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Abstract

Very poor households may be excluded from public programs intended for

their benefit for a variety of reasons such as lack information, a permanent

residence or membership in social networks. We are interested in methods of

testing for such exclusion based on independently drawn samples of program

participants and non-participants. We discuss three alternative nonparametric

procedures; sign tests, tests for stochastic dominance and a test for distribution

crossing. In the cases where there is a poverty threshold below which program

participation is difficult, our simulation results suggest that the last of these test

procedures is the most powerful. We apply this test to data from a microfinance

program in India and find evidence that the poorest households in the area were

largely outside the program.
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1 Introduction

Every public program faces the challenge of reaching intended beneficiaries. Docu-

mented deficiencies in many older social transfer mechanisms have led governments,

non-government organizations and donor institutions to embrace institutions which

use innovative methods of transferring resources to poor households. Some of these

(such as the Grameen Bank of Bangladesh), provide credit to poor households for

micro-enterprises, some (like social funds in Peru), subsidize investments in social

and physical infrastructure and others (such as the Employment Guarantee Schemes

in India) provide opportunities for employment on local infrastructure projects during

periods of food scarcity. Central to evaluating the success of these programs is an

assessment of how well they target the poor.

While many of the programs mentioned above have transformed the lives of mil-

lions of households, there is some concern that they may not be adequately serving the

very poor. These households may be inadequately informed, educated or nourished

to take advantage of these programs, they may not possess required documents such

as birth certificates or proofs of residence, they may be socially ostracized, or agency

problems may lead bureaucrats to direct resources to other groups. Morduch (1998)

finds that eligibility rules are often violated in microcredit programs in Bangladesh.

There is also empirical evidence from a variety of social programs in both developed

and developing countries that information sets differ among those eligible, and that

participation rates are sensitive to program design.1

Estimates and tests of poverty targeting based on parametric models could be

misleading without enough prior information on the set of households that may be

vulnerable to exclusion. Social programs to reduce poverty are designed to exclude

wealthy households, leading us to expect mean incomes to be lower among partici-

pants than non-participants. If these programs also exclude the poorest households,

and these are a small fraction of the population, we may not detect such neglect in a

1Heckman and Smith (2003) use data from a job training program and shows how information

can have significant effects on participation. Atkinson (1995) compares family allowance programs

in Western Europe in the post-war period and discusses the role of differences in design.



comparison of means across the two groups. Intutively, this is because popular para-

metric procedures typically estimate conditional means and differences in the tails of

conditional distributions may not be reflected in their means. This is well illustrated

in Paxson and Schady (2002) where logit estimates indicate that the benefits from

investments in infrastructure are decreasing in income, but nonparametric regressions

reveal that the poorest 7% of households are less likely to benefit than the slightly

richer ones.

In this paper we describe three nonparametric procedures that could be used to

compare differences in the tails of two distributions. We are interested in evaluating

the appropriateness of these procedures in testing for whether the poorest households

in the population have been neglected by a program.

The simplest procedure we consider is the sign test, based on the number of

participants in the sample below a given population quantile. If, for example, the

share of participants in the bottom income quartile of the population is significantly

lower than 25% we would expect the bottom quarter of our sample (ordered by

income) to contain fewer participants than non-participants for equal sample sizes of

the two groups. This popular nonparametric test is fairly crude in that it relies only

on the number of sample observations below a certain income threshold and is not

sensitive to the levels of income corresponding to these observations.

Our second set of procedures are tests for stochastic dominance. If program

participants are mainly poor, but the program in inaccessible to those below a certain

threshold level of income, x0, we would expect the distribution of participants and

non-participants to cross at some income x∗ > x0 with the distribution of participants,

F (x), below that of non-participants, G(x), for incomes below x∗ with the reverse

true above x∗. Suppose we classify households as poor if their incomes lie in some

interval [a, b]. In this case, there will be no first order stochastic dominance over any

such interval if it includes x∗. It may however be the case that F (x) second-order

stochastically dominates G(x) over [a, b]. This would be evidence of an anti-poor

bias in the program. Second-order stochastic dominance is closely related to Lorenz

dominance and discussions and tests for both these orderings have now appeared in

the literature on inequality and poverty measurement (Foster and Shorrocks, 1988,
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Bishop et. al., 1992, Anderson, 1996). We discuss this literature more fully in Section

2.

The last procedure we consider explicitly tests for a crossing of the distributions

of participants and non-participants and also estimates the crossing point. These

estimated crossing points provides us with an upper bound on the income of the

set of households that have been neglected by the program. This approach has the

advantage of detecting non-monotonicities in inclusion probabilities, even over small

ranges of the income distribution under very general distributional assumptions. It

also requires no prior information on the income interval in which such a crossing

might occur.

We compare the three tests through simulations on pairs of income distributions

which we consider plausible for participants and non-participants in a public pro-

gram. Each pair is chosen so that the distribution of participants crosses that of

non-participants from below, reflecting the relative exclusion of households below

a certain minimum income threshold. No first-order stochastic dominance relation

therefore exists. We have constructed our examples so that second-order stochastic

dominance holds in two out of 3 cases.

We experiment with different sample sizes and find the test of distribution crossing

to be the most powerful in rejecting a null of equal distributions in most of our

simulations. Simulation results are in Section 3. For all three pairs of distributions

we consider, the power of this test rapidly converges to 1 as sample sizes increase. The

simulations lead us to the conclusion that if there is reason to believe, a priori, that

there is a unique threshold below which program participation is difficult, the tests

for distribution crossing are the most powerful. In contrast, there are two principal

drawbacks to using tests for second-order stochastic dominance in this context. The

first is that such dominance will only occur if the crossing point of the two distributions

x∗ is close to the endpoint b of the interval of interest. These test cannot therefore

detect the exclusion of poor households if the fraction excluded is relatively small and

in the tail of the income distribution. The second problem relates to the test statistics

currently available in the literature. These are mainly union-intersection tests and

are therefore usually conservative and have low power unless the distributions being
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considered are sufficiently different from each other.

In Section 4, we apply the above methods to test for poverty targeting in a rapidly

growing microfinance program in India. We collected data on living standards for a

sample of households entering the program and randomly chosen non-participant

households in the same area. We use this survey data to construct an economic index

which can proxy for income and compare the distributions of this index for members of

newly formed microcredit groups to randomly chosen non-members in the area. The

two empirical distribution functions cross. We estimate the crossing point of these

distributions and test for distribution crossing. Our results are statistically significant

and suggest that the poorest 5% of households in the area are disproportionately

outside the program. Based on their levels of education and their pariticipation in a

government program for subsidized foodgrains, it seems that they are also excluded

from other programs aimed at poverty alleviation.

Although much of our discussion and our empirical work refers to targeting in

poverty alleviation programs, the methods proposed are of more general applicabil-

ity. They can be used in a variety of situations where the crossing of population

distributions is of interest. For example, students in some schools may come from

the tails of an income distribution (because the school may admit you either if you

are very wealthy or poor and intelligent) while others come from the middle. Some

firms may hire some very able managers and low skill workers while others might

hire employees of similar ability. Estimates and tests for distribution crossings can be

useful in these situations to characterize differences organizational behavior evaluate

their economic effects.

2 Methodology

2.1 Some Preliminaries

Almost all the nonparametric procedures we consider are based on empirical estimates

of the population distribution functions for each group. These are standard in the

literature, but for the sake of completeness, we begin with a definition.
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Definition 1 The empirical distribution function corresponding to a population dis-

tribution H(x) is

HN(x) =
1

N

N∑
i=1

I(Xi ≤ x),

where I(A) is the indicator function of the set A and N is the number of sample

observations.

HN(x) is a step function with jumps at the order statistics of the sample. The

Glivenko-Cantelli theorem (Fisz, 1963), establishes that the empirical distribution

function converges uniformly to the population distribution function with probability

one.

We denote the distribution of income in the population by F (x) for participants

and by G(x) for non-participants. Sample sizes for participants and non-participants

are denoted by n and m respectively and the two samples are denoted by X1, . . . , Xn

and Y1, . . . , Ym.

2.2 Test Statistics

2.2.1 General Tests for Comparing Distributions

We begin by briefly discussing two popular nonparametric tests; the Kolmogorov

Smirnov test for the equality of two distributions and the Wilcoxon-Mann-Whitney

test for first order stochastic dominance. We point out why it is desirable to go

beyond these for the particular problem we are interested in and discuss tests that

we believe are appropriate in our context.

The Kolmogorov Smirnov test is used to test the null hypothesis of equal distribu-

tions against the very general alternative that the distributions are unequal. The test

is based on the maximum difference between the two empirical distribution functions.

Large values of the statistic are evidence against equal distributions and lead to the

rejection of null hypothesis. The generality of the alternative hypothesis makes it

widely applicable. It also means however that rejection of the null is not very infor-

mative in terms of ordering the two distributions. Kolmogrov tests are often used
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for preliminary studies of data since the alternatives involved are very general. As a

consequence, the rejection of the null provides us with very little information which

can be used to compare the two distributions.

The Wilcoxon-Mann-Whitney test can be used to examine whether one distribu-

tion first order stochastically dominates the other. If we find evidence of stochastic

dominance of the distribution of non-participants, the program can be judged to be

successful in targeting the poor. The test statistic is based on the number of times an

X precedes a Y in the combined ordered arrangement of the two independent random

samples X1, X2, . . . , Xn and Y1, Y2, . . . , Ym into a single sequence of m + n = N vari-

ables, increasing in magnitude. If a program successfully targets poor households, we

would expect the sample of X’s to generally precede the Y’s and the test would pro-

vide support for the stochastic dominance of the distribution of non-participants. The

reverse would be true if the program was anti-poor. The test statistic is asymptoti-

cally normal and is distribution-free under the null hypothesis. Its power compares

very well with parametric tests when the latter are appropriate.2

If there is in fact a threshold level of household income below which participation

in a program is negligible, the population distributions of participants F (x) will cross

that of non participants from below. There will be no first order stochastic dominance

of either distribution in this case. These tests will not, in that case provide us with

any information about the alternative we are interested in.

We now discuss tests that are appropriate when population distributions cross.

2.2.2 Sign Tests

A sign test is a popular procedure to test for population quantiles. The relevant

population quantile is the level of household income below which we are interested in

comparing the shares of participants and non-participants. In terms of the notation

we have been using so far, this population quantile would correspond to the endpoint

b of the income interval of interest [a, b], with a = 0.

2See Gibbons and Chakraborti (1992), chapter 7, for derivations of these test statistics and their

distributions and Hettmansperger (1984) for power comparisons.
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To elaborate, suppose we wanted to test the null hypothesis that the level of

income was irrelevant for program participation of households in the lowest income

quartile. We would first find the value of household income in our sample below which

25% of sample households lie. This sample quantile, given by the income of the m+n
4

th

ordered observation, is a consistent estimate of the corresponding population quantile.

This can be used to test the null hypothesis against the alternative that the fraction

is less than .25. Rejection of the null would support the claim that households with

incomes in the bottom quartile are disproportionately excluded from the program.

The test statistic is based on the number of observations for participants, Sn

that are below the relevant sample quantile. Sn has a binomial distribution with

parameters n (the size of the sample of participants) and p (the population fraction

below the income quantile being used). As long as sample sizes are reasonable, critical

values for the test can be based on the normal approximation. In the simulations

exercises described below, we use p = .25 and p = .05 as alternative cutoffs for the

sign test.

2.2.3 Tests for second-order Stochastic Dominance

If the distributions of participants and non-participants cross, we cannot rank them

in terms of first-order stochastic dominance. We may, however, be able to rank them

in terms of higher orders of stochastic dominance.

Definition 2 We say that the distribution of participants, F(x), dominates that of

non-participants, G(x), in second-order iff∫ t

−∞
G(x)dx ≥

∫ t

−∞
F (x)dx

Higher orders of stochastic dominance are defined by the ordering of higher order

integrals of these distributions. Note that stochastic dominance of order r always

implies stochastic dominance of order (r + 1) but the reverse is not true.

If two distributions cross at an income level close to the end point b of the interval

of interest, F (x) is likely to dominate G(x) in second-order. A test which supports
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such an alternative, against the null of equal distributions, therefore provides evi-

dence supporting the exclusion of households in the interval [a, b]. If however, the

distributions cross at an income level close to a, such a test would be relatively un-

informative. Loosely speaking, the closer the income corresponding to the crossing

point is to a, the higher the order of stochastic dominance we need to consider to

rank these distributions.

Several test procedures are available for testing second-order stochastic domi-

nance and the related concept of Lorenz dominance. Bishop, Fromby and Thistle

(1992) and Beach and Davidson (1983) propose tests for Lorenz dominance based

on sample quantiles. Deshpande and Singh (1985) provide a one sample statistical

test for second-order stochastic dominance when one distribution is known. Schmid

and Trede (1998) consider the dominance of F over G when the supports of F and

G are contained in [0, 1] and G is uniform. Since very little in known in practice

about the distributions of participants and non-participants in a program, we re-

strict ourselves to tests which can be used for any (unknown) specification of the two

distributions. Moreover, since we are interested in poverty rather than inequality we

focus on second-order stochastic dominance rather than Lorenz dominance. Anderson

(1996) proposes a test for second-order stochastic dominance based on a comparison

of frequencies for the groups in pre-determined income intervals and which does not

use any information on the actual levels of income within these intervals. Davidson

and Duclos (2000) and Kaur, Prakasa Rao and Singh (1994) propose the same test

statistic for testing second-order stochastic dominance at a fixed point in the interval

of interest. Kaur, Prakasa Rao and Singh then use the infimum of these statistics to

test for second-order stochastic dominance. We favor their approach over the others

in the literature since their test is consistent and they have carefully identified all

points of change in the statistic over the interval of interest.

A thorough discussion of the usefulness of how higher orders of stochastic dom-

inance can be used for poverty measurement is beyond the scope of this paper. We

refer the reader to Chakravarty and Muliere (2003) and Davidson and Duclos (2000)

for a review of some of the important literature in this area. We restrict ourselves

here to two comments that are relevant to the question we are interested in, namely,
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testing the exclusion of the very poor from a public program. The first is that most

available tests for second-order stochastic dominance that are distribution free are

based on the union-intersection principle. This means that the hypothesis being

tested is based on several simple hypotheses and the test statistic is a function of the

statistics from these simpler tests. In the case of Kaur, Prakasa Rao and Singh (1994)

for example, this means that the integrals of the empirical distribution functions for

the two groups are compared at several points in the income interval [a, b] which is of

interest and the test statistic is based on the smallest difference between the integral

estimates in this interval.

Most tests for second-order stochastic dominance tend to have low power and

often yield conflicting results when applied to the same data (Davidson and Duclos

(2000)). This is not surprising since these test statistics are sensitive to each of the

points in the interval in which the comparison is made and are therefore very sensitive

to outliers in the sample. Different statistics are sensitive to different types of outliers

and therefore yield conflicting results unless the sample error is small relative to

differences in the population distributions. The second observation is that when the

crossing of participant and non-participant distributions is close to the bottom of the

income interval of interest, we require tests for higher orders of stochastic dominance

and very little is known about the properties of these types of tests.

In the simulations below, we use the test for second-order stochastic dominance

given by Kaur, Prakasa Rao and Singh (1994) because it is not based on arbitrarily

determined quantiles and the behavior of the statistic within the interval of interest

is well studied. The calculation of the statistic used in our simulations is reproduced

in the appendix for easy reference.

2.2.4 Tests for Distribution Crossing

We now turn to explicit tests for distribution crossing. These tests are appropriate if

there is reason to believe that there is a single crossing in our interval of interest. This

would be true if income is the main determinant of participation and the program

finds it difficult to reach households below a certain income threshold. They have the

9



added advantage of providing an estimate of the crossing point, which is an upper

bound on the incomes of the set of households who are relatively neglected by the

program.

Hawkins and Kochar (1991) and Chen et al. (2002) have considered point as well

as interval estimation of the crossing point x∗. We derive estimates of the crossing

point based on the methodology in Chen et al. (2002) which we summarize here.

Suppose that limN→∞m/N = γ for some γ ∈ (0, 1). Let Z1, . . . , ZN be the

combined sample of X ′s and Y ′s and Z(1) < Z(2) < . . . , Z(N) be the order statistics

of this sample. We wish to test

H0 : F (x) = G(x)

against the alternative

HA : F (x) < G(x) when x < x∗ and G(x) < F (x) when x > x∗.

Chen et al. (2002) proposed the following supremum-type criterion function for

testing H0 against HA:

λ(x) = sup
t≤x

(G(t)− F (t)) + sup
x≤t

(F (t)−G(t))− |F (x)−G(x)|.

They prove that under the null hypothesis λ(x) = 0 and under the alternative

hypothesis the crossing point x∗ is the unique maximizer of λ(x). An estimate of λ(x)

is given by corresponding values based on the empirical distribution functions Gm(x)

and Fn(x):

λN(x) = sup
t≤x

(Gm(t)− Fn(t)) + sup
x≤t

(Fn(t)−Gm(t))− |Fn(x)−Gm(x)|.

Since empirical distribution functions are step functions with jump points as order

statistics, λN(x) attains its maximum at some point Z(j) Therefore

sup
x

λN(x) = max
0≤j≤N

λN(Z(j))
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They propose the statistic

JN =

√
mn

N
max

0≤j≤N
λN(Z(j))

for testing H0 against HA. Exact critical points for small samples are tabulated in

Chen et al. (1998). The asymptotic distribution is not standard and the authors ob-

tain asymptotic critical regions using Monte-Carlo simulations. The relevant critical

value is presented with our simulation results below.

Since the empirical distribution functions are only estimates of the population

distribution functions, we may encounter multiple crossings in our sample even if

the population distributions exhibit a unique crossing point. In the case of multiple

estimates of the crossing point, we use the smallest value since this is our most

conservative estimate of the upper bound on income of the households neglected by

the program.

3 Simulation Results

We now compare the test procedures described above using simulated data from

three alternative pairs of distributions for participants and non-participants. In each

case, the distributions cross with the participant distribution intersecting that of

non-participants from below. We rely mainly on alternative parameterizations of

Weibull distributions since these are reasonable approximations for observed income

distributions and are easy to work with.

We first consider an example that has been used in both Hawkins and Kochar

(1991) and Chen et al (2002). We include it here for purposes of comparison. The

income of participant households, F (x) has an exponential distribution and that of

non-participants a Weibull distribution:

F1(x) = 1− e−x2

,

G1(x) = 1− e
− 2x√

π .

(1)
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The two distribution cross at x = 1.13 and 72% of the population of each group lies

to the left of this point. F second-order stochastically dominates G for all possible

intervals in [0, 1].

Our second example has been chosen so that almost the entire population is to

the left of the crossing point. Second-order stochastic dominance of F is therefore

strongest here. The distributions

F2(x) = 1− e−(x
3
)3

G2(x) = 1− e−(x
2
)2 ,

(2)

cross at x = 6.75.

In our last example,

F3(x) = 1− e−(x
2
)3

G3(x) = 1− e−(x
3
)2 ,

(3)

the distributions cross at x = 8/9. Only 9% of each group has incomes below this

point. As expected, there is no second-order stochastic dominance of either distribu-

tion.

The distribution functions corresponding to these examples are shown in Figures

1-3.
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Figure 1: F1(x) = 1− e−x2
, G1(x) = 1− e

− 2x√
π
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Figure 3: F3(x) = 1− e−(x
2
)3 , G3(x) = 1− e−(x

3
)2

For each of these pairs, we consider 2 sample sizes (i) n = m = 20 and (ii)

n = m = 50 and perform 5,000 iterations. We have used the same sample sizes and

number of iterations used by Chen et al. to facilitate comparison between the tests.

For the crossing test we use the simulated 5% critical point of 1.529 given in Chen

et al.(2002). For the sign test for the first two examples, we count the proportion

of observations to the left of the N/4th observation in the combined sample. This

is therefore a test for whether the proportion of participants in the bottom income

quartile of the population is less than 25%. For the third example, there is an early
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Table 1: Power comparisons for three nonparametric tests.

Distributions Sample Crossing SSD Sign Sign

sizes Test Test Test Test

(p = .25) (p = .05)

F1, G1 n=m=20 0.485 0.187 0.185

n=m=50 0.899 0.25 0.664 .

F2, G2 n=m=20 0.577 0.759 0.312

n=m=50 0.960 0.878 0.927

F3, G3 n=m=20 0.623 - 0.003

n=m=50 0.974 - 0

crossing of the two distributions and we therefore test for proportions in the poorest

5% of the population by counting the proportion of observations to the left of the

N/20th observation in the combined sample. We use critical values based on the

standard normal distribution.

Computing the power for tests of second-order schochastic dominance is more

complicated because even for large samples, we find simulated critical values to be

considerably different from those of the standard normal distribution, which has been

proposed by the authors for testing purposes. The test statistic proposed by Kaur,

Prakasa Rao and Singh (1994) is an infimum of random variables each with a stan-

dard normal distribution and they propose using the critical values from the standard

normal to reject the null hypothesis. We find the test based on these critical values

overly conservative therefore generate simulated critical values under the null hy-

pothesis using the exponential distribution in Example 1 for both groups and 5,000

iterations. We obtained a simulated 5% critical value of .72 with a sample size of 20

for both groups and .96 with a sample size of 50. The power comparisons in Table 1

are based on these critical values.

As seen from Table 1, the test for distribution crossing is more powerful than

the others in most cases and its power rapidly improves with sample size. We also
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performed simulations with bigger samples and found that for m=n=100, the power

of this to be 1 in all three examples. We found no similar convergence for the other

two tests. Both the sign test and the SSD test do best in the second example when the

difference between the two distributions is marked. We do not test for second-order

stochastic dominance in the third example since no such dominance holds.

The Sign test does very badly in case 3 because the two distributions are almost

identical initially in this case. This is clear from Figure 3. We conclude that there

is a strong case for using the Chen test when we expect a single crossing of the two

distributions and when the distributions are fairly similar.

4 An Application to Data from an Indian Micro-

finance Program.

4.1 Data

Our data is from a microfinance program in the state of Jharkhand in India. Jhark-

hand is among the poorest of the 27 Indian states, with over half its population

below the national poverty line. The program is administered by PRADAN, a non-

government organization working in the area to form “self-help groups” of women.

These groups of between 10 and 20 women facilitate risk-sharing among their mem-

bers by saving a pre-determined minimum amount each week and lending accumu-

lated savings to members at terms determined by the group. Most groups eventually

establish a savings account at a commercial bank and take loans from the bank for

self-employment activities, mainly related to agriculture and livestock. There are

currently about 2,000 groups in operation in the Jharkhand.

We surveyed households in villages with newly formed groups and use the above

techniques to examine whether the program successfully targeted poor households

in the area. The sample consists of 576 households in 24 villages. The survey was

conducted over a period of two months starting in August 2002. The villages were

chosen from a set of 100 villages in which at least one group was formed during the

15



period April 1st to June 30th, 2002. Very little lending takes place in the months

immediately following group formation and a comparison of the characteristics of

households in the program with those of other randomly chosen households in the

area can therefore be used to evaluate the extent to which the program targeted the

poor.

The 100 villages with new microcredit groups were partitioned into 4 geographical

clusters and simple random sample of 6 villages was drawn from each cluster. A total

of 24 respondents were surveyed from each of these villages- 6 of them members

of microcredit groups in the village and the remaining 18 randomly selected non-

members from the same village. The ratio of 1:3 for members and non-members

were chosen based on the prior belief that the group of non-participants is more

heterogeneous and unequal sample sizes would be required to obtain estimates of

similar accuracy for both groups.

Survey data were collected on a large number of economic indicators such as the

quantity and type of food consumed, the size and condition of the household’s main

dwelling, land owned and cultivated and the possession of durable goods. In addition,

respondents were asked about their contact with the government bureaucracy and

about any benefits received from government sponsored programs. Responses to

these questions allowed for an assessment of whether the households excluded from

the program were also excluded from other official poverty-alleviation programs.

We used a combination of household characteristics for a principal component

analysis. The first principal component was used as a proxy for income. Table

2 contains group-wise summary statistics on household size, literacy rates and the

variables used to create the income index. Details on survey design and scoring

coefficients for the index can be found in Somanathan (2003).

4.2 Results

As can be seen from Table 2, mean values of the index and its constituent components

are remarkably similar for the two groups. None of the group-wise differences seen in

the table are statistically significant at conventional levels. The empirical distribu-
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Table 2: Group-wise Summary Statistics

Members Non-members

Household size 6.22 6.15

Literacy rate .39 .41

Meals consumed in the two 5.68 5.31

days prior to the survey

Household foodgrain consumption .

in normal times (kilograms) 3.82 3.97

Rooms in dwelling 3.06 3.35

land owned (hectares) 1.24 1.1

Value of livestock and durables 8642 9066

(Indian rupees)

Annual household expenditure on 3275 3428

clothing and footwear (Indian rupees)

Economic index -.021 .01
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tions of the income index for participants and non-participants are shown in Figure

4. While these also look similar, it does appear that the very poorest households

are predominantly outside the program; 2% of sampled group members and 5% of

non-members are below the 5th percentile of the index. We now apply some of the

methods discussed in Section 2 to see if these differences are statistically significant.
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Figure 4: Empirical distribution functions for members and non-members of

microcredit groups in Jharkhand, India.

Table 3 contains computed test statistics and p-values for the Kolmogorov Smirnov

and Wilcoxon Mann Whitney tests for equality of these distributions. We use a

two-sided alternative in both these cases and find that neither test rejects the null

hypothesis at the 5% level of significance, although the Kolmogorov Smirnov test does

reject equality at the 10% level.
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Table 3: Preliminary Nonparametric Tests for Equal Distributions

Kolmogorov Wilcoxon

Smirnov Mann-Whitney

Value of the Statistic .125 .684

p-value .068 .49

Reject H0 at 5%? No No

Table 4 reports the critical values and test statistics from the sign test and the

test for distribution crossing. For the crossing point test we use the simulated 5

The distribution crossing test rejects the null of equal distributions against the

alternative of their crossing. Using the methodology outlined in Section 2, we estimate

of the crossing point x∗. The value of the income index at the crossing point is -1.19 ,

which is in the 15th percentile of the distribution of the index for the whole sample.

The sign test does not reject the null hypothesis of equal shares of members and non-

members for the poorest 5% if the population at the 5% level of significance although

it does reject it at the 10% level.

4.3 Characteristics of Excluded Households

How poor are the households neglected by the program? Converting our income index

back into household characteristics allows us to compare lifestyles of these households

with others in the area. Table 5 presents means of selected variables for households
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Table 4: Tests for the Exclusion of Poor Households

Crossing Test Sign Test

Value of the Statistic 1.756 -1.61

Critical Value 1.529 -1.645

Reject H0 at 5%? Yes No

below the 5th percentile of the income index and other households. The poorest

households have dramatically different lifestyles and consumption levels from the

rest of the sampled households. They live in smaller dwellings and eat fewer meals.

Their expenditure on clothing and footwear is about one-half of the mean for other

households, their food grain consumption (by weight) is lower by about one-third.

They spend less time in the village, although the differences here are small. The

households that are difficult to involve in the microcredit program also seem to be

excluded from other public programs and the political process more generally. Only

7% of these households had ever approached a government official compared to 28%

of other households. Perhaps the most striking observation is that the fraction of

households receiving subsidized foodgrains from a government anti-poverty program

was smaller for the poorest 5% than for the rest. The exclusion of these households

seems to extend far beyond microfinance programs!
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Table 5: Selected Household Characteristics: They Very Poor and the Rest

Poorest 5% Other Households

Meals consumed during the two 3.79 5.49

prior to the survey

Number of rooms 1.21 3.29

in dwelling

Foodgrain consumption per .5 .67

day in normal times (kilograms)

Annual expenditure on clothing 243 562

and footwear (rupees)

Land owned .29 1.17

(hectares)

Average months spent in the 10.8 11.09

household over the past year

Fraction ever approached .07 .28

government official

Fraction received goverment .46 .52

subsidized foodgrains
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5 Conclusions

This paper evaluates available nonparametric methods to test for whether the poorest

households in a population have been excluded from a program. Parametric tests,

which usually rely on some function of differnces in the conditional means of two

groups, may not successfully detect these households if there is little prior information

on the income level of the households vulnerable to exclusion. We discuss three

alternative nonparametric methods that may be appropriate in this context and use

simulations with three different pairs of income distributions to compare their power.

If the distributions of participants and non-participants exhibit a single crossing, we

find that a test of distribution crossing, which explicitly uses this information, is

usually more powerful than competing procedures. This is especially true when the

distributions of the two groups are similar.

We apply some of the methods to a non-government microcredit program in India.

We find evidence that the population distributions of program participants and non-

participants cross, with the poorest households largely outside the program. These

households also appear to have limited access to public programs which are, in prin-

ciple, designed for their benefit: they are no more likely to be on official poverty lists

and government-sponsored social programs.
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6 Appendix

Test statistic for second-order stochastic dominance

Let X1, X2, Xn be a random sample from F and Y1, Y2, Ym be a random sample

from G. For a fixed x ∈ [a, b] and for i = 1, 2, . . . , n,

Ui(x) =

{
x−Xi if Xi < x,

0 otherwise
(4)

and for j = 1, 2, . . . ,m,

Vj(x) =

{
x− Yj if Yj < x,

0 otherwise
(5)

Let

Ū(x) =
1

n

n∑
i=1

Ui(x) =

∫ x

−∞
Fn(y)dy,

and

V̄ (x) =
1

m

m∑
i=1

Vi(x) =

∫ x

−∞
Gm(y)dy.

Let

Zn,m(x) =
Ū(x)− V̄ (x)√

1
n
s2

n,U(x) + 1
m

s2
m,V (x)

where

s2
n,U(x) =

1

n

n∑
i=1

[Ui(x)− Ū(x)]2

and

s2
m,V (x) =

1

m

m∑
j=1

[Vi(x)− V̄ (x)]2

For large sample sizes their test rejects H0 if and only if

Zn,m = inf
a≤x≤b

Zn,m(x) > zα,

where zα is the upper α point of the standard normal distribution.
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