i.e., it is not a best response for any contingency of the
game for which it is on the path of play) then it gives a lower payo¤ for all contingencies
for which this co-ordinate lies in the path of play. This is so because the BRCA for any
co-ordinate on the path of play is, inder our assumptions, unique.
15Note that in this case, this is a logical implication because the question of existence is not

in issue.
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Proposition 12 Let G 2 {G0, G1, ::::;Gm}.(i) B 6= ? and for all �!a 2 B;�!a is
a PSNE. (ii) If there exists a strategy pro�le in G such that for all j; al(j) = 0
for all l � 2 in G, then NB 6= ? and for all  �a 2 B; �a is a PSNE:

Proof. (i) Consider a strategy pro�le a in G0 for individuals j 2 f1; 2:::::; ng
such that al(j) = 1 for l = k(j)+1 and al(j) = 0 for all l 6= k(j)+1:16 (Since no
strategies have been eliminated using iterated dominance in G0, such a pro�le
is possible.) Clearly, al(j) = 1 for l = k(j) + 1, since this gives the maximum
possible payo¤ for each individual, is a BRCA of j in G0 and this strategy pro�le
is a PSNE of the game. Now, by our weak persistence lemma (Lemma 10) there
exists an undominated strategy pro�le in G0 such that for all j 2 N in al(j) = 1
for l = k(j) + 1 which by de�nition of G1 is a strategy pro�le in G1. Observe
that for this strategy pro�le in G1 with al(j) = 1 for l = k(j) + 1 is a BRCA
in G1 and is a PSNE of G1;thus ensuring the existence of a strategy pro�le with
these properties in G2. Thus, using our weak persistence lemma (Lemma 10)
repeatedly (i) of the Lemma follows.
(ii) The the proof is similar to (i) above and is seen by using the argument

in Proposition 5 and repeatedly applying our weak persistence lemma (Lemma
10).
The following is an immediate consequence of Proposition 12(i).

Corollary 13 G0 is dominance solvable i¤ both weak and strong coordination
failure do not occur.

In the results that follow, assuming the existence of a strategy pro�le such
that the �rst l�1 co-ordinates are zero and less than (���1) for all individuals,
we will use Proposition 12 to a construct a strategy pro�le depending on j and
l such that for any j and any l such that k(j) � l � 1 the j-truncated pro�le
ensures that al(j) is on the path of play. This is done by choosing the strategies
of the �rst (l� 1) individuals from B and making sure that the strategies of the
other individuals plating before j pass through a co-ordinate with a zero.

Lemma 14 (Exact Contingency Lemma). Let G 2 { G1, ::::;Gm}, r � (�� � 1)
and let ba be any strategy pro�le in G such that for all j and for all l � r,bal(j) = 0. Then, there exists a strategy pro�le a in G such that (i) , If b = g(a)
then for all j I(b; j) = minfl � 1; k(j)g: (ii) For all l � (�� � 2) and for all j0
such that k(j0) � (l � 2), for al(j0) = 0 is a BRCA in G.

Proof. (i) Consider the strategy �!a as de�ned in Proposition 12 (i). (Note that
under this pro�le, all individuals buy conditional on all individuals before them
have bought.) Consider the �!a �l truncated pro�le (i.e. let all the individuals
upto and including individual l�1 play the strategies in �!a .) Using Proposition
12 (i) such a l truncated pro�le exists. For all j > l � 1; let the individuals
16Thus, the largest co-ordinate in each individual�s strategy is 1:This tells us that each

individual buys if according to the information available to him, no individual moving before
him has �not bought.�
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play the strategies speci�ed in the pro�le ba(j) (in the hypothesis of the lemma).
For any pro�le a� = (�!a f1;2;3:::l�1g; bafl;l+1;:::ng), since for all j and for all l � r,bal(j) = 0:

bj(a) = 1 for all j � l � 1
= 0, otherwise.

Thus, for all j such that k(j) � l � 1 the prerequisite for al(j) is (exactly)
satis�ed and for all j and for all j such that k(j) < l � 1, I(b; j) = k(j):
(ii) Note that for the pro�le �!a in (i) above, for all j0 such that k(j0) �

l � 1 we have jfj00 : bj00 = 1gj = l � 1. Thus, changing al(j0) = 0 to al(j0) = 1
would be on the path of play and would increase the total number of purchases
from l � 1 to l: But, since l � (�� � 2) all players j00 after j0 would have the
path of play passing through either al(j00) = 0 or through al+1(j00) = 0: Thus
this change in j�s strategy would at most increase the number of purchases to
at most l � (�� � 1). This would result in reducing the individual j0�s payo¤
from the status quo payo¤ of 0 to a negative payo¤. This implies al(j0) = 0 is
a BRCA in G.
The general reduction lemma describes conditions under which a BRCA of

zero gets eliminated through dominance if the hypothesis of Lemma 14 (i) is
satis�ed.

Lemma 15 ( General Reduction Lemma) Let Gh 2 { G1, ::::;Gm}, r � (��� 1)
and let ba be any strategy pro�le in Gh such that for all j and for all l � r,bal(j) = 0. Then, (i) al(j) = 1 is a DCA in Gh implies there exists j0 such that
k(j0) � j and al+1(j0) = 1 is a DCA in Gh. (ii) For all j, if there exists j0 such
that k(j0) � j and for all l0 � l, al0+1(j0) = 1 is a DCA in Gh then al(j) = 1 is
a DCA in Gh.

Proof. (i) Assume to the contrary that al(j) = 1 is a DCA in Gh and there does
not exist j0 such that k(j0) � j and al+1(j0) = 1 is a DCA in Gh: (i.e., using
the strong persistence lemma (Lemma ??) for all j0 > j such that k(j0) � j
either al+1(j0) has a null prerequisite or there exists a strategy eal+1(j0) in Gh
such that eal+1(j0) = 0).
Following the proof of the exact contingency lemma, consider an exact con-

tingency pro�le a� = (�!a f1;2;3:::l�1g;bbafl;l+1;:::ng) where bba (j) are such that (i) for
all j0 > j, if k(j0) > j, then bbal+1(j0) = eal+1(j0) = 0 (ii) For all j0 � l� 1, j 6= j0
and k(j0) < j, bbal(j0) = bal(j) = 0. We know that for the pro�le (a�(�j); a(j))
if al(j) = 1 exactly l � �� � 1 individuals would have purchased the good and
hence al(j) = 0 would be a BRCA. This contradicts al(j) = 1 is a DCA:
(ii) Under the hypothesis of (ii) for any pro�le in Gh for which al(j) is in

the path of play will be such that for some j0 > j and for some l0 � l we would
have al0+1(j0) on the path of play. Now, if al0+1(j0) = 1 is a DCA in Gh, by the
de�nition of a DCA, at least �� individuals would buy and al(j) = 1 would be
a BRCA Since this is true for any for any pro�le in Gh for which al(j) is in the
path of play, al(j) = 1 is a DCA.
The lemmas 15 (i) give us the following corollary:

12



Corollary 16 Let Gh 2 { G1, ::::;Gm}, r � (�� � 1) and let ba be any strategy
pro�le in Gh such that for all j and for all l � r, bal(j) = 0. The set fj0 :
al+1(j

0) = 1 is a DCA in Ghg = ? implies that for r � (�� � 1) there exists a
strategy pro�le bba in Gh+1 such that for all j and for all l � r, bbal(j) = 0.
In the next lemma we argue that if there is a strategy pro�le under which

for all individuals and all co-ordinates less than or equal to the rth co-ordinate
is zero in some game Gh, then in the game Gh+1 in some strategy pro�le for all
individuals all co-ordinates upto the (r�1)th co-ordinate will be zero. This tells
us that a maximum possible reduction of �zeros�per round is one.

Lemma 17 (Maximal Reduction Lemma) Let Gh 2 { G1, ::::;Gm}, r � (���1)
and let there be a strategy pro�le ba in Gh such that for all j and for all l � r ,bal(j) = 0. Then, there exists a strategy pro�le a in Gh+1 such that al(j) = 0 for
all l � r � 1:

Proof. Assume to the contrary that the hypothesis of the lemma is satis�ed
and there exists an individual j0 such that for some l � r � 1, al(j0) = 1, in all
strategy pro�les in Gh+1.
For all l � r � 1 since r � (�� � 2) we get l � �� � 2. Thus by Lemma

14 (ii) for all j0, such that17 k(j0) � l � 1, al(j0) = 0 is a BRCA in Gh: By
the weak persistence lemma ( Lemma 10), it follows that that for each such j0,
k(j0) � l � 1, there exists a strategy pro�le a�(j0) in Gh with a�l (j0) = 0 that
is undominated in Gh. This contradicts our assumption that there exists an
individual j0 such that al(j0) = 1 in all strategy pro�les in Gh+1:
The following proposition is a direct application of the maximal reduction

lemma (Lemma 17):

Proposition 18 Let Gh 2 { G1, ::::;Gm}. Then, Gh satis�es the hypothesis of
maximal reduction and exact contingency lemmas (Lemmas 14 and 17) with r =
�� � h:

Proof. In G0 since all strategies are possible (i.e., no strategy has been elim-
inated using the iterative domination process) for j we know that for all l �
r = �� � 1, there exists a contingency for j such that al(j) = 0 is a BRCA and
thus by the weak persistence lemma (Lemma10 /), G1 satis�es the hypothesis of
maximal reduction lemma (Lemma17) with r = �� � 1: We can now proceed
applying the lemma sequentially. We have established that for h = 1; Gh satis-
�es the hypothesis of maximal reduction lemma (Lemma17) with r = �� � h.
Applying the maximal reduction lemma (Lemma17 (i)), repeatedly it follows
that Gh satis�es the hypothesis of maximal reduction and exact contingency
lemmas (Lemmas 14 and 17) with r = �� � h:
The corollary uses the proposition above to impose an lower limit on the

length of the sequence {G0, G1, ::::;Gmg if the game is dominance solvable.
17 If k(j0) < l� 1; al(j) does not exist and thus al(j) = 1 is impossible.
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Corollary 19 Consider the sequence of games {G0, G1, ::::;Gm}. G0 is domi-
nance solvable implies m � ��.

Proof. Applying Proposition 18, Gm satis�es the hypothesis of maximal reduc-
tion lemma with r = ���m. For G0 to be dominance solvable (corollary 13) in
Gm all individuals must be buying and for individual 1, since k(1) = 0 we must
have a1(1) = 1 for all strategies of 1 in Gm. Thus, Gm can satisfy the hypothesis
of maximal reduction lemma (Lemma17) with r = �� �m only if �� �m � 0.

To prove our theorem, with each game Gh 2 {G0;G1, ::::;Gm} we will associate
two sets of individuals, K(Gh) and K(Gh) as follows:

K(Gh) = fj0 : a���h(j0) = 1 is a DCA in Ghg
K(Gh) = fj0 : a���h0(j0) = 1 is a DCA in Gh for all h0 � h and k(j0) � �� � h0g

The next proposition establishes that K(Gh) being non-empty is a necessary
condition for dominance solvability of G0:

Proposition 20 Let Gh 2 { G0;G1, ::::;G��} then G0 is dominance solvable
implies K(Gh) 6= ? for all h 2 f0; 1::::; �� � 1g

Proof. By Proposition 18 Gh satis�es the hypothesis of maximal reduction
lemma (Lemma17) with r = ���h. Corollary 16 implies that ifK(Gh) = ? then
Gh+1 would also satisfy the hypothesis of the reduction lemma (Lemma15) with
r = �� � h and by Lemma15 ; fa���h+1(j0) = 1 is a DCA in Gh+1g = ?: Using
the reduction lemma repeatedly it follows that Gm would satisfy the hypothesis
of maximal reduction lemma (Lemma17) with r = ���h � 1. This violates the
assumption of dominance solvability of G0.
In the next Lemmas we link K��(�) to K(�) and hence demonstrate the

connection between the dominance solvability of G0 to the existence of a ��-
linked chain.

Lemma 21 Consider the sequence of games G0, G1, ::::;Gm and let G0 be dom-
inance solvable. Then, K��(1) 6= ? and K��(1) = K(G0) = K(G0)

Proof. Assume to the contrary that K��(1) = fj : k(j) � �� � 1g = ?. In G0
since all strategies are possible (i.e., no strategy has been eliminated using the
iterative domination process) and since for all j, k(j) < ���1, for all j and l we
know that for k(j) � l � 1, there exists a contingency for j such that al(j) = 0
is a BRCA in G0. Thus, K(G0) = ?. By Proposition 20 this contradicts the
dominance solvability of G0. Thus, we get K��(1) 6= ?.
Moreover, in G0 since all strategies are possible (i.e., no strategy has been

eliminated using the iterative domination process) for j we know that for all
l � r = �� � 1, there exists a contingency for j such that al(j) = 0 is a BRCA
and for all j0 such that k(j0) � l�1, al(j0) = 1 is a BRCA for all l � ��. Hence,
for all contingencies and for all j0 such that k(j0) � l � 1, al(j0) = 1 is a DCA
in G0 for any l � ��: Thus, K(G0) = K��(1) = K(G0).
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Lemma 22 Consider the sequence of games G0, G1, ::::;Gm and let G0 be dom-
inance solvable and if for some h 2 f2; 3; ::::;mg, let K��(h) = K(Gh�1) =
K(Gh�1). 6= ? . If m > h� 1 then: (i) K��(h+ 1) 6= ? and (ii) K��(h+ 1) =

K(Gh) = K(Gh):

Proof. (i) Assume to the contrary that K��(h+ 1) = fj0 : k(j0) � �� � h and
there exists j 2 K��(h� 1) such that j0 � k(j)g = ? . By the hypothesis of the
lemma, K��(h�1) = K(Gh�2) 6= ?: Thus, the set K��(h) = fj0 : k(j0) � ���h
and there exists j 2 K(Gh�2) such that j0 � k(j)g is empty. By Lemma
15, K(Gh�1) = ?. Proposition 20, this contradicts the assumption that G0 is
dominance solvable. Thus, K��(h) 6= ?:
To complete the proof we need to show that K��(h) = K(Gh�1) = K(Gh�1).

We will �rst show that (a) K(Gh�1) � K��(h). (b) K��(h) � K(Gh�1):
(a) By the general reduction lemma (Lemma 15) j 2 K(Gh�1) implies that

there exists j0 2 K(Gh�2) = K��(h � 1) such that k(j0) � j: By de�nition this
implies j 2 K��(h): Thus, K(Gh�1) � K��(h).
(b) If j 2 K��(h) then k(j) � �� � h+ 1 and there exists j0 2 K��(h� 1) =

K(Gh�2) such that k(j0) � j. Thus we have for such a j0, a���h0+1(j0) = 1
is a DCA in Gh�2 for all h0 � h. Hence, by the strong persistence lemma
a���h0+1(j

0) = 1 is a DCA in Gh�1 for all h0 � h: Thus, If j 2 K��(h) then
k(j) � �� � h+ 1 and there exists j0 such that k(j0) � j and a���h0+1(j0) = 1
is a DCA in Gh�1 for all h0 � h. By Lemma ?? (ii), j 2 K(Gh�1):
Since by de�nition K(Gh�1) � K(Gh�1), to complete the proof we need to

argue K��(h) = K(Gh�1) � K(Gh�1).
Proof. Assume to the contrary that for some j0, j0 2 K��(h) = K(Gh�1)
and j0 =2 K(Gh�1): Now, j0 2 K(Gh�1) and j0 =2 K(Gh�1) implies that k(j0) �
�� � h18 and by the strong persistence lemma that

j0 =2 K��(h� 1) = K(Gh�2) (one)

Since j0 2 K��(h), there exists j 2 K��(h � 1) such that k(j) � j0. But,
j 2 K��(h� 1) implies j00 2 K��(h� 2) and k(j00) > j: Thus, using k(j00) � j >
k(j) � j0. But j00 2 K��(h� 2), k(j00) > j0 together with k(j0) � �� � h imply
j0 2 K��(h� 1). This contradicts (??).
.

Proof. Of Theeorem 1: Necessity follows from the repeated application of
Lemma 22 and su¢ ciency from Lemma 22 and Lemma 4 (ii).

6 Conclusion.

In the presence of Economies of Scale /Positive network Externalities Ratio-
nal Sequential Decision Making in the presence of incomplete information can

18Since we already know that al(j0) = 1 is a DCA for l = �� � h, it must be the case that
al(j

0) = 0 is a BRCA for some l0 � �� � h+ 1. In other words, k(j0) � �� � h.
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produce Coordination Failure. Higher the valuation of the good by households,
lower the cost of production (i.e., smaller ��) and �more informed� the con-
sumers are about the aggregate history of purchases the more likely that this
type of market failure can be avoided. Three types of intervention will mitigate
this distortion: (a) Consumer mandates compelling people to buy the good.
(b) Price Controls setting a ceiling on the price at minimum possible Average
Cost. (c) Making aggregate information about the history of purchases available
among consumers as completely and quickly as possible.Since the provision of
only aggregate information need be a policy tool under the third of the three
interventions above it both protects anonymity of households and is the least
coercive and intrusive of the three policies.
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