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Abstract
Majority rule is known to be at odds with utilitarianism– majority rule fol-

lows the preferences of the median voter whereas a utilitarian planner would
follow the preferences of the mean voter. In this paper, we show that when
voting is costly and voluntary, turnout endogenously adjusts so that the two
are completely reconciled: In large elections, majority rule is utilitarian. We
also show that majority rule is unique in this respect: Among all supermajority
rules, only majority rule is utilitarian. Finally, we show that majority rule is
utilitarian even in the presence of aggregate uncertainty, a robustness not shared
by other results on the welfare properties of majority rule.

1 Introduction

Pre-election polls leading up to the November 2008 vote on Proposition 8, the Califor-
nia Marriage Protection Act, indicated that it would be easily defeated.1 If passed,
the proposition would make it illegal for same-sex couples to marry. The actual
vote count differed sharply from poll predictions– Proposition 8 passed by a 52-48%
margin. The results surprised most Californians and were shortly followed by mass
protests and lawsuits.2

The intent of any referendum, including Proposition 8, is to reflect directly the will
of the electorate. But of course, it can only reflect the will of those of the electorate
who actually turn out to vote. The election results suggest that the preferences of
those who turned out to vote were different from the preferences of the population at
large, at least to the extent that the pre-election polls accurately reflected the latter.
Precisely, the turnout rates of those in favor of the proposition– that is, against same-
sex marriage– were greater than of those opposed. A simple explanation is that those
in favor felt more strongly about the matter and turned out in greater numbers.3 If
∗Penn State University, E-mail: vkrishna@psu.edu
†University of California, Berkeley, E-mail: rjmorgan@haas.berkeley.edu
1The three polls closest to the election had Proposition 8 losing by margins of 47-50% (Survey

USA), 44-49% (Field Poll) and 44-52% (Public Policy Institute of California).
2The proposition was declared unconstitutional by the courts and the matter is, as of now, awaiting

consideration by the US Supreme Court.
3The vote on Proposition 8 was concurrent with the 2008 presidential election and so one may

wonder whether turnout was determined by the latter. But since California voted overwhelmingly
for Barack Obama in 2008, this cannot explain the “surprise”positive vote for the proposition.
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voters on both sides had come to the polls in proportion to their numbers in the
overall populace, there would have been no surprise on election day. When intensity
of preference drives turnout, such surprises can, and do, happen.

This paper studies the outcomes produced by majority rule in a setting where the
intensity of preference affects turnout. Our starting point is the following well-known
conundrum. Suppose that 51% of the populace mildly favors one of two choices. The
remainder passionately favors the alternative. If everyone voted, the choice supported
by the majority would win; however, a utilitarian social planner would side with the
minority since the welfare gains would more than compensate for the modest losses
of overruling the majority. In such situations, majority rule would appear to be at
odds with utilitarianism.

Or would it? Voting is often a choice rather than a requirement. Moreover, voters
incur opportunity (or real) costs in coming to the polls. In other words, voting is
inherently costly. Accounting for this casts doubt on our earlier conclusion. Given
their intensely held views, the minority may be more motivated to pay the cost of
voting than the majority. Thus, the decision to vote encodes voters’ intensity of
preference. But even here the link is, at best, indirect. Both sides are only motivated
to turn out to the extent that they are likely to influence the final decision; that is,
the benefits from voting are mitigated by the probability that a vote cast is pivotal.
So even though the minority feels intensely about their favored alternative, were they
suffi ciently pessimistic about the prospect of casting a decisive vote, this intensity
alone would mean little in terms of participation.

We show below that when voting is costly, voluntary voting under majority rule
translates societal preferences into outcomes in a consistent way– it always imple-
ments the utilitarian outcome. Moreover, majority rule is the only election rule with
this property. Even when voters are strategically sophisticated and can anticipate
the effects of the voting rule on outcomes, supermajority rules will not deliver the
utilitarian choice. Instead, the outcome disproportionately favors the choice advan-
taged by the voting rule. The implied welfare weight given to the advantaged choice
is equal to the square of the required vote ratio. For instance, a 2/3 supermajority
rule, which requires a 2 : 1 vote ratio to overturn the status quo, would seem to give
twice the weight to that choice. We show that such a rule effectively gives four times
the welfare weight to the status quo than the alternative.

To see why voluntary voting under majority rule is utilitarian, consider the fol-
lowing example: A finite population is to vote on one of two alternatives, A and B.
Voters favoring A constitute a fraction λ > 1/2 of the population and receive payoff
vA > 0 when it is selected over the alternative. The remainder favor B and receive
payoff vB > 0 when B is chosen. Despite there being a majority of A supporters, a
utilitarian planner would prefer B; that is, λvA < (1− λ) vB. Finally, suppose that
each voter’s cost of coming to the polls is independently drawn from a uniform distri-
bution. For A supporters, the benefits of voting are vA Pr [PivA] , where Pr [PivA] is
the probability that an additional A vote is decisive. This, of course, depends on the
turnout rates of the two sides. In equilibrium, all A supporters with costs below a
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threshold cA will vote, and this is determined by equating it to the benefits of voting:

cA = vA Pr [PivA]

and similarly the cost threshold cB for B supporters is

cB = vB Pr [PivB]

Next, because costs are uniformly distributed on [0, 1], cA equals the turnout rate
pA of A supporters; similarly, cB equals pB. Using this and then multiplying the
first equation by the share of A supporters in the population and the second by the
share of B supporters, yields expressions in terms of expected vote shares, λpA and
(1− λ) pB for A and B, respectively. Thus, in equilibrium

λpA
(1− λ) pB

=
λvA

(1− λ) vB
× Pr [PivA]
Pr [PivB]

The right-hand side is the product of two terms that we call the “welfare ratio”and
the “pivot ratio.”We claim that if, as assumed, the welfare ratio favors B, then the
vote shares must favor B as well. Suppose to the contrary that A enjoys a higher vote
share; that is, the left-hand side of the above expression is greater than one. Since, by
assumption, the welfare ratio is less than one, it must be that the pivot ratio exceeds
one. But the fact that A has a higher vote share implies that the pivot ratio is less
than one. The reason is that a vote for the candidate that is behind in an election
is more likely to be decisive than a vote for the candidate that is ahead– a fact that
we term the “underdog” principle. To see why, notice that a vote for the trailing
candidate pushes the vote total in the direction of ties or near ties while a vote for
the leading candidate pushes the total away. Therefore, the former vote is more likely
to be decisive. If the vote share favored A, then both the welfare and pivot ratios
would favor B, leading to a contradiction. Thus, the vote share must favor B. An
analogous argument would apply if the utilitarian calculus favored A instead. As a
consequence, the vote shares always favor the utilitarian choice: λpA > (1− λ) pB if
and only if λvA > (1− λ) vB.When there are many voters, this implies that A would
win with high probability.

Despite its apparent simplicity, the argument above is somewhat subtle. It relies
essentially on the fact that costs are randomly distributed (with a lower support at
0). To see why, suppose, along the lines of Palfrey and Rosenthal (1983), that each
voter incurred a small, fixed cost of voting, c > 0. Assuming that there is an interior
solution, participation rates (in this case, the probability of voting) would again be
determined by equating the costs and benefits. For A voters, this amounts to

c = vA Pr [PivA]

and similarly for B voters
c = vB Pr [PivB]

When A receives a greater vote share than B, the “underdog”principle again implies
that pivotality considerations favor B. Since the expected benefits of voting must be
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same for both sides, it then follows that vA > vB. That is, alternative A prevails
when a typical A voter feels more strongly about his favored candidate than a typical
B voter. But this pays no attention to the fraction of voters of each type, so the
outcome is not utilitarian. Formally, with a fixed cost of voting, λpA > (1− λ) pB if
and only if vA > vB; in contrast, a utilitarian planner would choose A if and only if
λvA > (1− λ) vB.

The difference between the two settings may be better understood by analogy
with the difference between “fixed versus flexible prices” in a market environment.
When the voting cost c is given exogenously, equilibrium requires that the expected
benefits of a vote must equal this cost. As a result, the expected benefits of a vote for
each side are also “fixed.”When voting costs are random, the costs of the marginal
voter on each side, cA and cB, are determined endogenously in equilibrium. The
expected benefits of a vote for each side are now “flexible”and provide just the right
incentives so that the utilitarian outcome results.

Before placing the paper in the context of the extant literature, it is useful
to sketch the key features of our model and its main results. As in the example
above, there are two alternatives, A and B, and voters know exactly the utility of
each outcome to themselves. Unlike the examples, voters may have heterogeneous
preferences– some feel passionately about A, others passionately about B, and still
others are more or less indifferent between the two choices. Voters also differ in their
costs of voting– for some, costs are modest while for others the costs are so large as to
dwarf any possible benefit from voting. The distribution of voting costs is arbitrary
and costs are orthogonal to preferences. Finally, there is an uncertain populace of
potential voters.

In this setting, the main results of the paper are:

1. When voting is costly and voluntary majority rule is utilitarian in large elections
(Theorem 1).

2. Among all supermajority rules, only majority rule is utilitarian in large elections
(Theorem 2).

3. The utilitarian property of majority rule is robust to the introduction of aggre-
gate uncertainty (Theorem 3).

The third result is noteworthy because the introduction of aggregate uncertainty is
known to erode other welfare properties of majority rule. For instance, it substantially
weakens the information aggregation properties that form the basis of the celebrated
Condorcet Jury Theorem (see Mandler, 2012).

Related Literature Our model is a more general version of that studied by
Ledyard (1984). Ledyard is mainly interested in the ideological positioning of can-
didates when faced with voters with Hotelling-type preferences and privately known
costs of voting. If voting were costless, both candidates would co-locate at the pre-
ferred point of the median voter. Ledyard’s main result is that, with costly voting,
both candidates still co-locate, but at the welfare maximizing ideology– and thus
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there is no incentive to participate. Indeed, in equilibrium, the first-best outcome
obtains without any actual voting!

But if candidates have concerns other than merely winning the election, they
will not co-locate. This is the starting point for our model. Specifically, we study
a situation where candidates’ ideological positions are given and different. Here,
turnout is positive as the supporters of both sides vie to obtain their preferred choice;
nonetheless, the chosen candidate maximizes societal welfare– the utilitarian choice
enjoys higher vote share and, in large elections, wins with certainty. The other key
difference concerns how outcomes change with the voting rule. Unlike Ledyard, we
examine supermajority rules as well and show that the utilitarian property is unique
to majority rule. Finally, we allow for correlated voter preferences by introducing
aggregate uncertainty into the model. Our main finding here is that the utilitarian
property of majority rule is preserved.

Also closely related is Myerson’s (2000) reformulation of Ledyard’s result when
the number of voters is Poisson distributed rather than fixed. Using the asymptotic
formulae for the Poisson model, Myerson also links majority rule and utilitarianism
as a stepping stone to obtaining Ledyard’s “nobody votes”result. Our model allows
for general population uncertainty and thus includes Myerson’s result as a special
case. Like Ledyard, Myerson limits his attention to majority rule in the absence of
aggregate uncertainty.

Ledyard and Myerson represent the two standard assumptions about the number
of voters. Ledyard assumes that the number of voters is fixed and commonly known
whereas Myerson assumes that they are Poisson distributed. Neither assumption is
perfectly satisfactory. In large elections, it seems unlikely that voters know the size
of the electorate precisely. The Poisson assumption remedies this defect, but comes
with the cost the variance in the size of the electorate becomes unbounded as the
expected size grows larger. An important contribution of our paper is to do away
with the need for either assumption. Our model embeds both cases as well as allowing
for more realistic size distributions.

Börgers (2004) compares compulsory and voluntary voting in a completely sym-
metric special case of our model. His main concern is with the cost of participation.
In particular, he shows that voluntary voting, by economizing on voting costs, Pareto
dominates compulsory voting. The symmetry in the model, however, allows no scope
for examining questions like those we pose. Moreover, Krasa and Polborn (2009)
show that Börgers’result may not hold when the symmetry is broken.

Palfrey and Rosenthal (1985) characterize equilibrium properties of large elections
with identical preference intensities and random voting costs with lower support at
zero. Taylor and Yildirim (2008) study a similar model but where voting costs are
bounded above zero. Their main finding is to identify the underdog principle in these
settings. In both papers, since preference intensities are identical for both sides,
welfare considerations of election outcomes are not investigated.

In a Poisson framework, Feddersen and Pesendorfer (1999) examine majority rule
elections with a mix of private and common values and differing preference inten-
sities. Voting is costless; however, owing to the “swing voter’s curse”, some voters
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choose to abstain. Their main result is to show that, in large elections, information
aggregates in the sense of full information equivalence– the outcome corresponds to
what would be obtained were all voters informed about the underlying state. This,
however, is not the same as the utilitarian outcome. For instance, the outcome under
compulsory voting in our setting also satisfies full information equivalence. Krishna
and Morgan (2012) examine a similar model with costly voting and show that, when
private value considerations dominate, the utilitarian outcome prevails. Relative to
these papers, our contribution is to examine rules other than simple majority and
population distributions other than Poisson. Since common value considerations are
absent from our model, information aggregation is not a concern.

Mandler (2012) introduces aggregate uncertainty into the pure common values
Condorcet model with compulsory voting and shows the existence of equilibria in
which information does not aggregate. Myatt (2012) shows that, by incorporating
aggregate uncertainty in a private value context, one can explain high turnout in large
elections. In Myatt’s model, both the costs of voting and the intensity of preferences
are identical across voters. As a result, welfare considerations are not examined.

The remainder of the paper proceeds as follows. We sketch the model in section
2. Section 3 establishes that vote shares favor the utilitarian choice when voting costs
are uniform. Section 4 generalizes this result to other voting cost distributions and
highlights that in large elections majority rule produces the utilitarian outcome with
almost certainty. Section 5 studies supermajority rules and shows that they do not
satisfy the utilitarian property. Section 6 adds aggregate uncertainty to the model
and shows that majority rule robustly implements the utilitarian outcome. Finally,
section 7 concludes.

2 The Model

We study a general version of the familiar “private values” voting model. In this
setting, two candidates, who differ in their ideology, compete in an election decided
by majority rule. Individual voters care only about ideology, thus candidates are
not distinguished by “vertical” (valence) characteristics. The generalization comes
through allowing for randomness in the intensity of voter preferences, in the preferred
ideology of each voter, and possibly in the number of eligible voters. Thus, the model
captures electoral settings where ideology is the main driver of voter decisions and
where there is possibly considerable uncertainty about the size and preferences of the
voting populace at large.

Formally, there are two candidates, named A and B, who are competing in an
election decided by majority voting with ties resolved by the toss of a fair coin.4

The size of the electorate is a random variable N which is distributed on {0, 1, 2, ...}
according to the probability distribution function π∗, with a finite expectation, say n.
Thus, the probability that there are exactly m eligible voters (or citizens) is π∗ (m).
Of greater interest to an individual voter is the distribution π which determines the

4Supermajority rules are considered in Section 5.
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probability π (m) that there are exactly m other eligible voters. Then

π (m) = π∗ (m+ 1)× m+ 1

n
(1)

To see how this is derived, suppose that there is a large pool of M identical potential
voters from which the number of eligible voters is drawn according to π∗ and each
potential voter in the pool has an equal chance of being selected as being eligible.
Conditional on the event that a particular voter has been chosen to be eligible, the
probability that there are m other eligible voters is

π∗ (m+ 1) m+1M∑M
k=1 π

∗ (k) k
M

=
π∗ (m+ 1) (m+ 1)∑M

k=1 π
∗ (k) k

and as M →∞, the denominator converges to n, thus yielding the expression in (1).
Note that π = π∗ if and only if π is a Poisson distribution (Myerson, 1998).

Voter types are determined as follows. First, with probability λ ∈ (0, 1) a voter is
determined to be an A supporter and with probability 1−λ, a B supporter. Next, each
A supporter draws a value v from the distribution GA over [0, 1] which measures the
intensity of preference– the value of electing A over B. Similarly, each B supporter
draws a value v from the distribution GB over [0, 1] which is the value of electing
B over A. The combination of the direction of a voter’s preference and its intensity
will be referred to as her type. Types, which are private information, are distributed
independently across voters and independently of the number of voters.5 A citizen
knows his own type and that the types of the others are distributed according to λ,
GA and GB.

Utilitarianism
Before proceeding to study election outcomes, it is helpful to examine a benchmark

situation where a social planner selects the winning candidate. Suppose that the
planner is utilitarian and gives equal weight to each potential voter. The planner’s
choice of candidate is made ex ante; that is, the planner only knows the distribution
of types, but not their exact realization.

In that case, the expected welfare of A supporters from electing A over B is

vA =

∫ 1

0
vdGA (v)

and similarly, the expected welfare of B supporters from electing B over A is

vB =

∫ 1

0
vdGB (v)

Since the probability that a voter is an A supporter is λ and that she is a B supporter
is 1 − λ, ex ante utilitarian welfare is higher from electing A rather than B if and
only if

λvA > (1− λ) vB
5 In Section 6, we extend the basic model to allow for aggregate uncertainty about λ, the ex ante

proportion of A supporters.
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If the inequality above holds, we will refer to A as the utilitarian choice (and if it
is reversed then B will be referred to as such). We will say that a voting rule is
utilitarian if the candidate elected is the same as the utilitarian choice.

Compulsory Voting
We now turn attention to voting and first examine the case where voting is

compulsory– the penalties for not voting are suffi ciently stringent that all eligible
voters turn out at the polls. On arriving at the polls, each voter can choose between
voting for A, voting for B, or abstaining through submitting a blank or spoiled ballot.

Conditional on coming to the polls, a voter’s strategy is straightforward– each
voter has a strict incentive to vote for her preferred candidate. As a consequence,
the election outcome is determined purely by the single parameter, λ, the fraction
of A voters. In a large election, candidate A wins if and only if λ > 1/2. Obviously
this is not utilitarian since the average intensity of preferences does not figure into
the election outcome at all. For instance, if a majority of voters favor candidate
A but are lukewarm in their support (i.e., vA is only modestly positive) while the
minority strongly favor candidate B such that λvA < (1− λ) vB, then candidate A
will still win the election despite the fact that B is the utilitarian outcome. Thus, as
a benchmark, it is worthwhile to record the following well-known fact,

Proposition 1 Under compulsory voting, majority rule is not utilitarian.

Voluntary and Costly Voting
Suppose that voting were voluntary rather than compulsory. Obviously, if voting

costs were zero, all voters would show up and the outcome would be identical to
compulsory voting. Here, we examine the situation where voting entails some positive
opportunity cost for individuals. Of course, this voting cost will vary from individual
to individual depending on their proximity to the polls, job requirements, wages, and
so forth.

To model this in the simplest manner, we suppose that a citizen’s cost of voting is
private information and determined by an independent realization from a continuous
probability distribution F satisfying F (0) = 0 and with a strictly positive density
over the support [0, 1]. Finally, we assume that voting costs are independent of the
type and the number of voters. Thus, prior to the voting decision, each citizen has
two pieces of private information– her type and her cost of voting.

In this circumstance, each voter compares her private costs with the benefits from
voting. Since preferences are purely instrumental, the benefits from voting hinge on
the chance that a given vote will swing the outcome of the election in favor of the
voter’s preferred candidate– either from a loss to a tie or from a tie to a win. Thus,
the chance that a voter is pivotal is critically important in determining an individual’s
benefit from voting.

Pivotal Events
An event is a pair of vote totals (j, k) such that there are j votes for A and k votes

for B. An event is pivotal for A if a single additional vote for A will affect the outcome
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of the election. We denote the set of such events by PivA. One additional vote for A
makes a difference only if either (i) there is a tie; or (ii) A has one vote less than B. Let
T = {(k, k) : k ≥ 0} denote the set of ties and let T−1 = {(k − 1, k) : k ≥ 1} denote
the set of events in which A is one vote short of a tie. Similarly, PivB is defined to be
the set of events which are pivotal for B. This set consists of the set T of ties together
with events in which A has one vote more than B. Let T+1 = {(k, k − 1) : k ≥ 1}
denote the set of events in which A is ahead by one vote.

Suppose that voting behavior is such that, ex ante, each voter casts a vote for A
with probability qA and a vote for B with probability qB. Then q0 = 1 − qA − qB is
the probability that a voter abstains. Fix a voter, say 1. Consider an event where the
number of other voters is exactly m and among these, there are k votes in favor of
A and l votes in favor of B. The remaining m− k − l voters abstain. If voters make
decisions independently, the probability of this event is

Pr [(k, l) | m] =
(
m

k, l

)
(qA)

k (qB)
l (q0)

m−k−l

where (
m

k, l

)
=

(
m

k + l

)(
k + l

k

)
denotes the trinomial coeffi cient.6 For a realized number of eligible voters, m, the
chance of a tie is simply the probability of events of the form (k, k) . Formally,

Pr [T | m] =
m∑
k=0

(
m

k, k

)
(qA)

k (qB)
k (q0)

m−2k (2)

Since an individual voter is unaware of the realized number of potential voters, the
probability of a tie from that voter’s perspective is

Pr [T ] =
∞∑
m=0

π (m) Pr [T | m]

where the formula reflects a voter’s uncertainty about the size of the electorate.
Similarly, for fixed m, the probability that A falls one vote short is

Pr [T−1 | m] =
m∑
k=1

(
m

k − 1, k

)
(qA)

k−1 (qB)
k (q0)

m−2k+1 (3)

and, from the perspective of a single voter, the overall probability that A falls one
vote short is

Pr [T−1] =
∞∑
m=0

π (m) Pr [T−1 | m]

The probabilities Pr [T+1 | m] and Pr [T+1] are analogously defined.
6We follow the convention that if m < k + l, then

(
m
k+l

)
= 0 and so

(
m
k,l

)
= 0, as well.
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Let PivA be the set of events where one additional vote for A is decisive. Then,

Pr [PivA] =
1
2 Pr [T ] +

1
2 Pr [T−1]

where the coeffi cient 12 arises since, in the first case, the additional vote for A breaks
a tie while, in the second, it leads to a tie. Likewise, define PivB to be the set of
events where one additional vote for B is decisive. Hence,

Pr [PivB] =
1
2 Pr [T ] +

1
2 Pr [T+1]

The following proposition is intuitive. It establishes that, when other voters are
more likely to choose B than A, then casting an A vote is more likely to be decisive.
Conversely, when an A vote is more likely to be decisive, then it must be that other
voters are more likely to vote for B than for A. Since the main benefit from voting
occurs in casting a decisive vote for the preferred candidate, the proposition embodies
a kind of “underdog effect”– a vote for a candidate who is behind is more valuable
than a vote for the candidate who is ahead.

Proposition 2 Pr [PivA] > Pr [PivB] if and only if qA < qB.

Proof. Note that

Pr [PivA]− Pr [PivB] = 1
2 (Pr [T−1]− Pr [T+1])

and since

qA Pr [T−1] =
∞∑
m=0

π (m)
m∑
k=0

(
m

k, k + 1

)
(qA)

k+1 (qB)
k+1 (q0)

m−2k−1

= qB Pr [T+1]

Pr [T−1] > Pr [T+1] if and only if qA < qB.

The difference in the probability of being pivotal when casting an A vote versus
a B vote comes down to a comparison of the chance that candidate A is behind by
one vote versus ahead by one vote (since the probability of a tied vote is common to
both expressions). Obviously, when others are more likely to vote for B than A, then
A is more likely to be behind than ahead. With these preliminaries in place, we are
now in a position to study equilibria under majority rule with costly voting.

3 Equilibrium

In this section, we will show that there always exists an equilibrium to the voting
game. Moreover, in any equilibrium, both A and B supporters participate at strictly
positive rates and vote for their preferred candidate regardless of their intensity of
preference. That is, participation is not merely confined to those with the most
extreme preferences for a candidate (though those with extreme preferences will par-
ticipate at higher rates).
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As with compulsory voting, among those who show up at the polls, voting behav-
ior is very simple– A supporters vote for A and B supporters for B. For both, voting
for their preferred candidate is a weakly dominant strategy. Thus, it only remains to
consider the participation behavior of voters.

We will study type-symmetric equilibria. In these equilibria, all voters of the same
type and same realized cost follow the same strategy. Myerson (1998) has shown
that in voting games with population uncertainty, all equilibria are type-symmetric.7

Thus, when we refer to equilibrium, we mean type-symmetric equilibrium.
Formally, an equilibrium consists of two functions cA (v) and cB (v) such that (i)

an A supporter (resp. B supporter) with cost c votes if and only if c < cA (resp.
c < cB); (ii) the participation rates pA (v) = F (cA (v)) and pB (v) = F (cB (v)) are
such that the resulting pivotal probabilities make an A supporter (resp. B supporter)
with value v and costs cA (v) (resp. cB (v)) indifferent between voting and abstaining.
An equilibrium is thus defined by the equations:

cA (v) = vPr [PivA]

cB (v) = vPr [PivB]

which must hold for all v ∈ [0, 1] .
Letting pA (v) (resp. pB (v)) be the probability that an A supporter (resp. B

supporter) with value v will vote, the equilibrium conditions become

F−1 (pA (v)) = vPr [PivA]

F−1 (pB (v)) = vPr [PivB]

Equivalently,

pA (v) = F (vPr [PivA])

pB (v) = F (vPr [PivB])

Integrating the function pA (v) over [0, 1] determines pA, the ex ante probability that
a given voter will vote for A. Similarly, integrating pB (v) over [0, 1] determines pB,
the ex ante probability that a given voter will vote for B. Thus, we have that in a
costly voting equilibrium

pA =

∫ 1

0
F (vPr [PivA]) dGA (v)

pB =

∫ 1

0
F (vPr [PivB]) dGB (v)

It is useful to formulate these in terms of the voting propensities– the ex ante prob-
ability of a vote for a particular candidate, that is, qA = λpA and qB = (1− λ) pB.

7For the degenerate case where the number of eligible voters is fixed and commonly known, type
asymmetric equilibria may arise; however, such equilibria are not robust to the introduction of even
a small degree of uncertainty about the number of eligible voters.
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Figure 1: Equilibrium in Example 1

In terms of voting propensities, the equilibrium conditions are

qA = λ

∫ 1

0
F (vPr [PivA]) dGA (v) (4)

qB = (1− λ)
∫ 1

0
F (vPr [PivB]) dGB (v) (5)

As in Ledyard (1984), it is now straightforward to establish:

Proposition 3 With costly voting, there exists an equilibrium. In every equilibrium,
all types of voters participate with a probability strictly between zero and one.

Proof. Since both Pr [PivA] and Pr [PivB] are continuous functions of qA and qB,
Brouwer’s Theorem ensures that there is a solution (qA, qB) ∈ [0, 1]2 to (4) and (5).
Let pA and pB be the corresponding expected participation rates.

First, note that neither pA nor pB can equal 1. If pA = 1, say, then it must be
that for all v, pA (v) = 1 and hence for all v, cA (v) = 1 as well. But the benefits
from voting for A for a voter with value v cannot exceed v and so this is impossible.
Second, neither pA nor pB can equal 0. Suppose to the contrary that pA = 0, say.
Then from the perspective of an A supporter, there is a strictly positive probability
that no one else shows up. To see this, note that if the realized number of other
voters is m, then there is a probability λm that all of these are A supporters. Thus,
Pr [PivA] > 0. Hence for all v, cA (v) > 0 and, in turn, pA (v) > 0 as well.
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Example 1 Suppose that the population is distributed according to a Poisson distri-
bution with mean n = 100. Suppose also that λ = 2

3 , vA =
1
3 , vB = 1 and that voting

costs are distributed according to F (c) = 3c over
[
0, 13
]
.

Figure 1 indicates the equilibrium participation rates p∗A and p∗B. The curve
IA ≡ 1

3pA − Pr [PivA] = 0 consists of those participation rates that leave an A voter
indifferent between participating and staying home (IA is obtained from equation (4)
after dividing through by λ). IB is the analogous curve for B voters. Note that given
a pB there may be multiple values of pA that leave an A voter indifferent. This is
because, for fixed pB, Pr [PivA] is a non-monotonic function of pA while F−1 (pA)
is monotone. Notice also that despite the fact that both curves “bend backwards,”
there is a unique equilibrium in the example.

Uniform Costs

Proposition 3 establishes that an equilibrium exists and that all types participate
at positive rates, but says nothing about the relative participation rates and, in turn,
the outcomes of the election. If, however, one temporarily restricts attention to the
case where voting costs are uniformly distributed, a more precise characterization is
possible. The key is that, with this specification, the equilibrium cost thresholds and
the participation rates are one and the same.

Under uniform voting costs, F (c) = c, and, in this case, the equilibrium conditions
(4) and (5) can be rewritten as

qA = λPr [PivA]

∫ 1

0
vdGA (v) = λvA Pr [PivA]

qB = (1− λ) Pr [PivB]
∫ 1

0
vdGB (v) = (1− λ) vB Pr [PivB]

where vA is the expected welfare of an A supporter from electing A rather than B
and vB is the expected welfare of a B supporter from electing B rather than A.

Notice that if we rewrite these expressions as a ratio and multiply each side by n,
then we have

nqA
nqB

=
λvA

(1− λ) vB
× Pr [PivA]
Pr [PivB]

(6)

The left-hand side of this expression is simply the ratio of the expected number of A
versus B votes. The first term on the right-hand side is the ratio of the welfare from
choosing A versus B. When A is the utilitarian choice, this expression is greater than
1 whereas it is fractional when B is the utilitarian choice.

Suppose that A is the utilitarian choice. We claim that the expected number of
A votes must exceed the expected number of B votes. To see why, suppose to the
contrary that qA < qB. Proposition 2 now implies that a vote for A is more likely
to be pivotal than a vote for B and hence Pr [PivA] /Pr [PivB] > 1. In that case,
both expressions on the right-hand side of (6) exceed 1 while the left-hand side is
fractional. Obviously, this is a contradiction. A similar argument establishes that
the candidate B enjoys a higher number of expected votes than A when B is the

13
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Figure 2: Ratios of Votes and Pivot Probabilities

utilitarian choice. In other words, the vote ratio always mirrors the utilitarian choice
under majority rule with uniform costs. Thus, we have shown:

Proposition 4 Suppose voting costs are uniformly distributed. In any equilibrium,
the expected number of votes for A exceeds the expected number of votes for B if and
only if electing A maximizes utilitarian welfare. Precisely, qA > qB if and only if
λvA > (1− λ) vB.

The following example illustrates Proposition 4.

Example 2 Suppose that the population follows a Poisson distribution with mean
n = 1000 and that voting costs are uniform.

Figure 2 depicts the equilibrium ratio of the expected number of votes for A versus
B, qA/qB, as a function of the welfare ratio, λvA/ (1− λ) vB. As the proposition
indicates, qA > qB if and only if λvA > (1− λ) vB.

Note that Proposition 4 applies to every equilibrium and regardless of the expected
size of the electorate. While it is reassuring that the expected vote shares go in the
direction of the utilitarian outcome, this by no means guarantees that the utilitarian
candidate will, in fact, be elected. All one can say is that this candidate is more
likely to be elected than his rival. Of particular interest are the outcomes of a large
election, i.e., where the expected size of the electorate goes to infinity. We explore
elections with a large number of potential voters in the next section.

14



4 Large Elections

The usual rationale for studying large elections is to examine the limiting probabil-
ities that each candidate will be elected. This is of interest in our model as well.
We will show that, in large elections, the utilitarian choice is elected with probability
approaching one. In our model, the asymptotic case also serves an additional pur-
pose: While Proposition 4 held when costs are uniformly distributed, the analogous
asymptotic result, Proposition 6 below, holds regardless of the distribution of costs.

Before proceeding, it helps to define precisely what we mean by large elections.
Formally, consider a sequence of population distributions π∗n over Z+ such that for
each n (i) the expected size of the population according to π∗n is finite and equals n;
and (ii) for all K,

lim
n→∞

∞∑
m=K

π∗n (m) = 1

The second property requires that, for large n, the distribution π∗ places almost all
the weight on large voter populations. In what follows, we will consider a sequence
of such π∗n distributions and when we speak of a “large election”we mean that n is
large.

Many commonly used families of discrete distributions satisfy these properties.
Clearly, when the number of potential voters is a fixed size, n, the above proper-
ties hold. Likewise, voting populations drawn from Poisson, Negative Binomial, or
Geometric distributions also have the required properties. It rules out situations in
which, for instance, the population is some fixed amount n′ with probability ε and n
with the remaining probability.

Consider a sequence of equilibria, one for each n. Let pA (n) and pB (n) be the
sequence of equilibrium participation rates of A supporters and B supporters, re-
spectively. The following proposition says that in large elections, these participation
rates tend to zero, but at a rate slower than 1/n. As a result, the expected number
of voters of each type is unbounded.

Proposition 5 In any sequence of equilibria, the participation rates pA (n) and pB (n)
tend to zero, while the expected number of voters npA (n) and npB (n) tend to infinity.

Proof. See Lemmas A.7 and A.8.

The intuition for the first part of the result seems straightforward. If the partic-
ipation rates did not go to zero so that even in the limit, voters participated with
positive probability, then no single voter would be pivotal. Thus, there would be no
incentive to vote, contradicting the hypothesis that there was positive participation
in the limit.

But how do we know that the probability of being pivotal goes to zero in the limit?
As m increases, the number of ways a tie can occur increases and, because of the
combinatorics, a term-by-term comparison of the sums in (2) and (3) is inconclusive.
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The limiting pivot probabilities can be derived if we instead rewrite them as follows:

Pr [T | m] =
[
1

m

m−1∑
r=0

(
ωrqA + ω

−rqB + q0
)m]− (qA)m − (qB)m (7)

where ω = exp (2πi/m) is a primitive mth root of unity (see Appendix A for a deriva-
tion). The advantage of the new formula is that it does not contain any combinatorial
terms. To see how this formula is derived, notice that Pr [T | m] is a sum composed of
those terms in the trinomial expansion of (qA + qB + q0)

m with the property that the
exponent on qA is the same as the exponent on qB. An analogous idea may be seen
in the case of binomial expansion of (x+ y)m. Suppose that one were only interested
in the portion of the expansion where the exponent on y is even. One could obtain
this by taking the whole expression and subtracting off the odd terms via the formula
1
2 (x+ y)

m + 1
2 (x− y)

m. Equation (7) is analogous in that it starts with the entire
trinomial expansion and subtracts off all of the non-tie terms.

Similarly, the chance of a near tie can be written as

Pr [T−1 | m] =
[
1

m

m−1∑
r=0

ωr
(
ωrqA + ω

−rqB + q0
)m]−m (qA)m−1 q0 (8)

(again, see Appendix A).
We use the formulae in (7) and (8) to show that the participation rates indeed

converge to zero. To see why, suppose that qA (n) and qB (n) were bounded from
below by positive numbers in the limit. In equation (7), each term in the sum, save
for r = 0, has an absolute value strictly less than one. This fact can then be used
to show that the term in square brackets goes to zero in the limit. The remaining
terms obviously also go to zero. This, however, implies that the benefit from voting
goes to zero in the limit and hence the limiting participation rates cannot be strictly
positive.

The second part of Proposition 5 asserts that, despite the fact the participation
rates go to zero, the expected number of A and B voters is unbounded. The basic
intuition is that, if there were a finite number of expected voters, then the probability
that a voter is pivotal (and hence the benefit from voting) would be strictly positive.
But this would imply strictly positive participation rates in the limit. More care is
needed in circumstances where there are an unbounded number of A voters (say) and
a bounded number of B voters. The key insight here is that the benefits from voting
are greater for B voters than for A voters since they are more likely to be pivotal.
This then implies that B voters participate at higher rates, which is a contradiction.

Knowing the limiting properties of participation and turnout, we can now extend
Proposition 4 to all cost distributions when the election is large. The main idea is
that, since the threshold participation rates go to zero in the limit, only the local
properties of the cost distribution in the neighborhood of zero matter. Since locally,
all distributions are approximately uniform, it follows that voting behavior also mir-
rors the uniform case– the utilitarian choice will always attract greater vote share
than the rival candidate. Formally,
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Proposition 6 Suppose voting costs are distributed according to a continuous dis-
tribution F satisfying F (0) = 0 and F ′ (0) > 0. In any equilibrium, the expected
number of votes for A exceeds the expected number of votes for B if and only if A is
the utilitarian choice. Precisely, qA > qB if and only if λvA > (1− λ) vB.

Proof. For a general cost distribution F satisfying F ′ (0) > 0, let qA (n) = λpA (n)
and qB (n) = (1− λ) pB (n) be a sequence of equilibrium voting propensities. Since
Proposition 5 implies that pA and pB go to zero as n increases without bound, it is
the case that the pivotal probabilities go to zero as well. This in turn implies that
for all v, the cost thresholds cA (v) and cB (v) also go to zero. Thus, for large n, the
equilibrium conditions (4) and (5) imply8

qA ≈ λ

∫ 1

0
F ′ (0) vPr [PivA] dGA (v) = F ′ (0)λvA Pr [PivA]

qB ≈ (1− λ)
∫ 1

0
F ′ (0) vPr [PivB] dGB (v) = F ′ (0) (1− λ) vB Pr [PivB]

In ratio form, we have
qA
qB
≈ λvA
(1− λ) vB

× Pr [PivA]
Pr [PivB]

which is asymptotically identical to the case of uniform costs and we know from
Proposition 4 that λvA > (1− λ) vB implies qA > qB. Thus, in large elections we
have that λvA > (1− λ) vB implies qA > qB.

Main Result
We are now in a position to present the main result of the paper: Given the

limiting turnouts and participation rates, in large elections, the candidate with the
higher vote propensity wins with probability approaching one. In particular, if a
random voter is more likely to vote for A than to vote for B, then A will be elected
with near certainty in large elections. Were the vote propensities fixed, the result
would follow simply as a consequence of the law of large numbers. The subtlety
is that the vote propensities change with the expected number of voters and go to
zero in the limit. However, since there are an infinite number of A and B voters
(and of the same order of magnitude), the differing vote propensities imply that the
expected vote difference becomes unbounded in the limit. But this is not enough to
argue that, in fact, the leading candidate will win with probability one. To make this
claim, one needs to show that the variability in the vote difference is small relative
to the expected vote difference. Formally,

Theorem 1 In large elections with costly voting, majority rule produces utilitarian
outcomes with probability one.

Proof. Suppose that λvA > (1− λ) vB so that A is the utilitarian choice. Proposition
6 implies that in any sequence of equilibria, for all large n, qA > qB. We now show
that the probability that A is elected approaches 1.

8We write xn ≈ yn to denote that limn→∞ (xn/yn) = 1.
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Denote by T−k the event that the number of votes for B less the number of votes
for A is k. Then,

Pr [B wins | m] = 1
2 Pr [T | m] +

m∑
k=1

Pr [T−k | m]

≤
m∑
k=0

Pr [T−k | m]

If the population were distributed according to a Poisson distribution with mean
m, then the probability of T−k would be

P [T−k | m] =
∞∑
l=0

e−m(qA+qB)
(mqA)

l

l!

(mqB)
l+k

(l + k)!

We denote probabilities by P when they are calculated using Poisson distributions.
When m is large, we know that

P [T−k | m] ≈
e−m(

√
qA−
√
qB)

2√
4πm
√
qAqB

(√
qB
qA

)k
and so the probability that B wins calculated in the Poisson model when m is large
is

P [B wins | m] ≤
∞∑
k=0

P [T−k | m] =
e−m(

√
qA−
√
qB)

2√
4πm
√
qAqB

1

1−
√

qB
qA

We know from Roos (1999) that the probability Pr [S | m] of any event S ⊂ Z2+ in
the multinomial model with population m is well-approximated by the corresponding
probability P [S | m] in the Poisson model with expected populationm (see Appendix
D). In particular,

|Pr [B wins | m]− P [B wins | m]| ≤ qA + qB

As m→∞,

P [B wins | m] ≤ e−m(
√
qA−
√
qB)

2√
4πm
√
qAqB

1

1−
√

qB
qA

→ 0

and since in large elections, for any K,

lim
n→∞

∞∑
m=K

πn (m) = 1

we have that
Pr [B wins]→ 0
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This completes the proof.

Notice that the theorem does not make any demands on the distribution of voter
types. For instance, in circumstances where 90% of voters favor B but where the
10% favoring A feel much more strongly about their candidate than B supporters
do about their candidate– precisely, at least 9 times as much– majority voting will
produce suffi cient enthusiasm among A voters, and suffi cient apathy among B voters,
that candidate A will prevail. Given the ordinal nature of majority rule, this is quite
remarkable. Of course, the key is voluntary participation– voters vote with their
“feet” as well as with their ballots, thereby registering, not just the direction, but
the intensity of their preferences as well. This produces the utilitarian outcome.

While the main result is robust in many directions, it does require the follow-
ing key ingredients. The first is that the lower support of the cost distribution be
zero. Were costs bounded away from zero, then, provided costs were suffi ciently low,
nothing would change for finite sized electorates. In the limit, however, the situa-
tion would be analogous to the model with fixed voting costs and hence there would
be insuffi cient flexibility in the “prices”of votes to produce the utilitarian outcome.
Likewise, the result requires that duty considerations of voting do not overwhelm
voting costs. Formally, if there was a positive mass of voters with zero or negative
costs of voting then, in large elections, these would be the only voters coming to
the polls and, since costs are orthogonal to preferences, the result would be identical
to compulsory voting which, as we showed, is not utilitarian. Finally, the costs for
A and B voters need to be identical, as least in the neighborhood of zero. If the
cost distributions of the two sides were different, say FA and FB, and were such that
F ′A (0) 6= F ′B (0) , then majority rule would maximize a weighted utilitarian welfare
function where the weights are determined by F ′A (0) and F

′
B (0).

5 Supermajority Rules

Majority rule is probably the most commonly used voting rule in practice; however,
there are many situations where the outcome is decided by a supermajority. Many
US states, including California and Arizona, require a supermajority vote in the leg-
islature for any tax increase.9 Moreover, some states, such as Florida and Illinois,
require a supermajority among all voters to pass constitutional amendments. We
showed that large elections with costly voting produce the utilitarian outcome under
majority rule. Since turnout endogenously adjusts to favor the utilitarian choice, one
might speculate that the same forces will work in supermajority elections as well.
Indeed, Feddersen and Pesendorfer (1998) demonstrate a “voting rule irrelevance”in
a Condorcet-type model with pure common values. In their setting, voting behavior
endogenously adjusts in response to changes in the voting rule. As a result, informa-
tion aggregates under all supermajority rules (with the exception of unanimity). In

9The required legislative supermajorities differ across states. Arizona and California, among
others, require a 2/3 majority. Others– Arkansas and Oklahoma– require a 3/4 majority for certain
types of tax increases. Still others, such as Florida and Oregon, require a 3/5 majority.
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what follows, we argue that such a rule irrelevance does not hold in our model– in
fact, only majority rule is utilitarian

We study supermajority rules defined as follows. Candidate B is the default
alternative and A needs a fraction µ ≥ 1

2 of the votes cast in order to be elected.
We will assume that µ is a rational number and so will write µ = a/ (a+ b) , where
a and b are positive integers which are relatively prime (have no common factors)
and such that a ≥ b. In the event of a tie– a situation in which A obtains exactly µ
proportion of the votes– the winner is chosen at random, A with probability t and
B with probability 1− t. Note that for majority rule, a = b = 1 whereas, say for the
two-thirds supermajority rule, a = 2 and b = 1.

In this section, we suppose that the population of voters follows a Poisson distri-
bution with mean n. We will then show that unless the voting rule is one of simple
majority (a = b = 1), the outcome of a large election will not coincide with the
utilitarian choice. This is suffi cient to argue that only majority rule is utilitarian.

The key to our analysis is Proposition 7 which is a generalization, for large Poisson
populations, of Proposition 2. This proposition shows again that in large elections,
if A is on the losing side, that is, the ratio of voting propensities, qA/qB falls short
of the required a/b, then the ratio of the pivotal probabilities Pr [PivA] /Pr [PivB]
exceeds b/a. Formally,

Proposition 7 If for all n large, qA(n)
qB(n)

≥ a
b , then lim sup

P[PivA]
P[PivB ] ≤

b
a . Similarly, if

for all n large, qA(n)qB(n)
≤ a

b , then lim inf
P[PivA]
P[PivB ] ≥

b
a .

Proof. See Appendix B.

To see why Proposition 7 is true, suppose that the vote ratio is approximately the
required 2 : 1 under the 2/3 rule with a coin toss determining the winner of a tie. The
proposition then implies that a vote for B is twice as likely to be pivotal as a vote for
A. It would seem that the likelihood of throwing the election into a tie or breaking a
tie would be the same for A votes as for B votes and, indeed, this is approximately
true. However, unlike A votes, a vote for B can also “flip”the election by swinging
the outcome from a sure loss to a sure win. For instance, if the votes of others tally
to (2k − 1, k − 1), favoring A, then one more vote for B will flip the election in B’s
favor. The chance of flipping the election in this way is approximately equal to the
chance of a tie or a near tie. However, the flip term receives twice the weight in a B
supporter’s calculation of the benefits since it does not lead to or break a tie. As a
consequence, Pr [PivB] is approximately twice as large as Pr [PivA] .

With Proposition 7 in hand, we are now in a position to offer the main result of
this section:

Theorem 2 Among all supermajority rules only majority rule is utilitarian. Specif-
ically, in a a

a+b supermajority election with a large Poisson population, if

λvA >
(a
b

)2
(1− λ) vB
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then A wins with probability one. If the reverse inequality holds strictly, then B wins
with probability one.

Proof. Suppose that λvA >
(
a
b

)2
(1− λ) vB. We first claim that for all large n,

qA
qB

> a
b ; that is, the vote shares favor A.

Suppose to the contrary that there is a sequence of equilibria along which qA
qB
≤ a

b

and so by Proposition 7, along this sequence P[PivA]P[PivB ] ≥
b
a . If voting costs are uniform,

the equilibrium conditions imply

qA
qB

=
λvA

(1− λ) vB
P [PivA]
P [PivB]

But since the left-hand side is less than or equal to a/b while the right-hand side is
strictly greater than a/b, this is a contradiction.

The remainder of the proof, showing that when qA
qB

> a
b holds for all large n, it is

the case that Pr [A wins]→ 1, is the same as in Theorem 1 and is omitted.

When a > b, supermajority rules, of course, bias the electoral outcome in favor of
B. It is then natural to conjecture that the outcome of a large supermajority election
maximizes a weighted utilitarian welfare function in which the utilities ofB supporters
get a weight of a/b relative to the utilities of A supporters. Theorem 2, however,
says that supermajority rules exaggerate the bias– the a/ (a+ b) supermajority rule
maximizes a welfare function in which the utilities of B supporters are given a weight
(a/b)2 relative to A supporters. For instance, the 2/3 supermajority rule– which
requires A to obtain twice as many votes as B– maximizes a weighted utilitarian
welfare function in which the weight on the welfare of B supporters is not twice, but
four times that placed on the welfare of A supporters.

Why do supermajority rules have the “squaring property”? The key is that there
are two forces benefiting B. Obviously, making the winning threshold for A higher
than that for B directly favors the latter. The indirect effect arises through Proposi-
tion 7. Under a supermajority rule, the likelihood that a B vote is pivotal is higher
than the likelihood that an A vote is pivotal– when the election is approximately
tied, there are more opportunities for B voters to flip the election than A voters.
This increases the incentives for B voters to show up and so increases their partici-
pation rates as well, thereby making it even harder for A to win. Together, the two
effects– the direct one via the voting rule and the indirect one via turnout– lead to
the squaring property on the implicit welfare weights. Note that while the first effect
is present even when voting is compulsory, the second effect arises only when voting
is voluntary and costly.

While Theorem 2 delineates election outcomes in large elections, the following
example suggests that the asymptotic results are well-approximated even when the
size of the electorate is relatively small.

Example 3 Consider the 2/3 majority rule. Suppose that the expected size of the
population n = 1000 and that voting costs are uniform.
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Figure 3: Ratios of Votes and Pivot Probabilities: 2/3 Rule

Figure 3 depicts the equilibrium ratio of the expected number of votes for A versus
B, qA/qB, as a function of the welfare ratio, λvA/ (1− λ) vB. In the example, even
with a small number of voters, it is (approximately) the case that qA > 2qB if and
only if λvA > 4× (1− λ) vB.

6 Aggregate Uncertainty

The model assumes that the distribution of preferences in the population is com-
monly known. A consequence of this assumption is that A and B supporters hold
identical views about the distribution of preferences in the population. In reality, this
seems rather doubtful. More plausibly, A supporters are likely to view the preference
distribution as being more favorable toward A and likewise for B supporters. To
capture this idea in a parsimonious way, we introduce aggregate uncertainty about
the fraction of A supporters, λ, in the population. As a result, voter preferences are
now correlated– A supporters place more weight on higher values of λ compared to
B supporters. We investigate whether our earlier conclusions about the connection
between majority rule and utilitarian outcomes are robust to this type of aggregate
uncertainty.

There are good reasons to doubt that positive results concerning majority voting
are robust to aggregate uncertainty. In a pure common values model, Mandler (2012)
shows that aggregate uncertainty (about the accuracy of voters’signals) leads to a
sequence of equilibria where information does not aggregate in the limit.10 Thus,

10Feddersen and Pesendorfer (1997) derive the opposite conclusion in a model with aggregate
uncertainty. The difference between the two conclusions stems from orders of limits. Feddersen and
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aggregate uncertainty weakens the conclusions about the Condorcet Jury Theorem.
In our model, aggregate uncertainty concerning λ is of a fundamentally different

nature than uncertainty about the other elements of the model. The other ran-
dom elements are all independently distributed and as a result, when λ is fixed and
commonly known, voters’beliefs about the aggregate behavior of the population are
identical. Specifically, the voting propensities qA, qB and q0 that an A voter uses
to calculate Pr [PivA] are the same as those that a B supporter uses to calculate
Pr [PivB] . But when there is uncertainty about λ, an A supporter will hold different
beliefs about λ than a B supporter. Precisely, suppose that λ is distributed according
to a continuous density h on [0, 1] with mean λ ∈ (0, 1) . An A supporter’s posterior
density is

hA (λ) =
h (λ)λ∫ 1

0 h (θ) θdθ
= h (λ)

λ

λ
(9)

while a B supporter’s posterior is

hB (λ) =
h (λ) (1− λ)∫ 1

0 h (θ) (1− θ) dθ
= h (λ)

1− λ
1− λ

(10)

Thus, as is natural, A supporters put more weight on higher values of λ while B
supporters put more weight on lower values of λ. This in turn means that their
posterior distributions over the voting propensities, qA = λpA and qB = (1− λ) pB,
differ as well.

When λ is uncertain, voters participate based on the expected pivot probabili-
ties, calculated according to their posterior beliefs hA or hB. Our goal here is to
explore how majority rule fares under these circumstances. For simplicity, we restrict
attention to elections with large Poisson populations.

Two facts are key to our analysis. First, when n is large, the Poisson pivot prob-
abilities P [PivA | λ] and P [PivB | λ] , viewed as functions of λ, are single-peaked.
Second, for large n, both pivot probabilities are maximized close to a critical value λ∗

(determined by the asymptotic behavior of the participation rates) and “spike”in a
neighborhood around this value– for all λ 6= λ∗, the ratio P [PivA | λ] /P [PivA | λ∗]
goes to zero as n increases. Figure 4 depicts

√
nP [PivA | λ] as a function of λ for

a particular sequence of participation rates, pA and pB, and varying electorate sizes.
Notice that when the population of potential voters reaches 105, the pivot probabili-
ties close to the critical value, λ∗, overwhelm the pivot probabilities elsewhere.

The fact that P [PivA | λ] spikes at λ∗ means that for large n, the expected pivot
probability Eλ [P [PivA | λ]] is determined solely by the values of the function in a
small neighborhood around λ∗. The same is true for Eλ [P [PivB | λ]] . The study of
the asymptotic behavior of such expected probabilities goes back to Bayes himself in
the context of the following problem. Suppose a coin with an unknown probability
of heads is tossed 2m times. Bayes (1763) showed that if the probability of heads, q,
had a uniform prior, then the expected probability of a “tie”– that is, m heads and

Pesendorfer let aggregate uncertainty go to zero and then let the number of voters grow large whereas
Mandler does the opposite.
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Figure 4: Asymptotic Behavior of Pivot Probabilities

m tails, is ∫ 1

0

(
2m

m

)
qm (1− q)m dq = 1

2m+ 1
(11)

When m is large, the function
(
2m
m

)
qm (1− q)m has a spike at q∗ = 1

2 . Using this fact,
Good and Mayer (1975) and Chamberlain and Rothschild (1981) showed that if q
had a prior distribution with a continuous density h that is positive on (0, 1) , then

lim
m→∞

2m

∫ 1

0

(
2m

m

)
qm (1− q)m h (q) dq = h

(
1
2

)
(12)

The integral above is, of course, the expected probability of a tie in a majority election
with 2m voters with full participation (compulsory voting). In this case, q represents
the propensity to vote for A and is assumed to have a prior density of h. Notice that,
in this setup, the voting propensities do not depend on the number of voters.

Unlike the case of compulsory voting, where participation rates are fixed, when
voting is voluntary and costly, participation is determined endogenously and varies
with the expected size of the electorate, n. Consequently, the voting propensities,
qA = λpA and qB = (1− λ) pB, also vary with n. Hence, we require an analog to
the result above that accounts for this dependence. Proposition 8 is the Poisson
generalization of equation (12) to situations with endogenous participation.11

11Note that compulsory voting, i.e., pA = pB = 1, falls out as a special case of Proposition 8 since
in that case, λ∗ = 1

2
.
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Proposition 8 Suppose that there is a sequence of elections such that pB
pA+pB

→ λ∗ ∈
(0, 1) . Then for any continuous density h that is positive on (0, 1) ,

lim
n→∞

n (pA + pB)

∫ 1

0
P [PivA | n, λ]h (λ) dλ = h (λ∗)

and the same equality holds for PivB as well.

Proof. See Appendix C.

Proposition 8 highlights the dominant role played by the critical value, λ∗, in
terms of the chance of being pivotal. In particular, suppose that the density h puts
almost all the probability mass in a small neighborhood of the mean λ and that λ∗ is
outside this neighborhood. The proposition says that even though almost all the mass
is close to λ, the expected pivotal probability is, in the limit, exclusively determined
not by the most likely value, λ, but rather by the very unlikely but critical value, λ∗.

This disconnect between the “true” value and the critical value of the parame-
ter subject to aggregate uncertainty is the basis of Mandler’s negative result. In a
Condorcet setting, he shows that there exist equilibria in which voters’behavior is
driven almost entirely by the “critical,” incorrect, signal precision and, as a conse-
quence, information need not aggregate, even in the limit. Hence, the conclusion of
the Condorcet Jury Theorem is thrown into doubt.

One might suspect that a similar possibility would arise in our setting as well.
After all, the crucial factor is the connection between the pivot probabilities and the
utilitarian evaluation of the candidates. The utilitarian outcome obviously depends
crucially on the mean and most likely value of λ, that is λ, while the pivot probabilities
do not appear to depend on this at all. Below we show that, despite this disconnect,
the critical value λ∗, which is determined endogenously by the participation rates,
still contains enough information so that the utilitarian outcome continues to prevail.

The following result is the analog of Proposition 2 when there is aggregate uncer-
tainty. Like the earlier proposition, it shows that a vote on the “losing”side is more
likely to be pivotal than one on the “winning”side. Note that because of aggregate
uncertainty, “winning”and “losing”are defined relative to the average composition
of the population.

Proposition 9 Suppose that there is a sequence of elections such that pB
pA+pB

→ λ∗ ∈
(0, 1) . Then for large n, λpA <

(
1− λ

)
pB if and only if∫ 1

0
P [PivA | n, λ]hA (λ) dλ >

∫ 1

0
P [PivB | n, λ]hB (λ) dλ

Proof. Proposition 8 implies that for large n,∫ 1
0 P [PivA | n, λ]hA (λ) dλ∫ 1
0 P [PivB | n, λ]hB (λ) dλ

≈ hA (λ
∗)

hB (λ
∗)
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and substituting from (9) and (10) we have

hA (λ
∗)

hB (λ
∗)
=

λ∗

1− λ∗
1− λ
λ
≈
(
1− λ

)
pB

λpA

This completes the proof.

Before proceeding further, it is worthwhile to extend the ex ante utilitarian bench-
mark to settings where aggregate uncertainty is present. Here, a utilitarian planner
will choose candidate A if and only if the expected welfare of A supporters is higher
than that of B supporters. Since the expected fraction of A supporters is λ, candidate
A is the utilitarian choice if and only if

λvA >
(
1− λ

)
vB

When costs are uniform, the equilibrium conditions under aggregate uncertainty
are determined in the usual way: Voters participate so long as the benefits from
voting outweigh the costs. This yields equilibrium cost thresholds:

pA = vA

∫ 1

0
P [PivA | n, λ]hA (λ) dλ (13)

pB = vB

∫ 1

0
P [PivB | n, λ]hB (λ) dλ (14)

Multiplying by λ/
(
1− λ

)
expresses this same condition in terms of expected vote

shares. That is,

λpA(
1− λ

)
pB
≈ λvA(

1− λ
)
vB
×
∫ 1
0 P [PivA | n, λ]hA (λ) dλ∫ 1
0 P [PivB | n, λ]hB (λ) dλ

The left-hand side of this expression is the expected vote share. The right-hand side
is the product of the welfare ratio and the likelihood ratio of supporting A versus B
conditional on the critical value, λ∗. Suppose that there was a sequence of elections in
which the expected vote share for A exceeded that for B despite the fact that B is the
utilitarian outcome. Then the left-hand side is greater than one while the welfare ratio
is fractional. But Proposition 9 implies that the ratio of expected pivot probabilities
is also fractional. This is a contradiction. An analogous argument establishes that
the same holds when A is the utilitarian choice. Thus, we have shown

Proposition 10 In large elections with aggregate uncertainty, the expected number
of votes for A exceeds the expected number of votes for B if and only if A is the
utilitarian choice. Precisely, λpA >

(
1− λ

)
pB if and only if λvA >

(
1− λ

)
vB.

The proposition shows that the introduction of aggregate uncertainty does not
fundamentally change our earlier conclusion that vote shares coincide with the util-
itarian outcome. Indeed, an analogous line of proof operates in this setting as well.
The key is that, while vote propensities are determined by the critical value of λ,the
expected benefits from voting depend on posterior beliefs about this value, and these
posteriors account for the base rate, λ, as well.

The workings of the proposition may be seen in the following example.
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Figure 5: Participation Rates and Expected Pivot Probabilities

Example 4 Suppose vA = 1, vB = 4 and the fraction of A supporters, λ, is uniformly
distributed.

From (9) and (10), the posterior beliefs of A and B voters in the example are
hA (λ) = 2λ and hB (λ) = 2 (1− λ) , respectively. Since λ = 1

2 , the equilibrium
conditions (13) and (14) imply that for large n,

pA
pB

=
λpA(

1− λ
)
pB
≈

√
λvA(

1− λ
)
vB

=
1

2

and so, pB/ (pA + pB) ≈ 2
3 and λ

∗ = 2
3 as well. Proposition 8 then implies that in

large elections,

ρ ≡
∫ 1
0 P [PivB | n, λ]hB (λ) dλ∫ 1
0 P [PivA | n, λ]hA (λ) dλ

≈ hB (λ
∗)

hA (λ
∗)
=
1

2

Figure 5 depicts the equilibrium values of pB/ (pA + pB) and ρ as functions of the
expected number of voters, n. Notice how rapidly these quantities converge to their
limits.

While Proposition 10 shows that the vote shares favor the utilitarian candidate
in large elections, they offer no guarantee that this candidate will indeed be elected
with certainty. The main result of this section shows that our earlier conclusion that
the utilitarian candidate is selected almost certainly extends to the introduction of
small amounts of aggregate uncertainty. To establish this, some care is needed with
the order of limits. We will examine the limiting properties of majority rule as the
distribution of λ becomes degenerate, i.e., as the aggregate uncertainty vanishes.
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Theorem 3 Suppose Hr is a sequence of distributions (with continuous densities
hr) over [0, 1] that converges weakly to the distribution H0 which is degenerate at
λ0 ∈ (0, 1) . Then

lim
r→∞

lim
n→∞

Pr [A wins] = 1

if and only if λ0vA > (1− λ0) vB.

Proof. Suppose λ0vA > (1− λ0) vB and consider some distribution Hr. The equilib-
rium conditions (13) and (14) imply that the equilibrium participation rates depend
on the distribution Hr and not on any particular realization of λ. To make this de-
pendence explicit, let pA (n, r) and pB (n, r) denote the participation rates when the
expected size of the electorate is n and λ is distributed according to Hr. If λr is
the expected value of λ under the distribution Hr, then from (13) and (14) we know
that, for all r,

lim
n→∞

λrpA (n, r)(
1− λr

)
pB (n, r)

=

√
λrvA(

1− λr
)
vB

Since λ0vA > (1− λ0) vB and λr → λ0, when r is large, the right-hand side of the
equality above exceeds one. Thus, there exists an R such that for all r ≥ R,

lim
n→∞

λrpA (n, r)(
1− λr

)
pB (n, r)

> 1 (15)

Now, for a particular realization of λ, let Pr [A wins | n, r, λ] denote the prob-
ability that A wins calculated using the voting propensities qA = λpA (n, r) and
qB = (1− λ) pB (n, r) . Define

Sr =
{
λ ∈ [0, 1] : lim

n→∞
Pr [A wins | n, r, λ] = 1

}
and

S′r =

{
λ ∈ [0, 1] : lim

n→∞
λpA (n, r)

(1− λ) pB (n, r)
> 1

}
But now as in the proof of Theorem 1 we have that for all r ≥ R, S′r ⊆ Sr.

Finally, since Hr → H0 which is degenerate at λ0, for all ε, there exists an R′ ≥ R,
such that for all r ≥ R′, Pr [S′r] > 1−ε and so Pr [Sr] > 1−ε, as well. This completes
the proof.

7 Conclusion

Majority rule is, perhaps, the most common means of group decision making. Whether
it be mundane problems like a group decision of where to go to lunch, or deeply
consequential decisions like the election of a president, the same rule is used. Its
ubiquitousness perhaps stems from its simplicity and perceived fairness as compared
to other voting rules. However, majority rule is perceived to have a key defect as
well. Since it is purely a counting rule, it only reflects the directions and not the
intensity of preferences.

28



When voting is voluntary, we show that majority rule suffers from no such defect.
Preference intensity is reflected in participation rates. Of course, this feature is not
unique to majority rule– preference intensity is reflected in participation rates for
all supermajority rules as well. But majority rule is unique in that it aggregates
preference intensity information “correctly”to produce utilitarian outcomes. Other
rules distort participation incentives so as to overweight the issue or candidate favored
by the rule. Moreover, the utilitarian property of majority rule is quite durable. It
survives in contexts where the number of voters, preference intensity, voting costs,
and even the fraction of voters on either side of an issue is random.

Of course, for majority rule to work requires that voters be permitted to abstain.
It is by this (in)action, as well as coming to the polls, that the intensity of preferences
is reflected in outcomes. Regimes that insist on participation, often on grounds that
all voices will be heard, merely distort outcomes away from utilitarianism. Ironically,
by insisting on participation, such a regime, in effect, mutes the loudest and most
passionate of these voices while amplifying the voices of those who feel less strongly.
Indeed, the main policy lesson from our results is that majority rule, combined with
the freedom to participate (or not), is essential to producing good outcomes.

The coincidence of election outcomes with utilitarianism relies essentially on the
“rational voter” assumption. Moreover, voter preferences are instrumental– voters
care only about electoral outcomes. If, however, expressive factors also mattered,
i.e. a voter’s payoff also depended directly on casting a particular vote regardless of
the outcome, then the results would change, at least in large elections. In particular,
regardless of the weight placed on expressive considerations, in large elections it would
be as though these considerations were the only ones relevant to the voting decision.
The specification of voting costs also matters. In particular, if a mass of voters has
zero or negative voting costs, perhaps because they view voting as a civic duty, then
in large elections these would be only voters who show up. In effect, the election
would become equivalent to one with compulsory voting with the duty voters as the
sole participants.

A Asymptotics

The purpose of this appendix is to provide a proof of Proposition 5. This is done via
Lemmas A.7 and A.8 below.

When studying the asymptotic behavior of the pivotal probabilities, it is useful to
rewrite these in the form given in (7) and (8). We begin by establishing these “roots
of unity”formulae.

A.1 Roots of Unity Formulae

For m > 1, let

ω = exp

(
2πi

1

m

)
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Since ωm = e2πi = 1, ω is an mth (complex) root of unity. Note that
∑m−1

r=0 ω
r =

(1− ωm) / (1− ω) = 0.

Lemma A.1 For x, y, z positive,

m−1∑
k=0

(
m

k, k

)
xkykzm−2k =

(
1

m

m−1∑
r=0

(
ωrx+ ω−ry + z

)m)− (xm + ym)
Proof. Using the trinomial formula, for r < m,12

(
ωrx+ ω−ry + z

)m
=

m∑
k=0

m∑
l=0

(
m

k, l

)
ωrkxkω−rlylzm−k−l

and so, averaging over r = 0, 1, ...,m− 1,

1

m

m−1∑
r=0

(
ωrx+ ω−ry + z

)m
=

1

m

m−1∑
r=0

m∑
k=0

m∑
l=0

(
m

k, l

)
ωr(k−l)xkylzm−k−l

=
1

m

m∑
k=0

m∑
l=0

(
m

k, l

)(m−1∑
r=0

ωr(k−l)

)
xkylzm−k−l

=
1

m
xm

(
m−1∑
r=0

ωrm

)
+
1

m
ym

(
m−1∑
r=0

ω−rm

)

+
1

m

m−1∑
k=0

m−1∑
l=0

(
m

k, l

)(m−1∑
r=0

ωr(k−l)

)
xkylzm−k−l

Now observe that since ωm = 1,

m−1∑
r=0

ωr(k−l) =


m if k = m or l = m
m if k = l

1−ωm(k−l)
1−ω(k−l) = 0 otherwise

Thus,

1

m

m−1∑
r=0

(
ωrx+ ω−ry + z

)m
= xm + ym +

1

m

m−1∑
k=0

(
m

k, k

)(m−1∑
r=0

1

)
xkykzm−2k

= xm + ym +

m−1∑
k=0

(
m

k, k

)
xkykzm−2k

Lemma A.2
m−1∑
k=0

(
m

k, k + 1

)
xkyk+1zm−2k−1 =

(
1

m

m−1∑
r=0

ωr
(
ωrx+ ω−ry + z

)m)−mxm−1z
12Recall the convention that if m < k + l, then

(
m
k,l

)
= 0.
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Proof. The proof is almost the same as that of Lemma A.1 and is omitted.

The following lemma uses the roots of unity formulae to study asymptotic prop-
erties of the pivotal probabilities when the propensities to vote and abstain remain
fixed as n increases.

Lemma A.3 For x, y, z positive, satisfying x+ y + z = 1,

lim
m

1

m

m−1∑
r=0

(
ωrx+ ω−ry + z

)m
= 0

Proof. First, note that since |ωr| = 1 = |ω−r| ,∣∣ωrx+ ω−ry + z∣∣ ≤ |ωr|x+
∣∣ω−r∣∣ y + z

= 1

As a result, for all K and for all m ≥ K

1

m

m−1∑
r=0

(
ωrx+ ω−ry + z

)m ≤ 1

m

m−1∑
r=0

∣∣ωrx+ ω−ry + z∣∣m
≤ 1

m

m−1∑
r=0

∣∣ωrx+ ω−ry + z∣∣K
and thus for all K,

lim
m→∞

1

m

m−1∑
r=0

(
ωrx+ ω−ry + z

)m ≤ lim
m→∞

1

m

m−1∑
r=0

∣∣ωrx+ ω−ry + z∣∣K
= lim

m→∞
1

m

m−1∑
r=0

∣∣exp (2πi rm)x+ exp (−2πi rm) y + z∣∣K
=

∫ 1

0
|exp (2πit)x+ exp (−2πit) y + z|K dt (16)

using the definition of the Riemann integral.
Since

|exp (2πit)x+ exp (−2πit) y + z| ≤ |exp (2πit)|x+ |exp (−2πit)| y + z
= x+ y + z

= 1

with a strict inequality unless t = 0. To see this, first note that the inequality above
is strict for t = 1

2 . For all t 6= 0,
1
2 , observe that

|exp (2πit)x+ exp (−2πit) y| =
√
x2 + y2 + 2xy cos (4πt)

< |x+ y|

Thus, for all t 6= 0, |exp (2πit)x+ exp (−2πit) y + z| < 1. Hence, the integral on the
right-hand side of (16) is decreasing in K and converges to zero as K →∞.
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Lemma A.4 For x, y, z positive, satisfying x+ y + z = 1,

lim
m

1

m

m−1∑
r=0

ωr
(
ωrx+ ω−ry + z

)m
= 0

Proof. Note that

1

m

m−1∑
r=0

∣∣ωr (ωrx+ ω−ry + z)m∣∣ =
1

m

m−1∑
r=0

|ωr|
∣∣(ωrx+ ω−ry + z)m∣∣

=
1

m

m−1∑
r=0

∣∣(ωrx+ ω−ry + z)m∣∣
since |ωr| = 1. The result now follows by applying the previous lemma.

A.2 Asymptotic Participation Rates

We begin with a lemma that says that both aggregate participation rates cannot
remain positive in the limit.

Lemma A.5 Along any sequence of equilibria, either lim pA = 0 or lim pB = 0 (or
both).

Proof. Suppose to the contrary that neither is zero. Then there exists a subse-
quence such that lim pA (n) = p∗A > 0 and lim pB (n) = p∗B > 0. Setting x = λp∗A
and y = (1− λ) p∗B in Lemmas A.3 and A.4 implies that, along this subsequence,
limm→∞ Pr [Piv∗A | m] = 0.

Fix any ε > 0. Then there is a K such that for all n large, for all m > K,
Pr [PivnA | m] < ε. As a result,

Pr [PivnA] =
K∑
m=0

πn (m) Pr [Piv
n
A | m] +

∞∑
m=K+1

πn (m) Pr [Piv
n
A | m]

<
K∑
m=0

πn (m) + ε
∞∑

m=K+1

πn (m)

But since limn→∞
∑K

m=0 πn (m) = 0, for all ε, lim supPr [PivA] < ε and so limPr [PivA] =
0.

A similar argument shows that limPr [PivB] = 0 as well. But the equilibrium
conditions (4) and (5) now imply that along the subsequence, lim pA (n) = 0 and
lim pB (n) = 0, contradicting the initial supposition.

Next we show that in the limit, the participation rates are of the same magnitude.

Lemma A.6 Along any sequence of equilibria, 0 < lim inf pApB ≤ lim sup
pA
pB

<∞.
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Proof. Suppose that for some subsequence, lim pA
pB
= 0. This implies that for all n

large enough, along the subsequence, qA = λpA (n) < (1− λ) pB (n) = qB and so from
Lemma 2, Pr [PivA] > Pr [PivB] . It now follows from the equilibrium conditions: for
all v :

cA (v) = vPr [PivA]

cB (v) = vPr [PivB]

that when n is large enough, for all v,

cA (v) > cB (v)

and hence, for all v,

pA (v) = F−1 (cA (v)) > F−1 (cB (v)) = pB (v)

The fact that lim pA
pB
= 0 implies that lim pA = 0 and since pA =

∫ 1
0 pA (v) dGA (v) ,

for almost all values of v, lim pA (v) = 0. Since pA (v) is continuous in v, we have that
for all v, lim pA (v) = 0. Now because pA (v) > pB (v) , it is the case that lim pB (v) = 0
as well. This in turn implies that lim cA (v) = 0 = lim cB (v) .

Thus, along the subsequence, when n is large enough,

pA =

∫ 1

0
F (cA (v)) dGA (v) ≈

∫ 1

0
F ′ (0) vPr [PivA] dGA (v) = F ′ (0) Pr [PivA] vA

Similarly, pB ≈ F ′ (0) Pr [PivB] vB. Thus, for all large n,

pA (n)

pB (n)
≈ Pr [PivA]
Pr [PivB]

vA
vB

>
vA
vB

since Pr [PivA] > Pr [PivB] . Since the right-hand side of the inequality above is
independent of n, this contradicts the assumption that lim pA

pB
= 0.

Lemma A.7 In any sequence of equilibria, the participation rates pA (n) and pB (n)
tend to zero.

Proof. Lemmas A.5 and A.6 together complete the proof of Lemma A.7.

Lemma A.8 In any sequence of equilibria, the expected number of voters npA (n)
and npB (n) tend to infinity.

Proof. Suppose to the contrary that there is a sequence of equilibria in which, say,
limnpA <∞. Lemma A.6 then implies that limnpB <∞ as well. First, recall that

Pr [T ] =

∞∑
m=0

πn (m) Pr [T | m]

Second, for all m,
|Pr [T | m]− P [T | m]| ≤ qA + qB
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where P [PivA | m] is the probability of PivA calculated according to a Poisson
multinomial distribution with an expected population size of m (see Appendix D).
Combining these, we can write∣∣∣∣∣Pr [T ]−

∞∑
m=0

πn (m)P [T | m]
∣∣∣∣∣ ≤ qA + qB

But if limm→∞mqA = MA and limm→∞mqA = MB, then using the formula for
tie events using Poisson probabilities,

lim
m→∞

P [T | m] = e−MA−MB

∞∑
k=0

(MA)
k

k!

(MB)
k

k!
> 0

Since for all K, limn→∞
∑∞

m=K πn (m) = 1 and limn→∞ qA = 0 = limn→∞ qB

lim
n→∞

Pr [T ] > 0

and thus limn→∞ Pr [PivA] > 0 as well.
But now from the equilibrium conditions it follows that limn→∞ pA > 0, contra-

dicting Lemma A.7.

B Supermajority Rules

This appendix provides a proof of Theorem 2. Throughout, we assume that the
population is Poisson distributed with mean n. We will then show that as long as
a > b, no a

a+b supermajority rule is utilitarian in large elections. Thus, we will have
shown that Theorem 1 does not extend to general supermajority rules: only majority
rule is utilitarian.

Pivot Probabilities As before, an event (j, k) is pivotal for A if a single additional
vote for A will affect the outcome of the election and denote the set of such events
by PivA. Given a supermajority rule, the events in PivA can be classified into three
separate categories:

A1. There is a tie and so a single vote for A will result in A winning. A tie can
occur only if the number of voters is a multiple of a+ b. The set of ties is thus

T = {(la, lb) : l ≥ 0} (17)

A2. Candidate A is one vote short of a tie. The set of such events is13

T − (1, 0) = {(la− 1, lb) : l ≥ 1}
13Of course, we assume that the number of votes cast is nonnegative, so that the point (−1, 0) is

excluded from this set.
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A3. A is losing but a single additional vote will result in his winning. For any integer
k such that 1 ≤ k < b, events in sets of the form

T − (
⌈a
b
k
⌉
, k) =

{
(la−

⌈a
b
k
⌉
, lb− k) : l ≥ 1

}
have the required property.14 This is because for any k < b the condition that

la−
⌈
a
bk
⌉

lb− k <
a

b
<
la−

⌈
a
bk
⌉
+ 1

lb− k

is equivalent to ⌈a
b
k
⌉
>
a

b
k >

⌈a
b
k
⌉
− 1

Similarly, events that are pivotal for B can also be classified into three categories:

B1. There is a tie and so a single vote for B will result in B winning. This occurs
for vote totals in the set T as defined above in (17).

B2. Candidate B is one vote short of a tie. The set of such events is

T − (0, 1) = {(la, lb− 1) : l ≥ 1}

B3. B is losing but a single additional vote will result in her winning. For any
integer j such that 1 ≤ j < a, events in sets of the form

T − (j,
⌈
b
aj
⌉
) =

{
(la− j, lb−

⌈
b
aj
⌉
) : l ≥ 1

}
have the required property. This is because for any j < a, the condition that

la− j
lb−

⌈
b
aj
⌉ > a

b
>

la− j
lb−

⌈
b
aj
⌉
+ 1

is equivalent to ⌈
b

a
j

⌉
− 1 < b

a
j <

⌈
b

a
j

⌉
(Under majority rule, of course, there are no events of the kind listed in A3. and

B3.)
As usual, let qA be the probability of a vote for A and qB the probability of a

vote for B. Under the a
a+b -supermajority rule, the probability of a tie is

P [T ] =
∞∑
k=0

e−nqA
(nqA)

ka

(ka)!
e−nqB

(nqB)
kb

(kb)!
(18)

14dze denotes the smallest integer greater than z.
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Approximations Now suppose that we have a sequence (qA (n) , qB (n)) such that
both nqA (n) → ∞ and nqB (n) → ∞. Myerson (2000) has shown first that in that
case, for large n, the probability of a tie in state a, given in (18), can be approximated
as follows:

P [T ] ≈
exp

(
(a+ b)

(nqA
a

) a
a+b
(nqB

b

) b
a+b − nqA − nqB

)
(
2π (a+ b)

(nqA
a

) a
a+b
(nqB

b

) b
a+b

) 1
2
(ab)

1
2

(19)

Second, Myerson (2000) has also shown that the probability of “offset”events of
the form T − (j, k) can be approximated as follows

P [T − (j, k)] ≈ P [T ]× xbj−ak (20)

where

x =

(
qB
qA

a

b

) 1
a+b

The probabilities of the pivotal events can then be approximated by using (19)
and (20):

P [PivA] ≈ P [T ]×
[
1− t+ txb +

b−1∑
k=1

xbd
a
b
ke−ak

]
(21)

P [PivB] ≈ P [T ]×

t+ (1− t)x−a + a−1∑
j=1

xbj−ad
b
a
je
 (22)

where t is the probability that a tie is resolved in favor of A.
Next, using the fact that

{
b
⌈
a
bk
⌉
− ak : k = 1, 2, ..., b− 1

}
= {1, 2, ..., b− 1} and

similarly, that
{
a
⌈
b
aj
⌉
− bj : j = 1, 2, ..., a− 1

}
= {1, 2, ..., a− 1} , we can rewrite

(21) and (22) as

P [PivA] ≈ P [T ]×
[
1− t+ txb +

b−1∑
k=1

xk

]
(23)

P [PivB] ≈ P [T ]×

t+ (1− t)x−a + a−1∑
j=1

x−j

 (24)

Proof of Proposition 7. Using the formulae in (23) and (24), we have that the
ratio of the pivotal probabilities

P [PivA]
P [PivB]

≈ 1− t+ txb +
∑b−1

k=1 x
k

t+ (1− t)x−a +
∑a−1

j=1 x
−j

Now note that the numerator is increasing in x, while the denominator is decreas-
ing. Thus, the ratio of the pivotal probabilities is increasing in x. Also, when x =
1,

P [PivA]
P [PivB]

≈ b

a
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If, for all n large, qA(n)qB(n)
> a

b , then x < 1 and so for all n large,
P[PivA]
P[PivB ] <

b
a . If there

is a subsequence along which qA
qB
= a

b and along this subsequence lim
P[PivA]
P[PivB ] >

b
a ,

then this contradicts the fact that x = 1 implies P[PivA]P[PivB ] ≈
b
a . Thus, if for all n large,

qA(n)
qB(n)

≥ a
b , then lim sup

P[PivA]
P[PivB ] ≤

b
a .

The other case is analogous.

C Aggregate Uncertainty

Our goal in this appendix is to develop asymptotic formulae for the expected pivot
probabilities when there is aggregate uncertainty.

In what follows, we make use of the following identity∫ 1

0
tk (1− t)l dt = 1

k + l + 1

(
k + l

k

)−1
(25)

The identity is easily verified by using induction on k (say). Note that (25) is a
generalization of (11).

Lemma C.1 For all x ∈ (0, 1), if qA = (1− x)λ, qB = x (1− λ) and q0 = 1−qA−qB,
then ∫ 1

0

m∑
k=0

(
m

k, k

)
(qA)

k (qB)
k (q0)

m−2k dλ =
1

m+ 1
(26)

Proof. Note that since q0 = 1−qA−qB = xλ+(1− x) (1− λ) , the binomial theorem
implies that

(qA)
k (qB)

k (q0)
m−2k =

m−2k∑
j=0

(
m− 2k

j

)
(xλ)j+k ((1− x) (1− λ))m−k−j

Thus, using (25),∫ 1

0
(qA)

k (qB)
k (q0)

m−2k dλ

=
m−2k∑
j=0

(
m− 2k

j

)
xj+k (1− x)m−k−j

∫ 1

0
λj+k (1− λ)m−k−j dλ

=
1

m+ 1

m−2k∑
j=0

(
m− 2k

j

)(
m

j + k

)−1
xj+k (1− x)m−k−j
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and so the left-hand side of (26) equals

1

m+ 1

bm/2c∑
k=0

(
m

k, k

)m−2k∑
j=0

(
m− 2k

j

)(
m

j + k

)−1
xj+k (1− x)m−k−j

=
1

m+ 1

bm/2c∑
k=0

m−2k∑
j=0

(
j + k

k

)(
m− k − j

k

)
xj+k (1− x)m−k−j

=
1

m+ 1

bm/2c∑
k=0

m−k∑
j=k

(
l

k

)(
m− l
k

)
xl (1− x)m−l

Interchanging the order of summation, the last expression can be rewritten as

1

m+ 1

m∑
l=0

min{m−l,l}∑
k=0

(
l

k

)(
m− l
k

)
xl (1− x)m−l

=
1

m+ 1

m∑
l=0

(
m

l

)
xl (1− x)m−l

which follows from the fact that for all l ≤ m,

l∑
k=0

(
l

k

)(
m− l
k

)
=

(
m

l

)
=

m−l∑
k=0

(
l

k

)(
m− l
k

)
a consequence of the Vandermonde combinatorial identity (see, for instance, Feller,
1968, p. 64).

Lemma C.2 For x ∈ (0, 1) , if qA = x (1− λ), qB = (1− x)λ and q0 = 1− qA− qB,
then ∫ 1

0

m∑
k=0

(
m

k, k + 1

)
(qA)

k (qB)
k+1 (q0)

m−2k−1 dλ =
1

m+ 1
(1− (1− x)m) (27)

Proof. The proof is almost identical to that of Lemma C.1 and is omitted.

Corollary C.1 For x ∈ (0, 1) , if qA = (1− x)λ, qB = x (1− λ), then∫ 1

0
e−n(qA+qB)

∞∑
k=0

(nqA)
k

k!

(nqB)
k

k!
dλ =

1

n

(
1− e−n

)
Proof. Since

e−n(qA+qB)
∞∑
k=0

(nqA)
k

k!

(nqB)
k

k!
=
∞∑
m=0

e−n
nm

m!

m∑
k=0

(
m

k, k

)
(qA)

k (qB)
k (q0)

m−2k
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Lemma C.1 implies that∫ 1

0
e−n(qA+qB)

∞∑
k=0

(nqA)
k

k!

(nqB)
k

k!
dλ =

∞∑
m=0

e−n
nm

m!

1

m+ 1

=
1

n

(
1− e−n

)

Corollary C.2 For x ∈ (0, 1) , if qA = (1− x)λ and qB = x (1− λ) , then∫ 1

0
e−n(qA+qB)

∞∑
k=0

(nqA)
k

k!

(nqB)
k+1

(k + 1)!
dλ =

1

n

(
1− e−nx − xe−n

1− x

)
Proof. Follows easily by using the fact that

e−n(qA+qB)
∞∑
k=0

(nqA)
k

k!

(nqB)
k+1

(k + 1)!
=
∞∑
m=0

e−n
nm

m!

(
m∑
k=0

(
m

k, k + 1

)
(qA)

k (qB)
k+1 (q0)

m−2k−1
)

and applying Lemma C.2.

Lemma C.3 Suppose that there is a sequence of elections for which lim pB
pA+pB

∈
(0, 1) . Then

lim
n→∞

n (pA + pB)

∫ 1

0
P [T | n, λ] dλ = 1

where P [T | n, λ] denotes the Poisson probability of a tie when the voting propensities
are λpA (n) and (1− λ) pB (n) , respectively.

Proof. If we set x = pB
pA+pB

, then∫ 1

0
P [T | n, λ] dλ

=

∫ 1

0
e−n(λpA+(1−λ)pB)

∞∑
k=0

(nλpA)
k

k!

(n (1− λ) pB)k

k!
dλ

=

∫ 1

0
e−n(pA+pB)((1−x)λ+x(1−λ))

∞∑
k=0

(n (pA + pB) (1− x)λ)k

k!

(n (pA + pB)x (1− λ))k

k!
dλ

=
1− e−n(pA+pB)
n (pA + pB)

where the last equality follows from Corollary C.1, using n (pA + pB) in place of n.
Since n (pA + pB)→∞ as n→∞, taking limits yields the result
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Lemma C.4 Suppose that there is a sequence of elections for which lim pB
pA+pB

∈
(0, 1) . Then

lim
n→∞

n (pA + pB)

∫ 1

0
P [T−1 | n, λ] dλ = 1

where P [T−1 | n, λ] denotes the Poisson probability that A is one vote behind when
the voting propensities are λpA (n) and (1− λ) pB (n) , respectively.

Proof. The proof is almost the same as that of Lemma C.3 and is omitted.

Lemma C.5 Suppose that there is a sequence of elections for which lim pB
pA+pB

∈
(0, 1) . Then

lim
n→∞

n (pA + pB)

∫ 1

0
P [PivA | n, λ] dλ = 1

Proof. Follows immediately from Lemmas C.3 and C.4.

Proof of Proposition 8. We prove the result for PivA. The proof for PivB is
analogous.

First, using the asymptotic formulae for the Poisson probability of PivA, observe
that for all λ 6= λ∗,

P [PivA | n, λ]
P [PivA | n, λ∗]

≈ e
−(
√
nλpA−

√
n(1−λ)pB)

2√
4πn
√
λpA(1−λ)pB

(
1 +

√
(1−λ)pB
λpA

)
÷ e

−(
√
nλ∗pA−

√
n(1−λ∗)pB)

2√
4πn
√
λ∗pA(1−λ∗)pB

(
1 +

√
(1−λ∗)pB
λ∗pA

)
≈ e

−
(√

nλpA−
√
n(1−λ)pB

)2
+
(√

nλ∗pA−
√
n(1−λ∗)pB

)2
×K (λ, λ∗)

1
4

= en(φ(λ)−φ(λ
∗)) ×K (λ, λ∗)

1
4

where φ (λ) = 2
√
pApB

√
λ (1− λ) − λpA − (1− λ) pB and K (λ, λ∗) is a rational

function that does not depend on n, pA or pB. It is routine to verify that the strictly
concave function φ (λ) is uniquely maximized at λ = pB

pA+pB
. Since pB

pA+pB
→ λ∗, for

all large n, φ (λ) < φ (λ∗) . Moreover, since

nφ (λ) = n (pA + pB)
(
2
√

pA
pA+pB

pB
pA+pB

√
λ (1− λ)− λ pA

pA+pB
− (1− λ) pB

pA+pB

)
≈ n (pA + pB)

(
2
√
λ∗ (1− λ∗)

√
λ (1− λ)− λ (1− λ∗)− (1− λ)λ∗

)
and n (pA + pB)→∞, it follows that n (φ (λ)− φ (λ∗))→ −∞. This implies that the
ratio P [PivA | n, λ] /P [PivA | n, λ∗] converges to zero as n→∞.

Fix an ε > 0 and let n be large enough so that pB
pA+pB

> λ∗ − ε. As in the
expression above, we can write for all λ′ < λ′′ < λ∗ − ε

P
[
PivA | n, λ′′

]
P
[
PivA | n, λ′

] = en(φ(λ
′′)−φ(λ′)) ×K

(
λ′′, λ′

) 1
4
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and since φ (λ) is strictly concave and reaches a maximum at pB
pA+pB

> λ∗−ε, φ
(
λ′′
)
>

φ
(
λ′
)
. Thus, for n large enough, P

[
PivA | n, λ′′

]
> P

[
PivA | n, λ′

]
. Analogously,

for all λ′, λ
′′
satisfying λ∗ + ε < λ′ < λ

′′
, P

[
PivA | n, λ′

]
> P

[
PivA | n, λ′′

]
once n

is large enough.
For any ε > 0, as n → ∞, P [PivA | n, λ] converges to zero uniformly for all

λ ∈ [0, λ∗ − ε]. Similarly, for any ε > 0, P [PivA | n, λ] converges to zero uniformly
for all λ ∈ [λ∗ + ε, 1]. As a result, if we denote by I (ε) the interval [λ∗ − ε, λ∗ + ε] ,
then

limn (pA + pB)

∫
I(ε)c
P [PivA | n, λ] dλ = 0

and

limn (pA + pB)

∫
I(ε)c
P [PivA | n, λ]h (λ) dλ = 0

as well. Thus,

limn (pA + pB)

∫
I(ε)
P [PivA | n, λ] dλ = limn (pA + pB)

∫ 1

0
P [PivA | n, λ] dλ

= 1

using Lemma C.5.
Since h is continuous, for any δ > 0, we can pick an ε small enough so that for all

λ ∈ [λ∗ − ε, λ∗ + ε] ,
h (λ∗)− δ ≤ h (λ) ≤ h (λ∗) + δ

Thus, we have

(h (λ∗)− δ)n (pA + pB)
∫
I(ε)
P [PivA | n, λ] dλ

≤ n (pA + pB)

∫
I(ε)
P [PivA | n, λ]h (λ) dλ

≤ (h (λ∗) + δ)n (pA + pB)

∫
I(ε)
P [PivA | n, λ] dλ

and so

h (λ∗)− δ ≤ limn (pA + pB)
∫
I(ε)
P [PivA | n, λ]h (λ) dλ ≤ h (λ∗) + δ

or

h (λ∗)− δ ≤ limn (pA + pB)
∫ 1

0
P [PivA | n, λ]h (λ) dλ ≤ h (λ∗) + δ

and since δ was arbitrary, the proof is complete.
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D Poisson Approximations of the Multinomial

We are interested in the distribution of the sum of independent Bernoulli vector
variables (XA, XB) where

Pr [(XA, XB) = (1, 0)] = qA

Pr [(XA, XB) = (0, 1)] = qB

Pr [(XA, XB) = (0, 0)] = 1− qA − qB

where qA + qB ≤ 1. If q0 = 1− qA − qB, then the probability that after m draws, the
sum of the variables (XA, XB) is (k, l) is

Pr [(k, l) | m] =
(
m

k, l

)
(qA)

k (qB)
l (q0)

m−k−l

Now consider a multivariate Poisson distribution with means mqA and mqB, re-
spectively. The probability P [(k, l)] that the total number of occurrences of A and
B will be k and l, respectively, is

P [(k, l) | m] = e−mqA−mqB
(mqA)

k

k!

(mqB)
l

l!

Roos (1999, p. 122) has shown that

sup
S⊂Z2+

|Pr [S | m]− P [S | m]| ≤ qA + qB
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