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Abstract

We develop a generalized approach to envelope theorems that applies across a broad
class of parameterized nonlinear optimization problems that arise typically in economic
applications. In particular, we provide su¢ cient conditions under which the value
function for a nonconvex, and/or nonsmooth program is locally Lipschitz and/or Clarke
di¤erentiable. We then apply our results to Lipschitz dynamic programming problems
with and without concavity assumptions, to discrete labor choice models, and provide
some examples from the redistributive taxes, and Research and Development literature.
Also, our companion paper, Morand, Re¤ett and Tarafdar [23] extends the results of
this paper to provide su¢ cient conditions for the existence of directionally di¤erentiable
and C1 envelopes.

1 INTRODUCTION

Constrained maximization problems are an essential building block of both microeconomic
and macroeconomic theory, and powerful results exists that characterize the solutions to
these problems and the properties of the objective at the maximum (i.e., the value func-
tion) in the form of envelope theorems. Such problems typically translate into �nding the
values of a decision variable a that maximize an objective f(a; s) subject to some inequal-
ity constraints g(a; s) � 0 (and possibly also to the equality constraints h(a; s) = 0), and
traditional results are been derived under the assumption of smoothness (i.e., once continu-
ously di¤erentiable, or C1 constraints and objectives) and concavity. Important recent work
has focused on loosening these assumptions, as for instance in Rincon-Zapateros and Santos
(2009), Milgrom and Segal [21], Clausen and Straub ([9]), and Marimon and Werner [20].
The goal of this paper is to provide a baseline result for Lipschitz programs without any
concavity or di¤erentiability assumption.
There are many situations in which the traditional results of convex analysis do not

apply. The objective and/or the inequality constraints may neither be smooth nor concave,
in which case the standard optimality conditions of the theory of Lagrange multipliers (i.e.,
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the Karush-Kuhn-Tucker condition or the Fritz-Jones condition) clearly do not exist, and
standards results on the di¤erential properties of the value function (i.e., envelope theorems)
are also not available. The lack of concavity is a problem, since multiple maximizers appear,
and it is compounded with the lack of smoothness which trigger the loss of uniqueness of
Lagrange multipliers.
One must also bear in mind that even something as simple as the continuity of the value

function may be hard to establish, since it often requires the mapping s � D(s) = fa;
g(a; s) � 0 and h(a; s) = 0g associated with the feasible set must be a continuous correspon-
dence for Berge�s theorem of the maximum to deliver the desired continuity. Unfortunately,
it very often fails to be so, even in fairly simple models
Finally, we note that our results are applicable to programs with discrete choices and

therefore helpful in computing solutions to these programs, since this involves discreticizing
the state space. We leave the full details of this application to a future paper on Lipschitz
dynamic programming.
To handle these issues, we provide a fundamental result showing the existence of bounds

for the Dini derivatives of the value function of Lipschitz programs, and prove the Lipschitz
property of the value function for such programs. This fundamental result is key to de-
veloping envelope theorems for non-smooth non-concave programs that extend the existing
standard results of Morand, Re¤ett and Tarafdar [23]. In our proof, we also present an
alternative to Berge�s theorem of the maximum that uses a local condition to guarantee the
continuity of the value function.

2 LIPSCHITZ PROGRAMSANDCONSTRAINTQUAL-
IFICATIONS

We consider Lipschitz programs of the form:

max
a2D(s)

f(a; s) (1)

where A � Rn and S � Rm are, respectively, the choice set and state space, f : A� S ! R
the objective function, and D : S � A the feasible correspondence de�ned as:

D(s) = fajgi(a; s) � 0; i = 1; :::; p and hj(a; s) = 0, j = 1; ::::::::; qg:

The function V : S ! R, V (s) = maxa2D(s) f(a; s) is called the value function, and the
correspondence A� : S � A de�ned by:

A�(s) = arg max
a2D(s)

f(a; s)

is the optimal solution correspondence. In Lipschitz programs objective and constraints are
only locally Lipschitz in (a; s), in contrast to "smooth programs" in which objective and
constraints are typically assumed to be continuously di¤erentiable. In this paper unless
otherwise mentioned the objective and the inequality constraints are locally Lipschitz, but
the equality constraints are smooth(or, C1). We�ll maintain the following assumption through
out the paper:
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Assumption: The sets A and S are each convex in Rn and Rm respectively, and the
feasible correspondence D : S � A is nonempty, continuous and compact-valued. Further,
the objective f(a; s) and the constraints g(a; s) and h(a; s) both admit di¤erential extensions
over the boundary of A� S.

2.1 Optimality conditions

Given s 2 S, a point a 2 D(s) is a Karush-Kuhn-Tucker (KKT) point of Program (1) if
there exists a vector (�; �) of multipliers with � � 0 such that:

0 2 @a(f �
pP
i=1

�igi �
qX
j=1

�jhj)(a; s)

The closed and convex (but perhaps empty) set of vectors (�; �) satisfying the above mul-
tiplier rule will be denoted K(a; s) (or simply K) . To guarantee the non-emptiness and
boundedness (and thus compactness) of K at a local optimum requires assumptions in the
form of constraint quali�cations (the so-called "optimality conditions"). In programs with
smooth primitive data, constraints quali�cations are restrictions involving the (classical)
gradients of the constraints. For instance, it is well known that a point a�(s) 2 A�(s) satisfy-
ing the Mangasarian Fromovitz constraint quali�cation stated immediately below is a KKT
point and is such that K is compact (see for instance Gauvin [12]).

De�nition 1 The point a�(s) 2 A�(s) satis�es the Mangasarian-Fromovitz Constraint Qual-
i�cation (MFCQ) if, there exist ey 2 Rn such that

ragi(a
�(s); s) � ey < 0, i 2 I(a�(s); s);

rahj(a
�(s); s) � y = 0 j = 1; :::; q

where I(a; s) is the set identifying the strongly active inequality constraints (those for which
gi(a

�(s); s) = 0), and the matrix rah(a
�(s); s) has full rank.

Kyparisis [19] has showed that a slightly less general condition, the Strict Mangasarian-
Fromovitz Constraint Quali�cation (SMFCQ), which simply treats active inequality con-
straints for which the multiplier is strictly positive as equality constraints, is necessary and
su¢ cient for the uniqueness of the multiplier vector in smooth programs.

De�nition 2 The SMFCQ is satis�ed at a�(s) 2 A�(s) if, there exist ey 2 Rn such that
ragi(a

�(s); s) � ey < 0, i 2 Is(a�(s); s)
ragi(a

�(s); s) � ey = 0, i 2 Ib(a; s)
rahj(a

�(s); s) � y = 0 j = 1; :::; q

where Is(a�(s); s) = fi 2 I(a�(s); s); �i = 0g and Ib(a�(s); s) = fi 2 I; �i > 0g, and
ragi(a

�(s); s); i 2 Ib(a�(s); s); rahj(a
�(s); s); j = 1; :::; q are linearly independent.
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With Lipschitz constraints no classical gradients generically exist, but the following gen-
eralization of the MFCQ for Lipschitz programs (which we denote GMFCQ) has been shown
by Hiriart-Urruty [17] to be su¢ cient for the non-emptiness of K. This non-smooth version
of the MFCQ uses generalized gradients (or "subdi¤erentials") as developed by Clarke (see
Appendix A for mathematical tools and de�nitions). To simplify the notations, we denote
by g(a�(s); s) the vector of binding inequality constraints at point a�(s) 2 A�(s), so that
g : A� S ! Rp (where p = Card(I(a�(s); s)) � p).

De�nition 3 The Generalized Mangasarian-Fromovitz Constraint Quali�cation (GMFCQ)
is satis�ed at a�(s) 2 A�(s) if there exist ey 2 Rn such that,

8(a; �a) 2 @a(g; h)(a�(s); s); a � y < 0, and �a � y = 0

and @ah(a�(s); s) is of maximal rank.

For simplicity of exposition, the results and proofs in the core of the paper are for Lipschitz
programs without equality constraints, i.e. with the feasible correspondence taking the form:

D(s) = fa 2 A; gi(a; s) � 0; i = 1; :::; pg;

in which gi : A�S ! R, i = 1; :::; p. As shown in Appendix C of the paper, all results extend
to the case of programs with smooth equality constraints. With no equality constraints, the
GMFCQ is simpler and reduces to the following.

De�nition 4 The Generalized Mangasarian-Fromovitz Constraint Quali�cation (GMFCQ)
is satis�ed at a�(s) 2 A�(s) if there exist ey 2 Rn such that

9ey 2 Rn; 8a 2 @ag(a�(s); s); a � ey < 0: (2)

Note that g is the vector of active inequality constraints and that:

@ag(a
�(s); s) �

Y
i2I(a;s)

@agi(a
�(s); s)

so this version of the GMFCQ is slightly more general than that of Auslender [4].

2.2 Consequences of the GMFCQ

An envelope theorem for a parameterized program is basically a result equating the derivative
of the value function along a particular direction in the state space to the derivative of the
objective evaluated at the optimum along that same direction, ignoring "indirect" changes
in the objective due to changes in the optimum. When deriving such a result, technical dif-
�culties arise when some inequality constraints are active (i.e. corner solutions), especially
when Lagrange multipliers are not unique, and when working with Lipschitz functions, since
traditional derivatives, or gradients (singletons) give place to generalized gradients (not nec-
essarily singleton)1. In face of these di¢ culties, and absent su¢ cient smoothness, convexity

1For ease of notations, "generalized gradients" will be denoted as simply "gradients" in the sequel.
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and regularity conditions, a simple envelope for parametrized Lipschitz programs seems out
of reach. However, the GMFCQ and the uniform compactness assumptions help us get closer
to our goal.
First, the upper hemicontinuity of Clarke�s generalized gradients implies that the set of

multipliers is closed. In addition, GMFCQ implies that the set of multiplier is nonempty and
bounded as demonstrated for instance in Nguyen, Strodiot and Mi in, [25]. It is therefore
a non-empty compact set.2

Second, under GMFCQ we characterize the lower bound of the gradient of the Lagrangian
(with respect to the state s) in the direction x at an optimum in terms of the saddle value
of a function SL. The lower bound of the gradient of the Lagrangian is precisely the lower
Clarke derivative of the Lagrangian in the direction x, and this result is essential to �nding
bounds for the Dini derivative of the value function. In the remaining section we consider a
Lipschitz program with only inequality constraints.

Theorem 5 Suppose GMFCQ holds at the optimal solution a�(s). Then, for any x 2 Rm :

SL(y; �) = min
(&a;a)2@a(f;g)(a�(s);s)

(&a � �Ta) � y + min
(&s;s)2@s(f;g)(a�(s);s)

(&s � ��Ts) � x

has a saddle point, and:

�1 < inf
��0
sup
y
SL(y; �) = sup

y
inf
�
SL(y; �) = inf

�2K
L�os (a

�(s); s;�;x) < +1

where:

L�os (a
�(s); s;�;x) = min

�2@s(f��T g)(a�(s);s)
� � x

Proof. See Appendix B. Note that L�os (a
�(s); s;�;x) is the lower Clarke derivative of the

Lagrangian at (a�(s); s):
Third, we show that the GMFCQ implies that for any perturbation of s in the direction

x, there exists of a "feasible direction" y such that the gradient of the objective at the
optimal and in the particular direction (y; x) is arbitrarily close to the lower bound (over all
KKT vectors) of the gradient of the Lagrangian in the direction x. This is precisely the two
inequalities in the following lemma.

Lemma 6 Assume that GMFCQ holds at a�(s) 2 A�(s). Then for any direction of per-
turbation x 2 Rm; and any " > 0; there exists a vector y(x; ") such that for all (&; ) 2
@(f; g)(a�(s); s):

 � (y(x; "); x) < 0

and:

& � (y(x; "); x) > inf
�2K

Los(a
�(s); s;�;x)� "

2Nguyen, Strodiot and Mi in [25] proves that GMFCQ is actually equivalent to the non-emptiness and
boundedness of the multiplier set.
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Proof. From our previous result (5) the saddle point of S is such that:

inf
��0
sup
y
SL(y; �) = sup

y
inf
��0
SL(y; �)

= inf
�
L�os (a

�(s); s;�;x) = sup
y2G

min
(&a;a);(&s;s)

(&a � y + &s � x)

In this last expression the supremum may not be attained since the set G (de�ned in the
proof of the Theorem 6 in Appendix B) is not necessarily bounded. However, for any given
", there exists y(x; ") in G such that:

min
(&a;a);(&s;s)

[&a � y(x; �) + &s � x] � inf
�2K

L�os (a
�(s); s;�;x)� "=2

Next, de�ne y = y(x; ") + �ey; where � > 0 is arbitrarily small and ey satis�es GMFCQ, so
that:

8a 2 @ag(a; s); �a � ey < 0
Thus, 8 ((&a; a); (&s; s)) 2 @a(f; g)� @s(f; g):

 � (y(x; "); x) = (a � y(x; ") + s � x) + �a � ey < 0
since y(x; ") was chosen in G (and thus &a � y(x; ") + &s � x < 0). We also have:

min
((&a;a);(&s;s))2@a(f;g)�@s(f;g)

[&a � y + &s � x] � inf
�2K

L�os (a
�(s); s;�;x)� "=2 + �min(&a � ey)

and we choose � small enough such that �min(&a � ey) > �"=2. Recalling that @(f; g) �
@a(f; g)� @s(f; g), we obtain that 8(&; ) 2 @(f; g)(a�(s); s):

8(&; ) 2 @(f; g)(a�(s); s); & � (y; x) > inf
�2K

L�os (a
�(s); s;�;x)� "

and:

 � (y(x; "); x) < 0:

Finally, when combined with the assumption of uniform compactness of D, the GMFCQ
yields a very powerful results similar to that of Berge�s maximum theorem: the value function
is continuous, and the optimal correspondence if upper hemicontinuous, as shown in the
following lemma. It is important to note that the continuity of V cannot come from a direct
application of Berge�s maximum theorem, since the domain D is not necessarily continuous
even though all constraints are continuous. Consider for instance the domainD in R2 de�ned
as:

D(m) = f(x; y); x+ y � m and (m� 11)(10� x) � 0g

which is not continuous at m = 11:
Note also that the upper semicontinuity of A� is a key property, since it implies that

as sn converges to s, the maxima of f(:; sn) get arbitrarily close to some of the maxima of
f(:; s): It also implies that A�(s) is compact.
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Lemma 7 If GMFCQ holds, and if D is non-empty valued and uniformly compact in a
neighborhood of s, then the value function V is continuous at s, and the optimal correspon-
dence A� is upper hemicontinuous at s.

Proof. D is closed at s and uniformly compact near s, and therefore upper hemicontinuous
at s, so by Berge V is upper semicontinuous at s. To prove lower semicontinuity of V
consider a sequence fsng converging to s and such that lims0!s inf V (s

0) = limsn!s V (sn).
Let esn = (sn�s)

ksn�sk and tn = ksn � sk so that sn = s+ tnesn: Since kesnk = 1, the sequence fesng
has a convergent subsequence. Thus, without loss of generality, assume that limn!1 esn = es.
In the direction es, there exists some ey satisfying lemma 6 above: By the mean value

theorem (See Appendix A), there exists (t) 2 cox2Tf@g(x)g where T = [(a�(s); s); (a�(s) +
ty; s+ tes)] such that:

g(a�(s) + ty; s+ tes)� g(a�(s); s) = t(t) � (ey; es)
and by upper hemicontinuity (t) converges to some  2 @g(a�(s); s); and by construction
 � (ey; es) < 0. Thus it must be the case that g(a�(s) + ty; s+ tes)� g(a�(s); s) < 0 for t small
enough, or, equivalently:

g(a�(s) + tny; s+ tnes) = g(a�(s) + tny; sn) < 0
for n large enough. This inequality obviously holds for the inequality constraints that are
not active at (a�(s); s) and thus for n large enough:

g(a�(s) + tny; sn) < 0

This implies that a�(s)+tny is in the feasible domainD(sn) so that V (sn) � f(a�(s)+tny; sn).
Thus:

lim
s0!s

inf V (s0) = lim
sn!s

V (sn)

� lim
n!1

f(a�(s) + tny; sn)

= f(a�(s); s)

= V (s)

which proves that V is lower semicontinuous.
Since V is continuous at s, the map L : s! fa; f(a; s)� V (s) � 0g is closed at s. Since

A�(s) = L(s) \ D(s), the correspondence A� : s ! A�(s) is the intersection of the closed
mapping L with the upper hemicontinuous mapping D (recall that uniform compactness
and closeness imply upper hemicontinuity), and is therefore upper hemicontinuous. Indeed
consider sn ! s and any an 2 A�(sn) = L(sn) \D(sn). Since D is upper hemicontinuous at
s, there exists a subsequence of an converging to some a 2 D(s): Since L is closed at s, the
limit a of the subsequence of an necessarily belong to L(s): Thus, a 2 A�(s) = L(s) \ A(s),
which proves that A� is upper hemicontinuous at s (and A�(s) is therefore a compact set).
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3 DINI BOUNDS FOR THE VALUE FUNCTION

3.1 Main Result

In this section we establish lower and upper bounds for the Dini derivatives3:

D+V (s) = lim inf
t�!0+

V (s+ tx)� V (s)
t

�

D+V (s) = lim sup
t!0+

V (s+ tx)� V (s)
t

Constructing the lower bound for D+V relies heavily on lemma 6 above. Brie�y, by that
Lemma there exists a feasible direction y such that a subgradient & of the objective function
at the optimal and in the direction (y; x) (i) is arbitrarily close to the minimum subgradient
(with respect to s) of the Lagrangian in the direction x, and (ii) is a lower bound for the
rate of growth of the value function in the direction x. Combining these two properties gives
the desired result. The upper bound for D+V is obtained in a similar manner.

Theorem 8 If D is nonempty valued and uniformly compact near s, and if the GMFCQ
holds at every optimal solution a�(s) 2 A�(s); then for any direction of perturbation x 2 Rm,
(i) for all a�(s) 2 A�(s)

�1 < inf
�2K(a�(s);s)

�
min

�2@s(f��T g)(a�(s);s)
� � x

�
� D+V (s;x)

and, (ii)

D+V (s;x) � max
a�(s)2A�(s)

 
sup

�2K(a�(s);s)

�
max

�2@s(f��T g)(a�(s);s)
� � x

�!
< +1

Proof. Consider any a�(s) in A�(s). Given " and x, consider y = y(x; ") satisfying lemma
6. By the mean value theorem, there exists (&(t); (t)) 2 cof[x2T@(f; g)(x)g where T =
[(a�(s); s); (a�(s) + ty; s+ tx],

(f; g)(a�(s) + ty; s+ tx)� (f; g)(a�(s); s) = t(&(t); (t)) � (y; x); (3)

By upper hemicontinuity of the subdi¤erential, without loss of generality we may assume
that (&(t); (t)) converges to some subgradient (&; ) 2 @(f; g)(a�(s); s) as t # 0. Since by
construction y satis�es:

 � (y; x) < 0

and

& � (y; x) > inf
�2K

L�os (a
�(s); s;�;x)� "

3Appendix C generalizes the bounds of the Dini derivatives by including C1 equality constraints.

8



then for t small enough:

(t):(y; x) < 0

and

&(t) � (y; x) > inf
�2K

L�os (a
�(s); s;�;x)� "

Using (3), this implies that:

g(a�(s) + ty; s+ tx)� g(a�(s); s) = (t) � (y; x) < 0

(and thus a�(s) + ty 2 D(s+ tx)), and:

f(a�(s) + ty; s+ tx)� f(a�(s); s) = t&(t) � (y; x) � t
�
inf
�2K

L�os (a
�(s); s;�;x)� "

�
As a�(s) + ty 2 D(s+ tx), necessarily V (s+ tx) � f(a�(s) + ty; s+ tx); and therefore:

V (s+ tx)� V (s)
t

� f(a�(s) + ty; s+ tx)� f(a�(s); s)
t

� inf
�2K

L�os (a
�(s); s;�;x)� "

As " may be chosen arbitrarily small we obtain that:

lim inf
t�!0+

V (s+ tx)� V (s)
t

� inf
�2K

L�os (a
�(s); s;�;x)

for any a�(s) in A�(s).
The upper bound is a little harder to obtain. First, choose a sequence ftng converging

to 0 such that, in the direction x:

D+V (s;x) = lim sup
t!0+

V (s+ tx)� V (s)
t

= lim
n!1

V (s+ tnx)� V (s)
tn

:

To each n corresponds some a�n(s) in A
�(s + tnx) such that V (s + tnx) = f(a�n(s); s + tnx).

Given the upper hemicontinuity of the optimal correspondence A� at s established in lemma
7, there exists a subsequence of the sequence fa�n(s)gn�Ng converging to some a�(s) in
A�(s). Thus, without loss of generality we may assume that limn!1 a

�
n(s) = a

�(s) 2 D(s):
Exploiting the continuity of V at s established in that same lemma:

lim
n!1

V (s+ tnx) = V (s)

that is:

lim
n!1

f(a�n(s); s+ tnx) = f(a
�(s); s):
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Next, let y = y(�x; ") satisfy lemma 6 above for the direction�x, and let an(s) = a�n(s)+tny.
By the mean value theorem, there exists some (&(tn); (tn)) in co f[x2T@(f; g)(a�(s); s)g
where T = [(an(s); s); (a�n(s); s+ tny)] such that:

(f; g)(an(s); s)� (f; g)(a�n(s); s+ tnx) = tn(&(tn); (tn)) � (y;�x) (4)

As n!1; tn ! 0 and a�n(s)! a�(s), by upper hemicontinuity of the subdi¤erential, with-
out loss of generality the sequence f(&(tn); (tn))} converges to some (&; ) 2 @(f; g)(a�(s); s).
By de�nition of y:

 � (y;�x) < 0

and:

& � (y;�x) > inf
�2K

L�os (a
�(s); s;�;�x)� "

or:

�& � (y;�x) < sup
�2K

�L�os (a�(s); s;�;�x) + "

Recall that:

�L�o(a�(s); s;�;�x) = � min
�2@s(f��T g)(a�(s);s)

��(�x) = max
�2@s(f��T g)(a�(s);s)

��x = Lo(a�(s); s;�;x)

so that:

�& � (y;�x) < sup
�2K

�
max

�2@s(f��T g)(a�(s);s)
� � x

�
+ "

Then, for n large enough, it must also be the case that:

(tn) � (y;�x) < 0 (5)

and:

�&(tn) � (y;�x) < sup
�2K

�
max

�2@s(f��T g)(a�(s);s)
� � x

�
+ " (6)

Inequalities (4) and (5) imply g(an(s); s) < g(a�n(s); s + tnx), so that an(s) 2 D(s) since
g(a�n(s); s+ tnx) � 0: Inequalities (4) and (6) imply:

f(a�n(s); s+ tnx)� f(an(s); s) < tn sup
�2K

�
max

�2@s(f��T g)(a�(s);s)
� � x

�
+ ":

Given that an(s) 2 D(s) it must be that V (s) � f(an(s); s) so that:

lim sup
t!0+

V (s+ tx)� V (s)
t

� lim
n!1

f(a�n(s); s+ tnx)� f(an(s); s)
tn

� sup
�2K(a�(s);s)

[Los(a
�(s); s;�;x)] + "

= sup
�2K(a�(s);s)

�
max

�2@s(f��T g)(a�(s);s)
� � x

�
+ "
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Since " was chosen arbitrary small, this shows that for the direction x there exists a�(s) in
A�(s) such that:

D+V (s;x) � sup
�2K(a�(s);s)

�
max

�2@s(f��T g)(a�(s);s)
� � x

�
Thus, for any direction x,

D+V (s;x) � sup
a�(s)2A�(s)

sup
�2K(a�(s))

�
max

�2@s(f��T g)(a�(s);s)
� � x

�
:

As in the smooth case of , it may be shown that the supremum over all a�(s) in A�(s) is
attained, so that max may legitimately be substituted for sup. Indeed, consider a sequence
fan; �n; �ng where �n 2 @s(f � �ng)(an), �n 2 K(an); and an 2 A�(s) and such that:

lim
n!1

�n � x = sup
a�(s)2A�(s)

sup
�2K(a�(s))

�
max

�2@s(f��T g)(a�(s);s)
� � x

�
Then, by the compactness of A�(s) (see Lemma 7), the upper semicontinuity of the sub-
di¤erential (see Appendix A), and the upper semicontinuity of the set of all multipliers
[a�(s)2A�(s)K(a�(s); s) (see 12 in the next section), there exists a subsequence fam; �m; �mg
such that am ! a 2 A�(s), �m ! �0 2 K(a) and �m ! �0 2 @s(f �

�
�T
�0
g)(a) such that:

sup
a�(s)2A�(s)

sup
�2K(a�(s))

�
max

�2@s(f��T g)(a�(s);s)
� � x

�
= �0 � x � sup

�02K(a)
( max
�2@s(f�(�T )

0
g)(a)

� � x)

which implies that the sup must be attained for some a in A�(s):

3.2 Consequences

Getting additional properties of the value function requires more from the primitive data
than just local Lipschitzness. While we explore various consequences of Theorem 8 in a
companion paper, we mention here two interesting results as corollaries. First, under the
assumption of strictly di¤erentiability of the primitive data, the upper and lower Clarke
derivative of the Lagrangian coincide. Add to this the assumption that the SMFCQ holds
at every a�(s) and the multiplier set become a singleton, as explained in Kyparisis [19]
(in Kyparisis strict di¤erentiability and SMFCQ is in fact su¢ cient to establish uniqueness
of multipliers). The upper bound is attained for some a in A�(s), which then necessarily
coincides with the lower bound, and the value function is thus directionally di¤erentiable.

Corollary 9 If D is nonempty valued and uniformly compact near s, if the SMFCQ holds at
every optimal solution a�(s) 2 A�(s), and if the primitive data is C1, then the value function
is directionally di¤erentiable, and there exists a�(s) in A�(s) such that:

D+V (s;x) = D
+V (s;x) = max

a�(s)2A(s)
L2(a

�(s); s; �; �) � x

and it is upper Clarke regular.
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Second, an important result in Milgrom and Segal [21] (Corollary 5) also follows directly
from our Dini bounds. In it, rather than assuming SMFCQ to guarantee the uniqueness of
the KKT multiplier, it is the concavity of the problem that permits to "squeeze" lower and
upper bounds.

Corollary 10 If D is nonempty valued and uniformly compact near s, if the primitive data
is C1 in s with f2(�; s), g2(�; s), h2(�; s) continuous, f , �g concave and h a¢ ne in a, and the
MFCQ holds at all a�(s) in A�(s), then for any direction x 2 Rm; the directional envelope is
given by:

V 0(s;x) = max
a�(s)2A�(s)

min
(�;�)2K(a�(s);s)

L2(a
�(s); s; �; �) � x

Proof. Lemma 8 provides the lower bounds of the Dini derivative, as it implies that:

max
a�(s)2K(a�(s);s)

min
�2K(a�(s);s)

L2(a
�(s); s; �; �) � D+V (s;x)

Imposing additional conditions on the primitive data helps tighten the upper bound as
follows. Choose a sequence ftng converging to 0 such that:

lim sup
t!0+

V (s+ tx)� V (s)
t

= lim
n!1

V (s+ tnx)� V (s)
tn

Since D(s) is uniformly compact near s, for n large, there exists a�(s+tnx) 2 D(s+tnx) such
that V (s+ tnx) = f(a�(s+ tnx); s+ tnx). Since the sequence fa�(s+ tnx)g is in a compact
domain, without loss of generality we may assume that that a�(s + tnx) converges to some
a�(s) in A�(s) � D(s), and by continuity of V , V (s) = f(a�(s); s). As any a�(s) 2 A�(s) is
a global maxima, appealing to strong duality, the Lagrangian has a global saddle point at
(a�(s); s; �; �) where (�; �) 2 K(a�(s); s). Thus, for any (�; �) 2 K(a�(s); s) :

lim
n!1

V (s+ tnx)� V (s)
tn

=

lim
n!1

L(a�(s+ tnx); s+ tnx; �n; �n)� L(a�(s); s; �; �)
tn

where (�n; �n) 2 K(a�(s+ tnx); s+ tnx). Consequently:

lim
n!1

V (s+ tnx)� V (s)
tn

� lim
tn!0+

L(a�(s+ tnx); s+ tnx; �; �)� L(a�(s); s; �; �)
tn

� lim
tn!0+

L(a�(s+ tnx); s+ tnx; �; �)� L(a�(s+ tnx); s; �; �)
tn

= L2(a
�(s+ tnx); s; �; �) � x

12



where the �rst inequality follows from:

L(a�n(s); s+ tnx; �n; �n) < L(a
�
n(s); s+ tnx; �; �)

since (a�n(s+ tnx); s+ tnx; �n; �n) is a saddle point, and the second inequality from:

L(a�(s); s; �; �) > L(a�n(s); s; �; �)

since (a�(s); s; �; �) is a saddle point.
Since this is true for all (�; �) 2 K(a�(s); s), necessarily:

lim sup
t!0+

V (s+ tx)� V (s)
t

� min
(�;�)2K(a�(s);s)

L2(a
�
n(s); s; �; �) � x

Finally, since a�n(s)! a�(s) 2 A�(s) and L2(:) is continuous in its �rst argument the above
inequality imply

D+V (s;x)

� max
a�(s)2A�(s)

min
(�;�)2K(a�(s);s)

L2(a
�(s); s; �; �) � x

The lower bound for D+V coincides with the upper bound for D+V and the result thus
follows.

4 LIPSCHITZ PROPERTY OF THE VALUE FUNC-
TION

In this section we show that when the upper and lower bounds of the Dini derivatives of the
value function exist at s, they also exist in a neighborhood of s, i.e. V is locally Lipschitz
near s4. Several technical issues need to be addressed. First, we show in Lemma 11 below
that the GMFCQ is a local property, in the sense that when it holds at some (a�(s); s),
then it necessarily also holds in some neighborhood of that point. This property is, of
course, obvious in the case of LICQ with C1 constraints, but less trivial under the GMFCQ
assumption. Recall that the GMFCQ is:
(i) h is di¤erentiable with respect to a, rah is jointly continuous in a neighborhood of

(a�(s); s), and the matrix rah(a
�(s); s) has full rank;

(ii) there exists y 2 Rn such that:

8a 2 @ag(a�(s); s); a � y < 0, and rah(a
�(s); s) � y = 0

Second, since the Dini bounds in Theorem 8 are obtained as extrema we guarantee in lemma
12 below that the sup and inf of these extrema exist in a neighborhood of s because of the
upper semicontinuity of the joint set of KKT vectors and subgradients.

4In this section we will consider a general Lipschitz program with inequalities and C1 equality constraints.
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Lemma 11 If GMFCQ holds at (a�(s); s) then it holds in a neighborhood of (a�(s); s).

Proof. Ifrah is jointly continuous in a neighborhood of (a�(s); s), and the matrixrah(a
�(s); s)

has full rank, then it obviously has full rank in some neighborhood of (a�(s); s) as well. Next
since h is di¤erentiable with respect to a, in a neighborhood of (a�(s); s):

@a(g; h)(a; s
0) = @ag(a; s

0)� frah(a; s
0)g

Consider5:

y(a; s0) = (In �rah(a; s
0)PIrah(a; s

0)) � y

in which case,

rah(a; s
0)y(a; s0) = (rah(a; s

0)�rah(a; s
0)) � y = 0:

Next, since @ag(a�(s); s) is a closed set and GMFCQ holds at (a�(s); s), there exists " > 0
such that:

8a 2 @ag(a�(s); s); a � y < �2":

Let M = supfkak ; a 2 @ag(a�(s); s)g. As (a; s0)! (a�(s); s), by construction y(a; s0)! y
so there exists a neighborhood A0 � S 0 of (a�(s); s) such that:

ky(a; s0)� yk < 2=M

Let K = supfky(a; s0)k ; (a; s0) 2 A0 � S 0g: Since @ag is upper semicontinuous, there exists a
neighborhood A00 � S 00 of (a�(s); s) such that:

8(a; s0) 2 A00 � S 00; 80a 2 @ag(a; s0); 9a 2 @ag(a�(s); s); ka � 0ak � "=K:

Thus, on this neighborhood, for every 0a 2 @ag(a; s0) :

0a � y(a; s0) = (0a � a) � y(a; s0) + a � (y(a; s0)� y) + a � y < "+ "� 2" = 0

which shows that y(a; s0) satis�es (ii) of the GMFCQ.

Lemma 12 If the GMFCQ holds at (a�(s); s); then the correspondence s! [a�(s)2A�(s)K(a�(s); s)�
@s(f; g; h)(a

�(s); s) is upper hemicontinuous at s.

Proof. Consider a sequence fsng ! s, and a corresponding sequence given by f�ng =
f(�n; �n); (&s;n; s;n;rsh(a

�(sn); sn))g each �n in K(a�(sn); sn) � @s(f; g; h)(a�(sn); sn). By
de�nition of the multipliers, for all n there exists (&a;n; a;n) 2 @a(f; g)(a�(sn); sn) such that:

�n � rah(a
�(sn); sn) = &a;n � �n � a;n (7)

Since the subdi¤erential is an upper hemicontinuous correspondence, there must exists a
subsequence of f(&n; n; )g converging to some (&; ) 2 @s(f; g)(a�(s); s). Without loss of

5MPI is the pseudo-inverse of the full rank matrix M:
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generality assume that f(&n; n; )g ! (&; ): Next, recall that A� is an upper hemicontinuous
correspondence by lemma 7 so that a�(sn) converges to some element of a�(s) 2 A�(s), as
sn ! s. By the preceding lemma, the GMFCQ holds for a�(sn) su¢ ciently close to s, i.e.
for n � N . As in the proof of lemma 11 above, consider the sequence fyig de�ned as:

yi = y(a
�(si); si) = (In �rah(a

�(si); si)
PIrah(a

�(si); si)) � y

so that limi!+1 yi = y, and yi satis�es the GMFCQ at (a�(si); si) for i su¢ ciently large.
That is:

i � yi < 0, and rah(a
�(si); si) � yi = 0

and therefore, from (7):

&a;i � yi = �i � a;i � yi (8)

Since (&a;i; a;i; yi) ! (&a; a; y), by 8 �i ! �. Then by (7), �i ! � and � � rah(a
�(s); s) =

&a � � � a, which proves that (�; �) is in K(a�(s); s). Having demonstrated the existence a
subsequence of f�ng converging to some (�; �; &s; s) in K(a�(s); s)� @s(f; g; h)(a�(s); s) for
some a�(s) 2 A�(s) proves the desired upper hemicontinuity.

Theorem 13 If D is uniformly compact near s, and if the GMFCQ holds at every (a�(s); s),
then the value function V is locally Lipschitz near s.

Proof. Since GMFCQ holds in a neighborhood of every (a�(s); s), and since by Lemma 7
above each maximum a�(s0) is in a neighborhood of some a�(s) 2 A�(s) for s0 su¢ ciently
close to s, the Dini bounds established in the previous section also hold in a neighborhood
of s. In particular, for all s0 in a small compact neighborhood S 0 of s, recalling that @s(f�
�Tg � �Th) � @sf � �@sg�� @s�Th we have:

min
(&;;�)2@s(f;g;h)(a�(s0);s0)

(& � �T � �T�) � x � min
�2@s(f��T g��h)(a�(s0);s0)

� � x

and:

max
@s(f��T g��h)(a�(s0);s0)

� � x � max
(&;;�)2@s(f;g;h)(a�(s0);s0)

(& � �T � �T�) � x

Noting that at any (a�(s0); s0) the set K is nonempty and bounded (see [25]), and using these
inequalities in the Dini bounds of Theorem 26 gives:

min
a�(s0)2A�(s0)

min
(�;�)2K(a�(s0);s0)

min
(&;;�)2@s(f;g;h)(a�(s0);s0)

(& � �T � �T�) � x

� inf
(�;�)2K(a�(s0);s0)

�
min

�2@s(f��T g��h)(a�(s0);s0)
� � x

�
� D+V (s

0; x)

� D+V (s0; x)

� sup
(�;�)2K(a�(s0);s0)

( max
@s(f��T g��h)(a�(s0);s0)

� � x)

� max
a�(s0)2A�(s0)

max
(�;�)2K(a�(s0);s0)

max
(&;;�)2@s(f;g;h)(a�(s0);s0)

(& � �T � �T�) � x
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and therefore:

min
(�;�;&;;�)2�S0

(& � � � ��) � x � D+V (s
0;x)

� D+V (s0;x) � max
(�;�;&;;�)2�S0

(& � � � ��) � x

where �S0 is the set:

�S0 =
[
s02S0

�
[a�(s)2A�(s)K(a�(s); s)� @s(f; g; h)(a�(s); s)

�
Note that the set�S0 is compact since s! F (s) = [a�(s)2A�(s)K(a�(s); s)�@s(f; g; h)(a�(s); s)
is an upper hemicontinuous correspondence (as established in lemma 12 above), and so the
min and max are attained on �S0. Consequently, there exists �1; �2 2 �S0 such that:

�1 � x � D+V (s
0;x) � D+V (s0;x) � �2:x

Consider any pair (s0; s00) of points in the interior of S 0 and the direction x = s00�s0
ks00�s0k : The

function: t 2 [0; ks00 � s0k] � R! V (s0 + tx) is locally Lipschitz on [0; ks00 � s0k] since:����limt0!t V (s0 + tx)� V (s0 + t0x)t� t0

���� � max(jD+V (s
0 + tx; x)j ;

��D+V (s0 + tx; x)
��)

� max(j�1j ; j�2j) kxk = max(j�1j ; j�2j)

and it is therefore di¤erentiable almost everywhere, and also absolutely continuous on [0; ks00 � s0k]
so that:

V (s00)� V (s0) =
Z ks00�s0k

0

V 0(s0 + tx)dt

Therefore for s0 and s00 in a neighborhood of s:���V (s00)� V (s0)��� � max(j�1j ; j�2j) ks00 � s0k kxk = max(j�1j ; j�2j) ks00 � s0k
which proves that V is locally Lipschitz in a neighborhood of s.

Corollary 14 If D is uniformly compact near s and if the GMFCQ holds at every element
of A�(s), then:

@V (s) � co

8<: [
a�(s)2A�(s)

[
(�;�)2K�(a�(s);s)

@s(f � �Tg � �Th)(a�(s); s)

9=;
Proof. Since V is locally Lipschitz near s, its subdi¤erential at s is given by:

@V (s) = co flimrV (sn) : sn ! s; sn 2 domrV g
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Consider the sequence fsng converging to s and such that rV (sn)! ' (elements of @V (s)
are convex combinations of '). For sn su¢ ciently close to s, the Dini bounds hold and thus
for n large enough (say n � N) and for any direction x :

rV (sn) � x = D+V (sn;x)

� max
a�(sn)2A�(sn)

max
(�;�)2K(a�(sn);sn)

max
(&;;�)2@s(f;g;h)(a�(sn);sn)

(& � �T � �T�) � x

� max
(�;�;&;;�)2�sn

(& � �T � �T�) � x

where �sn is the compact set [a�(sn)2A�(sn)K(a�(sn); sn) � @s(f; g; h)(a�(sn); sn). For each
sn, n � N , the maximum is attained at some (�n; �n; &n; n; �n) 2 �sn. By lemma 12
the correspondence sn ! �sn is upper hemicontinuous, and therefore the sequence of max-
ima f(�n; �n; &n; n; �n)g1n=N has a subsequence converging to some (�; �; &; ; �) 2 �s =
[a�(s)2A�(s)K(a�(s); s) � @s(f; g; h)(a�(s); s). Taking limits along this subsequence in the
above inequalities, we have that for any ':

' � x � max
(�;�;&;;�)2�s

(& � �T � �T�) � x

Consequently:

max
'2@V (s)

'�x � max
(�;�;&;;�)2�s

(&��T��T�)�x = max
a�(s)2A�(s)

max
(�;�)2K(a�(s);s)

max
�s2@s(f��T g��h)(a�(s);s)

�s�x

Since @V (s) is formed by the convex combinations of all the ', necessarily:

@V (s) �
[

a�(s)2A�(s)

[
(�;�)2K�(a�(s);s)

@s(f � �Tg � �Th)(a�(s); s):

5 APPLICATIONS AND EXTENSIONS

5.1 Lipschitz Dynamic Programming

Consider the N periods Lipschitz program:

Vn(s) = max
a
fF (a; s) + �Vn�1(a)g

subject to g(a; s) � 0, for all n = 1; 2; ::N , a 2 A � Rn and s 2 S � Rm, and V0 = 0. The
associated Lagrangian takes the form:

L(a; s) = F (a; s) + �Vn(a)� �Tg(a; s)
so that

@sL(a; s) = @s(F (a; s)� �Tg(a; s)) � @sF (a; s)� �T@sg(a; s)
with equality if either the objective F or the constraint g is strictly di¤erentiable in s (or
both). Clearly, Vn is not necessarily concave or/and C1, but we will provide su¢ cient
conditions under which it is locally Lipschitz under the following assumption:
Assumption 5.1: F , and g are locally Lipschitz, and the feasible correspondence is uni-

formly compact for all s 2 S.
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Proposition 15 Under assumption 5.1 if GMFCQ is satis�ed for every optimal solution
a�(s) 2 A�(s), then each Vn, n = 1; ::N is locally Lipschitz with Clarke gradient:

@Vn(s) � co

8<: [
a�n(s)2A�n(s)

[
�2K�(a�n(s);s)

@s(f � �Tg)(a�n(s); s)

9=;
Proof. Follow directly from Theorem 13 and Theorem 8.
Since each Vi is locally Lipschitz, the generalized multiplier rule for each period is given

by:

0 2 @a(F (a; s) + �Vn�1(a)� �Tg(a; s))(a�(s))

and if a�(s) is interior, then:

0 2 @a(F (a; s) + �Vn�1(a))(a�(s))

which simpli�es to:

�DaF (a
�(s); s) 2 @a(�Vn(a�(s))

whenever F is C1 in a.
Taking N ! 1, a consequence of Proposition 15 above is that the sequence of func-

tions fVng (which converges uniformly to the unique function V solving Bellman�s equation
through the contraction mapping theorem) is in fact a sequence of locally Lipschitz functions.
Unfortunately, uniform limits of sequences of locally Lipschitz functions are not necessarily
locally Lipschitz.6 However, additional properties of V may be obtained by putting more
restrictions on the primitive data, as shown in the next section.

5.1.1 Concave Dynamic Programming

Consider the in�nite horizon version of the previous program for which we make the following
assumptions, typically satis�ed by a large class of dynamic programs:
Assumption 5.1.1: F , and g are jointly concave and C1 in (a; s). The feasible corre-

spondence is uniformly compact for all s 2 S.
This assumption of concavity along with the right constraint quali�cation guarantees the

existence of directionally di¤erentiable envelope, as given by the next corollary.

Proposition 16 Under assumption 5.1.1 (i) if GMFCQ is satis�ed for every optimal solu-
tion a�(s) 2 A�(s), then V is concave and locally Lipschitz, with bounds of the directional
derivatives given by,

V 0(s; x) = max
a�(s)2A�(s)

min
�2K(a�(s);s)

�
Fs(a

�(s); s)� �Tgs(a�(s); s)
�
� x

and (ii) if SMFCQ is satis�ed for every optimal solution a�n(s) 2 A�n(s), then V is concave
and C1 with derivative given by

V 0(s) = max
a�(s)2A�(s)

�
Fs(a

�(s); s)� �Tgs(a�(s); s)
�
� x

6Indeed by the Weistrass Approximation Theorem, any continuous functions on [0; 1] (including non
Lipschitz continuous functions) may be uniformely approximated by polynomials (which are Lipschitz).
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Proof. A recursive applications of Bellman�s operator generate a sequence fVng, of concave
functions converging uniformly to a concave function V . Concavity of V implies almost
everywhere di¤erentiability. At points of nondi¤erentiablity V is at least directionally dif-
ferentiability and thus locally Lipschitz. Recalling that V solves the Lipschitz program:

V (s) = maxfF (a; s) + �V (a)g

subject to g(a; s) � 0, under GMFCQ a direct application of Corollary 10 establishes that:

V 0(s; x) = max
a�(s)2A�(s)

min
�2K(a�(s);s)

�
Fs(a

�(s); s)� �Tgs(a�(s); s)
�
� x

Next, recalling that SMFCQ implies uniqueness of the multipliers (when primitives are C1,
see Corollary 9) so that:

V 0(s; x) = max
a�(s)2A�(s)

�
Fs(a

�(s); s)� �Tgs(a�(s); s)
�
� x

Moreover, note,

�V 0(s;�x) = � max
a�(s)2A�(s)

�
Fs(a

�(s); s)� �Tgs(a�(s); s)
�
� (�x)

= min
a�(s)2A�(s)

�
Fs(a

�(s); s)� �Tgs(a�(s); s)
�
� x

� max
a�(s)2A�(s)

�
Fs(a

�(s); s)� �Tgs(a�(s); s)
�
� x

= V 0(s; x)

for all directions x 2 Rm. The concavity of V implies that

�V 0(s;�x) � V 0(s; x);

and therefore, for all x 2 Rm,

�V 0(s;�x) = V 0(s; x)

Given the lower Clarke regularity of V , this precisely means that:

� min
z2@Vn+1(s)

fz � (�x)g = min
z2@Vn+1(s)

fz � xg

() max
z2@Vn+1(s)

fz � xg = min
z2@Vn+1(s)

fz � xg

and thus, V is strictly di¤erentiable. Strict di¤erentiability imply C1, by Rockafellar and
Wets [28] Corollary 9.19.
In the following section we provide an example of concave Dynamic Programming where

we apply the above proposition.
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5.1.2 Application: Di¤erentiability of the Pareto Frontier

Consider the model of Kocherlakota for an exchange economy in which two in�nitely lived
agents receive a stochastic endowment in each period t. Since endowment is stochastic, the
two agents mutually share their endowment under limited commitment. The endowment for
agent i in period t is (!1s; !

2
s) which is determined by the realization of �t. The sequence

of independently and identically distributed random variable � = f�1; �2; ::::g have �nite
support � = f1; 2; :::; Sg. The probability that �t equals s is denoted by �s for all s in �.
We will assume the following:
Assumption 5.1.2: The utility function u : R+ ! R is increasing, concave and C1.

Further limc!0+ u
0(c) = 1. 0 < � < 1. And for each U0, the feasible set is uniformly

compact.
Note we have relaxed the assumptions in Koeppl of strictly concave and strictly increasing

and C2 utility function. We characterize the incentive feasible allocations (see Koeppl for
details).

V (U0) = max
cs;us

SX
s=1

�s [u(!s � cs) + �V (Us)] (9)

subject to

U0 �
SX
s=1

�s [u(cs) + �Us] � 0

u(!1s) + �Uaut � u(cs)� �Us � 0
u(!s � !1s) + �Uaut � u(!s � cs)� �V (Us) � 0
Us 2 [Uaut; Umax]

Here, the set of optimal solution is denoted by Y �(s), and a typical element of this set is
(c�s; U

�
s ), and the KKT multipliers are denoted as (�1; �2s; �3s; �4s; �5s) 2 K(c�s; U�s ). Note,

from assumption 5.1.2, and separability structure of programming problem the objective and
the constraints are jointly concave in (cs; us; U0). Thus, the assumptions of the last section
hold here. As a direct consequence of Proposition 16, under assumption 5.1.2 if SMFCQ
is satis�ed for every optimal solution (c�(U0); U�(U0)) 2 Y �(U0), then V is concave and C1

with derivative given by7

rV (U0) = �1

Moreover here we also show that at points of nondi¤erentiability, the limiting value
function is directionally di¤erentiable. Under assumption 5.1.2, if GMFCQ is satis�ed for
every optimal solution (c�(U0); U�(U0)) 2 Y �(U0), then from Proposition 16, V is concave
with directional derivatives given by,

V 0(U0;x) = max
(�1;�2s;�3s)2(c�s ;U�s )

�1 � x

7This result is also discussed by Zapatero and Santos [26].
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5.2 Optimization problems with discrete choice variables

Consider a Lipschitz program in which the decision variable a1 may only take one of r
possible values. That is consider the program:

max
a2D(s)

f(a; s) (10)

where D(s) = fg(a; s) � 0, and a1 = bj j = 1; :::; rg. We simply rewrite the r equality

constraints a1 = bj as one unique constraint h(a; s) =
rY
j=1

(a1�bj) = 0. Clearly h : A�S ! R

is C1, with gradient given by rah(a; s) = h1(a) = ( @h
@a1
; 0; :::; 0). At any optimum a�(s) 2

A�(s), a�1(s) must equal some bk; so that rah(a
�(s); s) = (

Y
j 6=k

(bk � bj); 0; :::; 0) is always

distinct from 0:
The Lagrangian associated with this standard maximization problem is given by:

L(a; �; �; s) = f(a; s)� �T � g(a; s)� �h(a; s)
and a�(s) = (bk; a

�
2(s); :::; a

�
n(s)) 2 A�(s) is a KKT point if there exists a vector � � 0 of

multipliers and � 2 R such that:

�rah(a
�(s)) 2 @a(f �

pX
i2I(a�(s);s)

�igi)(a
�(s); s))

where I(a�(s); s) is the set of identifying the p active inequality constraints (those for which
gi(a

�(s); s) = 0). In this problem, GMFCQ is de�ned as follows.

De�nition 17 A feasible point a 2 D(s) satis�es the Generalized Mangasarian-Fromovitz
Constraint Quali�er (GMFCQ) if there exists a ey 2 Rn such that,

9ey 2 Rn; 8a 2 @ag(a; s);  � ey < 0, and h1(a; s)ey = 0.
Note that necessarily ey1 = 0 for ey to meet this condition. It is then a straightforward

application of Theorem 8 for Lipschitz programs with C1 equality constraints (speci�cally,
Theorem 26 in Appendix C) to claim the following:

Proposition 18 If D(s) is nonempty-valued and uniformly compact near s, and if the GM-
FCQ holds for every optimal solution a�(s) 2 A�(s); then for any direction of perturbation
x 2 Rm:

lim inf
t!0+

V (s+ tx)� V (s)
t

� inf
(�;�)2K(a�(s);s)

f min
�2@s(f��T g��h)(a�(s);s)

� � xg

and:

lim sup
t!0+

V (s+ tx)� V (s)
t

� sup
(�;�)2K(a�(s);s)

f max
�2@s(f��T g��h)(a�(s);s)

� � xg

Also, V is locally Lipschitz and the Clarke gradient is given by:

@V (s) � co

8<: [
a�(s)2A�(s)

[
(�;�)2K�(a�(s);s)

@s(f � �Tg � �h)(a�(s); s)

9=;
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5.2.1 Application: Labor Leisure Choice

Consider a �nite horizon labor-leisure choice problem where labor takes only the binary
values f0; 1g. Thus we formulate a N period problem as,

Vn(kn) = max
cn;kn+1;ln

fu(cn; 1� ln) + �Vn+1(kn+1)g

subject to

cn + kn+1 � f(kn; ln) � 0

�cn � 0

�kn+1 � 0

ln(1� ln) = 0

for all n � T � 1. For n = N , kn+1 = 0, and VT+1 = 0. We also assume the following:
Assumption 5.2.1: The utility function u : Rn+ � R+ ! R and the production function

f : Rn+ � R+ ! R+ are locally Lipschitz and increasing in both arguments. The feasible set
Dn : Rn+�Rn+ � Rn+ � R+ is nonempty-valued and uniformly compact near for all kt.
Since the utility function is increasing in the �rst argument for each period n, the �rst

inequality always holds with an equality. Therefore we substitute cn in the objective with
the �rst constraint. The per period Lagrangean is given by;

Ln(kn) = u(f(kn; ln)� kn+1; 1� ln) + �Vn+1(kn+1) + �1n(f(kn; ln)� kn+1)
+�2nkn+1 + �n(ln(1� ln))

and a typical element of the optimal choice correspondence is denoted by y�N(kN) 2 Y �N(kN).
Now by recursively applying Proposition 18, we get the following result.
Under assumption 5.2.1, if the GMFCQ holds for every optimal solution y�n(kn) 2 Y ;�n (kn);

then for any direction of perturbation x 2 Rn:

lim inf
t!0+

Vn(kn + tx)� Vn(kn)
t

� inf
(�n;�n)2K(y�(kn);kn)

f min
�2@knLn(y�(kn);kn)

� � xg

and:

lim sup
t!0+

Vn(kn + tx)� Vn(kn)
t

� sup
(�n;�n)2K(y�(kn);kn)

f max
�2@knLn(y�(kn);kn)

� � xg

and Vn is locally Lipschitz, for all n = 1; ::; N .

5.3 Some Examples

The economic literature is depleted with examples with multi-period optimization problems.
Typically in these examples the value function of the �nal period (for �nite period problems)
enter the optimization problem of the previous period so on and so forth. The value function
of period t may enter optimization problem of the Period t � 1, either in the objective or
the constraints or both. To make calculations easy what is done in practice is to assume
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enough structure such that the value function of each period is C1, implying the optimization
problem in each period is in the class of C1 and/or concave functions. However, as we show
in this paper concavity and C1 di¤erentiability is not necessary to assume, albeit it makes
calculations easier but at the cost of strong assumptions. Next, we solve two multi period
optimization problem where the objective need not be C1, and thus we use generalized
derivatives to derive the optimal solutions.

5.3.1 Redistributive Taxes

Consider an endowment economy with a benevolent social planner who collects taxes to
redistribute it; and N agents each endowed with wealth W i that chooses one unit of labor
between leisure and labor supply to maximize their utility. We consider a sequential problem:
In the �rst period the planner chooses an optimal tax levied an wage income to maximize his
social welfare function. In the second period given the tax rate, the redistributed income,
wages and prices of the �nal good each agent maximizes their utility ui : R+ � [0; 1]! R+.
Agent i gets �i 2 [0; 1], with

PN
i=1 �

i = 1, proportion of total tax collected. We assume the
following:
Assumption 5.3.1: The utility function ui for each agent i, is locally Lipschitz, and

nondecreasing in all arguments.
The �rst period problem is:

U i(� ;W i; w; �i) = max
li;ci

ui(ci; 1� li)

subject to

ci � w(1� �)li � �iw�
NX
i=1

li �W i � 0

�li � 0

li � 1 � 0

From, Theorem 13, under assumption 5.3.1 if the feasible set for each agent i, Di(� ;W i; w; �i)
is uniformly compact and GMFCQ hold for all (c

i�; l
i�)(� ;W i; w; �i) 2 Y �(� ;W i; w; �i) then

the indirect utility function for each agent i, U i is locally Lipschitz in (� ;W i; w; �i).Thus,
recalling Corollary 14, the Clarke derivative of U with respect to � ; �i are given by

@�U(� ;G;w) � cof
S

(ci�;li�)2Y �(�;W i;w;�i)

S
(�11;�

1
2;�

3
2)2K

f@cu(ci�; 1� li�)� �11(wli� � �iw
NX
i=1

li�)gg

@�iU(� ;G;w) � cof
S

(c
i�;li�)2Y �(�;W i;w;�i)

S
(�11;�

1
2;�

3
2)2K

f@cu(ci�; 1� li�)� �11(w�
NX
i=1

li�)gg

where the KKTmultipliers of the �rst period constraints (�11; �
1
2; �

3
2) 2 K(ci�; li�(� ;W i; w; �i)).

Now the �rst period problem of the social planner takes the form:

v(w) = max
�;�i

NX
i=1

�iU i(� ;W i; w; �i)

23



subject to

�� � 0

��i � 0
NX
i=1

�i = 1

where
PN

i=1 �
i = 1.

The objective of the �rst period is not necessarily C1, but locally Lipschitz and the
constraints are C1, thus, the generalized �rst order conditions are given by

0 2 @�
�
U(� ;W i; w; �i) + �21

�
0 2 @�i

�
U(� ;W i; w; �i) + �22 � �2

�
where the KKT multipliers of the second period constraints (�21; �

2
2; �

2) 2 K(� �; �i�(w)).
Any optimal tax rate satis�es the above two inclusion relation.

5.3.2 Research and Development

We consider a two stage Monopolist problem: in the �rst stage an R and D investment
level that might reduces cost in chosen, and in the second stage the �rm enters the product
market. A I amount of R and D investment reduces constant marginal cost from c to c with
probability z(I). The inverse demand function q : R+ ! R+, and the probability function
z : R+ ! [0; 1] are both locally Lipschitz.
In the second period the monopolist is faced with the following optimization problem:

�1(I) = max
p

�
q(p)(p� cz(I)

	
subject to

�q � 0

�p � 0

Let the set of optimal solution be denoted by P �(I) with typical element p�(I), and the set of
multipliers by � = (�11; �

1
2) 2 K(p�(I); P �(I)). From Theorem 13, �1(I), is locally Lipschitz

with Clarke gradient

@�1(I) � co

( S
p�(I)2P �(I)

S
�2K(p�(I);P �(I))

f@Iq(p�)cz(I)g
)

= co

( S
p�(I)2P �(I)

f@Iq(p�)cz(I)g
)

Thus, in the �rst period the monopolist encounters a Lipschitz optimization problem
with C1 constraints given by:

max
I

�
�1(I)� I
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subject to

�I � 0

Consequently the optimal investment satis�es the �rst order inclusion condition given by

0 2 @�1(I)� 1 + �2.

6 APPENDIX A: Mathematical Tools

6.1 Derivatives and subgradients

6.1.1 Lipschitz functions

A function f : 
 � Rn ! Rm is locally Lipschitz at x with modulus k(x), 0 � k < 1, if
there exists � > 0 such that for all x0; x00 in B(x; �):

jf(x00)� f(x0)j � k(x) jx00 � x0j :

When k(x) may be chosen independently of x, f is said to be Lipschitz. By Rademacher�s
theorem, a Lipschitz function f : 
 � Rn ! Rm is almost everywhere di¤erentiable. Recall
that the directional derivative at x0 is the function:

d 7�! f 0(x0; d) = lim
t!0+

f(x0 + td)� f(x0)
t

;

and, when this quantity exists for all d, we say that f is directionally di¤erentiable (or
Gateaux di¤erentiable)8 at x0. f is di¤erentiable at x0 2 X if it is directionally di¤erentiable
and if f 0(x0; d) = rf(x0) � d (note, for instance that the function x ! jxj is Gateaux
di¤erentiable but not di¤erentiable) and continuously di¤erentiable at x0 if the function
rf(:) : 
 ! Rn�m is continuous at x0. f is strictly di¤erentiable at x if there exists a
continuous linear (in d) function Df(x) such that:

lim
z!x;t!0+

f(z + td)� f(z)
t

= Df(x)(d)

A strictly di¤erentiable function is obviously di¤erentiable (the converse is wrong) but not
necessarily continuously di¤erentiable.

6.1.2 Dini and Clarke derivatives

Directional derivatives of locally Lipschitz functions do not necessarily exist. However, the
upper (right hand) Dini derivative de�ned as the function:

d 7�! D+f(x; d) = lim sup
t!0+

f(x+ td)� f(x)
t

;

8For locally Lipschitz functions in �nite dimensional spaces, the notion of Gateaux di¤erentiability and
Frechet di¤erentiablility coincide, and f 0(x0; d) is homogenous of degree one in d.
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and the lower (right hand) Dini derivative de�ned as the function:

d 7�! D+f(x; d) = lim inf
t!0+

f(x+ td)� f(x)
t

:

of locally Lipschitz functions always exist (i.e. are �nite quantities). Upper and lower Dini
derivatrives coincide at points x where the directional derivative exists
The Clarke upper and lower (directional) derivatives at x0 are, respectively, the functions:

d 7�! f o(x; d) = lim sup
y!x
t!0+

f(y + td)� f(y)
t

d 7�! f�o(x; d) = lim inf
y!x
t!0�

f(y + td)� f(y)
t

Clarke derivatives of Lipschitz functions always exist, and if f is locally Lipschitz and direc-
tionally di¤erentiable at x,

f�o(x; d) � f 0(x; d) � f o(x; d)

6.1.3 Clarke gradient

The Clarke generalized gradient (sometimes called "subdi¤erential") of a Lipschitz function
f at x is the nonempty compact convex set de�ned as:

@f(x) = co flimrf(xi) : xi ! x; xi =2 �; xi =2 
fg

where co denotes the convex hull9, � is any set of Lebesgue measure zero in the domain, and

f is a set of points at which f fails to be di¤erentiable. Clarke (Proposition 2.1.5) shows
that x� @f(:) is an upper hemicontinuous correspondence. Elements of the subdi¤erential
are called subgradients, and for a convex function f , the subdi¤erential at x is the set of p
2Mm�n satisfying:

p � d � f(x0 + d)� f(x0)

for all directions d 2 Rn. Clarke [6] (Proposition 1.4) shows that:

f o(x; d) = max
�2@f(x)

f�:dg

which implies that f o(x; d) is a convex function of d (since it is the supremum of a family of
linear functions) (equivalently, f�o(x; d) is concave in d). This also implies that:

�f o(x;�d) = � max
�2@f(x)

f�:dg = min
�2@f(x)

f�:dg = f�o(x; d) � f o(x; d)

9In the formula, either co or co will do since we work in �nite dimensional spaces.
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and, equivalently, that:

f�o(x; d) � �f�o(x;�d) = f o(x; d)

We also note that if the Clarke derivatives of a locally Lipschitz function coincide at x if
then f is strictly di¤erentiable at x since

f�o(x; d) = lim
y!x;t!0+

f(y + td)� f(y)
t

= f o(x; d)

is a concave and convex (thus linear) function of d; and this expression is by construction
continuous in x. Clearly, the Clarke derivatives of a strictly di¤erentiable function coincide.
A function f is said to be upper (lower) Clarke regular at x if it is directionally di¤er-

entiable at x and if its Clarke upper (resp. lower) derivative coincide with its directional
derivative, i.e., if f o(x; d) = f 0(x; d): (resp. f�o(x; d) = f 0(x; d)). We note that the sum of
two Clarke regular functions is itself a Clarke regular function (since @(f + g) � @f + @g so
f 0 + g0 � (f + g)0 � f 0 + g0 = f 0 + g0).

6.2 Properties of Correspondences

We work exclusively in metric spaces, so we can state topological properties of correspon-
dences in exclusively in terms of sequences.

De�nition 19 A non-empty valued correspondence D : S � A is:
(i) lower hemicontinuous at s if for every a 2 D(s) and every sequence sn ! s there

exists a sequence fang such that an ! a and an 2 D(sn).
(ii) upper hemicontinuous at s if for every sequence sn ! s and every sequence fang such

that an 2 D(sn) there exists a convergent subsequence of fang whose limit point a is in D(s).
(iii) closed at s if sn ! s, an 2 D(sn) and an ! a implies that a 2 D(s) (In particular,

this implies that D(s) is a closed set).
(iv) open at s if for any sequence sn ! s and any a 2 D(s), there exists a sequence fang

and a number N such that an ! a and an 2 D(sn) for all n � N .

Note that if the feasible domain is D(s) = fa 2 A; gi(a; s) � 0; i = 1; :::; pg, in which the
gi are locally Lipschitz (hence jointly continuous), then D is closed at any s 2 S. The same
property holds true in the presence of locally Lipschitz equality constraints. Another property
of correspondence which will be critical in our analysis is that of uniform compactness.

De�nition 20 A non-empty valued correspondence D is said to be uniformly compact near
s if there exists a neighborhood S 0 of s such that cl [[s02S0D(s)] is compact.

We note the result in Hogan [18] that if D is uniformly compact near s, then D is
closed at s if and only if D(s) is a compact set and D is upper hemicontinuous at s. In
particular, closed and uniformly compact imply upper hemicontinuous. Finally, we will need
the following property of hemicontinuous correspondences ( a property that hence applies to
subdi¤erentials).
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Proposition 21 If D is an upper hemicontinuous correspondence, then for every compact
neighborhood K of x, the set:S

z2K
D(z)

is compact.

Proof. Consider a sequence fyng in
S
z2K

D(z) so that yn 2 D(zn) for some zn in K. The

sequence fzng is the compact K, so there exists a subsequence of fz'(n)g of fzng converging
to some z0 2 K. By upper hemicontinuity of D at z0, there exists a subsequence of fy'(n)g
converging to some y 2 D(z0). This proves that the initial sequence fyng has a convergent
subsequence, and therefore that the set

S
x2K

D(x) is compact.

7 APPENDIX B

Proof of theorem 5
Proof. Notice that the maximization domains in the de�nition of SL are generalized gradi-
ents, which we know are non-empty and compact. Given any x, de�ne G as follows:

G = fy 2 Rn; 8(&a; a) 2 @a(f; g)(a�(s); s) and 8(&s; s) 2 @s(f; g)(a�(s); s)
a � y + s � x � 0g

By GMFCQ, G is non-empty, and both G and K = K(a�(s); s) are closed convex sets. Note
that if � 2 K then:

8y 2 Rn; min
(&a;a)

�
&a � �Ta

�
� y = min

�2@a(f��T g)(a�(s);s)
� � y � 0

(or else there exists some y such that min(&a;a) (&a � �a) � y > 0 which would contradict
0 2 @a(f �

Pp
i=1 �igi)(a

�(s); s)). Consequently:

sup
y
SL(y; �) =

�
min(&s;s)(&s � �

Ts) � x if � 2 K
+1

�
which implies that:

inf
��0
sup
y
SL(y; �)) = inf

�2K
sup
y
SL(y; �)) < +1 (B1)

Next, we also have:

inf
��0
SL(y; �) = inf

��0

�
min
(&a;a)

(&a � �Ta) � y + min
(&s;s)

(&s � �Ts) � x
�

= min
((&a;a);(&s;s))

�
(&a � y + &s � x) + inf

��0
(��T (a � y + s � x))

�
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If y =2 G; then a � y + s � x > 0 and thus:

inf
��0
��T (a � y + s � x) = �1

so that:

inf
��0
SL(y; �) =

�
min((&a;a);(&s;s))(&a � y + &s � x) (if y 2 G)
�1 otherwise

�
and therefore:

sup
y
inf
��0
SL(y; �) > �1 (B2)

Naturally for all � � 0:

inf
��0
SL(y; �) � sup

y
SL(y; �)

and, therefore (using the results B1 and B2 above):

�1 < sup
y
inf
��0
SL(y; �) � inf

��0
sup
y
SL(y; �)) = inf

�2K
sup
y
SL(y; �) < +1

Our purpose is to show that this last weak inequality is in fact an equality, and this will
prove that SL has a saddle value.
From the inequalities above, we have:

�1 < sup
y

�
min

((&a;a);(&s;s))
(&a � y + &s � x)

�
� inf

�2K

�
min
(&s;s)

(&s � �Ts) � x
�
< +1

Next, for any ((& 0a; 
0
a); (&

0
s; 

0
s)) 2 @a(f; g)(a�(s); s)� @s(f; g)(a�(s); s):

inf
��0
sup
y

� �
& 0a � �T0a

�
� y

+
�
& 0s � �T0s

�
� x

�
� min

((&a;a);(&s;s))
inf
��0
sup
y

� �
&a � �Ta

�
� y

+
�
&s � �Ts

�
� x

�
(B3)

= inf
��0

min
(&a;a);(&s;s)

sup
y

� �
&a � �Ta

�
� y

+
�
&s � �Ts

�
� x

�
� inf

��0

�
sup
y
SL(y; �)

�
� sup

y

�
inf
��0
SL(y; �)

�
= sup

y
min

((&a;a);(&s;s))
inf
��0

� �
&a � �Ta

�
� y

+
�
&s � �Ts

�
� x

�
= min

((&a;a);(&s;s))
sup
y
inf
��0

� �
&a � �Ta

�
� y

+
�
&s � �Ts

�
� x

�
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Note that the last equality in this sequence is due to the existence of a saddle point for the
saddle function s:

s(�; (&a; a); (&s; s)) = inf
��0

� �
&a � �Ta

�
� y

+
�
&s � �Ts

�
� x

�
Indeed, since s is convex in y, concave in ((&a; a); (&s; s)) 2 @a(f; g) � @s(f; g) (which is
bounded), then s has a (local) saddle value. Therefore,

min
(&a;a);(&s;s)

sup
y
s = sup

y
min

(&a;a);(&s;s)
s

Denoting (&a; a); (&s; s) as one of the particular subgradients for which expression (B3)
above is attained, we can summarize the above sequence of inequalities as follows:

inf
��0
sup
y

�
(&a � �a) � y
+(&s � �s) � x

�
� sup

y
inf
��0

�
(&a � �a) � y
+(&s � �s) � x

�
(B4)

Now, consider the following linear program:

&s � x�max (�s) � x (P)

subject to:

� � 0 and &a � �a = 0
The dual to (P) is simply:

&s � x�min &a � y
subject to:

a � y + s � x � 0 and y unrestricted
Clearly, any y 2 G is feasible for the dual, and since B1 above established that:

+1 > inf
�2K

( min
(&s;s)

(&s � �Ts) � x) = inf
��0
sup
y
SL(y; �)

program P is feasible and there is no duality gap. The zero duality gap condition is precisely
(B4) with an equality. Referring to the sequence of inequality above, we see that this implies
that inf��0 supy SL(y; �) and supy inf��0 SL(y; �) must coincide. That is, SL has a saddle
value, and we have:

sup
y
inf
��0
SL(y; �) = sup

y2G

�
min

((&a;a);(&s;s))
(&a � y + &s � x)

�
=

inf
�2K

sup
y
SL(y; �) = inf

�2K

�
min
(&s;s)

(&s � �Ts) � x
�
= inf

�2K
Los(a

�(s); s;�;x)

in which:

Los(a
�(s); s;�;x) = min

�2@s(f��T g)(a�(s);s)
� � x
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8 APPENDIX C. EQUALITY CONSTRAINTS

In this section we consider the Lipschitz optimization program:

max
a2D(s)

f(a; s) (11)

in which:

D(s) = fajgi(a; s) � 0; i = 1; :::; p and hj(a; s) = 0, j = 1; ::::::::; qg:

In addition to being locally Lipschitz, we assume that the equality constraints are di¤eren-
tiable and modify the GMFCQ to:
(i) h is di¤erentiable with respect to a, rah is jointly continuous in a neighborhood of

(a�(s); s), and the matrix rah(a
�(s); s) has full rank;

(ii) there exists y 2 Rn such that:

8a 2 @ag(a�(s); s); a � y < 0, and rah(a
�(s); s) � y = 0 (12)

A couple of issues arise when seeking to relax the smoothness assumption (with respect to
a) on the equality constraints and to only assume Lipschitzness. First, part of the GMFCQ
needs to be generalized as speci�ed in de�nition 3 of Section 2 and this obviously imposes
additional restrictions . Second, as shown below, proofs of existence of envelopes in programs
with equality constraints make use of an implicit function theorem. Unfortunately, implicit
function theorems for Lipschitz functions fail to provide enough characterization of the subd-
i¤erential of the implicit function, given the weak composition rule for Lipschitz functions.10

Consequently, and in line with the optimization literature, we only consider only smooth
constraints and use the classical implicit function theorem stated below without proof.11

Proposition 22 (Classical Implicit Function Theorem). Let h : Rn � Rk ! Rk be C1; and
suppose that h(u; v) = 0 and that ruh(u; v) has maximal rank. Then there exists open
neighborhoods U of (u; v) and W of v, and a C1 mapping w : W ! Rk such that:

(x; y) 2 U and h(x; y) = 0() y 2 W and x = w(y)

A direct application of this theorem shows that there exists a neighborhood U of (a�(s); s)
and W of (a�I ; s) in which:

h(a; s) = 0 and (a; s) 2 U () (a�I ; s) 2 W and a = (aD(aI ; s); aI)

where aD is C1 in (aI ; s) and aI 2 Rn�q. With this change of variable, we de�ne a new
reduced-form objective function as ef(aI ; s) = f(aD(aI ; s); aI ; s), a new reduced-form set of
constraints ~g(aI ; s) and ~h(aI ; s); and the following reduced-form problem:

max
aI2D(s)

ef(aI ; s) (13)

10Something stronger than Lipschitzness but weaker than smoothness (in a) would be needed, perhaps
strong di¤erentiability (in a) in a neighborhood of (a�(s); s) with the strong di¤erential having maximal
rank.
11The Lipschitz version of this theorem simply assumes that h is locally Lipschitz and that @uh(u; v) has

maximal rank, but only states that the implicit function w is locally Lipschitz on W .
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subject to

D(s) = faI 2 Rn�q, egi(aI ; s) � 0, i = 1; ::::::::; pg
Note that program (13) is only de�ned in a neighborhood W of (a�I ; s), and that for corre-
sponding values (a; s) 2 F (s) and (aI ; s) 2 W; the constraints and the objective functions of
the reduced-form programs and of the original program take the same values. As a result, the
two programs (13) and (11) have corresponding feasible points and maxima, the same value
function at s V (s) = eV (s), as well as the same binding inequality constraints at (a�(s); s)
and (a�I ; s). Having eliminated the equality constraints through a change of variables, we
prove in the next lemma that the GMFCQ constraint quali�cation for the full program (11)
is transmitted to the reduced-form program (13) and becomes the GMFCQ/R:

9y such that 8e 2 @aIeg(a�I ; s); e � y < 0.
Lemma 23 If the GMFCQ holds for some point (a�(s); s) for (11), then the GMFCQ/R
holds at (a�I ; s) for (13).

Proof. Let y satisfy the GMFCQ at (a�; s) so that:

raDh(a
�; s) � yD +raIh(a

�; s) � yI = 0

or, equivalently:

yD = �r�1
aD
h(a�; s) � raIh(a

�; s)yI = raIaD(a
�
I ; s) � y�I ;

Also, by de�nition of y :

8 2 @ag(a�; s);  � y < 0;

and therefore:

D � raIaD(a
�
I ; s) � yI + I � yI = D � yD + I � yI < 0

Clearly, the same inequality holds for any convex combination of the D 2 @aDg(a�; s): Re-
calling the change of variables eg(aI ; s) = g(aD(aI ; s); aI ; s) and the chain rule for generalized
gradients:

@aIeg(a�I ; s) � cof@aDg(a�; s) � raIaD(a
�
I ; s)g+ @aIg(a�; s))

which implies, by the last inequality above, that:e � yI < 0 for any e 2 @aIeg(a�I ; s)
This proves that yI satis�es the GMFCQ/R at (a�I ; s).
There is, however, one major di¤erence between the two programs. While it is possible for

the full program to have several optima at a given s, the reduced form program is constructed
in the neighborhood of only one maximum, and can only mimic the behavior of f around
that particular maximum. If the maximum is unique, that is not a problem. If there are
several maxima, then the reduced form program cannot capture all the information about
the behavior of f , so one can only assert that V (s0) � eV (s0) in a neighborhood of s; of course
with equality at s. However, we know that the reduced form value function is continuous at
s, and we have the following results:
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Lemma 24 Suppose that D is nonempty valued and uniformly compact in a neighborhood of
s. (i) If the GMFCQ holds at a�(s) 2 A�(s), then V is continuous at s, (ii) If the GMFCQ
holds at every element of A�(s) then V and eV coincide in every direction of perturbation x
in some neighborhood of s, and (iii) A� is upper hemicontinuous at s.

Proof. (i) As noted before, D is closed at s, and being uniformly compact near s, it is
necessarily upper hemicontinuous at s so V is (at least) upper semicontinuous at s. The
GMFCQ is transmitted to the GMFCQ/R for the reduced form program so eV is continuous
at s (from Lemma 7 above). Moreover V (s0) � eV (s0) in a neighborhood of s, and thus:

lim inf
t!0
V (s+ tx) � lim inf

t!0
eV (s+ tx) = eV (s) = V (s)

which proves that V is lower semicontinuous at s as well.
(ii). Consider the sequence ftng converging to 0 so that limtn!0fs + tnxg = s. Since

D is uniformly compact near s, and since D is closed at s, then every D(s0) with s0 in
some neighborhood of s is compact. This implies that for n large enough (say n � N , or,
equivalently, tn small enough), D(s+ tnx) is compact and therefore f attains its maximum
at on D(s + tnx). Consider then the sequence fa�(s + tnx)gn�N such that V (s + tnx) =
f(a�(s + tnx); s + tnx), with a�(s + tnx) 2 D(s + tnx). By uniform compactness of D near
s, there exists a neighborhood N(s) such that the closure of [s02N(s)D(s0) is compact, so
that the sequence fa�(s + tnx)gn�N has a convergent subsequence converging to some a�.
Without loss of generality we may assume that limtn!0 a

�(s + tnx) = a�: By continuity
of V and f , and since D is closed at s, a� 2 D(s) and V (s) = f(a�; s) which implies that
a� 2 A�(s).12 Because a� is in A�(s); lemma23 above applies and the GMFCQ is transmitted
to the reduced form problem at the corresponding maximum a�I of ef , and eV is continuous
at s as well. Uniform compactness of D near s implies uniform compactness of eD near s, so
there exists N 0 such that for all n � max(N;N 0), ef attains its maximum at on eD(s + tnx)
and therefore:eV (s+ tnx) = ef(a�I(s+ tnx); s+ tnx) with a�I(s+ tnx) 2 eD(s+ tnx):
By construction f(a�(s+ tnx); s+ tnx) = ef(a�I(s+ tnx); s+ tnx) and thus, for n su¢ ciently
large (i.e., for tn small enough):

V (s+ tnx) = f(a
�(s+ tnx); s+ tnx) = ef(a�I(s+ tnx); s+ tnx) = eV (s+ tnx):

The initial and reduced-form programs also coincide at another level: A correspondence
exists between the KKT vectors of the reduced program and those of the full program, as
shown in the following lemma.

Lemma 25 If � is a KKT vector for program (13) at a�I , then there exists some � 2 Rq
such that (�; �) is a KKT vector for program (11) at a� = (aD(a�I ; s); a

�
I).

12Summarizing, we just proved that for every sequence fsng that converges to s in the direction x and every
corresponding sequence fa�(sn)g with a�(sn) 2 A�(sn) for each n, there exists a convergent subsequence
of fa�(sn)g whose limit point a� is in A�(s): This is very close to showing that A� : S ! A is upper
hemicontinuous at s (which in fact we prove below).
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Proof. Since eh is identical to 0 on W; and recalling that ehj(aI ; t) = h(aD(aI ; t); aI ; t), then
for all j = 1; ::; q:

0 = raDh(a; t) � raIaD(aI ; t)] +raIh(a; t)

Since raDh(a; t) has maximal rank at (a
�(s); s), by continuity of rah, it has maximal rank

on a neighborhood of (a�(s); s) included in U and thus:

raIaD(aI ; t) = f�r�1
aD
h(a; t) � raIh(a; t)g;

The reduced form equality constraints eh being identical to 0, for any � 2 Rq we have:
@aI (

ef � �Teg)(a�Is) = @aI ( ef � �Teg � �Teh)(a�Is)
and by the chain rule:

@aI (
ef � �Teg)(a�Is) � @a( ef � �Teg � �Teh)(a�s) � f("; In�q)g

where In�q is the (n�q)�(n�q) identity matrix, and " = f�r�1
aD
h(a�(s); s)�raIh(a

�(s); s)g
is the gradient of aD at (a�I ; s) obtained above. Thus if � is a Kuhn-Tucker vector for program
(13) at a�I ; there exists (&; ) 2 @a(f; g)(a�(s); s) such that:

0 = (&D � �TD � �TraDh(a
�(s); s)) � "+ &I � �TI � �TraIh(a

�(s); s)

for any choice of �: By assumption raDh(a
�(s); s) has maximal rank, so for the speci�c

choice of � equal to �r�1
aD
h(a�; s)(&D + �D) we have:

&D � �TD � �T�D = 0

and thus:

&I � �TI � �T�I

This establishes that:

& � �T � �T� = 0

which proves that (�; �) is a Kuhn-Tucker vector for program (11) at (a�(s); s).
Consider now the two Lagrangians eL(aI ; s;�) = ( ef � �Teg)(aI ; s) and L(a; s;�; �) = (f�

�Tg � �Th)(a; s), and the set H = f(a; s) : h(a; s) = 0g. By construction, for a given � and
for any �, eL takes the same values in a neighborhood W of (a�I ; s) as the restriction of L
to H \ U near (a�; s). By Lemma 23, if the constraint quali�cation holds at (a�; s), it also
holds at (a�I ; s). This implies that L may be used to calculate the generalized gradient of eL
at the optimum, so that:

@seL(a�I ; s; �) = cof� : 9f(an; sn)g 2 domrsL \ (H \ U); (an; sn)! (a�; s); rsL(an; sn; �; �)! �g
� @sL(a

�; s)
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The inclusion is generally not an equality, since the elements of @eL are limits of sequences of
derivatives evaluated at (an; sn) belonging to H, whereas no such restriction is imposed on
the sequences of derivatives used in de�ning the elements of @L: This inclusion implies that
for any direction of perturbation x:

eL�os (a�I ; s;�;x) = mine�2@s( ef��eg)(a�I (s);s)
e� � x � min

�2@s(f��T g��h)(a�(s);s)
� � x = L�os (a�; s;�; �;x)

so that:

eL�os (a�I ; s;�;x) � L�os (a�; s;�; �;x)
Furthermore, by Lemma 25, if � 2 eK(a�I(s); s) there exists some � such that (�; �) 2
K(a�(s); s), and thus:

inf
�2 eK(a�I (s);s)

eL�os (a�I ; s;�;x) � inf
(�;�)2K(a�(s);s)

L�os (a
�; s;�; �;x) (14)

Similarly:

sup
�2 eK(a�I (s);s)

maxe�2@s( ef��T eg)(a�I (s);s)
e� � x � sup

(�;�)2K(a�(s);s)
max

�2@s(f��T g��T h)(a�(s);s)
� � x (15)

With these results we are �nally equipped to state a nonsmooth envelope theorem with
equality and inequality constraints.

Theorem 26 If D is nonempty-valued and uniformly compact near s, and if the GMFCQ
holds for every optimal solution a�(s) 2 A�(s); then for any direction of perturbation x 2 Rm:

lim inf
t!0+

V (s+ tx)� V (s)
t

� inf
(�;�)2K(a�(s);s)

fL�os (a�(s); s;�; �;x)g;

and:

lim sup
t!0+

V (s+ tx)� V (s)
t

� sup
(�;�)2K(a�(s);s)

fLos(a�(s); s;�; �;x)g;

where

L�os (a
�(s); s;�; �;x) = min

�2@s(f��T g��T h)(a�(s);s)
� � x

so that:

Los(a
�(s); s;�; �;x) = max

�2@s(f��T g��T h)(a�(s);s)
� � x
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Proof. By construction V (s0) � eV (s0) in a neighborhood of s and V (s) = eV (s), so that:
lim inf

t!0+
V (s+ tx)� V (s)

t
� lim inf

t!0+

eV (s+ tx)� eV (s)
t

� inf
�2 eK(a�I )f

eL�os (a�I ; s;�;x)g
� inf

(�;�)2K(a�(s);s)
fL�os (a�; s;�; �;xg

the last inequality being precisely (14). Also, as in the proof without equality constraints,
choose a sequence ftng converging to 0 such that:

lim sup
t!0+

V (s+ tx)� V (s)
t

= lim
n!1

V (s+ tnx)� V (s)
tn

= lim
n!1

eV (s+ tnx)� eV (s)
tn

� sup
�2 eK(a�(s);s)

eLos(a�I ; s;�;x)
� sup

(�;�)2K(a�(s);s)
Los(a

�; s;�;�;x)

the last inequality being simply (15).
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