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1 Introduction

This paper examines the limit properties of Bertrand price competition when

firms supply all demand1 and the limiting procedure involves taking the

number of active firms, exogenously given, to infinity.2

The objective is two-fold. First, we want to characterize the limit equi-

librium set for a general class of demand and cost functions. Second, we

want to examine if, for the Bertrand framework with exogenous entry, the

folk theorem of perfect competition holds, in the sense that the set of limit

equilibrium prices contains the perfectly competitive price(s), and no other

price(s).3

This problem has been examined earlier by Novshek and Roy Chowdhury

(2003), though only for the case when the demand function is negatively

sloped and the average cost function is either ‘U-shaped’,4 or increasing.5

1The assumption that firms supply all demand is appropriate when the costs of turning

away customers are very high (see Dixon (1990), or Vives (1999)). Such costs may arise

because of either reputational reasons, or governmental regulations. Vives (1999) argues

that such regulations are operative in U.S. industries like electricity and telephone. This

assumption can, in fact, be traced back to Chamberlin (1933). It has also been adopted,

among others, by authors like Bulow, Geanakoplos and Klemperer (1985), Dastidar (1995),

Novshek and Roy Chowdhury (2003), and Vives (1990, 1999).
2Alternatively, one can examine the limiting outcome under ‘free entry’ Bertrand equi-

librium as firms become small compared to the market. This notion was first intro-

duced, for the Cournot case, in Novshek (1980). The limit-equilibrium set under free-entry

Bertrand competition was characterized by Novshek and Roy Chowdhury (2003).
3While the folk theorem is relatively well explored in the Cournot framework, (see,

among others, Novshek (1980), Okuguchi (1973) and Ruffin (1971)), it is much less so in

the Bertrand framework.
4Novshek and Roy Chowdhury (2003) define an average cost function to be ‘U-shaped’

if there exists q∗ > 0 such that the average cost function is strictly decreasing for all

0 < q < q∗, and strictly increasing for all q > q∗.
5Novshek and Roy Chowdhury (2003), of course, also examine the case when entry

is ‘free’, rather than ‘exogenous’. They also characterize the limit equilibrium set when

average costs are constant, or decreasing, or have a capacity constraint.
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They characterize the limit-equilibrium set for both classes of average cost

functions. Surprisingly, the folk theorem of perfect competition fails, in

the sense that the set of limit equilibrium prices either do not contain the

perfectly competitive price, or contains other prices as well.

The assumptions on the demand and the cost functions imposed by

Novshek and Roy Chowdhury (2003) are certainly quite reasonable. Given

the importance of their results, however, it is of interest to re-examine the

problem under a minimal set of restrictions on the demand and the cost

functions. Hence in this paper we essentially only assume that the de-

mand function is continuous and intersects both the axes, and that the cost

function is continuous.6 In particular, we do not assume that the demand

function is negatively sloped, or that the average cost function is either

increasing, or ‘U-shaped’.

We characterize the limit-equilibrium set and show that, under a rela-

tively mild set of assumptions, our characterization coincides with that by

Novshek and Roy Chowdhury (2003). We also show that unless average cost

is constant, the folk theorem of perfect competition necessarily fails. Thus

this paper generalizes the Novshek and Roy Chowdhury (2003) results for

the exogenous entry case to a significant extent.

2 The Model

The market M(n) comprises the demand function f(p) and n firms, all

producing a single homogeneous good, and having the same cost function,

c(q).7

The market demand function f(p) satisfies the following assumption.

6Except possibly at the origin.
7For ease of comparison, the notations in this paper closely follow those in Novshek

and Roy Chowdhury (2003).
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Assumption 1: (a) f : [0,∞) → [0,∞).8 Moreover, f(p) is continuous.

(b) There exists a strictly positive p̂ such that f(p) = 0, ∀p ≥ p̂ and

f(p) > 0, ∀p < p̂.

Note that we do not assume that the demand function is necessarily

negatively sloped.

Let AC(q) denote the common average cost function of all firms.

Assumption 2: (a) c : [0,∞) → [0,∞). Moreover, c(0) = 0 and

c(q) > 0, ∀q > 0.

(b) The cost function is continuous, except possibly at the origin.9

(c) AC : (0,∞) → (0,∞). Moreover, there exists p such that p >

AC(f(p)).

Note that we do not assume that the average cost function is necessarily

either increasing, or ‘U-shaped’.10

We examine a game of Bertrand competition where the firms simultane-

ously announce their prices. Moreover, the firms supply all demand.

If the announced price vector is (p1, p2, · · · , pn), then the demand facing

firm i is

Di(p1, · · · , pi, · · · , pn) =

 0, if pi > pj , for some j,
f(pi)

m , if pi ≤ pj , ∀j, and #(l : pl = pi) = m.

Thus the lowest priced firms share the market equally, while firms charg-

ing higher prices have zero demand.

The profit of the i-th firm

8Note that this implies that f(0) is finite.
9Note that AC(q) is well defined and continuous on (0,∞).

10The second part of Assumption 2(c) implies that the optimal monopoly profit is

strictly positive. It is equivalent to the Novshek and Roy Chowdhury (2003) assumption

that f(p) and AC(q) intersect at least once in the p− q plane.
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πi(p1, · · · , pn) =

 0, if pi > pj , for some j,

(pi −AC(Di(p1, · · · , pn)))Di(p1, · · · , pn), if pi ≤ pj ,∀j.

We solve for the pure strategy Nash equilibrium in prices, i.e. Bertrand

equilibrium.

Definition. A Bertrand equilibrium for the market M(n) consists of a

price vector (p1, · · · , pi, · · · , pn) such that, ∀i and ∀p′i,

πi(p1, · · · , pi, · · · , pn) ≥ πi(p1, · · · , p′i, · · · , pn). (1)

We then define the notion of a limit-equilibrium set. In the quantity

competition framework, Ruffin (1971) and Okuguchi (1973), among others,

examine the Cournot-Nash equilibrium taking market conditions, in partic-

ular the number of active firms, as exogenously given. They then study the

limiting outcome as the number of active firms goes to infinity. We call this

the exogenous entry approach.

Novshek and Roy Chowdhury (2003) adapt this notion to the Bertrand

context. In a Bertrand framework firms are active when they charge the

minimum price. Hence Novshek and Roy Chowdhury (2003) characterize

the set of all prices p such that if the number of firms n is large enough,

then, for the market M(n), there is some equilibrium where all firms are

active and the equilibrium price is arbitrarily close to p. This notion of a

limit equilibrium set is adopted in the present paper as well.

Definition: S = {p : there is a sequence p(n) that converges to p

such that, for each sufficiently large n, all firms setting a price p(n) is an

equilibrium for the market M(n)}.

We need some more notations before we can characterize S.

b = limq→0 AC(q).11

11From Assumption 2(c), b is well defined (allowing for infinity as a possible limit).
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c∗ = infq AC(q).12

p̃ = argmaxp∈[0,p̂] f(p).13

d̃ = inf {p : p > AC(f(p))}.14

d is the minimum p such that AC(f(p)) = p.15

We then impose the following regularity condition.

Assumption 3. If b = d̃, then the cost function is either linear, or there

exists t > 0 such that AC(q) is negatively sloped for all q ∈ (0, t).

Note that generically b 6= d̃.16 Thus Assumption 3 is not very strong.

Recall that in the Novshek and Roy Chowdhury (2003) framework, b = d̃

implies that the average cost function is ‘U-shaped’, so that Assumption 3

is necessarily satisfied. In Remark 2, Novshek and Roy Chowdhury (2003)

also consider the case where average cost is constant (so that b = d̃).

Proposition 1 below characterizes the set S.

Proposition 1. Let Assumptions 1, 2 and 3 hold. Then S = [b, d̃] if

b ≤ d̃, it is empty otherwise.

Proof: To begin with we argue that no price less than b or greater than

d̃ can belong in the limit set S.

Suppose that p(n) converges to p as n increases and for each sufficiently

large n, all n firms setting a price p(n) is an equilibrium for M(n). Note

that the output per active firm is at most f(p̃)
n , which converges to zero

12Given Assumption 2(c), c∗ is finite.
13Given that f(p) is continuous, p̃ is well defined.
14Since p = 0 is a lower bound, there is a least upper bound. Given Assumption 2(c),

the set {p : p > AC(f(p))} is non-empty. Hence d̃ is finite.
15Given Assumption 2(c), d is well defined.
16This is in the following sense. Take any pair of f(p) and AC(q) such that b = d̃. Now

if either one of the functions is perturbed slightly (in an appropriate manner), then it will

no longer be the case that b = d̃.
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as n goes to infinity.17 Thus if p < b, then for all sufficiently large n,

p(n) < AC(f(p(n))
n ), so that p(n) cannot be an equilibrium price.

Next let p > d̃. For a sufficiently large n, profit per active firm, [p(n)−
AC(f(p(n))

n )]f(p(n))
n , is less than (p̂ − c∗)f(p̃)

n . Thus, for n large, profit per

active firm converges to zero. Moreover, from the definition of d̃, there exists

p′ such that d̃ < p′ < p(n) and p′ > AC(f(p′)). Undercutting to such a price

p′ yields a strictly positive profit that depends on p′, but not on n. Thus,

for n large, undercutting is strictly profitable.

We then argue that every price in the interval [b, d̃] is in the limit set. If

p > b, then, for any sufficiently large n, if n firms set such a price then each

firm will produce an output at which p exceeds average cost, and thus obtain

a positive profit. Undercutting is unprofitable since for any p strictly less

than d̃, an undercutting firm cannot make a positive profit as p ≤ AC(f(P )).

The remaining case is p = b. If b < d̃, then this p can be obtained as

the limit of an appropriate sequence of equilibrium prices, p(n), described

above.

Finally, let b = d̃ < p̂.18 If average cost is constant, then p = b can be

sustained as a Bertrand equilibrium for all n. Hence, given Assumption 3,

we assume that there exists t > 0 such that AC(q) is negatively sloped for

all q ∈ (0, t).

Consider some p ∈ (AC(t), b). Let q(p) be the unique q, 0 < q < t,

such that AC(q(p)) = p. Next, let n(p) satisfy f(p)
n(p) = q(p), where n(p) can

be a non-integer. Given that f(b) > 0 and limp↑b q(p) = 0, it follows that

limp↑b n(p) = ∞. Next, let ñ(p) be the largest possible integer such that

p ≥ AC(f(p)
n ) (this is well defined for n(p) large enough). Clearly, there

exists some largest interval (b′, b), AC(t) ≤ b′ < b, such that ñ(p) is well
17Note that the assumption that the demand function intersects both axes ensures that

p̃ is well defined, and thus f(p̃) is bounded.
18Since f(p) is negatively sloped at p̂, it cannot be the case that b = d̃ > p̂. If b = d̃ = p̂,

then all firms charging p̂ and having zero demand and supply is an equilibrium for M(n).

6



defined for all p ∈ (b′, b). Given that |n(p)− ñ(p)| < 1 and limp↑b n(p) = ∞,

we have that limp↑b ñ(p) = ∞. Let n̂ = minp∈(b′,b) ñ(p).

We then construct a sequence < p(n) > such that ∀i ∈ {0, 1, 2, . . .},
p(n̂ + i) is some p ∈ (b′, b) such that n̂ + i = ñ(p). Note that for n ≥ n̂, the

pair (n, p(n)) belongs to the graph of ñ(p). Thus p(n) ≥ AC(f(p(n))
n ), so that

all firms earn non-negative profits. Moreover, since p(n) < b = d̃, no firm can

undercut profitably. Finally, we argue that the sequence < p(n) > converges

to b. Suppose not. Then there exists some ε > 0 and some sub-sequence

< p(ni) > such that p(ni) ≤ b − ε, ∀ni. Note that limni→∞
f(p(ni))

ni
≤

limni→∞
f(p̃)
ni

= 0. Hence, for ni large enough, p(ni) < AC(f(ni)
ni

). This,

however, is a contradiction since for all ni, (ni, p(ni)) belongs to the graph of

ñ(p).

We then relate the above characterization to the corresponding one in

Novshek and Roy Chowdhury (2003) (i.e. Theorem 1). For the case when

the demand function is negatively sloped, and the average cost function is

either increasing, or ‘U-shaped’, they find that if b ≤ d, then S = [b, d]. S is

empty otherwise.

Under the Novshek and Roy Chowdhury (2003) framework it is easy to

see that if b ≤ d̃, then d̃ = d,19 so that the two characterizations coincide.

We then argue that there is a large class of demand and cost functions for

which the above result goes through.

We begin by introducing the following definition.

Definition. f(p) is said to be tangent to AC(q) at some p, if p =

AC(f(p)) and there is some ε > 0 such that for all p ∈ (p− ε, p)∪ (p, p + ε),

either p ≥ AC(f(p)), or p ≤ AC(f(p)).

19If b ≤ d̃, then, under the Novshek and Roy Chowdhury (2003) formulation, the average

cost function must be positively sloped at d̃. Thus there does not exist any p′ < d̃ such

that p′ = AC(f(p′)). Of course if b > d̃, then S is empty.
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We need one final assumption.

Assumption 4. At any p < d̃ such that p = AC(f(p)), the demand

and the average cost functions cannot be tangent to each other.

Clearly, Assumption 4 is generically true,20 and is not a very strong

assumption.

We are now in a position to prove Proposition 2.

Proposition 2. Let Assumptions 1, 2, 3 and 4 hold. Then S = [b, d] if

b ≤ d, S is empty otherwise.

Proof. Given Proposition 1, it is sufficient to show that, under Assump-

tion 4, d̃ = d.

Clearly, d̃ = AC(f(d̃)). Since d is the minimum p such that p =

AC(f(p)), d̃ ≥ d. Next suppose that d̃ > d. By definition, d = AC(f(d)).

Moreover, from the definition of d̃, p ≤ AC(f(p)) for all p ∈ [0, d̃). Hence

f(p) and AC(q) are tangent to each other at d. This, however, violates

Assumption 4.

We finally examine whether, in this framework, the folk theorem of per-

fect competition holds or not. Clearly, the folk theorem holds if and only if

b = d̃ = c∗. Given Assumption 3, b = d̃ = c∗ if and only if average cost is

constant. For all other classes of cost functions the folk theorem fails.

3 Conclusion

We examine the limit-properties of Bertrand price competition when entry

is exogenous. Our results substantially generalize those in Novshek and

Roy Chowdhury (2003) since we allow for demand functions that are not

necessarily decreasing, and for average cost functions that are not necessarily

20In the sense of footnote 16.
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either increasing, or ‘U-shaped’. We also demonstrate that, under a set

of relatively mild conditions, the characterization developed in this paper

coincides with that in Novshek and Roy Chowdhury (2003). Finally, we

show that the folk theorem of perfect competition fails for all classes of cost

functions, except for the case when average cost is constant.
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