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Abstract

We study the assignment model where a collection of indivisible goods are sold to

a set of buyers who want to buy at most one good. We characterize the extreme and

interior points of the set of Walrasian equilibrium price vectors for this model. Our

characterizations are in terms of demand sets of buyers. Using these characterizations,

we also give a unique characterization of the minimum and the maximum Walrasian

equilibrium price vectors. Also, necessary and sufficient conditions are given under

which the interior of the set of Walrasian equilibrium price vectors is non-empty. Sev-

eral of the results are derived by interpreting Walrasian equilibrium price vectors as

potential functions of an appropriate directed graph.
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1 Introduction

The classical Arrow-Debreu model (Arrow and Debreu, 1954) for studying competitive equi-

librium assumes goods to be divisible (commodities). But economies with indivisible goods

are common in many types of markets such as housing markets, job markets, and auctions

with goods like spectrum licenses. This paper investigates economies with indivisible goods

under the assumption that buyers have unit demand, i.e., every buyer can buy at most one

good, and quasi-linear utility functions. The unit demand assumption is common, for exam-

ple, in settings of housing and job markets. Even though buyers can buy at most one good,

they have valuations (possibly zero) for every good.

In this model, the existence of a Walrasian equilibrium is guaranteed, and the set of

Walrasian equilibrium price vectors form a complete lattice (Shapley and Shubik, 1972). In

this paper, we are concerned with a verification problem. Suppose the seller announces a

price vector, and every buyer submits his demand set, the set of all goods that give him the

maximum payoff at the announced price vector. Then, we are concerned with the following

verification questions given that the only information available is the demand set of each

buyer:

1. How can one verify if the announced price vector is a Walrasian equilibrium price

vector?

2. How can one verify if the announced price vector is an extreme point or an interior

point or the maximum or the minimum points in the set of Walrasian equilibrium price

vectors? 1

To answer the first question, we show that a price vector is a Walrasian equilibrium price

vector if and only if no set of goods is overdemanded and no set of goods is underdemanded

at that price vector. Whether a set of goods is overdemanded or underdemanded can be

verified using only demand set information of buyers. This characterization of Walrasian

equilibrium price vector is pivotal in answering the other questions.

Concerning the second question, we show that every Walrasian equilibrium price vector

is a potential of an appropriate directed graph. These potentials form a lattice, and we

characterize the extreme points of this lattice in terms of shortest paths in the underlying

directed graph. This characterization along with the characterization of a Walrasian equilib-

rium price vector enables us to characterize the extreme points of the Walrasian equilibrium

price lattice. These characterizations also require verifications that can be done using de-

mand set information of buyers only. Our characterization shows that at the extreme points

of the set of Walrasian equilibrium price vectors no subset of a weakly overdemanded set of

1 Given the complete lattice structure of the Walrasian equilibrium price vector space, the minimum and

the maximum Walrasian price vectors are well defined.
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goods is weakly underdemanded and no subset of a weakly underdemanded set of goods is

weakly overdemanded. Similarly, we characterize the minimum and the maximum Walrasian

equilibrium price vector.

Finally, we show that a price vector is an interior point of the Walrasian equilibrium price

lattice if and only if the demand set of every buyer is a singleton and no two buyers have the

same good in their demand sets. Notice that such demand sets are minimally informative,

in the sense that every buyer’s demand set consists of only the good he is allocated. Thus,

the characterization shows that the only Walrasian equilibrium price vectors where demand

set of every buyer consists of the good he is allocated, are the interior Walrasian equilibrium

price vectors. However, the interior of the Walrasian equilibrium price lattice may be empty.

We show that an interior Walrasian equilibrium price vector exists if and only if there is a

unique efficient allocation and the number of buyers exceeds the number of goods.

In summary, we characterize the entire Walrasian equilibrium price vector set using de-

mand set information of buyers only. Further, we provide necessary and sufficient conditions

for the interior of the Walrasian equilibrium price vector space to be non-empty, i.e., Wal-

rasian equilibrium price vector space to be full-dimensional.

We show an application of some of our main results. The application is in the design

of iterative auctions for this model. If the valuations of buyers are private information,

the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) is

efficient and strategy-proof, where the payment of a buyer is his externality on other buyers.

However, the VCG mechanism is a direct mechanism, requiring buyers to directly reveal their

values on goods. In many practical settings, iterative auctions (i.e., ascending or descending

price auctions) like the English (ascending price) auction, which generates the same outcome

as the VCG outcome, is a preferred mechanism due to various reasons (Cramton, 1998).

Although the English auction is known to mimic the outcome of the second-price Vickrey

auction for the single good case, the extension of the English auction to the assignment

model is not trivial. Demange et al. (1986) and Sankaran (1994) design such auctions. One

can also design descending auctions that mimic the outcome of the VCG mechanism - see

for example Mishra and Parkes (2008).

An interesting feature of these iterative auctions is that these are procedures to search for

a Walrasian equilibrium for the assignment model (See de Vries et al. (2007) for a detailed

discussion). Iterative auctions that search for the minimum Walrasian equilibrium price

vector inherit the incentive properties of the VCG mechanism. 2 Using our results, we give a

broad class of iterative auctions for this model. Every iterative auction in this class terminates

at the minimum Walrasian equilibrium price vector. The auctions in Demange et al. (1986);

Sankaran (1994); Mishra and Parkes (2008) fall into this class. Analogously, one can design

2Iterative auctions do not necessarily have a dominant strategy equilibrium but they have an ex post

equilibrium in which the outcome of the VCG mechanism is implemented.

4



iterative auctions that terminate at the maximum Walrasian equilibrium price vector under

truthful bidding behavior of buyers - Sotomayor (2002) is an example of such a descending

price auction. Though truthful bidding is not an equilibrium in these auctions, these auctions

are interesting algorithms to compute a Walrasian equilibrium. We give a broad class of

iterative auctions that terminate at the maximum Walrasian equilibrium price vector under

truthful bidding of buyers. The auction of Sotomayor (2002) falls into this class. Thus, our

results serve to unify existing iterative auctions under one umbrella. 3

The literature in the assignment model is long - for a survey, see Roth and Sotomayor

(1990). The initial literature focuses on the structure of the set of Walrasian equilib-

ria (Shapley and Shubik, 1972), its strategic properties (Leonard, 1983; Demange and Gale,

1985), and the relation with the core of an appropriate cooperative game (Shapley and Shubik,

1972; Roth and Sotomayor, 1988; Balinski and Gale, 1990; Quint, 1991). The studies of the

core for our model is complementary to the study of Walrasian equilibria, since the core

and the set of Walrasian equilibria are equivalent (Shapley and Shubik, 1972). However, this

literature does not answer the verification question we address in this work.

There is also a literature that is concerned with the computation of Walrasian equilib-

rium prices using auction-like processes (Crawford and Knoer, 1981; Demange et al., 1986;

Sankaran, 1994; Sotomayor, 2002). The notion of overdemanded and underdemanded sets of

goods, which we use in our characterizations, has been used in this literature. Demange et al.

(1986) use the notion of overdemanded goods to design an ascending auction that terminates

at the minimum Walrasian equilibrium price vector. Analogously, Sotomayor (2002) uses the

notion of underdemanded goods to design a descending auction that terminates at the max-

imum Walrasian equilibrium price vector. Both papers do not make any connection between

these notions. Gul and Stacchetti (2000) consider a model where they allow a buyer to buy

more than one good and having gross substitutes valuations. In such a model, a Walrasian

equilibrium price vector is guaranteed to exist (Kelso and Crawford, 1982), and the set of

Walrasian equilibrium price vectors form a complete lattice (Gul and Stacchetti, 1999). For

such a model, they provide a generalization of Hall’s theorem (Hall, 1935), which results in

a necessary condition for a Walrasian equilibrium. Therefore, they do not characterize the

set of Walrasian equilibrium price vectors.

2 The Model

There is a set of indivisible goods N = {0, 1, . . . , n} for sale to a set of buyers M = {1, . . . , m}.

Each buyer can be assigned to at most one good. The good 0 is a dummy good which can

be assigned to more than one buyer. Denote N0 = N \ {0} as the set of real goods. The

3 There are some iterative auctions in the literature which converge to a Walrasian equilibrium approx-

imately, e.g., the auction in Crawford and Knoer (1981) and an auction in Demange et al. (1986). These

auctions do not fall into our broad class of iterative auctions.
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value of buyer i ∈ M on good j ∈ N is vij, assumed to be a non-negative real number. Every

buyer has zero value on the dummy good. A feasible allocation µ assigns every buyer

i ∈ M a good µi ∈ N such that no good in N0 is assigned to more than one buyer. Notice

that a feasible allocation assigns every buyer a good (maybe the dummy good), but some

goods may not be assigned to any buyer. We say good j ∈ N is unassigned in µ if there

exists no buyer i ∈ M with µi = j. Let Γ be the set of all feasible allocations. An efficient

allocation is a feasible allocation µ∗ ∈ Γ satisfying
∑

i∈M viµ∗

i
≥

∑

i∈M viµi
for all µ ∈ Γ.

A price vector p ∈ Rn+1
+ assigns every good j ∈ N a nonnegative price p(j) with p(0) = 0.

We assume quasi-linear utilities. Given a price vector p, the payoff of buyer i ∈ M on good

j ∈ N at price vector p is vij − p(j). The demand set of buyer i at price vector p is

Di(p) = {j ∈ N : vij − p(j) ≥ vik − p(k) ∀ k ∈ N}.

Definition 1 A Walrasian equilibrium (WE) is a price vector p and a feasible allocation

µ such that

µi ∈ Di(p) for all i ∈ M (WE-1)

and

p(j) = 0 for all j ∈ N that are unassigned in µ. (WE-2)

If (p, µ) is a WE, then p is a Walrasian equilibrium price vector and µ is a Walrasian

equilibrium allocation.

It is well known that a Walrasian equilibrium allocation is efficient and that the set of WE

price vectors, which is non-empty, form a complete lattice (Shapley and Shubik, 1972). This

implies the existence of a unique minimum WE price vector (pmin) and a unique maximum

WE price vector (pmax).

The lattice corresponding to the WE price vectors is of a special shape - known as

the “45 degree”-lattice (Quint, 1991). In case of three buyers and two goods with values

v11 = 5, v12 = 3, v21 = 3, v22 = 4, v31 = 2, v32 = 2, the lattice shape of the WE price vector

set is shown in Figure 1. Notice that the boundary of the lattice is defined by lines that are

either parallel or at 45 degrees to the axes.

We define demanders of a set of goods S ⊆ N0 at price vector p as U(S, p) = {i ∈ M :

Di(p) ∩ S 6= ∅}. We define the exclusive demanders of a set of goods S ⊆ N0 at price

vector p as O(S, p) = {i ∈ M : Di(p) ⊆ S}. Clearly, for every p and every S ⊆ N0, we have

O(S, p) ⊆ U(S, p). We denote the cardinality of a finite set S as #S. Given a price vector

p, define N+(p) = {j ∈ N : p(j) > 0}. By definition 0 /∈ N+(p) for any p.

Definition 2 A set of goods S is (weakly) overdemanded at price vector p if S ⊆ N0

and #O(S, p)(≥) > #S.
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Figure 1: Lattice nature of WE prices

The notion of overdemanded sets of goods can be found in Demange et al. (1986) and

Sankaran (1994), who use it as a basis for the design of ascending auctions for our model.

For settings where a buyer can buy more than one good, the notion of overdemanded goods

has been generalized in Gul and Stacchetti (2000) and de Vries et al. (2007), who also use it

as a basis for the design of ascending auctions for general models.

Definition 3 A set of goods S is (weakly) underdemanded at price vector p if S ⊆

N+(p) and #U(S, p)(≤) < #S.

The notion of underdemanded sets of goods can be found in Sotomayor (2002), who uses it to

design descending auctions for our model.4 Both concepts give us an idea about the imbalance

of supply and demand in the economy, albeit differently. A measure of total demand on a

set of goods is obtained by counting the number of exclusive demanders of these goods in

the notion of sets of overdemanded goods and by counting the number of demanders of

these goods in the notion of sets of underdemanded goods. However, the dummy good is

never part of a set of overdemanded goods and zero priced goods, which always includes the

dummy good, are never part of sets of underdemanded goods. In some sense, the existence

of sets of overdemanded (underdemanded) goods at a price vector indicates that there is

excess demand (supply) in the economy. Since both overdemanded and underdemanded

sets of goods may exist at a given price vector, excess demand and excess supply can exist

simultaneously in the economy.

4There is a slight difference between our definition of underdemanded goods and the definition in

Sotomayor (2002). Sotomayor (2002) assumes the existence of a dummy buyer who demands every good

with zero price and who can be allocated more than one good. Then, a set of goods S is underdemanded

in Sotomayor (2002) at a price vector p if every good in N is demanded by a buyer (possibly the dummy

buyer), S ⊆ N+(p) and #U(S, p) < #S.
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3 Walrasian Equilibrium Characterization

In this section, we give a characterization of the Walrasian equilibrium price vectors. Our

characterization is based on the notions of sets of overdemanded and underdemanded goods.

Define M+(p) = {i ∈ M : 0 /∈ Di(p)} for any price vector p. Notice that M+(p) = O(N0, p).

Now, consider the following lemmas.

Lemma 1 Suppose no set of goods is overdemanded. Then there exists a feasible allocation

in which every buyer is assigned a good from his demand set.

Proof : Since N0 is not overdemanded, #N0 ≥ #O(N0, p) = #M+(p). Consider S ⊆

M+(p). Let T = ∪i∈SDi(p). Since 0 /∈ T and T is not overdemanded, we get #T ≥

#O(T, p) ≥ #S. Using Hall’s theorem (Hall, 1935), there is a feasible allocation in which

every buyer i in M+(p) can be assigned a good in Di(p), and every buyer in M \M+(p) can

be assigned the dummy good 0, which is in his demand set. �

Lemma 2 Suppose no set of goods is underdemanded. Then there exists a feasible allocation

in which every good in N+(p) is assigned to a buyer who is a demander of that good.

Proof : Since N+(p) is not underdemanded, #N+(p) ≤ #U(N+(p), p) ≤ #M . Consider

T ⊆ N+(p). Let S = U(T, p). Since T is not underdemanded, #T ≤ #U(T, p) = #S. Using

Hall’s theorem (Hall, 1935), there is a feasible allocation in which every good in N+(p) can

be assigned to a buyer who is a demander of that good, and the remaining buyers can be

assigned the dummy good. �

The absence of only overdemanded or only underdemanded sets of goods cannot guarantee

a WE price vector. For instance, consider an example with a single good and three buyers

with values 10, 6, and 3. A WE price is any price between 6 and 10. At any price higher than

10, the good is not overdemanded but it is not a WE price. Similarly, at any price between 3

and 6, the good is not underdemanded but it is not a WE price. In some sense, Lemma 1 says

that condition (WE-1) in Definition 1 is satisfied in the absence of overdemanded goods,

but condition (WE-2) may be violated. Similarly, Lemma 2 says that condition (WE-2) in

Definition 1 is satisfied in the absence of underdemanded goods, but condition (WE-1) may

be violated. However, the WE prices can be precisely characterized by the absence of both

overdemanded and underdemanded sets of goods.

Theorem 1 A price vector p is a WE price vector if and only if no set of goods is overde-

manded and no set of goods is underdemanded at p.
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Proof : The proof is in the appendix. �

The characterization in Theorem 1 shows that given a price vector and the demand sets

of buyers, it is possible to check if the given price vector is a WE price vector by checking

for the existence of overdemanded and underdemanded sets of goods. In some sense this is

a generalization of Hall’s theorem (Hall, 1935) for our model.

Theorem 1 gives another definition of a Walrasian equilibrium price vector. But, in

contrast to Definition 1, the characterization in Theorem 1 does not require to compute a

feasible allocation to check if a price vector is a WE price vector. Theorem 1 uses only

demand set information of buyers to characterize the WE price vectors. Moreover, Theorem

1 is the basis of all our results.

Notice that absence of overdemanded goods requires that there is no excess demand in

a weak sense, since we only count the exclusive demanders in checking for overdemanded

goods. Similarly, absence of underdemanded goods requires that there is no excess supply

in a weak sense, since zero priced goods are not counted while checking for underdemanded

goods. Theorem 1 assures the existence of a Walrasian equilibrium at a price vector if there

is neither excess demand nor excess supply. This provides a direct economic interpretation

of our result.

We now use Theorem 1 to characterize the minimum and the maximum WE price vectors.

Let K(p) contain all goods that are not part of any weakly overdemanded set at p and L(p)

contain all goods that are not part of any weakly underdemanded set at p, i.e.,

K(p) = {j ∈ N0 : for all S 3 j, S is not weakly overdemanded at p}

and

L(p) = {j ∈ N0 : for all S 3 j, S is not weakly underdemanded at p}.

The following two lemmas characterize the sets L(p) and K(p) when p is a WE price vector.

Lemma 3 At a Walrasian equilibrium price vector p it holds that L(p) = {j ∈ N0: p(j) =

pmin(j)}.

Proof : The proof is in the appendix. �

Lemma 4 At a Walrasian equilibrium price vector p it holds that K(p) = {j ∈ N0 : p(j) =

pmax(j)}.

Proof : The proof is similar to the proof of Lemma 3. �

So, the set K(p) denotes the set of goods whose prices are at the maximum WE price

and the set L(p) denotes the set of goods whose price are at the minimum WE price. Our

main result in this section uses these two lemmas.
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Theorem 2 A price vector p is equal to pmin if and only if no set of goods is overdemanded

and no set of goods is weakly underdemanded at p. Similarly, a price vector p is equal to pmax

if and only if no set of goods is underdemanded and no set of goods is weakly overdemanded

at p.

Proof : Suppose p = pmin. By Theorem 1, no set of goods is overdemanded and no set of

goods is underdemanded at pmin. By Lemma 3, L(pmin) = N0. By definition of L(pmin), no

set of goods is weakly underdemanded at pmin.

Suppose no set of goods is overdemanded and no set of goods is weakly underdemanded

at p. Then, L(p) = N0, and again by Lemma 3 p = pmin.

A similar proof using Lemma 4 proves that p = pmax if and only if no set of goods is

overdemanded and no set of goods is weakly underdemanded at p. �

The characterization of the minimum WE price vector gives an idea about the existence

of overdemanded and weakly underdemanded sets of goods in other regions of the price

vector space.

Corollary 1 If p � pmin, then there exists an overdemanded set of goods. Further, if

p � pmin, then there exists a weakly underdemanded set of goods.

Proof : The proof is in the appendix. �

In every region of the price vector space with respect to pmin, Corollary 1 shows when an

overdemanded set of goods or a weakly underdemanded set of goods always exists in that

region. A similar result holds with respect to pmax.

Corollary 2 If p � pmax, then there exists a weakly overdemanded set of goods. Further,

if p � pmax, then there exists an underdemanded set of goods.

Proof : The proof is analogous to Corollary 1. �

The results in Theorem 2 and Corollary 1 and Corollary 2 are illustrated in Figure 2 for

the example in Figure 1. The labelling in various regions of the figure indicates whether

(weakly) overdemanded sets of goods ((W)OD) and (weakly) underdemanded sets of goods

((W)UD) exist at all price vectors in these regions. By Theorem 1, there is no set of overde-

manded or underdemanded goods in the lattice corresponding to the WE price vector re-

gion in Figure 2. The minimum and the maximum WE price vectors are characterized by

Theorem 2. The interior of WE price vector space is chracterized later in Theorem 5 as

the set of price vectors where every set of goods is both weakly overdemanded and weakly

underdemanded. In any price vector inside the rectangle generated by drawing parallel lines

to axes at the minimum and the maximum WE price vectors, we can find a weakly overde-

manded and a weakly underdemanded set of goods. The other regions in Figure 2 are labelled
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(0,1)

(0,3)

(4,0) (7,0)

UD

OD
OD
WUD

OD
UD

UDOD
WUD

OD
UD

WOD
UD

WOD
WUD

WOD
WUD

WOD
WUD

Price of Good 1

Price of Good 2

No OD goods and no WUD goods No UD goods and no WOD goods

WOD

No OD goods and no UD goods (WE price vectors)

Figure 2: Various regions of the price vector space for the example in Figure 1

using Corollary 1 and Corollary 2. For example, for every price vector in the upper-right

corner, an underdemanded set of goods exists, whereas for every price vector in the lower-left

corner, an overdemanded set of goods exists. Notice that once every set of goods is weakly

underdemanded, then no set of goods can be overdemanded. This happens, for example

when all prices are set equal or above the highest valuation of the goods. Also, there exist

regions (upper-left and lower-right corners in Figure 2) where sets of underdemanded and

overdemanded goods co-exist.

We can say something more about various price vectors than what the results in Corollary 1

and Corollary 2 seem to indicate. If we decrease the prices of positive price goods at the

minimum WE price vector by an equal amount such that no price goes below zero, then

at the new price vector no weakly underdemanded goods exist. But, by Corollary 1, some

set of goods is overdemanded. So, if pmin 6= 0, then there is some non-zero price vector

p � pmin where no set of goods is weakly underdemanded but some set of goods is overde-

manded. This argument illustrates that we can draw a piecewise linear path of prices from

the minimum WE price vector to the zero price vector along which no set of goods is weakly

underdemanded but some set of goods is overdemanded.

Similarly, if we increase the prices of positive price goods by an equal amount from the

maximum WE price vector, no set of goods is weakly overdemanded at the new price vector,

but some set of goods is underdemanded. So, the 45 degree straight line from the maximum

WE price vector in the north-east direction is a set of (infinite) price vectors where no set

of goods is weakly overdemanded but some set of goods is underdemanded.
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4 Design of Iterative Auctions

In this section, we use the characterizations results of Theorem 2 to give a broad class of

iterative auctions, which includes every known iterative auction for this setting. Thus, we

unify various iterative auctions for the assignment (unit demand) setting under one broad

class of auctions.

Iterative auctions, where prices monotonically increase (ascending auctions) or decrease

(descending auctions) are practical and transparent methods to sell goods. The design of

iterative auctions for our model has been studied earlier - ascending auctions can be found

in Demange et al. (1986) and Sankaran (1994), whereas descending auctions can be found in

Sotomayor (2002) and Mishra and Parkes (2008). These auctions terminate at a WE price

vector - the auctions in Demange et al. (1986), Sankaran (1994), and Mishra and Parkes

(2008) terminate at the minimum WE price vector, while the auction in Sotomayor (2002)

terminates at the maximum WE price vector.5 Moreover, the underlying price adjustment

in these auctions is based on the ideas of overdemanded and underdemanded sets of goods.

Interestingly, the papers on ascending auctions do not talk about underdemanded sets of

goods and use the notion of overdemanded sets of goods only. Similarly, the papers on

descending auctions do not talk about overdemanded sets of goods and use the notion of

(weakly) underdemanded sets of goods only. The terminating conditions in these auctions are

absence of overdemanded sets of goods for ascending auctions and absence of underdemanded

sets of goods for descending auctions. Still, these auctions terminate at an extreme WE price

vector. Our results can be used to explain why this is possible.

Consider the following class of ascending auctions:

S0 Start the auction at a price vector p where no set of goods is weakly underdemanded

(by Corollary 1, p ≤ pmin);

S1 Collect demand sets of buyers and check if an overdemanded set of goods exist;

S2 If no overdemanded set of goods exist, then stop (by Theorem 2, this is the minimum

WE price vector);

S3 Else increase prices of goods such that no set of goods is weakly underdemanded at

the new price vector, and repeat from step S1.

The auctions in Demange et al. (1986) and Sankaran (1994) are such auctions, though

they do not mention this explicitly. Both these auctions start from the zero price vector.6 At

5Since minimum WE price vector corresponds to the VCG payments, the auctions in Demange et al.

(1986), Sankaran (1994), and Mishra and Parkes (2008) have truthful bidding in an equilibrium, whereas

buyers can manipulate the auction in Sotomayor (2002).
6To be precise, they use the reserve price of every good as the starting price, which is assumed to be zero

in our model.
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the zero price vector, no set of goods is weakly underdemanded. In step S3, Demange et al.

(1986) increase prices by unity for goods in a minimal overdemanded set, whereas Sankaran

(1994) increases prices by unity for goods in an overdemanded set, which he finds using a

labeling algorithm of graph theory 7. Both the price adjustments ensure that no set of goods

is weakly underdemanded after the price increase (i.e., satisfy the condition in step S3), and

we stay below the minimum WE price vector (by Corollary 1).

The descending auctions share an analogous feature. Consider the following class of

descending auctions:

T0 Start the auction at a price vector p where no set of goods is weakly overdemanded

(by Corollary 2, p ≥ pmax);

T1 Collect demand sets of buyers and check if an underdemanded set of goods exist;

T2 If no underdemanded set of goods exist, then stop (by Theorem 2, this is the maximum

WE price vector);

T3 Else decrease prices of goods such that no set of goods is weakly overdemanded at the

new price vector, and repeat from step T1.

The auction in Sotomayor (2002) starts from a very high price vector where every buyer

demands only the dummy good. Hence no set of goods is weakly overdemanded. By de-

creasing prices by unity for goods in a minimal underdemanded set, no set of goods is weakly

overdemanded after the price decrease, and the price in the auction stays above the maximum

WE price vector.

This class of descending auctions can be modified to terminate at the minimum WE price

vector. Such auctions have to start from a price vector where no set of goods is overdemanded

(by Corollary 2 such a price vector is above the minimum WE price vector). These auctions

should stop if no set of goods is weakly underdemanded, and price decrease should be such

that no set of goods is overdemanded at the new price vector.

Thus, our characterization results unify the existing iterative auctions by bringing them

under a broad class of auctions. We hope that this will be useful in identifying more iterative

auctions from this class which are easier to implement in practice than the auctions known

in the literature.

5 Potentials of Graphs and Walrasian Equilibrium Prices

The results in the previous section enable us to verify whether a price vector is the minimum

or the maximum WE price vector given the demand set information of buyers. We pursue

7Demange et al. (1986); Sankaran (1994); Sotomayor (2002); Mishra and Parkes (2008) assume that val-

uations of buyers are integers.
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this question now for any extreme point and interior point of the WE price vector lattice.

However, before we can do so, we need more undestanding of the underlying mathematical

structure of the WE price vector space. We do this in this section by interpreting the WE

price vectors as potential functions of an appropriate directed graph. Such an interpretation

helps us to prove several new results, and gives a graph theoretic interpretation to several

known results. We begin by defining and proving some concepts related to graph theory.

5.1 Potentials of Strongly Connected Graphs

A graph is defined by a triple G = (N, E, l), where N = {0, 1, . . . , n} is the set of n + 1

nodes, E ⊆ {(i, j) : i, j ∈ N, i 6= j} is a set of ordered pairs of different nodes, called edges,

and l is a vector of weights on the edges in E with lij ∈ R being the length of edge (i, j) ∈ E.

As before denote N0 = N \ {0}. A graph is complete if there is an edge between every pair

of different nodes.

A path is a sequence of distinct nodes (i1, . . . , ik) such that (ij, ij+1) ∈ E for all 1 ≤

j ≤ k − 1. If (i1, . . . , ik) is a path, then we say that it is a path from i1 to ik. A graph is

strongly connected if there is a path from every node in N to every other node in N .

A cycle is a sequence of nodes (i1, . . . , ik, ik+1) such that (i1, . . . , ik) is a path, (ik, ik+1) ∈

E, and i1 = ik+1. The length of a path or a cycle P = (i1, . . . , ik, ik+1) is the sum of the edge

lengths in the path or cycle, and is denoted as l(P ), i.e., l(P ) = li1i2 + . . . + likik+1 . When

there is at least one path from node i to node j, then a shortest path from node i to node

j is a path from i to j having minimum length over all paths from i to j. We denote the

length of a shortest path from i to j as s(i, j). For convenience, we define s(i, i) = 0 for all

i ∈ N .

Definition 4 A potential of a graph G = (N, E, l) is a function p : N → R such that

p(j)−p(i) ≤ lij for all (i, j) ∈ E. For any j ∈ N , a j−potential of a graph G is a potential

p of graph G such that p(j) = 0.

It is well known that a potential of graph G exists if and only if G has no cycles of negative

length (Gallai, 1958). Moreover, the set of potentials of a graph form a lattice.

In case the graph is strongly connected, the lengths of the shortest paths from and to

node 0 determine the components of the maximum and minimum 0-potential of the complete

lattice set of 0-potentials, respectively.

Lemma 5 (Duffin (1962)) Suppose G is a strongly connected graph with no cycle of neg-

ative length. Then the set of 0−potentials of G form a complete lattice. The maximum

0−potential of G is given by pmax(j) = s(0, j) for all j ∈ N and the minimum 0−potential

of G is given by pmin(j) = −s(j, 0) for all j ∈ N .
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Proof : We give a proof for completeness in the appendix. �

Notice that the set of 0−potentials of a given graph G is a polytope, defined by the linear

inequalities of the potentials and the equality that the potential of node 0 is equal to zero.

Next, we characterize the extreme points of this polytope. For j ∈ N , define the potentials

pj and pj as

pj(i) = s(0, j) − s(i, j) ∀ i ∈ N,

pj(i) = s(j, i) − s(j, 0) ∀ i ∈ N.

To see that pj, j ∈ N , is a potential, note that p = {−s(i, j)}i∈N is a j-potential. Scaling

p by s(0, j) gives us another potential. Since value of p(0) = −s(0, j), pj is a 0-potential.

Similarly, pj is a 0-potential. These observations lead to the following lemma.

Lemma 6 Suppose G is a strongly connected graph with no cycles of negative length. Then,

for every j ∈ N , pj and pj are 0−potentials of graph G.

Notice that p0 = pmin and p0 = pmax. Also, pj(j) = pmax(j) and pj(j) = pmin(j) for any

j ∈ N .

For ∅ 6= S ⊆ N0, define the potential pS as pS(i) := maxj∈S pj(i) for all i ∈ N and the

potential pS as pS(i) := minj∈S pj(i) for all i ∈ N . Since pj is a 0-potential for every j ∈ S,

it follows from the lattice structure of 0-potentials, that pS is a 0-potential. Similarly, pS is

a 0-potential.

By definition of pj(·) and pj(·), j ∈ N , and using the fact that pi(i) = pmax(i) = s(0, i) and

pi(i) = pmin(i) = −s(i, 0) for all i ∈ N , we can rewrite pS(·) and pS(·) for every ∅ 6= S ⊆ N0

as

pS(i) =

{

s(0, i) if i ∈ S

maxj∈S

[

s(0, j) − s(i, j)
]

otherwise

and

pS(i) =

{

−s(i, 0) if i ∈ S

minj∈S

[

s(j, i) − s(j, 0)
]

otherwise.

Next, we show that these potentials are precisely the extreme points of the lattice defined

by all 0−potential functions. Define Pe(G) := {pS : ∅ 6= S ⊆ N0} ∪ {pS : ∅ 6= S ⊆ N0}. The

next theorem says that for every S, ∅ 6= S ⊆ N0, both vectors pS and pS are extreme points

of the set of 0−potentials of G and, conversely, that every extreme point of the the set of

0−potentials of G is equal to pS or pS for some S, ∅ 6= S ⊆ N0. This leads to the main result

of this section.

Theorem 3 Suppose G is a strongly connected graph with no cycles of negative length. Then

Pe(G) is the set of extreme points of the the set of 0−potentials of G.

Proof : The proof is in the appendix. �
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5.2 Potentials as Walrasian Equilibrium Prices

We now interpret the Walrasian equilibrium prices as potentials in an appropriate directed

graph. Corresponding to an efficient allocation µ we describe a graph Gµ. The graph

Gµ, called the allocation graph corresponding to µ, has the set of goods N as its set

of nodes, and is complete. Let Nµ be the set of goods unassigned in µ and Mµ be the

set of buyers assigned to the dummy good in µ. Let µj be the buyer allocated to good

j ∈ N0 \ Nµ in allocation µ. As before, µi denotes the good allocated to buyer i ∈ M in

allocation µ. Note that if p is a WE price vector, we must have vµkk − p(k) ≥ vµkj − p(j)

and so p(k) − p(j) ≤ vµkk − vµkj. If a good k is not allocated to any buyer in µ, then at

a WE price vector p we must have p(k) = 0. Hence, p(k) ≤ p(j) for all j ∈ N . Note

that this implies p(k) = 0 if p(0) = 0, and p(k) − p(j) ≤ 0. If buyer i is assigned to

good 0 in µ, then the WE constraint says that vi0 − p(0) = −p(0) ≥ vij − p(j). Hence,

p(0)− p(j) ≤ −vij. Since more than one buyer can be allocated to the dummy good, we can

write, p(0) − p(j) ≤ mini:µi=0 −vij. This gives us an intuition on what the edge lengths of

the graph Gµ must be.

For j, k ∈ N , we define the length from node j to node k, ljk, for three possible different

cases.

1. The value of ljk is set equal to zero if k ∈ Nµ.

2. The value of ljk is set equal to vµkk − vµkj if k ∈ N0 \ Nµ.

3. The value of lj0 is set equal to mini:µi=0 −vij if Mµ 6= ∅.

We now state the main result of this section.

Theorem 4 If p is a Walrasian equilibrium price vector, then p is a 0−potential of Gµ for

any efficient allocation µ, and if p is a 0−potential of Gµ for some efficient allocation µ,

then (p, µ) is a Walrasian equilibrium.

Proof : The proof is in the appendix. �

This result shows that the WE price vectors are 0-potentials of the allocation graph. This

immediately explains why the set of WE price vectors is a complete lattice. We now use this

result to characterize the interior and extreme points of the WE price vector lattice.

5.3 Interior Walrasian Equilibrium Prices

Results in Section 3 indicate that it is possible to identify any Walrasian equilibrium price

vector and the minimum and the maximum Walrasian equilibrium price vector by using

the demand set information at these price vectors. But the demand set submitted in these
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equilibrium prices may contain information which is useless. For instance, in the example in

Figure 1, pmin = (2, 2) and D1(p
min) = {1}, D2(p

min) = {2}, and D3(p
min) = {0, 1, 2}. Note

that the (efficient) allocation allocates buyer 1 to good 1, buyer 2 to good 2, and buyer 3 to

the dummy good. Hence, by including goods 1 and 2 in his demand set, buyer 3 is submitting

information, which is not necessary to verify a Walrasian equilibrium. The natural question

is whether there exist Walrasian equilibrium price vectors where the demand sets of buyers

are minimally informative in this way.

The answer to this question lies in the characterization of the set of interior Walrasian

equilibrium price vectors. In this section, we characterize the interior points of the Walrasian

equilibrium price vector space. Notice that the interior may be empty in some instances. For

instance, suppose there are two identical goods, i.e., values for these two goods are equal for

every buyer. In any WE price vector, prices of these two goods must be equal. This reduces

the dimension of the WE price vector space, making the interior empty. We find necessary

and sufficient conditions under which the interior is non-empty.

Definition 5 A Walrasian equilibrium price vector p is an interior Walrasian equilib-

rium price vector if it is an interior point of the set of Walrasian equilibrium price vectors

in Rn. 8

Theorem 5 A price vector p is an interior Walrasian equilibrium price vector if and only

if every non-dummy good has positive price and is demanded by a unique buyer and every

buyer demands exactly one good, i.e., N+(p) = N0 and #U(p, {j}) = #O(p, {j}) = 1 for all

j ∈ N0.

Proof : The proof can be found in the appendix. �

Another equivalent way to state this result is that the set of interior WE price vectors is

fully characterized by the property that every set of goods is both weakly overdemanded but

not overdemanded and weakly underdemanded but not underdemanded. Theorem 5 says

that at interior WE price vectors the demand set of every buyer only consists of the good he

is allocated in a WE. Thus, the interior WE price vectors elicit minimal information from

buyers. However, such price vectors need not exist. We now identify conditions under which

the interior of the Walrasian equilibrium price vector space is non-empty.

Theorem 6 An interior Walrasian equilibrium price vector exists if and only if there is a

unique efficient allocation and n ≤ m.

Proof : The proof can be found in the appendix. �

8Note that we draw the set of Walrasian equilibrium price vectors in Rn, and not in Rn+1, since the price

of the dummy good is always zero.
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The condition n ≤ m is quite natural in many settings. But existence of a unique efficient

allocation is difficult to guarantee. For example, if two different buyers have exactly same

valuations, then we violate this condition. Hence, it is quite possible we have empty interior

in many settings. In that case, Theorem 6 can be viewed as a negative result - in many

settings buyers need to report useless information in their demand sets to verify a Walrasian

equilibrium.

5.4 Extreme Walrasian Equilibrium Prices

In this subsection we characterize the extreme points of the set Walrasian equilibrium price

vectors. The central result that we use is Theorem 3. Our characterization of extreme

Walrasian equilibrium price vectors is a careful interpretation of this result in terms of

potentials of the allocation graph.

We first extend the definition of K(p) and L(p), defined in Section 3. At price vector p

and set S, ∅ 6= S ⊆ N0, define

K(p, S) = {j ∈ S : T is not weakly overdemanded at p for any T satisfying j ∈ T ⊆ S}.

The set K(p, S) is the subset of goods in S that are not contained in some weakly

overdemanded subset of S at p. Every good in the set S \ K(p, S) is contained in some

weakly overdemanded subset of goods of S at p.

Similarly, at price vector p and set S, ∅ 6= S ⊆ N0, define

L(p, S) = {j ∈ S : T is not weakly underdemanded at p for any T satisfying j ∈ T ⊆ S}.

Every good in L(p, S) either has price zero or has the property that any subset of S+(p) that

contains j is not weakly underdemanded. Every good in the set S \ L(p, S) is contained in

some weakly underdemanded subset of goods of S at p.

We denote the set N0 \K(p, N0) as So(p). The set So(p) contains all goods that are part

of some weakly overdemanded set of goods at p. Similarly, we denote the set N0 \ L(p, N0)

as Su(p). The set Su(p) contains all goods that are part of some weakly underdemanded set

of goods at p. Using these notions, we state our main result of this section.

Theorem 7 A Walrasian equilibrium price vector is an extreme point if and only if L(p, N0)∪

K(p, N0) 6= ∅ and L(p, So(p)) = So(p) if K(p, N0) 6= ∅ and K(p, Su(p)) = Su(p) if L(p, N0) 6=

∅.

Proof : The proof is in the appendix. �

The characterization above says that at an extreme Walrasian equilibrium price vector

no subset of the goods that are part of some weakly overdemanded set of goods can be
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weakly underdemanded and that simultaneously no subset of the goods that are part of some

weakly underdemanded set of goods can be weakly overdemanded. Besides its mathematical

elegance, Theorem 7 shows that the characterization in Theorem 2 is extendable to any

extreme point of WE price space. Using this characterization and the interior WE price

characterization, we can also conclude if a WE price vector is on a face of the WE price

space. Thus, we have characterized the entire WE price space.

6 Conclusions

We characterized the extreme and interior points of the set Walrasian equilibrium price

vectors for the assignment model. We also characterized the minimum and the maximum

Walrasian equilibrium price vectors. Our characterizations indirectly characterize all Wal-

rasian equilibrium price vectors that lie on any face of the Walrasian equilibrium price vector

space. All characterizations involve conditions on the demand sets of buyers only. A future

research direction is to extend these characterizations to a model where a buyer can be

assigned more than one good with combinatorial values.
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Appendix

Proof of Theorem 1

Proof : Suppose p is a WE price vector. By condition (WE-2), there exists a feasible

allocation in which every good in N+(p) can be assigned to a unique demander of that good.

Hence no set of goods is underdemanded. If some set of goods, say, S ⊆ N0, is overdemanded,

then condition (WE-1) will fail for some buyer in O(S, p) in every feasible allocation, which

is impossible since p is a WE price vector. Hence, no set of goods can be overdemanded.

Suppose now that no set of goods is overdemanded and no set of goods is underdemanded

at price vector p. By Lemma 1 there is a non-empty set of feasible allocations Γ∗ that

allocates every buyer a good from his demand set. Choose an allocation µ ∈ Γ∗ for which

the number of goods from N+(p) that is allocated in µ is maximal over all the allocations in

Γ∗. Let us call such an allocation a maximal allocation in Γ∗. Let T 0 = {j ∈ N+(p) : µi 6=

j ∀ i ∈ M}. If T 0 = ∅, then by definition (p, µ) is a WE. We will show that T 0 is empty.

Assume for contradiction that T 0 is not empty.

We first show that for every buyer i ∈ M , if µi /∈ N+(p) then T 0∩Di(p) = ∅. Assume for

contradiction that for some i ∈ M with µi /∈ N+(p) there exists j ∈ T 0∩Di(p). In that case,

we can construct a new allocation µ′ in which µ′
i = j and µ′

k = µk for all k 6= i. Allocation

µ′ is in Γ∗ and assigns one good more from N+(p) than µ does. This is a contradiction since

µ is a maximal allocation in Γ∗. As a result of this, the demanders of T 0 are assigned to

goods in N+(p) \ T 0. Let X0 = U(T 0, p). So, X0 ⊆ {i ∈ M : µi ∈ N+(p) \ T 0}. Now, for

any k ≥ 0, consider a sequence (T 0, X0, T 1, X1, . . . , T k, Xk), where for every 1 ≤ q ≤ k, T q

is the set of goods assigned to buyers in Xq−1 in µ and Xq = U(∪q
r=0T

r, p) \ U(∪q−1
r=0T

r, p).

Note that by definition T q ∩ T r = ∅ for every q 6= r.

We show that if T q 6= ∅ and T q ⊆ N+(p) for all 0 ≤ q ≤ k, then there exists T k+1 6= ∅

such that T k+1 ⊆ N+(p) and T k+1∩T q = ∅ for all 0 ≤ q ≤ k. By definition of Xq, 0 ≤ q ≤ k,

and T q, 1 ≤ q ≤ k,

#U(∪k
q=0T

q, p) = #U(∪k−1
q=0T

q, p) + #Xk

=
k

∑

q=0

#Xq

=

k
∑

q=1

#T q + #Xk. (1)

Since T 0, . . . , T k are disjoint and ∪k
q=0T

q ⊆ N+(p) is not underdemanded, we have

#U(∪k
q=0T

q, p) ≥
k

∑

q=0

#T q. (2)
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Using (1) and (2), we get #Xk ≥ #T 0. Since T 0 is non-empty, Xk is non-empty. Define

T k+1 as the set of goods assigned to buyers in Xk in µ. Clearly, T k+1 is non-empty and

T k+1 ∩ T q = ∅ for every 0 ≤ q ≤ k. To show that T k+1 ⊆ N+(p), assume for contradiction

that there exists a buyer ik ∈ Xk such that µik /∈ N+(p). By definition of Xk, ik should

demand some good jk ∈ T k. Now consider the sequence (ik, jk, ik−1, jk−1, . . . , i0, j0), where

for every 0 ≤ q ≤ k − 1, iq−1 is the buyer assigned to good jq in µ (note that iq−1 ∈ Xq−1

by definition) and jq−1 is a good demanded by iq−1 from T q−1 (such a good exists by the

definition of Xq−1 and T q−1). Now, construct an allocation µ′ with µ′
iq

= jq for all 0 ≤ q ≤ k

and µ′
i = µi for any i /∈ {i0, . . . , ik}. Clearly, µ′ ∈ Γ∗. By assigning ik to jk, µ′ assigns one

good more from N+(p) than µ does, contradicting the fact that µ is a maximal allocation in

Γ∗. Hence T k+1 ⊆ N+(p). This process can be repeated infinitely many times starting from

T 0. So (T 0, T 1, . . .) is an infinite sequence such that T q ∩ T r = ∅ for every q 6= r, T q 6= ∅ for

all q, and T q ⊆ N+(p) for all q. This is a contradiction since N+(p) is finite. So, T 0 = ∅,

and therefore (p, µ) is a WE. �

Proof of Lemma 3

Proof : If p(j) = 0, then by definition j ∈ L(p). Suppose p(j) = pmin(j) for some j ∈ N+(p).

Then pmin(j) > 0 and for any T ⊆ N+(p) containing j all goods in T are assigned in a WE

at p. Let T ′ be the set of buyers assigned to those goods in T in a WE at p. Since p is

a WE price vector, by Theorem 1 T is not underdemanded, i.e., #U(p, T ) ≥ #T = #T ′.

Assume for contradiction that T is weakly underdemanded at p, i.e., #U(p, T ) = #T = #T ′.

Then, prices of goods in T can be lowered from p by a sufficiently small amount to get

another WE price vector, contradicting the fact that p(j) = pmin(j). Hence, T is not weakly

underdemanded at p, and therefore j ∈ L(p).

Suppose j ∈ L(p). If p(j) = 0, then p(j) = pmin(j). Assume for contradiction p(j) > 0

and p(j) > pmin(j). Let X = {k ∈ N0 : p(k) > pmin(k)}. Notice that j ∈ X and

X ⊆ N+(p). By definition, X is not weakly underdemanded at p. Comparing p and pmin, all

prices of goods in the set X decrease, from p to pmin, whereas prices of other goods remain

the same. Hence, buyers in U(p, X) will become exclusive demanders of X at pmin. Since

#U(X, p) > #X, we get #O(X, pmin) ≥ #U(X, p) > #X. Hence X is overdemanded at

pmin, a contradiction by Theorem 1. So, for every j ∈ L(p), p(j) = pmin(j). �

Proof of Corollary 1

Proof : Suppose p � pmin. Let S = {j ∈ N : p(j) < pmin(j)}. Since p � pmin, S 6= ∅.

Further, because pmin(j) > p(j) ≥ 0 for all j ∈ S, S ⊆ N+(pmin). Since prices of goods in S

decrease from pmin to p while prices of goods in N \S do not decrease, U(S, pmin) ⊆ O(S, p).

So, #O(S, p) ≥ #U(S, pmin) > #S, where the last inequality follows from Theorem 2 (S is

22



not weakly underdemanded at pmin). Hence S is overdemanded at p.

Now, suppose p � pmin. Define S ′ = {j ∈ N : p(j) > pmin(j)}. Because p � pmin, S ′ 6= ∅.

Further, since p(j) > pmin(j) ≥ 0 for all j ∈ S ′, S ′ ⊆ N+(p). Since prices of goods in S ′

decrease from p to pmin while prices of goods in N \S ′ do not decrease, U(S ′, p) ⊆ O(S ′, pmin).

So, #U(S ′, p) ≤ #O(S ′, pmin) ≤ #S ′, where the last inequality follows from Theorem 2 (S ′

is not overdemanded at pmin). Hence S ′ is weakly underdemanded at p. �

Proof of Lemma 5

Proof : First we show that the vectors pmax and pmin are 0−potentials. Consider any edge

(i, j) ∈ E and the shortest path from 0 to j and from 0 to i. If the shortest path from 0 to i

does not include node j, then s(0, j) ≤ s(0, i) + lij and therefore s(0, j)− s(0, i) ≤ lij. If the

shortest path from 0 to i includes node j, then s(0, j) ≤ s(0, j) + s(j, i) + lij = s(0, i) + lij,

where the inequality comes from the assumption that G has no negative cycle and the equality

comes from the fact that the shortest path from 0 to i includes node j. Hence, pmax is a

0−potential. A similar argument shows that pmin is a 0−potential.

Let p be any 0−potential of G. Notice that a 0−potential of G exists since G has no

cycle of negative length. Consider the shortest path from 0 to j and let it be (0, i1, . . . , ik, j).

We can write the following set of inequalities for every edge in this path:

p(i1) − p(0) ≤ l0i1

p(i2) − p(i1) ≤ li1i2

. . . ≤ . . .

p(j) − p(ik) ≤ likj.

Adding up all inequalities we get p(j)− p(0) ≤ s(0, j). Since p(0) = 0, we get p(j) ≤ s(0, j).

A similar argument by using the shortest path from j to 0 shows that p(j) ≥ −s(j, 0). This

shows that pmax is the maximum 0−potential and pmin is the minimum 0−potential. Since

the set of potentials form a lattice, the set of 0−potentials form a complete lattice. �

Proof of Theorem 3

Proof : Let P0(G) be the set of 0−potentials of G. Consider any ∅ 6= S ⊆ N0. Due to the

lattice structure of P0(G) both vectors pS and pS are 0−potentials of graph G.

Consider the linear programming problem

min θ−
∑

i∈S

p(i) −
∑

i∈N0\S

p(i)

s.t. (P1)

p ∈ P0(G),
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for some θ− > 0. By Lemma 5, for every p ∈ P0(G) it holds that p(i) ≥ pmin(i) = −s(i, 0) ≥

0 for all i ∈ N . Hence, for large enough θ−, at any optimal solution of (P1) we have

p(i) = −s(i, 0) for all i ∈ S. For i ∈ N0 \ S, take any j ∈ S. Let a shortest path from j to i

in G be (j, j1, . . . , jk, i). We can write for any p ∈ P0(G),

p(i) − p(j) ≤ ljj1 + lj1j2 + . . . + ljki = s(j, i)

and so, for large enough θ−, at an optimal solution it holds that

p(i) ≤ s(j, i) − s(j, 0).

Since this holds for all j ∈ S, we obtain that at the optimal solution for every i ∈ N0 \ S it

holds that

p(i) ≤ min
j∈S

[

s(j, i) − s(j, 0)
]

, (3)

when θ− is large enough. Hence, the maximum value of p(i) for all i ∈ N0\S is minj∈S

[

s(j, i)−

s(j, 0)
]

. Thus, pS ∈ P0(G) is the unique optimal solution to (P1) for sufficiently large θ−.

Hence, pS is an extreme point of P0(G).

Next, consider the linear programming problem

max
∑

i∈S

θ+p(i) −
∑

i∈N0\S

p(i)

s.t. (P2)

p ∈ P0(G),

for some θ+ > 0. By Lemma 5, for every p ∈ P0(G) we have p(i) ≤ pmax(i) = s(0, i) for

all i ∈ N . Hence, for sufficiently large θ+, at the optimal solution of (P2) it holds that

p(i) = s(0, i) for all i ∈ S. For i ∈ N0 \ S, consider any j ∈ S. We can write for any

p ∈ P0(G),

p(j) − p(i) ≤ s(i, j)

and so, for large enough θ+, at an optimal solution it holds that

p(i) ≥ s(0, j) − s(i, j).

Therefore, for all i ∈ N0 \ S,

p(i) ≥ max
j∈S

[

s(0, j) − s(i, j)
]

. (4)

Hence, for large enough θ+, the minimum value of p(i) for all i /∈ S is maxj∈S

[

s(0, j)−s(i, j)
]

.

Thus, pS ∈ P0(G) is the unique optimal solution to (P2) for sufficiently large θ+. Hence, pS

is an extreme point of P0(G).
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It remains to be proved that the elements of Pe(G) are the only extreme points of P0(G).

Assume for contradiction that there exists an extreme point p /∈ Pe(G). Let X := {j ∈

N0 : p(j) = pmax(j) or p(j) = pmin(j)}. We argue that X 6= ∅. Assume for contradiction

X = ∅. Then, none of the constraints in P0(G) involving p(0) can be tight. This is because

p(j)− p(0) = l0j implies p(j) = pmax(j) and p(0)− p(j) = lj0 implies p(j) = pmin(j). Hence,

there exists p′, p′′ ∈ P0(G) such that p′(j) = p(j) + ε and p′′(j) = p(j) − ε for all j 6= 0 for

sufficiently small ε > 0. Hence, p(j) = p′(j)+p′′(j)
2

for all j ∈ N , contradicting the fact that p

is an extreme point. So, X 6= ∅.

Define S := {j ∈ X : p(j) = pmax(j)}. Suppose S is non-empty. Then for all i ∈ N0 \ S,

we have p(i) < pmax(i). By our argument earlier, p(i) ≥ maxj∈S

[

s(0, j) − s(i, j)
]

for all

i ∈ N0 \ S. Let T = {i ∈ N0 \ S : p(i) > maxj∈S

[

s(0, j) − s(i, j)
]

}. Since p /∈ Pe(G),

T is non-empty. Also, by definition of T , p(i) < pmax(i) for all i ∈ T . Hence, for any

i ∈ T and any j /∈ T , the two constraints between i and j in P0(G) are not tight. Hence,

we can construct two 0−potentials p′ and p′′ as follows: p′(i) = p′′(i) = p(i) if i /∈ T and

p′(i) = p(i) + ε and p′′(i) = p(i) − ε for all i ∈ T for sufficiently small ε > 0. Clearly,

p(i) = p′(i)+p′′(i)
2

for all i ∈ N , contradicting the fact that p is an extreme point. A similar

argument works if X \ S is non-empty. Hence, every extreme point of P0(G) is in Pe(G). �

Proof of Theorem 4

Proof : Suppose p is a WE price vector. Consider any efficient allocation µ and the allocation

graph Gµ corresponding to µ. So, (p, µ) is a WE. Take any edge (j, k) of Gµ. Now, consider

the next three possible cases.

1. If k ∈ Nµ, then p(k) = 0. Hence p(k) − p(j) = −p(j) ≤ 0 = ljk.

2. If k ∈ N0 \Nµ, then vµkk − p(k) ≥ vµkj − p(j) (since (p, µ) is a WE). This implies that

p(k) − p(j) ≤ vµkk − vµkj = ljk.

3. If k = 0 and Mµ 6= ∅, then consider any buyer i allocated to 0 in µ. Then, vi0 − p(0) ≥

vij − p(j). Hence, p(0) − p(j) ≤ −vij. Since this is true for all i such that µi = 0, we

can write p(0) − p(j) ≤ mini:µi=0 −vij = lj0.

This shows that p is a potential of Gµ. Since p(0) = 0 in a WE price vector, we get that p

is a 0−potential of Gµ.

Now, suppose that p is a 0−potential of Gµ for some efficient allocation µ. By definition,

p(0) = 0. For every j ∈ N , p(0) − p(j) ≤ lj0 ≤ 0. Using p(0) = 0, we get p(j) ≥ 0. Hence,

p is a price vector. Consider any j ∈ Nµ. By definition of a 0−potential, we can write

p(j) − p(0) ≤ l0j = 0. Using p(0) = 0, we get p(j) ≤ 0. Hence, p(j) = 0 for all j ∈ Nµ.

Now, consider any i ∈ M . If i ∈ Mµ, then µi = 0. By definition of potential, p(µi) −

p(j) = p(0)− p(j) ≤ lj0 ≤ vi0 − vij for all j ∈ N . Hence, vi0 − p(0) ≥ vij − p(j) for all j ∈ N .
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So, 0 ∈ Di(p). If i /∈ Mµ, then by definition of potential, p(µi) − p(j) ≤ ljµi
= viµi

− vij for

all j ∈ N . This gives µi ∈ Di(p). Therefore, p is a WE price vector. �

Proof of Theorem 5

Proof : For the proof of the theorem, we use the following claim.

Claim 1 Let (p, µ) be a Walrasian equilibrium. p is an interior Walrasian equilibrium price

vector if and only if Di(p) = {µi} for all i ∈ M and N+(p) = N0.

Proof : Since every WE price vector is a 0−potential (Theorem 4), the set of WE price

vectors is a polytope in Rn defined by p(k) − p(j) ≤ ljk for all j, k ∈ N with p(0) = 0. An

interior point of this polytope is a point p∗ satisfying p∗(k)− p∗(j) < ljk for all j, k ∈ N with

p∗(0) = 0.

Suppose p is an interior WE price vector. Clearly N+(p) = N0, since otherwise some

goods will have zero prices only. Now, consider the allocation graph Gµ. Since p is an interior

WE price vector, it is a 0−potential of Gµ (by Theorem 4), and for every j, k ∈ N , j 6= k,

we have p(k) − p(j) < ljk. Now consider any buyer i ∈ M . Let buyer i be assigned to good

j ∈ N . By definition, j ∈ N \ Nµ. Hence, p(j) − p(k) < lkj = vij − vik for all k ∈ N \ {j}.

This gives, vij − p(j) > vik − p(k) for all k ∈ N \ {j}. Hence, Di(p) = {j}.

Now, suppose Di(p) = {µi} for all i ∈ M and N+(p) = N0. Since N+(p) = N0, we

get that every good in N0 is assigned to some buyer in µ. Consider any j ∈ N0. Let j be

assigned to i in µ. Since Di(p) = {j}, we get vij − p(j) > vik − p(k) for all k ∈ N \ {j}.

So, p(j) − p(k) < vij − vik for all k ∈ N \ {j}. If j 6= 0, then we get vij − vik = lkj and

p(j) − p(k) < lkj. If j = 0, then, consider i′ such that −vi′k ≤ vik for all i with µ0 = i. By

assumption Di′(p) = {0}. Hence, we can write 0 − p(j) > vi′k − p(k) for all k ∈ N . This

gives, p(j) − p(k) < −vi′k = mini:µi=0 −vik = lkj. This shows that p(j) − p(k) < lkj for all

j, k ∈ N , j 6= k. Hence, p is an interior WE price vector. �

Suppose p is an interior WE price vector. Let µ be an efficient allocation. Then (p, µ)

is a WE. By Claim 1, N+(p) = N0 and Di(p) = {µi} for every i ∈ M . Since N+(p) = N0,

every j ∈ N0 is allocated in µ. Hence, U({j}, p) = O({j}, p) = {µj}. Since N+(p) = N0, we

can equivalently say that {j} is weakly overdemanded and weakly underdemanded at p for

all j ∈ N0.

Suppose #U({j}, p) = #O({j}, p) = 1 for every j ∈ N0 and N+(p) = N0. Therefore,

every good in N+(p) = N0 is demanded by a unique buyer. Hence, these goods can be

assigned to those corresponding unique buyers, and the remaining buyers can be assigned to

the dummy good (notice that these buyers must be demanding the dummy good). Let this

allocation be µ. So, (p, µ) is a Walrasian equilibrium and Di(p) = {µi} for all i ∈ M . Using

Claim 1, p is an interior WE price vector. �
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Proof of Theorem 6

Proof : Suppose an interior WE price vector p exists. Assume for contradiction that µ and

µ′ 6= µ are two efficient allocations. Then, (p, µ) and (p, µ′) are two Walrasian equilibria.

Since p is an interior WE price vector, N+(p) = N0, and hence, every good in N0 is assigned

in µ and µ′. Since µ 6= µ′, for some good j ∈ N0, µi = µ′
i′ = j where i 6= i′. This means

{i, i′} ⊆ U({j}, p), which implies that #Di(p) ≥ 2 and #Di′(p) ≥ 2. This is a contradiction

by Theorem 5.

Also, by definition N+(p) = N0 for every interior price vector p. By definition of WE, no

good from N0 is unassigned. Hence, n ≤ m.

Suppose there is a unique efficient allocation µ and n ≤ m. Let (p, µ) be any WE. First,

we prove the following claim.

Claim 2 Every good in N0 is assigned in µ.

Proof : Suppose some good j ∈ N0 is not assigned in µ. Hence, p(j) = 0. Since n ≤ m,

some buyer i ∈ M is assigned the dummy good. But vij − p(j) = vij ≥ 0. This means

j ∈ Di(p). Therefore, assigning i to j gives another allocation that is efficient, which is a

contradiction since µ is the unique efficient allocation. Hence, every good in N0 is assigned

in µ. �

Consider the minimum WE price vector pmin. Let M+ be the set of buyers assigned to

goods from N0 in µ.

Claim 3 For every buyer i ∈ M+, viµi
− pmin(µi) > 0.

Proof : Assume for contradiction that for some buyer i ∈ M+, viµi
− pmin(µi) = 0. Since

every set of goods S ⊆ N0 is not overdemanded and every S ⊆ N+(pmin) is not weakly

underdemanded at pmin (Theorem 1), by removing buyer i from the economy, it is still not

overdemanded and not underdemanded at pmin. This means, we can find a WE allocation

µ′ without buyer i. By assigning buyer i to the dummy good, which is in his demand set at

pmin, we get an efficient allocation different from µ. This is a contradiction. �

Now, construct a price vector p̄ by increasing the prices of goods in N0 by sufficiently

small amount from pmin. Every good in N0 is assigned by Claim 2 to buyers in M+. By

increasing prices by sufficiently small amount from pmin, and using Claim 3, every buyer in

M+ continues to demand µi at p̄, and buyers in M \ M+ demand only the dummy good.

Hence, p̄ is a WE price vector, and N+(p̄) = N0. Further, for sufficiently small price increase

from pmin, we can have for every buyer i ∈ M+, viµi
− p̄(µi) > 0 by Claim 3. Now, consider

the following claim.
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Claim 4 Consider a WE (p, µ) such that O(N0, p) = M+ and N+(p) = N0. Consider a set

of goods S ⊆ N0 with #S ≥ 2. Define T = {i ∈ M : µi ∈ S}. Then, there exists some buyer

i ∈ T such that Di(p) = {µi}.

Proof : Suppose #Di(p) ≥ 2 for all i ∈ T . Consider any good j0 ∈ S. We construct a

sequence of pairs of buyers and goods. Initially set K = {j0} and L = {i0}, where µi0 = j0.

Consider some j1 ∈ Di0(p) \ {j0} (such a j1 exists since #Di0(p) ≥ 2). Set K := K ∪ {j1}

and L := L ∪ {i1}, where µi1 = j1. If some j2 ∈ Di1(p) \ {j1} also belongs to K, then stop.

Else, update K := K ∪ {j2} for some j2 ∈ Di1(p) \ {j1} and L := L ∪ {i2}, where µi2 = j2.

We repeat this process. At any stage of the process, we have K = {j0, j1, . . . , jk−1} and

L = {i0, i1, . . . , ik−1}. If some jk ∈ Dik−1(p) \ {jk−1} belongs to K, where jk−1 = µik−1 , then

we stop. Otherwise, we set K := K ∪{jk} for some jk ∈ Dik−1(p)\{jk−1} and L := L∪{ik},

where µik = jk. The process is finite, since when we reach L = T , we have K = S.

Now, at the end of the process, let the final buyer to be inserted to L be ik. Let ik demand

jk′

6= µik from K at p. By the definition of the sequence above, there exists an assignment

µ′ where µ′
ik

= jk′

and µ′
il

= jl+1 with µ′
il
∈ Dil(p) for all k′ ≤ l < k, and µ′

i = µi otherwise.

Clearly, (p, µ′) is a WE. Hence, µ′ is an efficient allocation, contradicting the fact the µ is

unique. �

The proof is done by repeatedly applying Claim 4. First, set p = p̄, S = N+(p) = N0,

and T = M+ in Claim 4. Then, we get a buyer i ∈ M+ such that Di(p) = {µi}. Since

viµi
− p(µi) > 0, we can increase the price of µi by sufficiently small amount to get a

new WE price vector p′ such that Di(p
′) = {µi} and U({µi}, p

′) = {i}. Now, set p = p′,

S = N+(p′) \ {µi}, and T = M+ \ {i}, and apply Claim 4 again. After repeating this

procedure for all the buyers, we get a WE price vector p̂ where for every buyer i ∈ M ,

Di(p̂) = {µi}. By Theorem 5, p̂ is an interior WE price vector. �

Proof of Theorem 7

Proof : We begin the proof with two claims.

Claim 5 For any WE price vector p satisfying K(p, N0) 6= ∅, L(p, So(p)) = So(p) if and

only if, for all j ∈ So(p), p(j) = maxk∈K(p,N0)

[

s(0, k) − s(j, k)
]

, where shortest paths s(·, ·)

are computed in an allocation graph corresponding to any efficient allocation.

Proof : Suppose L(p, So(p)) = So(p) and K(p, N0) 6= ∅. By Lemma 4, p(j) = pmax(j)

for all j ∈ K(p, N0). By Theorem 3, p(j) ≥ maxk∈K(p,N0)

[

s(0, k) − s(j, k)
]

≥ 0 for all

j ∈ N0 \ K(p, N0). Let

X = {j ∈ N0 \ K(p, N0) : p(j) > max
k∈K(p,N0)

[

s(0, k) − s(j, k)
]

}.
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Assume for contradiction that X is non-empty. Clearly X ⊆ N+(p). Since L(p, N0 \

K(p, N0)) = N0 \K(p, N0), X is not weakly underdemanded at p. Hence, #U(p, X) > #X.

Consider the price vector p′ where prices of all goods except goods in X remain the same

as in p, but for all j ∈ X, p′(j) = maxk∈K(p,N0)

[

s(0, k) − s(j, k)
]

< p(j). Hence, buyers in

U(p, X) become exclusive demanders of X at p′. So, #O(p′, X) ≥ #U(p, X) > #X. Hence,

X is overdemanded at p′. Since p′ is a WE price vector by Theorem 3, we get a contradiction

by Theorem 1.

Suppose for all j ∈ So(p), we have p(j) = maxk∈K(p,N0)[s(0, k) − s(j, k)]. Assume for

contradiction that there exists j ∈ N0 \K(p, N0) such that j /∈ L(p, N0 \K(p, N0)). Clearly,

p(j) > 0. This means that for some T ⊆ N+(p) \ K(p, N0) containing j the set T is

weakly underdemanded. Consider a price vector p′ where prices of goods in T are lowered by

sufficiently small amount, whereas prices of other goods remain the same. Since T is weakly

underdemanded, p′ is a WE price vector. By (4), p′(j) ≥ maxk∈K(p,N0)[s(0, k) − s(j, k)] for

all j ∈ N0 \ K(p, N0). This gives us a contradiction. �

Claim 6 For any WE price vector p satisfying L(p, N0) 6= ∅, K(p, Su(p)) = Su(p) if and

only if, for all j ∈ Su(p), p(j) = mink∈L(p,N0)

[

s(k, j) − s(k, 0)
]

, where shortest paths s(·, ·)

are computed in an allocation graph corresponding to any efficient allocation.

Proof : The proof is similar to the proof of Claim 5. �

Suppose p is an extreme WE price vector. Then, by Theorem 3 and Lemmas 3 and

4, L(p, N0) ∪ K(p, N0) 6= ∅. If K(p, N0) 6= ∅, then by Theorem 3 and Claim 6, we have

that L(p, So(p)) = So(p). Similarly, if L(p, N0) 6= ∅, then by Theorem 3 and Claim 6, we

have that K(p, Su(p)) = Su(p). The converse statement also follows from Theorem 3 and

Claims 5 and 6. �
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