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Abstract

We consider a class of quadratic potential games and prove that (simple symmetric) coarse

correlated equilibria (as introduced by Moulin and Vial 1978) can strictly improve upon the Nash

equilibrium payoffs (that can not be improved upon by correlated equilibrium a la Aumann). We
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improvement possible in this class of games and apply our characterising result to a few specific
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1 INTRODUCTION

We know that correlated equilibrium, as introduced by Aumann (1974, 1987), improves upon the Nash

equilibrium in strategic form games, barring a few exceptions. Unfortunately, one of the most funda-

mental models of strategic markets, that of oligopoly, serves as one such exception. Liu (1996) and Yi

(1997) proved that the only correlated equilibrium for an oligopoly is the Nash equilibrium, a result

that Neyman (1997) and Ui (2008 ) generalised for a specific class of potential games.

Although correlation a la Aumann may not achieve anything more than the Nash outcome, as one

reckons, a coarsening of the set of correlated equilibria may exist in certain oligopoly models. Indeed,

we do have such a concept in the literature, introduced by Moulin and Vial (1978), called the coarse

correlated equilibrium1 , that has recently evoked interests in several contexts (Young 2004, Roughgarden

2009, Forgó 2010 and Ray and Sen Gupta 2012 among others).

A correlation device is a probability distribution over the outcomes in the game. The best inter-

pretation of correlation a la Aumann is that of a fictitious mediator who uses a correlation device.

The mediator first selects and sends private messages (strategies to play) to the players according to

the probability distribution; then, the players play the original game. A direct correlated equilibrium

(Aumann, 1974, 1987) is a mediator whose recommendations the players find optimal to follow obedi-

ently, that is, playing the recommended strategies forms a Nash equilibrium in the extended game. The

interpretation of the device in the weaker concept of correlation introduced by Moulin and Vial (1978)

is that of a solicitor who asks the players to either commit to the device or to play any strategy of their

own. If the players accept the device, they do not play the game anymore and simply receive the payoffs

from the outcome chosen by the solicitor according to the probability distribution. A correlation device

is called a coarse correlated equilibrium if it is in no player’s interest to choose any alternative strategy

of his own, given that other players choose to commit to the device.

As one rightly anticipates, such a coarse notion may improve upon the Nash equilibrium when corre-

lated equilibrium fails to do so. Indeed, Gerard-Varet and Moulin (1978) proved that for duopoly games

(satisfying certain mild assumptions on payoff functions) Nash equilibrium can be locally improvable

by using this concept introduced by Moulin and Vial (1978)2. From the analysis by Gerard-Varet and

Moulin (1978), we do learn under which condition in a class of specific duopoly games, Nash equilibrium

can be improved upon; however, the specific definition they used for improvement involves sequences of

devices with support close to the Nash equilibrium. Also, we do not know whether or not such devices

necessarily has to use a support be local or close to the Nash equilibrium.

1Although this notion is due to Moulin and Vial (1978), they have not named the equilibrium concept. They have

called such a correlation device a correlation scheme. Young (2004) and Roughgarden (2009) called this equilibrium the

coarse correlated equilibrium, while Forgó (2010) called it the weak correlated equilibrium.
2Forgó et al (2005) also recently used Moulin and Vial’s notion of correlation in environmental games.
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In this paper, we analyse coarse correlation in a well-studied two-player game with quadratic payoffs,

that we call the quadratic game. There are many examples of such games in the literature, including

duopoly models with a quadratic profit function and the search game (Diamond 198?),

The purpose of this paper is two-fold. First, the quadratic game, being a potential game, does not

possess any correlated equilibrium other than the Nash equilibrium (Neymann 1997); hence, one may

ask if there exists coarse correlated equilibria for this class of games. Second, one may actually be

interested in improving upon the Nash equilibrium payoff by coarse correlation in these games without

using a local argument as in Gerard-Varet and Moulin (1978).

For our purpose, we, in this paper, consider a specific form of correlation devices that we call a

Simple Symmetric Correlation Device (-SSCD) to analyse coarse correlation. The device (Ganguly

and Ray 2005, Ray and Sen Gupta 2012) is so-called as the discrete probability distribution of the

device is symmetric and the support of it is finite. Using the notion of coarse correlation introduced by

Moulin and Vial we fully characterise an equilibrium concept that we call -Simple Symmetric Coarse

Correlated Equilibrium (-SSCCE).

We consider and characterise Moreover, we find the maximum possible improvement by such a 2-

SSCCE using our construction. We thus extend the result by Gerard-Varet and Moulin (1978), Our

constructions do provide specific devices and also do not depend on any local arguments.

Correl. equil. (Aumann) were invented explicitely as a way to improve upon the inefficient non

cooperative outcome by means of a mild coordination device. The improvement or its absence is easy

enough to check when the game has a small finite number of strategies, but there is no systematic

approach to compute the best corr. equilibria when the strategy sets are of dimension 1 or more. The

situation is similar to the comps of mixed strategy eq. : hard in general with infinite spaces. The only

systematic result is negative: in a potential game, corr. equ. do not allow any improvement, in fact

they do not add any new equ. (Neyman 9?).

CoarseCorr equ. (moulin Vial) were invented explicitely as a way to improve the inefficient non

cooperative outcome when the regular corr. equ. is useless, by means of a stronger, but still non

invasive, coordination device. see Moulin Vial for simple bimatrix examples. But computing such

improvements when the strategy sets are of dimension 1 or more is still difficult, and in fact there is

only one available result for the case of 1 dimensional strategy spaces, characterizing the possibility

of some improvement, i.e.e, a local analysis (GVM78). Here we propose, for the 1st time, and in a

reasonably rich class of games, a complete answer to the Q: can the Nash eq. of this game be improved

by a CCequ., and if so, by how much, and by what coordination device?

Our class of games is limited on three counts: only two players, symmetric, and quadratic payoffs.

But these restrictions still allow us to capture simple versions of several benchmark economic games of

strategy: Cournot and Bertrand duopoly, provision of a public good, search game (Diamond). And the
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answers are interesting and surprising.

Here explain two of our models, say a search game with numerical values, and maybe a public good

provision game, and describe the optimal lottery

The paper is organised as follows. We present the game and the concepts in the next section. Section

3 compiles all our results and Section 4 illustrates them using specific games from the literature while

Section 5 concludes. The proofs are in the Appendix.

2 SET-UP

2.1 Correlation and Coarse Correlation

The following definitions are borrowed from our parallel work (Ray and Sen Gupta 2012) on this

research agenda and are presented here for the sake of completeness. Fix any finite normal form game,

 = [ {}∈  {}∈ ], with set of players,  = {1  }, finite pure strategy sets, 1   with
 =

Q
∈ , and payoff functions, 1  ,  :  → <, for all . A normal form game, , can be

extended by using a direct correlation device.

Definition 1 A (direct) correlation device  is a probability distribution over .

A direct correlation device can be used to define two concepts. The device can be a correlated

equilibrium (Aumann 1974, 1987) or a coarse correlated equilibrium (Moulin and Vial 1978) if certain

conditions are met in an appropriately chosen extended game. Formally, with the notation − ∈ − =Q
 6=  ,

Definition 2  is a (direct) correlated equilibrium of the game  if for all , for all ,  ∈ ,P
−∈− ( −)( −) ≥

P
−∈− ( −)( −)..

If players commit to the correlation device , the expected payoff for any player  is given byP
∈ ()() =  (say). With the notation for the marginal probability distributions ́(−) =P
∈ ( −) over − ∈ −, for any player  ∈  , the coarse correlated equilibrium formally is

defined as below.

Definition 3  is a (direct) coarse correlated equilibrium of the game  if for all , for all  ∈ ,P
∈ ()() ≥

P
−∈− 

0
(−)( −).

From the system of inequalities in the above definitions3, it is clear that indeed a coarse correlated

equilibrium is a coarsening of the concept of correlated equilibrium. Also, it is obvious that any Nash

3One may also use strict inequalities in the above two definitions for the corresponding stronger notions. Indeed, Gerard-

Varet and Moulin (1978) used such a strong notion of coarse correlated equilibrium in their definition of improvement

over the Nash equilibrium in any duopoly model.
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equilibrium and any convex combination of several Nash equilibria of any given game , corresponds

to a correlated and hence, a coarse correlated equilibrium.

2.2 Quadratic Games

In this paper, we consider several 2-person symmetric normal form games with continuum of strategies

and a quadratic payoff function, for each player. We will denote the levels of strategic choices for the two

players respectively by 1 and 2, with both  ∈ , a closed interval of R+, not necessarily bounded.

We consider a general form of symmetric quadratic payoff functions for the players; each payoff is a

polynomial of degree 2 in the two strategies 1 2, given by, 1(1 2) = 1+ 2+ 12+21+22,

and 2(1 2) = 2+ 1+ 12+ 22+ 21, respectively. The only restriction we maintain is   0,

so that the payoffs are concave in own strategy. We do not specify the sign of the other parameters at

this stage.

For the rest of the paper, this two-person game will be called the quadratic game. The quadratic

game is a potential game with a smooth and concave potential function,  , given by,  (1 2) =

(1+2)− 12−(21+22). Therefore, using the result by Neymann (1997), this game has a unique

correlated equilibrium a la Aumann that coincides with the Nash equilibrium of the game.

The unique symmetric Nash equilibrium of the quadratic game

We look for possible CC-improvements of the Nash equilibrium (or equilibria) of the game, therefore

the first step is to describe precisely these Nash equilibrium (a) and their associated payoffs. A full

analysis with general interval  and the parameters involves too many cases, so we will restrict attention

to 3 classes of games corresponding to the economic examples we have in mind. In each class the critical

parameters    will be strictly positive, and the sign of the remaining parameters   will not matter.

2.3 Simple Correlation Devices

We now consider a specific form of correlation devices, called simple devices (Ganguly and Ray 2005,

Ray and Sen Gupta 2012) to analyse coarse correlation for the quadratic game. Although the strategy

set for a player in this game is a continuum, a simple device involves only finitely many strategies for

each player, i.e., the support of the probability distribution in the direct correlation device is finite. We

use a class of simple devices (as in Ray and Sen Gupta 2012) by imposing a mild restriction, to analyse

possible improvement over Nash by coarse correlation in the quadratic game. We consider symmetric

probability distributions and the same strategy levels for both the players. These restrictions are fairly

innocuous in this context as the quadratic game is entirely symmetric. Formally, the specific form of

the device we consider in this paper is defined below.

Definition 4 A -Simple Symmetric Correlation Device (-SSCD), [ ; ], is a symmetric probability
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distribution matrix,  , over ×, where,  = (1 2  ), with  ≥ 0 and  = {()=12;=12}
with each  ∈ [0 1],  =  and

P
  = 1.

The interpretation of a -SSCD, [ ; ] = [{()=12;=12}; ()=12], is that the players
are given a choice to commit to the device. If both players commit, the device will then pick the

strategies  and  for the two players respectively, with probability  ; the players do not play the game,

however, get the payoffs, respectively, 1( ) and 2( ) that correspond to the chosen strategy

profile ( ). Thus, if both players commit to the device, the expected payoffs for the two players are

the same (by symmetry) and is given by  = 1 = 2 = (+)()−(+)(
(2)
 )−.

As explained in Ray and Sen Gupta (2012), any -SSCD is a coarse correlated equilibrium (Moulin

and Vial 1978) if the device is accepted by both players, that is, if neither of the players wishes to

unilaterally deviate to choose any other possible strategy in the game, while the other commits to the

device. Note that, although the device, [ ; ], involves only finitely many strategies, the deviation for

a player is however not restricted; any strategy  ≥ 0 (even outside the domain, , of the device) can
be played by a player if he doesn’t commit to the device. The deviant faces the marginal probability

distribution ́ over  ∈  which is given by ́() =
P

∈ ( ). Let  ( | ) denote the
expected payoff of any deviating player (by symmetry) by playing . Clearly, by symmetry,  ( | ) =P

∈ ́()1( ) = (−)−2+()−((2) ). As mentioned, the equilibrium condition

requires that the device be accepted by both players. The equilibrium condition is defined formally as,

Definition 5 A -SSCD, [ ; ], is called a -Simple Symmetric Coarse Correlated Equilibrium (-

SSCCE) if both the players commit to the device, i.e., given that the other player is committing to the

device, a player does not deviate to play any other strategy  ≥ 0.

Clearly, the Nash equilibrium of the quadratic game can be viewed as a device with probability 1

on the Nash equilibrium quantity, ∗, and is trivially a -SSCCE. This fact is observed in the above

characterisation, satisfying the condition weakly. Hence, the unique Nash and correlated equilibrium a

la Aumann of the quadratic game is a -SSCCE. The question now is whether it is possible to improve

upon the Nash equilibrium using a -SSCCE. We analyse this issue in the next section.

3 RESULTS

In this section, we analyse

We look for a general coarse correlated equilibrium (CCE) 0 improving upon the symmetric Nash

equilibrium (∗ ∗). We observe first that it is enough to consider symmetric lotteries, if we are only

looking for symmetric improvements (each player gets the same utility boost), or for the best possible
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improvement of 1 + 2 over 2
∗. This is because our game is symmetric, so if 0 is a CCE improving

upon (∗ ∗), then the lottery 0 obtained from 0 by exchanging coordinates, is also an improving

CCE, and so is the symmetric lottery 1
2
(0 + 0).

In the computations below, we replace 0 by , translated from 0 by (
∗ ∗): () = 0(−

(∗ ∗)). Note that we will need to make sure that its support is contained in  − {∗}. We write 

for the marginal distribution of  on R (as  is symmetric, there is only one).

If the random variable (1 2) has distribution , the expected profit of either player when playing

the lottery is given by,

1() = [
∗+1]+[

∗+2]+[(
∗+1) · (∗+2)]+[(

∗+1)
2]+[(

∗+2)
2]

⇒ 1() = ∗ + (+ + 2(+ + )∗) [1] + [1 · 2] + (+ ) [
2
1 ],

where we use the symmetry of  in the last step.

Therefore, our CCE 0 improves over (
∗ ∗) if and only if,

∆ = (+ + 2(+ + )∗) [1] + (+ ) [
2
1 ] + [1 · 2]  0

Next we write the CC equilibrium conditions when player 1 uses a pure strategy and player 2 follows

0 . Player 1 maximizes over ,

1(1 ⊗ ) = 1 +  [
∗ + 1] + 1 [

∗ + 1] + 21 +  [(
∗ + 1)

2]

= {(+ ∗ +  [1])1 + 21}+ (∗ + ∗2) + (+ 2∗) [1] +  [
2
1 ]

Thus,  provides a CC-improvement of the Nash equilibrium (∗ ∗) if and only if ∆ is positive, and

max1∈ 1(1 ⊗ ) ≤ ∗ +∆. Clearly these two inequalities depend only upon the three moments,

[1], [
2
1 ] and [1 ·2]. It will be convenient to rewrite them with the simplifying notation as

follows,  = [1],  = [
2
1 ] and  = [1 · 2]:

∆ = (+ + 2(+ + )∗)+ (+ ) +   0 (3)

max1∈{(+ ∗ + )1 + 21}+ (∗ + ∗2) + (+ 2∗)+  ≤ ∗ +∆

⇔ max1∈{(+ ∗ + )1 + 21} ≤ ∗ + (+ )∗2 + (+ 2(+ ))+  +  (4).

Note that we have omitted the additional requirement that the support of the lottery 0 be contained

in R2+. We come back to this in the next section.

3.1 Improvement

We are interested in the improvement over the Nash equilibrium payoff, , in the quadratic game,

using a -SSCCE. For the sake of completeness, we present the obvious notion of improvement (similar

to Definition 2 in Gerard-Varet and Moulin (1978, page 128)).

Definition 6 A -Simple Symmetric Coarse Correlated Equilibrium (-SSCCE) improves upon the

Nash equilibrium of the quadratic game if   .
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We now show that it is enough to seek improving CCEs in the very small class of symmetric lotteries

0 with binary support 
∗ + , ∗ + 0 for each player, and the following form,

∗ +  ∗ + 0

∗ + 0 
2

0
2

∗ +  0
2


2

, where + 0 = 1 and  0 ≥ 0.

We call the translated lottery  =


2

0
2

0
2


2

, a simple 2× 2 lottery.

Lemma 1 () For any symmetric distribution  we have,  ≥ ; +  ≥ 22 (5).

() Equality  =  holds if and only if  is diagonal; equality  +  = 22 holds if and only if

1 + 2 is constant.

() Every (  ) satisfying (5) is achieved by a simple 2× 2 lottery.

Proof of (), (): To check  ≥  we use the symmetry of ,

 = 1
2
([

2
1 ] +[

2
2 ]) = [

1
2
(21 + 22 )] ≥ [1 · 2].

Inequality  +  ≥ 22 follows similarly,
 +  = [

1
2
(21 + 22) + 1 · 2] = 1

2
[(1 + 2)

2]

 = 1
2
([1] +[2])⇒ 22 = 1

2
([1+2])

2, hence the desired conclusion because [
2] ≥

([])
2. Statement () is straightforward.

Proof of (): We look for , 0, , such that the corresponding simple 2× 2 lottery achieves a given
profile (  ) meeting (5),

1
2
( + 0) = ; 1

2
(2 + 02) = ; 

2
(2 + 02) + 00 =  (6).

Set  = +0,  = 0, so that  = 2,  = 22−, and , 0 are the roots of  2−2 +22− = 0.
These roots are real if and only if, 2 ≥ 22 −  ⇔  ≥ 2. The latter is a consequence of (5). Next,

we can find  in [0 1] satisfying the third equality in (6) if and only if,

0 ≤  ≤ 1
2
(2 + 02)⇔ 22 −  ≤  ≤ ,

and the proof of () is complete. ¥
Suppose we can find , , , satisfying (5) and the two inequalities (3), (4), then the corresponding

simple lottery  described in the above proof is a CC-improvement of the Nash equilibrium, provided

the support of 0, translated from 0 by −(∗ ∗), remains in , that is to say, , 0 ∈  − {∗}.
As , 0 are the roots of the polynomial  2 − 2 + 22 − , this amounts to,

 ∈  − {∗} and  2 − 2 + 22 −  ≥ 0 for  =  − ∗,  = +− (7).

So when we look for the best feasible CC-improvement by means of simple 2×2 lotteries, if property
(7) does not bind, the result will automatically be the best feasible CC-improvement by any lottery 0.

But if the inequality does bind, we cannot so conclude.
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The next statement gathers our general results.

Proposition 1 ) Consider the program

max{+ + 2(+ + )∗}+ (+ ) +  (8)

under the constraints (5) and (4) on , , . If its solution ∗, ∗, ∗ meets the constraint (7), then

the corresponding simple 2 × 2 lottery gives the best possible CC-improvement of the Nash equilibrium
(∗ ∗).

) Consider the program (8) under the constraints (5), (4) and (7) on , , . Its solution gives the

best possible CC-improvement of the Nash equilibrium (∗ ∗) by a simple 2× 2 lottery.

Note that the optimal value of ∆(  ) must be non negative, for the trivial lottery concentrated

at (∗ ∗) (the original Nash equilibrium) meets all the constraints and corresponds to  =  =  = 0.

4 EXAMPLES

In this section, we illustrate our results and the constructions using several examples of quadratic games

from the literature.

4.1 Class 1

Payoffs 1(1 2) = 1 + 2 − 12 − 21 + 22, and  = R+.

The two economic examples are (explain)

• Cournot Duopoly with linear demand and decreasing marginal costs,

1(1 2) = ( −(1 + 2))1 − (1 −21).

So  =  −  =   = −  =  = 0.

• Provision of a public good with decreasing marginal benefits and increasing marginal costs

1(1 2) = {(1 + 2)−(1 + 2)
2}− (1 +21)).

Here  = −   = 2  =  +

The best reply function is () =
1
2
(− ), and we distinguish two cases:

Case 1: If   2, the unique eqilibrium is (∗ ∗) where ∗ = 
2+

, and corresponding payoff,

∗ = 
(2+)2

((− ) + (2+ )). (2)

Case 2: If   2, we add to the equilibrium above two asymmetric Stackelberg equilibria ( =

0  =

2
) with payoffs ( 

4
(2+ 

4
) 

2

4
).

[Note: we want to compare the best symmetric CC-improvement to the total payoff at those Stackel-

berg eqs.]
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4.2 Class 2

Payoffs, 1(1 2) = 1 + 2 + 12 − 21 + 22, and  = R+.

The economic example is Bertrand duopoly, 1(1 2) = ( −1 +2)1. Here  = ,  = ,

 = .

The best reply function is () =
1
2
(+ ), and if   2 the game has no Nash equilibrium,

because  is unbounded. Even if  is bounded, the Nash equilibrium has both players using the largest

feasible strategy. If +− ≥ 0 this is clearly Pareto optimal, hence not CC-improvable. If +−  0,
requiring  negative and large, the Nash equilibrium would give negative payoffs and may be improvable.

But we dismiss this case for lack of any relevant example.

So in this class we focus on the case   2, the unique Nash eqilibrium is then (∗ ∗), where

∗ = 
2− , and the payoffs are,

∗ = 
(2−)2 ((− ) + (2− )).

[Note: maybe in this class we should always assume  =  = 0, as it is our only example.]

4.3 Class 3

Payoffs 1(1 2) = −1 + 12 − 21, and  = [0 1]. We assume  =  = 0 for simplicity of the

analysis. The economic example is Diamond’s search game (explain), with payoffs,

1(1 2) = 12 − (1 +21), where  = ,  = ,  = .

The best reply function is () = {0 1 1
2
( − )}. If    + 2, we have three Nash

equilibria, (0 0), (∗ ∗), ∗ = 
−2 , and (1 1). The latter, (1 1), is Pareto optimal, hence not CC-

improvable. If  = + 2, we still have (1 1) as a Nash equilibrium, and thus unimprovable.

The only interesting case in this class is thus when   + 2, then the unique Nash equilibrium is

(0 0) with zero payoffs for both players.

4.4 Duopoly

General model : ∗ = −
2+

, ∗ = 
(2+)2

[(− )− (2+ )]

5 Cournot Duopoly with linear demand and quadratic costs

Here 1(1 2) = ( −(1 + 2))1 − (1 −21), and  = [0∞[.
So  =  −,  =  = 0,  = ,  = − .

From GVM78 we know that there is no CC improvement if || ≤ − ⇔  0, i.e., if marginal

costs increase.
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So we assume decreasing (but not too decreasing) marginal costs,     0,and develop the com-

putations with the parameters   , all strictly positive. Recall ∗ = 
2+

(denoted  for simplicity).

We will find that the CC-improvement is entirely described by the two parameters ∗ and 1 =


, and

the relative improvement ∆
∗

∗ only depends upon 1, i.e., upon


.

Theorem The optimal CC-improvement ratio is

∆∗
∗ =

1
8
21 +

1
2
(1 − 1) for 1 ≥ 117,

∆∗
∗ = (1 − 1) + 2(2−1)

√
1−1

2
√
1−1+1+2 −

8(1−1)
(2
√
1−1+1+2)2 for 1 ≤ 1 ≤ 117.

Interpretation: draw the graph and downplay the role of the little piece before 1.17.

If the random variable (1 2) has distribution , the expected profit of either player when playing

the lottery is

1() = [
∗+1]+[

∗+2]−[(
∗+1) · (∗+2)]−[(

∗+1)
2]−[(

∗+2)
2]

⇒ 1() = ∗ + (−  2+
2+

)−  − (+ ), where we use the symmetry of  in the last step.

Therefore, our CCE 0 improves over (
∗ ∗) if and only if:

∆ = (−  2+
2+

)− (+ ) −   0 (1)

Next, we write the CC equilibrium conditions when player 1 uses a pure strategy and player 2 follows

0 :

max1∈ 1(⊗ ) = 1 +  [
∗ + 1]− 1 [

∗ + 1]− 21 −  [(
∗ + 1)

2]

⇒ max1∈ 1(⊗ ) = (− (∗ + [1]))1 − 21 + ( [
∗ + 1]))−  [(

∗ + 1)
2]

We therefore have two cases:

Case 1: 2
2+

≤ 

Then the coefficient − (∗+) = 2
2+

−  is non positive, therefore player 1’s optimal pure strategy
is 1 = 0, and the CC equilibrium condition is: (∗ + [1]))−  [(

∗ + 1)
2] ≤ ∗ +∆, which

is rearranged as,


2+

+  +  ≤ 2
(2+)2

(2)

Case 2:  ≤ 2
2+

Now, −(∗+) ≥ 0, so player 1’s optimal pure strategy is 1 = 1
2
( 2
2+
−) and the CC equilibrium

condition is, 1
4
( 2
2+

− [1])
2+(∗+ [1]))− [(

∗+1)
2] ≤ ∗+∆, which is rearranged

as,

2

4
2 +  +  ≤ 0 (3)

We sum up our results so far.

Lemma 1 The symmetric Nash equilibrium is improved by the CCE L0 if and only if ∆  0 (1)

and

either { 2
2+

≤  and inequality (2)}

or {  ≤ 2
2+

and inequality (3)}
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Step 1: We have −∆(  ) = +  + ,

so we are looking for, min +  + ,

such that

22 −  ≤  ≤ 

and either (2) or (3), and finally the support conditions,

− ≤  and  ≤ 22 + 2+ 2. (4)

Case 1: we assume (3). We perform our computations as if this was the "right’ choice, then

we will compare the result with that under assumption (2) (Case 2 below). Assumption (3) gives the

following constraints on :

 ≤ 2

 and 2

4
2 +  +  ≤ 0.

We start by eliminating  for fixed  :

22 −  ≤  ≤ min{− 
4
2 − 


}. (5)

So we must choose  = 22 − , reducing the problem to min + 2
2 − (− ),

where, by (5),   are such that,

2 ≤  , (2 + 
4
)2 ≤ −


 ⇔ (8+)

4(−)
2 ≤ 

and (4). Note that
(8+)

4(−)  1 so we can ignore the left inequality above.

Fixing , we must take  as large as possible, i.e.,  = 22+2+2, which gives a one dimensional

problem

min + 2
2 − (− )(22 + 2+ 2) = min 2

2 + (2− )− (− )2 (6)

under constraints

 ≤ 2

 and − ≤  and 2+82

4(−)
2 − 2 ≤ 2 (7), (the right one coming from

(8+)

4(−)
2 ≤

22 + 2+ 2).

The unconstrained optimum in (6) is ∗ = −2−
4

.

It is clearly larger than −, irrespective of the sign of 2 − . It meets the left inequality in (7) if

and only if, −2−
4
≤ 2


⇔ 1 ≤ 4 (recall 1 = 


 1).

Subcase 1.1: 1 ≤ 4 The right inequality in (7) for  = −2−
4

 boils down to,

(2 + 82)(2− )2 ≤ 322(− )⇔ 41 + 32 ≤ 431 + 2021,
which is true in an interval [ 4] with  ' 117.
Subsubcase 1.1.1: 117 ≤ 1 ≤ 4
The optimal value is ∗ = 1−2

4
 and the optimal surplus is,

∆ =
(2−)2
8

2 + (− )2 =
21+41−4

8
2.

Comparing with ∗ = 2 gives, ∆
∗ =

1
8
21 +

1
2
(1 − 1), (8)

which starts at 25% for 1 = 117, is as large as 100% for 1 = 2, and 350% for 1 = 4.

Subsubcase 1.1.2: 1  1 ≤ 117
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Now the optimal  is the negative root of 2+82

4(−)
2−2 = 2, because the unconstrained optimum

in (6) is negative. This root is ∗ = − 2
√
1−1

2
√
1−1+1+2, and the optimal relative CC-improvement is,

∆
∗ = (1−1)+ 2(2−1)

√
1−1

2
√
1−1+1+2 −

8(1−1)
(2
√
1−1+1+2)2 , which is concave and increasing in [1 117]. It is zero

at 1 = 1 with an infinite derivative, and reaches 19.5% at 1 = 11, then 25% at 1 = 117.

Subcase 1.2: 1 ≥ 4 Now our candidate for  is ∗ = 2

, which is optimal if it meets the right

inequality in (7). This amounts to,

2+82

−

2
− 4


≤ 1⇔ 8 + 41 ≤ 221 + 31

and is clearly true for 1 ≥ 4. Thus the optimal surplus is,
∆ = (− 2)2


2 − 83

2
2 + (− )2,

implying,

∆
∗ = 1 + 1 − 4

1
− 8

21
(9).

Case 2: we assume (2)

We have the additional constraints on ,

2

 ≤  and +  +  ≤ 2.

We must find the minimum of +  + . Note that the first constraint in (4) is always true, so

we only have to take care of  ≤ 22 + 2+ 2.

We start as before by eliminating  for fixed  :

22 −  ≤  ≤ min{−− 

 + 


2}.

We must choose  = 22 − , reducing the problem, as before, to

min + 2
2 − (− )

with constraints

2 ≤  and 22 + − 

2 ≤ −


 and  ≤ 22 + 2+ 2 (10).

We must choose  = 22+2+2 as in case 1. Thus we are left with the same minimization problem

(6), under 2

 ≤  and the two constraints coming from (10) above. The first one (2 ≤ 22+2+2)

is clear as   0, the second one gives,

2

2 + 2−


 ≤ 2. (11)

The unconstrained optimum in (6),  = −2−
4

, is optimal as in case 1 if it meets the above

constraints, which is true if, 2

≤ −2−

4
⇔ 1 ≥ 4, and inequality (11) is then fine.

Subcase 2.1: 1 ≥ 4
As in subcase 1.1.1, the ratio ∆

∗
∗ is given by (8).

Subcase 2.2: 1 ≤ 1 ≤ 4
To minimize 22 + (2 − ), as required in (6), the optimal choice is now  = 2


, just as in

subcase 1.2, which gives the ratio ∆
∗

∗ in (9).

Step 2 Gathering our results we see that the optimal ratio under assumption (2) is
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∆
∗ = 1 + 1 − 4

1
− 8

21
for 1 ≤ 1 ≤ 4; ∆∗ = 1

8
21 +

1
2
(1 − 1) for 4 ≤ 1,

where for 1 close to 1 the above ratio is negative.

And under assumption (3) it is,

∆
∗ =

1
8
21 +

1
2
(1 − 1) for 117 ≤ 1 ≤ 4; ∆∗ = 1 + 1 − 4

1
− 8

21
for 4 ≤ 1.

In fact, 1
8
21+

1
2
(1−1) ≥ 1+1− 4

1
− 8

21
for all 1 ≥ 0, because the left function is convex, the right

one is concave, and they are equal and equally sloped at 1 = 4. Moreover the function 1+ 1− 4
1
− 8

21

is negative for 1 ≤ 2, so for 1 ≤ 1 ≤ 117 the relevant function is the one in subsubcase 1.1.2,
∆
∗ = (1 − 1) + 2(2−1)

√
1−1

2
√
1−1+1+2 −

8(1−1)
(2
√
1−1+1+2)2 .

5.1 Example

1 = 1 − 212 − 3
2
21, we have  =

1
5
and 1 =

4
3
, which fits this subsubcase 1.1.1.

∗ = (1−2)
4
− 1

30
, ∗ = 22 + 2+ 2 = 26

900
, ∗ = 22 −  = − 2

75
.

 = +
p
 − 2 = 2

15
and 0 = −

p
 − 2 = −1

5
= −∗.

 = −0
1
2
(2+02)−0 = 0⇒ 0 = 1

2
.

The ratio ∆
∗ =

1
8
21 +

1
2
(1 − 1) 718 = 39%.

The optimal lottery needs, +  = 1
3
, + 0 = 0, 0 = 1

2
.

0 1
3

1
3

1
2

0

0 0 1
2

6 Provision of Public good

1(1 2) = (1 + 2)−(1 + 2)
2 − 1 and  = [0∞[.

Comparing with the general model, we have,  =  − ,  = ,  = 2,  =  = . We develop

the computations with ,,,, all strictly positive. First we need to say that this is a case with  = 2,

special in the sense that we have infinitely many Nash equilibria, covering the interval 1 + 2 =

2
;

 =  = 
2+

= 
4
. The total utility is constant and of course we look for an improvement that is

symmetric, so our benchmark is the utility of the symmetric Nash equilibrium, that is: ∗ = 
4
. Note

that this knife edge case is without loss of generality, as nearby problems with  either above or below

2 would still make CC-improvement possibles.

We are looking for,

 ∆(  ) = (− )− 2 − 2
such that,

22 −  ≤  ≤ 

and either (9) or (10), and finally the support conditions, − ≤  and  ≤ 2 + 2+ 22.
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Note that irrespective of (9) or (10), the constraints on  are only lower bounds, so the optimal 

is 22 − , and then  disappears from the objective function, and thus our new objective function is

a function of  and is given by, ∆ = (− )− 42. We only have to check that the constraints on 

are compatible.

7 Case 1

We assume (10), which gives us the following constraints,

− ≤  ≤  and 52 ≤  ≤ 2 + 2+ 22 ⇔ 32 − 2 ≤ 2 ⇔ ( − )(3 + ) ≤ 0, therefore
the system reduces to,

−
3
≤  ≤ . We may further write the two constraints as 0 ≤  ≤ , as a negative  will make ∆

negative.

The unconstrained optimum is, ∗ = −
8

 0.

Clearly, ∗ satisfies the constraint iff, 2 ≤ 3, where 2 = 

 1.

7.1 1 ≤ 2 ≤ 3
For ∗ = −

8
, we have the optimal surplus, ∆ =

(−)2
16

, and the ratio, ∆
∗ =

2
4
+ 1

42
− 1

2
, which gives

a maximum of 33% improvement at 2 = 3.

7.2 2 ≥ 3
Our candidate for  is ∗ =  = 

4
, and we have the optimal surplus, ∆ = −22

4
, and thus the ratio,

∆
∗ = 1− 2

2
, i.e. for a very large 2, the relative CC-improvement goes to 100%.

8 Case 2

We assume (9). The following are the constraints,

 ≥ , 2 ≤  ≤ 2 + 2+ 22 and 
2
+  + 2(22 − ) ≤ 2

16
. Considering the constraint on

, we can reduce the third constraint to 2 ≤ 2.

Thus our constraints are  ≥  and 2 ≤ 2, which implies  =  = 
4
, which is the same as

in the Subcase 1.2. Thus the optimal surplus is ∆ = −22
4

, with the relative CC-improvement ratio

∆
∗ = 1 − 2

2
. Note here that the only constraint on 2 is that it should be ≥ 2, as otherwise the ratio

becomes negative.
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9 Example

1(1 2) = 21 + 32 − 221 − 222 − 412
2 =



= 3

2
, which fits in subcase 1.1.

∗ = 1
16
 ∗ = 13

128
 ∗ = −3

32
  = 3

8
 

0
= −1

4
= −

The ratio, ∆
∗ =

1
24
= 416%

5
8

0

5
8

0 1
2

0 1
2

0

Part I

Class 2

The model here is,

1(1 2) = 1 + 2 + 12 − 21 + 22, and  = R+.

10 Economic Example: Bertrand Duopoly

1(1 2) = ( −1 +2)1

When   2 the game has no Nash equilibrium (NE), because  is unbounded. Even if  is bouded,

the NE has both the players using the largest feasible strategy, and is clearly Pareto optimal, hence not

CC-improvable. Thus the only interesting case in this class is when   2; the unique NE is then given

by ∗=12 =  = 
2− , and the NE payoff is 

∗ = 2.

We use the notation (  ) = ([1] [
2
1 ] [1 · 2]).

The CC payoff is 1() = ∗ + ∗ +  − . Therefore, our CCE, , improves upon the Nash

if and only if ∆ = ∗+  −   0. Next we write the CCE conditions when Player 1 plays a pure

strategy 1 and Player 2 follows 

 :

1(1 ⊗  ) = 1 − 21 + 1 [
∗ + 1] = (2

∗ + )1 − 21 (1)

, and the CCE condition is max1(1⊗ ) ≤ 1() = ∗+∆. Finally we must ensure the support

conditions −∗ ≤  and  ≤ ∗2 + 2∗ + 22. Note that under our assumption  ≤ 2, inequality
 ≥ −∗implies  ≥ −2∗


, i.e., the coefficient of 1 in (1) is non negative, which in turn gives, the

optimal pure strategy for Player 1 as,

1 =
1
2
( 2
2− + ), with the max1(1 ⊗  ) =

1
4
(2∗ + )2.

Thus the CCE condition is, 2

4
2 +  −  ≤ 0.
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Thus, we have the following CC-improvement problem,

max∆(  ) = −  + 

such that,

max{22 −  
4
2 + 


} ≤  ≤ ,

− ≤  and  ≤ 2 + 2+ 22.

For a fixed ,, we must choose  = , which reduces our problem to,

max + (− ),

under the constraints,

2 ≤  and 
4
2 ≤ −


 (2)

− ≤  and  ≤ 2 + 2+ 22.

Check that  ≤  delivers an impossibility: if    we get  =  =  = ∆ = 0; similarly  =  gives

 = 0 then ∆ = 0. So we assume from now on   .

Note that 2

4(−)  1, and therefore we ignore the first inequality of (2), and thus the constraint on

 is,

2

4(−)
2 ≤  ≤ 2 + 2+ 22 .

We must choose  as large as possible, i.e.,  = 2 + 2+ 22, thereby leading us to the problem

in one dimension:

max(3− 2)+ 2(− )2 + (− )2

under the constraints,

− ≤ 

2

4(−)
2 ≤ 2 + 2+ 22.

Note that the improvement ∆ is positive for  = 0, corresponding to  =  = ∗2, i.e., the lottery

0 choosing (2
∗ 2∗) or (0 0), each with probability 1

2
. As the coefficients of  and 2 in the function

to maximize are postive, we can ignore negative values of , and we are left with the problem,

max(3− 2)+ 2(− )2 + (− )2

under the constraint, [
2−8(−)
4(−) ]2 − 2− 2 ≤ 0

in which the optimal solution ∗ is the largest value permitted by the constraint. We have, 1 



= 3  2, and the constraint on  is satisfied if 2 − 8( − ) ≤ 0, which holds true, if and only

if 2(2 − √2) ' 117 ≤ 3  2. In this case any positive  meets the constraint, and there are CC-

improvements of any size! This is not too surprising because as soon as 

 1 the efficient surplus in

the original game is unbounded.

Note that for 1  3  117, the optium improvement is bounded, and the optimal  is the positive

root of [
2−8(−)
4(−) ]2 − 2− 2 = 0, which is ∗ = 2

√
3−1

2−3−2
√
3−1 .
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The optimal surplus, ∆ = 2[
2(33−2)

√
3−1

2−3−2
√
3−1 +

8(3−1)2
[2−3−2

√
3−1]2 + (3 − 1).

10.1 Example

This game illustrates the case where CC can improve as much as we want.

1(1 2) = 1 − 21 +
6
5
12 ( = 1,  =

6
5
and  = 1)

We have  = 125 and ∗ = 15625. Take for instance  = 10, hence  =  = 2265625. The

corresponding improvement is, (3− 2)+ 2(− )2 + (− )2 = 603125, and the corresponding

lottery 0 chooses (225 225) or (0 0), each with probabilities
1
2
.

11 Class 3 and the Diamond’s search game

The symmetric payoffs in this class of games is given by, 1(1 2) = −1 + 12 − 21, and  =

[0 1]. We assume  =  = 0, for simplicity of analysis. The economic example relevant for Class 3 is

the Diamond’s search game, with the symmetric payoffs, 1(1 2) = 12 − (1 + 21), where,

 = ,  =  and  = . Assuming player  plays  , the best response of player  is given by

() =
1
2
( − ). If player  plays  = 0, () = 0, and if player  plays  = 1, () = 1.

The best response function is () = (0 1
2
( − ) 1). If    + 2, we have three Nash

equilibria, (0 0), (∗ ∗) where ∗ = 
−2 , and (1 1). If  = +2, we have (1 1) as Nash equilibrium,

and hence un-improvable. If   +2, the unique Nash equilibrium is (0 0), with zero payoffs for both

players. This is the only interesting case.We look for a CC-equilibirum with positive payoff.

Suppose we have (1 2) ≥ 0,  = 1 2, for some 1,2, with at least one strict inequality. Set

 = 1 + 2 and  = 12. Note the following: 2 ≥ 4 and  ≥ 2, the latter is true because

(1 2) ∈ [0 1]. Then, 1(1 2) + 2(1 2)  0 is arranged as follows,

−− 2 + 2(+ )  0⇔ 2(+ )  2 + ⇒ 2(+ )  (4) + (2)⇒   + , which

implies that (0 0) is not Pareto optimal. Thus, the Nash equilibrium payoff, ∗ = (0 0), is Pareto

optimal if and only if  ≤ + , and therefore un-improvable by coarse correlation. Thus we assume,

+     + 2 (1).

Let e be the symmetric Pareto-optimal payoff in our symmetric game, given by,e = max[01]{−+ (− )2} = − − , because the maximum value,  = 1.

Thus, the efficient surplus is 2e.
Let us have a symmetric lottery , with parameters, (  ) = ([1], [

2
1 ], [12]), and

the symmetric expected payoff accruing to the players by playing the lottery is given by, 1() =

−+  −  = ∆, because ∗ = (0 0).
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From before, we have,  ≥  and  +  ≥ 22. Moreover, the support { 0} of  must be in [0 1],
imposing new conditions on , , . Firstly, 0 ≤  ≤ 1. From the proof of (iii) in Lemma 1, we have,

 =  + 0 = 2 and  = 0 = 22 − . We need the polynomial  2 −  +  ≥ 0, at  = 0, 1.

For,  = 0,  ≥ 0 ⇒ 22 ≥ , and for  = 1, 1 −  +  ≥ 0 ⇒ 1 + 22 −  ≥ 2. Let us define
()− = min{ 0}, thus, we have the following conditions on , :

 ≤ 22 + (1− 2)− (2).

For the symmetric lottery  to be a CCE, we have the following equilibrium condition which needs to

be satisfied,

max[01] 1(⊗) = (−+)1−21 ≤ 1(), where 1 the strategy to which the deviant player

deviates. Following is the optimisation problem for the Diamond search game,

max ∆ = −+  − 

subject to the following constraints,

 ≥ 

 +  ≥ 22

 ≤ 22 + (1− 2)−
max[01] 1(⊗ ) = (−+ )1 − 21 ≤ −+  −  (3)

and 0 ≤  ≤ 1.

Let us now define a simple diagonal lottery ∗, selecting (0 0) and (1 1), each with a probability of
1
2
. Thus,  =  =  = 1

2
, and the support conditions and (2) hold true. Given these values of , , ,

we have 1() = ∆ =
1
2
(− − ), which is a total of (− − ) = e, i.e. 50% of the efficient surplus.

For ∗ to be a CCE, we need ∗ to satisfy (3). For,  =  =  = 1
2
, the inequality (3) is,

max[01](−+ 
2
)1 − 21 ≤ 1

2
(− − ). We have the following two cases,

Case (a): 

≥ 1

2

In this case, the coefficient of 1 is negative and therefore the maximum ∗1 = 0, max[01](− +

2
)1 − 21 = 0, thereby satisfying (3), because   + .

Case (b): 

≤ 1

2

We have the coefficient of 1 to be positive, and the maximum ∗1 =
−2
4
, and the max[01](− +


2
)1 − 21 =

(−2)2
16

. Assuming 

= 0 and 


= 0, the inequality (3) becomes,

02 + 202 + 200 − 0 − 20 + 1
4
≤ 0 (4),

which is the interior of an ellipse containing around 90% of a trapezium in 0,0, defined by (1) and

0 ≤ 1
2
.

Thus, the ‘50% of efficient surplus’ performance of the ∗ is very good in this class of games.
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Lemma 2 Whenever the lottery ∗ is a CCE, it is the optimal one, so the 50% share is the optimal

improvement.

Proof. Assume 0  0, and compute, max[01](−+ )1 − 21 = (). Then ,

max[01][{(−0 + )1 − 021}] = (). For 0 ≤  ≤ 0, the coefficient of 1 is negative, and,

() = 0.

For, 0 ≤  ≤ 1, the coefficient of 1is positive. The function above is therefore maximised at
∗1 =

−0
20 , with () =

(−0)2
40 .

Thus, we have the following optimisation problem (ignoring the restriction 0 ≤  ≤ 1 for a while),
max −+  − ,

under the constraints,

 ≤  ≤ 22 + (1− 2)−
 +  ≥ 22

and () + 0 ≤  − 0 (cancelling  on both sides).

Fixing , , we have the following, condition on , max{22−, ()+0+0} ≤  ≤ , and we

choose the largest value of  =  (optimal). Therefore our optimisation problem reduces in terms

of , , as follows,

max−0+ (1− 0) (ignore , without loss of generality),

under the constraints,

() + 0 ≤ (1− 0)

and 2 ≤  ≤ 22 + (1− 2)−.
Fixing , the optimal  is  = 22 + (1− 2)−, which leads us to the follwong problem in ,

max−0+ 2(1− 0)2 + (1− 0)(1− 2)−,
under the constraints,

() = () + 0− (1− 0)[22 + (1− 2)−] ≤ 0
and 0 ≤  ≤ 1.
Let us discuss the shape of the function, ∆, to be maximised on [0 1].

(i)  between 0 to 1
2
; 1− 2  0, and therefore, (1− 2)− = 0.

Thus, the maximising function is a parabola,

1 = −0+ 22(1− 0) = 2(1− 0)[− 0
4(1−0) ]− 02

2(1−0) .

At  = 0, 1 = 0, and at  =
1
2
, 1 =

1−0−0
2

 0. The slope of the parabola,1


= −0+4(1−0),
is

−0 at  = 0, and at  = 1
2
, it is 2− 0 − 20  0.

(ii)  between 1
2
to 1; 1− 2  0, and therefore, (1− 2)− = 1− 2.

Thus, the maximising function is a parabola,
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2 = −0+ 22(1− 0) + (1− 0)(1− 2) = 2(1− 0)[− (2+0−20
4(1−0) )]

2 + (1− 0)− (2+0−20)2
8(1−0) .

At  = 1, 2 = 1 − 0 − 0  0, and the slope of the parabola,2


= −(0 − 20 + 2) + 4(1 − 0),

which

takes a value of −0 at  = 1
2
and at  = 1, the slope is positive at 2− 0 − 20.

The function, ∆, to be maximized (draw a figure) looks as follows on [0 1]: from 0 to 1
2
, an upward

parabola starting at 0 with negative slope −0 and ending at 1
2
with positive value 1

2
(1− 0 − 0),

and positive slope 2− (0+20). From 1
2
to 1, an upward parabola starting at 1

2
with negative slope

−0 and ending at 1 with positive value (1− 0 − 0), and positive slope 2− (0 + 20).
0 1

2
1

∆ 0 & % 1
2
(1− 0 − 0) & % (1− 0 − 0)

Thus, we know that from 0 to 1
2
, the function takes a value of 1

2
(1−0−0) at  = 1

2
; but from 1

2
to

1, the function first falls and then rises to 1− 0 − 0. This further implies that in 1
2
  ≤ 1, there

is

a range of values of , where the function ∆ is less than 1
2
(1− 0 − 0). Clearly, the function in

1
2
  ≤ 1, takes the value 1

2
(1− 0 − 0) twice, thus finding the roots of the function,

−0+ 22(1− 0) + (1− 0)(1− 2) = 1
2
(1− 0 − 0) we have  = 1

2
and 1

2
+ 0

2(1−0) . Thus, the

objective function is below 1
2
(1− 0 − 0) for  ≤ ∗ = 1

2
+ 0

2(1−0) .

Therefore the optimality of ∗ can only be defeated if there is some  in [∗ 1] such that () ≤ 0.
We know that ∗ gives a payoff which is 50% of the efficient outcome (= 1−0−0

2
). For ∗ to be

optimal, there should not be any  which generates ∆  1
2
e, i.e. the optimality of ∗ can defeated

if there is some  in [∗ 1] such that () ≤ 0.
To proceed with the discussion, we first need to compare ∗ with 0, so as to check the value

of () and thereby determine (). Rearranging (1), we have the following restriction on 0,

1− 20 ≤ 0 ≤ 1− 0, thus the maximum 0 = 1− 0, with ∗ = 1. If we assume 0 ≥ ∗, we have

0 ≤ 0, therefore not possible. Thus, ∗ = 1
2
+ 0

2(1−0) ≥ 0, and therefore, () = (−0)2
40 .

Thus, in [∗ 1], we have,

() =
(−0)2
40 + 0− (1− 0)(22 − 2+ 1). (5)

Rearranging and simplifying the terms, we have,

() = 2(1−8
0+802
40 ) + (2

00+40−0−402
20 ) + (

02+402−40
40 ), which represents a parabola.

From here we can have two cases:

Case 1: (∗)  0

∗ is not optimal because a small increase in  raises ∆ and meets the constraints.

Case 2: (∗)  0

When (∗)  0, at ∗, the ∗ is not a CCE. But there can be a lottery ∗ in 1
2
≤  ≤ ∗, where

∗
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is a CCE.

Consider (∗)  0 and 0 ≤ 1
2
. Clearly, ∗ = 1

2
+ 0

2(1−0)  0, 0 ≤ 1
2
, thus (5) gives us

the () in [1
2
 1]. At  = 1

2
, ( = 1

2
) =

1+402−40+800−80(1−0)
160 , the sign of which depends on the

numerator, which is the same as (4), which we assume. Therefore, (1
2
) ≤ 0. At  = 1,

( = 1) = 1+02−20+400−40+402
40 . The numerator (1−0)2+400+402−40  0, for 0 ≤ 1

2
and

1−0
2

 0  1 − 0. Thus, (1)  0. Therefore, (1
2
) ≤ 0, (∗)  0 and (1)  0, and  is a

quadratic

and therefore single-peaked) function. Thus  is positive in [1
2
 1], and at  = 1

2
, ∗ is a CCE.

Now consider (∗)  0 and 0 ≥ 1
2
. Here, we can still conclude that ∗ is optimal if () is a

downward parabola in [∗ 1], which will be true if in the function of (), the coefficient of 2 is

negative, i.e.,1−8
0+802
40 ≤ 0 ⇒ 80(1 − 0) ≥ 1 ⇐⇒ 0 ∈ [1

2
−
√
2
4
 1
2
+
√
2
4
]. Notice that the ellipse

given

by (4) intersects the axis 0 = 0 precisely at those two values, and is entirely in the region of

0 ≤ 1
2
+
√
2
4
. Thus, it conincides with (4), which we assume to hold true for ∗ to be a CCE.

Thus, ∗ is the optimal CCE.

12 CONCLUSION

In this paper, we have analysed the notion of coarse correlation in a model where correlation a la

Aumann does not offer anything more than the Nash equilibrium. We have defined and characterised

an equilibrium notion called −SSCCE for this quadratic game and constructed specific coarse correlated
equilibria −SSCCEs that improve upon the Nash payoffs.
We note that Gerard-Varet and Moulin (1978) also used similar devices and the solution concept to

show local improvement upon the Nash equilibrium in specific duopoly models. In their main theorem,

they were able to improve upon the Nash equilibrium of a class of duopoly games satisfying certain

assumptions, using a public (actually, diagonal) 2-SSCD. However, their notion of improvement involved

a specific criterion using sequences of devices close to the Nash point.

We however extended the result by Gerard-Varet and Moulin (1978) in this paper, as we constructed

specific equilibria to improve upon the Nash payoff using the natural definition of improvement, without

referring to any local arguments and were able to find the maximum possible improvement using our

construction.
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