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Abstract

This paper models interaction between groups of agents by means of a graph
where each node represents a group of agents and an arc represents bilat-
eral interaction. It departs from the standard Katz-Shapiro framework by
assuming that network benefits are restricted only amongst groups of linked
agents. It shows that even if rival firms engage in Bertrand competition, this
form of network externalities permits strong market segmentation in which
firms divide up the market and earn positive profits. The analysis also shows
that some graphs or network structures do not permit such segmentation,
while for others, there are easy to interpret conditions under which market
segmentation obtains in equilibrium.

JEL Classification Numbers: D7

Keywords: network structure, network externalities, price competition, mar-
ket segmentation
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1 Introduction

It has long been known that some goods and services (for example, telecom-
munications, computer software and hardware) generate network effects or
externalities. The seminal paper by Katz and Shapiro (1985) defines a net-
work effect to exist when the utility that a user derives from consuming a
product depends on the number of other agents who consume either the same
brand of the product, or another brand which is compatible. This way of
modelling the network effect is found throughout the large theoretical and
empirical literature that has developed.1 While this is reasonable in many
contexts, in other instances it overlooks the fact that such positive external-
ities arise from the specific patterns of interaction between groups of users.

For instance, consider software packages with specific functions such as
word processing, accounting, data analysis and so on. The use of such pack-
ages has local network effects. Thus the utility to a user (say, a researcher in
a University) of a word processing or data analysis package depends at least
partly on the number of her research collaborators who use the same package,
rather than on the total number of users of the package. A main advantage
to two collaborators using the same package is sharing files. For many of
these products, there is a degree of incompatibility between brands. Two
users using incompatible brands find it difficult if not impossible to share
files; a program written on one software package cannot be read, or worked
on, using a competing brand.

These two elements - a user’s utility from a product depending on the
number of other users who interact with her, and of some degree of incom-
patibility between competing brands, are present in other contexts as well.
Thus many people using instant messaging typically communicate only with
their friends or coworkers; and there are incompatibilities between the lead-
ing competing brands provided by AOL, MSN and Yahoo.2 In interactions

1There is by now a large literature analyzing important issues in markets subject to

network effects. See, for instance Katz and Shapiro (1985, 1986), Farrell and Saloner (1985,

1986), Economides and Salop (1992), Farrell and Katz (2000), Matutes and Regibeau

(1992), Choi (1994), Ellison and Fudenberg (2000), Waldman (1993). Economides (1996)

provides an insightful overview. Gandal, Kende and Rob (2000) and Saloner and Shepard

(1994)are two interesting papers from the empirical literature.
2There is software available, such as Trillian, that provides interfaces between these

products, but it involves costs (all the competing brands have to be installed in one’s com-

puter, for instance), and firms such as AOL constantly change their software to maintain

incompatibility.

2



between businesses, it helps if software systems are compatible.
We use the formal network structure proposed in the important recent

paper of Jackson and Wolinsky (1996) to model the interaction between
groups of users. In particular, the set of all consumers is partitioned into
different groups or nodes, and two nodes are connected to each other if they
“interact”.3 Our main interest is in analysing whether the precise pattern
of interactions - that is, the specific network structure- has any influence on
market outcomes. For instance, suppose the overall “market” is the aca-
demic market for software. Does the fact that economists typically do not
collaborate with physicists (that is, economists are not “linked” to physicists)
matter in this market?

A typical feature of information goods such as software is that firms incur
possibly high fixed costs to develop essentially unlimited capacity, and their
marginal costs are negligible. As a first step towards understanding compe-
tition in markets with local network effects, we maintain the assumption of
unlimited capacity and study price competition. The issue of pricing and
competition is interesting when we study information goods for a variety of
reasons. Local network interactions is one of them, for which price competi-
tion has not been analyzed so far. If firms produce competing, incompatible
brands of the same intrinsic quality, and have the same constant marginal
cost of production, existing models of network externalities would yield the
Bertrand zero profit outcome. This is so for the Katz and Shapiro (1985)
model as well, if it is modified to analyze price, rather than quantity com-
petition. A main result in this paper is that if network effects are generated
from patterns of interaction among users, then there exist outcomes in which
firms do make positive profits, and there is market segmentation in the sense
that rival firms divide or partition the overall market into separate segments,
with each firm selling to different segments.

Market segmentation accords well with casual observation, which sug-
gests (a) positive profit outcomes arise even when firms compete in prices
and capacity is essentially unlimited; and (b) a group of users often uses a
single brand overwhelmingly, when several similar brands are available. For
example, law firms in the U.S. continued to use WordPerfect when the rest
of the world was switching over to Microsoft Word in the 1990s (Porter,
2000). The positive local network benefits to lawyers from using the same
word processor other lawyers (and some clients) used explains this pattern.

3Although this kind of modelling has only very recently been used in the literature

on network externalities, the use of such network structures in other areas of economics

is becoming increasingly popular. Dutta and Jackson (2003) contains several interesting

papers in this genre. See also Goyal(2007), Jackson (2008).
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Perhaps the most interesting contribution of the paper is that the specific
interaction structure matters; for some networks, market segmentation can be
ruled out in equilibrium, while other networks permit market segmentation.
Thus, one way of interpreting our results is to say that there are interaction
structures which convert the industry into a differentiated goods industry.
However, there are other interaction structures - for instance, the complete
graph where all users are linked to each other - where the goods remain
homogeneous, and so firms do not earn positive profits. The discussion also
shows that when positive profit equilibria exist, if firms could choose whether
or not to make their brands mutually compatible, they would choose not to
do so.

Related Work

Very recently, work has begun on understanding markets for products
that exhibit local network effects, using an explicit model of the network
structure (Jullien (2003), Sundararajan (2006), Tucker (2006)). In an inter-
esting paper, Jullien (2003)4 develops a model of oligopoly in an industry
in which network effects can be local or group-specific, while the other two
papers analyze the adoption of a single good in the presence of local network
effects. The present paper analyzes competition and is therefore closer to Jul-
lien (2003). Jullien analyzes a setting in which price discrimination across
different groups of consumers is possible.5 In his model, one firm (the Strong
firm) has a reputational advantage. However, the ability of the Weak firm to
price discriminate (by cross subsidizing some groups of consumers, inducing
them to buy, thereby creating a strong network-effect inducement for other
groups of customers) creates strong competition for the Strong firm. This
keeps equilibrium profits low. In contrast with Jullien (2003), the present
paper studies competition in situations where price discrimination is not pos-
sible; a major difference in emphasis is also the attempt to study how the
structure of interactions affects market segmentation.

Sundararajan (2006) studies a model (with incomplete information) in
which agents must simultaneously and independently decide whether or not
to adopt such a product. Each agent is located at a node of a graph, knows
the nodes that he/she is connected with, but is not informed about the rest
of the network structure. Sundararajan finds that the symmetric Bayesian
equilibria can be Pareto-ranked, and that the greatest of these is the unique

4We became aware of this paper after writing a draft of the present paper. We thank

Bruno Jullien for pointing us to this paper.
5This is especially reasonable in the context of two-sided markets and competition

among intermediaries. See Caillaud and Jullien (2003).
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coalition-proof equilibrium. Tucker (2006) analyzes a rich data set describing
the adoption of a video-messaging technology by employees of a financial firm.
Among other interesting findings, the data strongly support the hypothesis
that the network effect to an employee of adopting the technology is limited
to people that she communicates with. While these two papers study the
adoption of a single good, the present paper analyzes an oligopoly model
in which firms compete for customers who are linked over a network whose
structure is common knowledge.

2 A Model of Network Externalities

Our model of network externalities in the context of a partial equilibrium
duopoly is very similar to that of Katz and Shapiro (1985). A major difference
is in the way in which we model network externalities. Another difference is
that in our model firms compete in prices, in contrast to Katz and Shapiro
(1985) who assumed that firms behaved a la Cournot.

Our model has the following components and structure. There are two
profit-maximizing firms 1 and 2, firm j producing network good j. To bring
out the main points simply, the two goods are assumed to be functionally
identical. The two firms simultaneously announce prices p1, p2. Given these
prices, consumers simultaneously decide which good to buy. A consumer
buys one unit from either firm 1 or firm 2, or abstains from consumption.
Consumers benefit from own consumption, as well as from interaction with
others who consume the same good.6 The presence of network externalities
generates a coordination problem for the consumers. We assume that for each
vector of prices, consumers coordinate on a rational expectations equilibrium
allocation. Both firms correctly anticipate which allocation will be chosen by
the consumers. So, an overall equilibrium is a vector of prices which are best
responses to each other given the firms’ common (and correct) anticipations
of the rational expectations equilibrium allocation chosen by the consumers.

We now describe each component of the model in greater detail.

Consumers

Consumers are partitioned into groups, and each group “interacts” with
some but not necessarily all groups. For instance, consider the set of all
faculty members in a university. Each department then constitutes a group.

6If the goods are partially compatible, then consumers also derive some benefit from

interaction with other consumers who consume the other good.
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Economists may collaborate with political scientists and mathematicians,
but perhaps not with physicists or other scientists. Similarly, members of
the science departments may interact with each other, but not with sociol-
ogists. The pattern of such interactions is modeled as an undirected graph
or network (I, g) where I is a set of n nodes and g ⊂ I × I is a set of arcs
or links. Each group of consumers is located at a different node i ∈ I, and
ij ∈ g (that is, nodes i and j are linked) if consumers located at node i in-
teract with consumers located at j. We assume that consumers within each
group interact with each other and that if some consumers at node i interact
with some consumers at j, then all consumers located at i interact with all
consumers at j.7

Given a graph (I, g), the degree of node i ∈ I is the number of other nodes
that it is linked to. Given any graph g, N(g) will denote the set of nodes
which have degree at least one. A sequence (i1, i2, ..., in) of distinct nodes is
a path connecting i1 and in if {i1i2, i2i3, ..., in−1in} ⊂ g. A graph is connected
if there is a path connecting every pair of nodes.

For each node i, let N(i, g) = {j ∈ I|ij ∈ g}∪ {i}. That is, N(i, g) is the
set of nodes that are linked to node i, with the convention that i is linked to
itself.

The network (I, g) is complete if g = {ij|ij ∈ I × I}. That is, all groups
interact with all other groups in a complete network - this will correspond
to the original Katz-Shapiro model of network externalities.

We will also refer to some specific network structures later on. These are
defined below.

A circle on a set of nodes I is a connected graph in which every node has
degree two.

A star on a set of nodes I is a connected graph g such that g = {i∗j|j ∈
I \ {i∗}}, where i∗ is a distinguished node called the hub of the star.

A line on a set of nodes I is a connected graph g such that exactly two
nodes have degree one, while all the other nodes have degree two.

Let αi denote the measure of consumers located at node i.8 Each con-
sumer wishes to consume at most one unit of a good. There are two brands
of the good - for example, the good itself may be a type of software. The two
brands differ in inessential ways in the sense that each brand is functionally
identical as far as consumers are concerned. Let ri denote the basic willing-
ness to pay for the good of a consumer who is located at node i. However,
the total utility or surplus that a consumer gets from a particular brand of

7This is without loss of generality since we can define the set of nodes appropriately in

order to represent any pattern of interaction.
8Any single consumer has zero measure.
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the good also depends on the number of other consumers with whom she
interacts. If the two brands are incompatible, then the consumer derives net-
work benefits from others she interacts with only if they consume the same
brand. More generally, the brands could be partially compatible. Then, if
consumer A, using brand j, interacts with consumers who use brand k, she
gets some network benefit, but not as much as she would have got had these
consumers also used brand j. The examples that motivate this paper show
that some degree of incompatibility is a realistic assumption.

Following Caillaud and Jullien (2003), Jullien (2003), Choi (1994), Farrell
and Saloner (1985, 2000), we model partial compatibility by letting a param-
eter θ ∈ [0, 1] denote the degree of compatibility between the two brands.
Thus, θ = 0 and θ = 1 will denote, respectively, incompatibility and full
compatibility.

Let pj be the price of a unit of brand j, and αsj, αsk be the measure of
consumers at node s who consume brands j and k. Then the utility of a
consumer at node i from buying a unit of brand j is

ui(j, pj) = ri − pj +
∑

s∈N(i,g)

(αsj + θαsk).

So, by consuming brand j, a consumer at node i gets a gross benefit
ri and a network benefit of

∑
s∈N(i,g)

(αsj + θαsk). The network benefit to a

consumer at node i consuming brand j, from neighbors who consume brand
k is a proportion θ of the benefit from neighbors consuming brand j.

Notice that the network externality is local since the externality at node
i is restricted to only the neighboring nodes.

To simplify the analysis, we will henceforth set ri = 0 for all i. This
simplification does not alter the qualitative nature of our subsequent results.

Following Katz and Shapiro(1985), we will refer to pj−
∑

s∈N(i,g)
(αsj +θαsk)

as the hedonic price of brand j at node i.
It is well known that in making consumption decisions in the presence

of network effects, consumers face a coordination problem. We model this
in a way quite similar to the notion of “fulfilled expectations” used in the
literature (Katz and Shapiro (1985)). Given a vector of prices (p1, p2), con-
sumers form an expectation asj(p1, p2), which is the measure of consumers
at node s expected to purchase brand j, for all s ∈ I, j ∈ {1, 2}. Given
this expectation, each consumer at each node purchases the brand whose
hedonic price is lower, or abstains from buying either brand if both hedonic
prices are positive.9 Expectations are fulfilled, in that for every node s and

9This follows from our assumption that each ri = 0.
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brand j, consumers who purchase brand j on the basis of the expectations
{asj(p1, p2)} aggregate to exactly {asj(p1, p2)} for each node and brand. We
use the notion of an allocation, satisfying certain conditions, to model these
rational expectations.

Allocations

An allocation describes the pattern of consumption at each node corre-
sponding to each vector of prices. More formally,

Definition 1 An allocation a is a function a : <2
+ → <2n

+ , such that for all

(p1, p2) and for all i ∈ I, ai1(p1, p2) + ai2(p1, p2) ≤ αi.

Here, aij(p1, p2) is the amount of brand j consumed at node i correspond-
ing to prices (p1, p2).

Given a vector of prices (p1, p2), a network g and an allocation a, the
hedonic price of brand j at node i will depend upon the vector (pj, g, a, θ, i).
Since the network structure g and θ are exogenous, we will simplify notation
whenever possible and denote the hedonic price as h(pj, a, i). It is given by

h(pj, a, i) = pj −
∑

s∈N(i,g)

(asj(p1, p2) + θask(p1, p2))

Consumers’ decisions about which brand to purchase will determine which
allocation is “observed” in the market. Since such allocations are the outcome
of utility-maximizing behavior, it makes sense to impose some restrictions on
“permissible” allocations.

Definition 2 An allocation a is Rational if for all nodes i and non-negative

prices (p1, p2), the following are satisfied

(i) For j = 1, 2, aij(p1, p2) > 0 implies that h(pj, a, i) ≤ 0.

(ii) For j = 1, 2, aij(p1, p2) > 0 implies that h(pj, a, i) ≤ h(pk, a, i) where

k 6= j.

Thus, Rationality imposes the requirements that no individual consumes
a brand whose hedonic price is positive, and also consumes that brand whose
hedonic price is lower. These are minimal requirements which arise straight-
away from utility-maximizing behavior.

Since the pattern of consumption also depends on consumers’ expecta-
tions, it may be possible to justify or rationalize allocations which satisfy

8



these restrictions, but are nevertheless non-intuitive simply because of the
self-fulfilling nature of expectations. Suppose, for instance that “initial”
prices of the two brands are p1 and p2. Now, let there be an increase in the
price of brand 1, with p2 remaining constant. If all consumers now expect
everyone to switch to brand 1, then this may turn out to be self-fulfilling be-
cause the network externalities associated with brand 1 are now much larger
and so the hedonic price of brand 1 is correspondingly lower at all nodes.
The following assumption10 is imposed to bring about some regularity on
how the pattern of consumption changes with changes in prices.

Assumption 1: An allocation a is monotone in prices if for all i ∈ I and
j = 1, 2, aij(pj, pk) is non-increasing in pj.

By itself, Assumption 1 imposes a very weak restriction on how allocations
change with respect to a change in prices. In particular, Assumption 1 still
allows for allocations which seem somewhat counterintuitive. For example,
suppose that the two brands are incompatible (θ = 0). Consider a network
structure in which nodes i and j are linked, and such that at prices (p1, p2),
all consumers at node i are consuming say brand 1 because the hedonic price
of brand 1 is smaller than the hedonic price of brand 2 by αi. Suppose there
is an arbitrarily small reduction in the price of p2. Then, Assumption 1
allows for the possibility that all consumers at node i will switch brands and
consume only brand 2. Of course, if all consumers expect this to happen,
then the self-fulfilling nature of expectations guarantees that the allocation
will satisfy Rationality and Assumption 1. In order to rule out such changes,
we impose the following assumption.

Assumption 2: For every i ∈ I, the component ai of an allocation a is
continuous except possibly at any (p1, p2) where the hedonic prices are equal.

Definition 3 An allocation is admissible if it satisfies Rationality, and As-

sumptions 1 and 2.

Notice that since an allocation is endogenous, it is more appropriate to
impose the restrictions embodied in Assumptions 1 and 2 on the primitive
concept of consumer expectations. However, the preceding discussion (hope-
fully) clarifies the kind of restrictions required to be imposed on expectations
so as to ensure that the resulting allocations satisfy admissibility. We have
taken the shorter route so as to economize on notation.

Throughout this paper, we will only consider admissible allocations.

10Caillaud and Jullien(2003) also make the same assumption.
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Since an individual’s net utility depends on the actions of other con-
sumers, the optimal decisions of consumers may depend on whether con-
sumers can coordinate their actions. Consider, for example, a situation where
node i is not linked to any other node, and p1 − αi < 0 < p1 < p2. Then,
consumers at node i can derive some net utility if all consumers consume
brand 1. On the other hand, no consumer on her own will want to consume
either brand. In one subsequent result, we will assume that consumers at
each node can coordinate their actions when this is mutually profitable.

Assumption C: At any node i and prices (p1, p2), if minj∈{1,2}(pj − αi −∑
s∈(N(i,g)−{i})

(asj(p1, p2) + θask(p1, p2)) < 0, then ai1(p1, p2) + ai2(p1, p2) = αi.

Assumption C states that if consumers at any node can coordinate their
consumption decisions and attain strictly positive utility, then no consumer
will abstain from consumption.

Firms

There are two firms, each producing a different brand. For simplicity, we
assume that firms have zero cost of production.

Both firms anticipate the same allocation, and choose prices simultane-
ously to maximize profits. An important difference from Jullien (2003) is
that the firms in our model cannot practice price discrimination - consumers
at all nodes face the same prices. Given any allocation a, firm j’s profit
corresponding to prices (pj, pk) is

πj(pj, pk; a) = pj

∑
i∈I

aij(pj, pk)

Equilibrium

An equilibrium will be a set of prices (p1, p2) and an admissible allocation
such that each firm j maximizes profit given the other firm’s price and the
allocation rule. Notice that the restrictions on a ensure that consumers’
expectations are fulfilled in equilibrium.

Definition 4 A vector (p∗1, p
∗
2, a

∗) constitutes an equilibrium if

(i) The allocation a∗ is admissible.

(ii) For each j = 1, 2, and k 6= j, πj(p
∗
j , p

∗
k; a

∗) ≥ πj(pj, p
∗
k; a

∗) for all pj.
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It is easy to see that an equilibrium always exists in this model. For
consider prices p∗1 = p∗2 = 0, and an admissible allocation a∗ such that at
each node i, a∗i1(p1, p2) = a∗i2(p1, p2) = αi

2
whenever p1 = p2. Since p∗1 = p∗2,

and the allocation divides consumers equally between the two brands, the
two hedonic prices must be equal at each node. Since the hedonic prices are
also negative, the allocation a∗ is admissible. Neither firm can raise price
and earn positive profit. Indeed, suppose firm 1 charges p

′
1 > p∗1 = 0. Then,

for all i ∈ I,

a∗i1(p
′

1, p
∗
2) + θa∗i2(p

′

1, p
∗
2) ≤ a∗i1(p

∗
1, p

∗
2) + θa∗i2(p

∗
1, p

∗
2)

(This follows as by Assumption 1, it must be that ai1(p
′
1, p

∗
2) ≤ αi

2
). So,

at node i, h(p
′
1, a

∗, i) > h(p∗2, a
∗, i). Therefore in fact we get ai1(p

′
1, p

∗
2) = 0.

A higher price results in zero market share and zero profits.
Notice that in the equilibrium described above, the two hedonic prices

are equal at each node. The pair of prices remain in equilibrium because
neither firm wants to deviate by quoting a lower price since the “current”
level is already zero. The lemma below shows that this is the only case when
hedonic prices can be equal at any node. That is, if hedonic prices are equal
at any node i, and brand j is consumed at this node, then the price of brand
k (k 6= j) must be zero - the latter condition ensures that firm k has no
incentive to lower price any further in order to capture a larger share of the
market.

Lemma 1 Suppose (p1, p2, a) is an equilibrium. Then, at all nodes i ∈ I, for

j = 1, 2 and k 6= j, if h(pj, a, i) = h(pk, a, i), either aij(p1, p2) = 0 or pk = 0.

The proof of all lemmas and theorems is contained in the Appendix.

3 Market Segmentation

Both firms had positive market share at each node in the equilibrium de-
scribed in the preceding section. However, this is not surprising since neither
firm had any incentive to cut into the other firm’s market share as prices were
driven down to unit cost (zero). The main purpose of this paper is to show
that some network structure(s) representing interactions between consumer
groups may result in segmented markets with both firms earning strictly pos-
itive profits although firms are competing in prices. A formal definition of
market segmentation follows.

11



Definition 5 : An equilibrium (p1, p2, a) exhibits strong market segmenta-

tion if there are nodes i and j such that ai1(p1, p2) = αi, aj2(p1, p2) = αj and

pk > 0 for k = 1, 2.

We construct an equilibrium which exhibits strong market segmentation.

Example 1 Let the two brands be incompatible (θ = 0). Let I = {1, . . . , 4},

and let g be a circle on I. Suppose αi = α for each i. Suppose a∗11(p1, p2) =

a∗21(p1, p2) = α whenever p1 − p2 < α and p1 − α ≤ 0. Similarly, let

a∗32(p1, p2) = a∗42(p1, p2) = α whenever p2 − p1 < α and p2 − α ≤ 0. Let

p∗1 = p∗2 = 2α.

Then

h(p∗1, a
∗, 1) = h(p∗1, a

∗, 2) = h(p∗2, a
∗, 3) = h(p∗2, a

∗, 4) = 0

Also,
h(p∗1, a

∗, 3) = h(p∗1, a
∗, 4) = h(p∗2, a

∗, 1) = h(p∗2, a
∗, 2) = α

So for example, all consumers at node 1 consume brand 1 at prices (p∗1, p
∗
2)

because 0 = h(p∗1, a
∗, 1) < h(p∗2, a

∗, 1) = α. It follows more generally that the
allocation a∗ satisfies the requirements imposed by Rationality at (p∗1, p

∗
2).

Similarly, it can be checked that a∗ is admissible at all price profiles. Now,
suppose the producer of brand 2 wants to “steal” consumers located at node
1. Since h(p∗1, a

∗, 1) − h(p∗2, a
∗, 1) = −α, firm 2 must reduce its price by at

least α to make this happen. If this enables firm 2 to capture the entire
market, its profit will be 4α2. But, this is its profit at p∗2 = 2α. For exactly
the same reason, firm 1 does not have a profitable deviation either. Hence,
(p∗1, p

∗
2, a

∗) constitutes an equilibrium exhibiting strong market segmentation.

How is it that both firms are earning positive profits despite being Bertrand
duopolists? If prices are strictly positive, then lemma 1 implies that at each
node, all consumers buy the same brand; the one whose hedonic price at that
node is strictly less than that of the other brand. So, each firm i will have
to lower its price by an amount εi strictly bounded away from zero in order
to eat into its rival’s market share. So, strong market segmentation can be
sustained if εi is sufficiently large so as to make the revenue loss from its
existing customers larger than the gain in revenue from new customers. It is
worth noting also the role of the continuity restriction imposed on expecta-
tions (hence on the allocation) by Assumption 2. In its absence (i.e. for a

12



discontinuous allocation), an arbitrarily small price cut by firm i could po-
tentially increase the firm’s profit, by causing a large enough expected switch
from brand j to brand i.

There is nothing pathological about the network structure used in the
above example. So, this suggests that market segmentation of this kind can
arise quite generally.

Notice though that if the brands are fully compatible (θ = 1), then strong
market segmentation is not possible in equilibrium. The reason is that at
every node i, the magnitude of the network effect from consuming either good
then equals

∑
s∈N(i,g)

(as1(p1, p2) + as2(p1, p2)). So, the difference in hedonic

prices at all nodes is simply the difference between p1 and p2. Thus a firm
can undercut the price charged by its rival by an arbitrarily small amount
and capture the entire market. So, the standard logic of Bertrand price
competition holds and results in zero prices in equilibrium. We record this
fact in the following proposition.

Proposition 1 If θ = 1, then there cannot be any strong market segmenta-

tion.

In what follows, we analyze strong market segmentation when θ < 1.
First, we show that there are types of network structures which cannot

give rise to market segmentation. One such structure is when all customers
are linked to each other, while a second is when the network structure is
a circle with all nodes having the same mass of consumers, and θ ∈ (0, 1).
Second, we derive sufficient conditions for the star and the circle to permit
market segmentation.

Theorem 1 : If (I, g) is a complete network, then there cannot be strong

market segmentation.

The idea behind this result is that in a complete network, the hedonic
price of a brand is the same at every node. So both brands are purchased
only if their hedonic prices are equal. This cannot be an equilibrium if brand
prices are positive, because a firm can attract all customers of the rival brand
with an arbitrarily small price cut. Since the complete network corresponds
to the standard way of modeling network externalities a la Katz and Shapiro,
Theorem 1 shows that price competition in such a model yields the standard
Bertrand result. It may be useful to reiterate here the role of Assumption 1 in
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restricting the allocation: arbitrarily small price undercutting works because
the allocation (or expectations) is nondecreasing in own price.

The following lemma will be used in the proof of the next theorem. It
shows that in an equilibrium with strong market segmentation, for each brand
j there is some node i where j is consumed and consumers get zero utility.

Lemma 2 Suppose (p1, p2, a) is an equilibrium with strong market segmen-

tation for some g. Then for each brand j, there exists a node i such that

aij(p1, p2) > 0 and h(pj, a, i) = 0.

Lemmas 1 and 2 together display some of the structure that any equilib-
rium with strong market segmentation must have: both prices are positive;
each brand is consumed at least at one node; at any node where a brand is
purchased by consumers, the hedonic prices of the two brands are unequal
(so that all consumers there buy the same brand); finally, for each brand,
there is a node where consumers consume that brand and get zero utility.

The next theorem shows that under Assumption C, strong market seg-
mentation cannot exist if the network is a circle in which all nodes have an
equal mass of consumers and when the two brands are not completely in-
compatible. Recall that Example 1 demonstrated the possibility of market
segmentation when the two brands are incompatible.

Theorem 2 Suppose (I, g) is a circle such that all nodes have the same

measure of consumers α, and θ ∈ (0, 1). Then there cannot be strong market

segmentation if Assumption C is satisfied.

Assumption C plays a crucial role in the theorem. If Assumption C does
not hold, then even when the network is a symmetric circle and θ ∈ (0, 1),
one can have market segmentation of the following kind. Let p1 = p2 = α,
and consumers at odd nodes abstain from consumption, consumers at nodes
which are multiples of 4 consume brand 2, while consumers at all other even
nodes consume brand 1.

The proof of the theorem illustrates an instance in which firm 1 finds
network tipping to be profitable. Cutting its price to p′1 attracts one node,
and therefore the next, and the next, and so on; due to a network effect, the
entire network switches to brand 1.
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Note that even if θ > 0, there can be market segmentation on the circle
if masses of consumers differ across nodes. Example 2, which is presented
after Theorem 3, illustrates this possibility.

In the remainder of this section, we derive sufficient conditions which en-
sure market segmentation for the circle and the star (or hub-spoke network).
These and other simple networks have arisen as descriptions of economic and
social relationships in a variety of contexts. The analysis below illustrates
that strong market segmentation can arise quite easily in such contexts.

Both sufficient conditions (C∗ and S∗ below) have the following interpre-
tation. Each firm i sells to a distinct set of submarkets or nodes Ii. The
price pi is such that for some submarket or node k ∈ Ii, the hedonic price
for brand i is zero.11 But firm i does not find it profitable to increase its
price (thereby excluding some submarkets or nodes in Ii from consumption).
Given these prices and the graph structure, firm i has some minimal, strictly
positive price cut at which it can attract customers at nodes that consume
the rival good, or abstain from consumption. Under the sufficient conditions,
a firm’s loss from its existing market due to this price cut exceeds the gain
from attracting its rival’s customers.

Consider a circle g on I. Let g′ be any nonempty subgraph of the circle
g. Nodes in N(g′) which have degree one in g′ will be called extremal nodes.
All other nodes in N(g′) are called internal. Notice that if g′ is connected,
then it must be a line, and will have exactly two extremal nodes. If k is an
extremal node of g′, then n(k, g′) refers to the neighbour of k which is in
N(g′) while e(k, g′) refers to the node j such that kj ∈ g \ g′.

Suppose k is an extremal node of g′. Then, define

Γk(g
′) ≡ αk + αn(k,g′) + θαe(k,g′)

Γk(g
′) equals the network benefit at extremal node k if all consumers in

N(g′) use the same brand that is used at node k, and consumers at e(k, g′)
use the rival brand.

If k is an internal node of g′, then define

Γk(g
′) ≡

∑
j∈N(k,g′)

αj

Let
Γm(g′) ≡ min

k∈N(g′)
Γk(g

′).

11If the hedonic price were negative at all nodes consuming brand i, firm i has a profitable

deviation: it could increase price pi slightly without changing the hedonic price inequalities

at any node, and so without changing the quantity it sells.
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Notice that again for each internal node k, Γk(g
′) represents the size of

the network benefit under the expectation that consumers in N(g′) consume
brand i. So, Γm(g′) is a feasible price in the sense that the corresponding
hedonic price at every node in N(g′) is non-positive.

Then, Rev (Γm(g′)) = Γm(g′)
∑

k∈N(g′)

αk is the revenue that any producer

can derive from customers in N(g′) when the price is Γm(g′).
We will say that {L1, L2} is a line partition of g if {L1, L2} is a partition

of g and each Li is a line.
The sufficient condition for market segmentation when the network struc-

ture g is a circle results in firms 1 and 2 servicing nodes in N(L1), N(L2),
where {L1, L2} is a line partition of g. The prices charged will be Γm(L1) and
Γm(L2). Notice that at these prices, the hedonic price of each of the brands
is zero at some node. These prices will also be “maximal” in the sense that
neither firm will want to raise prices - the loss of revenue from a lower market
size will be at least as high as the gain in revenue due to the higher price.
The sufficient condition will additionally ensure that neither firm will want
to lower price in order to steal customers away from its rival.

In order to define the sufficient condition, we also need to derive the
largest price at (or alternatively, the smallest price cut by) which one firm
can steal customers from its rival’s market.

For each node k in N(Li), define

ρk = αk + αn(k,Li) − αe(k,Li), if k is an extremal node of Li

ρk = Γk(Li), if k is an internal node of Li

We will show that the highest price at which firm j can attract some node
in Li is given by

p̄j = Γm(Li)− (1− θ) min
k∈N(Li)

ρk

Intuitively, if node k consumes brand i, then to attract a consumer there,
the price pj must be sufficiently lower than Γm(Li) to compensate for the
loss of network benefit. This loss equals (1 − θ)ρk, for node k. At price p̄j,
there is compensation for the loss of network benefit at a node that has the
smallest such benefit.

Definition 6 A circle g on I satisfies Condition C∗ if there exists a line

partition {L1, L2} of g such that for each i = 1, 2, and all g′ ⊂ Li,

(i) Rev (Γm(Li)) ≥ Rev (Γm(g′))+Γm(g′)
∑

k∈K(Li,g′) αk, where K(Li, g
′) =

{k ∈ N(Li) \N(g′)|Γm(g′) ≤ αk + θ(αk−1 + αk+1)}
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(ii) p̄j
∑

k∈N(g)
αk ≤ Γm(Lj)

∑
k∈N(Lj)

αk, j = 1, 2.

Part (i) ensures that firm i does not want to raise price beyond Γm(Li).
Doing so would imply serving a smaller market (corresponding to some sub-
graph g′ of Li, and possibly other nodes in Li where the hedonic price of
brand i is non-positive). The two terms on the right hand side of Part (i) of
Condition C∗ correspond to revenue or profit from these, with price equal to
Γm(g′). Part (ii) ensures that price cutting to attract consumers of the rival
brand is not profitable relative to charging the price Γm(Lj).

Theorem 3 Suppose a circle g satisfies Condition C∗. Then, there can be

strong market segmentation under some admissible allocation a.

The theorem yields the following corollary.

Corollary 1 Suppose θ = 0, I contains an even number of nodes, with αi =

α. Then, every circle g on I can give rise to strong market segmentation.

The next example is another application of Theorem 3 - it shows that
market segmentation can prevail on the circle even when θ > 0.

Example 2 Let I = {1, ..., 5}, and consider the circle g = {12, 23, 34, 45, 51}.

Let (α1, α2, α3, α4, α5) = (3, 4, 2, 4, 1).

Let {L1, L2} be the line partition in which N(L1) = {1, 2} and N(L2) =

{3, 4, 5}. Then, p∗1 = Γm(L1) = 7 + θ, p∗2 = Γm(L2) = 5 + 3θ, p̄1 = 3 + 5θ,

p̄2 = 2+6θ. Let a∗ be an admissible allocation such that at prices (p∗1, p
∗
2), all

consumers at nodes 1 and 2 consume brand 1, while all consumers at nodes

3, 4 and 5 consume brand 2. It is straightforward to check that if θ ∈ [0, 1
9
],

then Condition C∗ holds. Thus, strong market segmentation can hold.

We now derive a sufficient condition for strong market segmentation when
the network structure is a star. This structure arises naturally in many
applications. In the present context, one example of a star network is that
of lawyers and client firms: lawyers are located at the center, their clients at
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the peripheral nodes. Lawyers interact with themselves and all clients, while
each client firm interacts within itself and with its law firm.

Without loss of generality, we consider a star g with n as the hub or
center. Let {M1, M2} denote a partition of the peripheral nodes I−{n}. For
each j ∈ Mi, denote Aj =

∑
{k∈Mi|αk≥αj}

αk. Let

α1∗ ∈ argmax{(αn + αi)(αn + Ai)|i ∈ M1}

and
α2∗ ∈ argmax{(θαn + αi)Ai|i ∈ M2}

The idea is to look for prices and allocation (p∗1, p
∗
2, a

∗) such that the
Center will consumer brand 1, and nodes in set Mj will either consume
brand j or abstain from consumption. The network benefit at a node i from
consuming brand 1 is thus αn+αi, while from consuming brand 2 it is θαn+αi.
We require 2 peripheral nodes, 1∗ and 2∗, at which the hedonic prices of the
2 brands are zero. (This will also pin down the 2 prices, p∗1 = αn + α1∗ ,
p∗2 = θαn + α2∗).Node i∗ is chosen to maximize profits of firm i, subject to
the constraint that firm i services nodes in the set Mi (and the Center, if
i = 1). The choice of 1∗ and 2∗ will ensure that no firm has an incentive to
raise prices.

Definition 7 The star g satisfies Condition S∗ if the following are satisfied

for some partition {M1, M2} of I − {n}

(i) (A2∗ − A1∗)(1− θ) + αn + α1∗ ≤ 0

(ii) (α1∗ + αn)(αn + A1∗) ≥ (αn + θα2∗)
∑
i∈I

αi

Part (i) of Condition S∗ will ensure that it is rational for the Center
to consumer brand 1 at the equilibrium price vector, and in fact, that we
can find a rational allocation under which a consumer at the Center will
not switch to brand 2 at any positive price p2. Part (ii) of Condition S∗

will ensure that it is rational for nodes consuming brand 2 to do so at the
equilibrium price vector, and also that firm 1 cannot attract nodes consuming
brand 2 without reducing its equilibrium profits.

Theorem 4 Suppose the star g with hub n satisfies Condition S∗. Then,

there exists an equilibrium with strong market segmentation.
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An easy corollary is the following.

Corollary 2 Suppose θ = 0, I has at least 4 nodes, and αi = α for all

i. Then, for every star on I, there is some equilibrium with strong market

segmentation.

In the lawyers-clients example, this result can be interpreted to say that
there are equilibria with market segmentation in which lawyers (at the center
of the star) and some clients use WordPerfect, even if a large number of other
clients are using Word.

4 Discussion

In many instances, network effects can be local in nature. The present paper
is one of the first to analyze competition in the presence of local network
effects. We have shown that even under Bertrand competition with unlimited
capacity, firms can make positive profits in many scenarios, and different
groups of consumers can specialize in the consumption of one specific brand.
However, the interaction structure matters; some network structures rule out
such equilibria with strong market segmentation.

The degree of compatibility also matters. We have shown that when the
brands are perfectly compatible, the only possible equilibrium is the stan-
dard Bertrand equilibrium with both firms earning zero profit, irrespective
of the network structure. However, partial compatibility can generate market
segmentation with both firms earning positive profits.

We have taken the degree of compatibility between brands to be exoge-
nously given. There is an obvious implication, though, if the choice of com-
patibility is endogenous and restricted to being either 0 (incompatibility) or
1 (full compatibility). Consider a network structure that permits equilibria
with strong market segmentation when brands are incompatible. Suppose
that before the firms compete in prices, they decide whether or not to make
their brands compatible with each other, say, by providing a two way con-
verter. Assume that if both play “Yes”, then the brands are compatible,
whereas if at least one plays “No”, they are incompatible. Following this,
there is price competition. If both play “Yes”, price competition leads to zero
profits. This is not an equilibrium, since if even a single firm plays “No”, the
firms can then coordinate on a positive profit, strong market segmentation
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equilibrium. This provides a justification for observing the existence of in-
compatible brands, even under price competition with unlimited capacities,
and no differences in intrinsic product quality.

What will happen if consumers become “more connected”? The addition
of a link or edge to a graph increases the network effect at least on the nodes
that are incident on the new edge. However, the greater scope for network
externalities does not necessarily result in higher consumer surplus. The
following example illustrates that consumer surplus may actually go down.

Example 3 Let I contain more than 5 nodes and αi = α for all i ∈ I. Let

θ = 0. Consider a star, where the hub and (|I|−2) peripheral nodes consume

brand 1, while 1 peripheral node consumes 2. Consider the equilibrium with

market segmentation where p1 = 2α, while p2 = α. Then, only consumers at

the hub enjoy positive utility. Suppose now that one of the peripheral nodes

where brand 1 was being consumed “merges” with the hub -this is equivalent to

this node being connected to all other nodes. Then, there is a new equilibrium

where p1 = 3α, p2 = α. Then, aggregate consumer surplus goes down, while

producer 1’s profit goes up.

It is difficult, however, to draw any general conclusions about the direction
of changes in consumer and producer surpluses even for small changes in
network structure.

The model in this paper is static. Purchases or adoption of goods across
consumers usually happens over time, and this feature can be particularly
important when there are potential bandwagon effects (such as in the setting
of this paper). While there is a literature studying dynamic pricing issues, we
know of no such work that studies situations with local network externalities.
This would be an interesting topic for future research.

Lastly, we have assumed that the network structure is exogenous, in con-
trast to a strand of the recent literature on networks which models the en-
dogenous formation of networks. The endogenous formation of networks does
not appear to be an appropriate issue in the present context. One’s choice of
coauthors, for example, usually does not depend on what software they use.
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5 Appendix

We gather all proofs in this section.
Proof of Lemma 1: Suppose (p1, p2, a) is an equilibrium, and the two

hedonic prices are equal at node i. Without loss of generality, let ai1(p1, p2) >
0 and p2 > 0. Suppose firm 2 lowers its price to p′2 = p2 − ε. Since a is
admissible, ai1(p1, p

′
2) ≤ ai1(p1, p2) and ai2(p1, p

′
2) ≥ ai2(p1, p2). Moreover,

for all nodes s ∈ I at which consumers consume either good, as2(p1, p
′
2) +

θas1(p1, p
′
2) ≥ as2(p1, p2) + θas1(p1, p2). Since p′2 < p2, the hedonic price of

brand 2 is lower than that of brand 1 at node i for all permissible values
of ai1(p1, p

′
2). Since a is admissible and hence rational, it must be the case
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that ai1(p1, p2) = 0 and ai2(p1, p
′
2) = αi.

12 So, firm 2 can capture the entire
market at node i by a small reduction in price. This increases profit by
ai1(p1, p2)(p2 − ε). The loss of profit at other nodes can be made arbitrarily
small by choosing an appropriately small ε.

Hence, firm 2 cannot be maximizing profit at (p1, p2). This contradiction
establishes the result.

Proof of Theorem 1: Suppose to the contrary that an equilibrium with
strong market segmentation exists. Let (p1, p2) be the equilibrium prices.
Since (I, g) is complete, the hedonic price of each brand is the same at all
nodes. So, let (h1, h2) denote the hedonic prices corresponding to (p1, p2).
Consider any node i where consumers buy brand 1. Rationality requires
that h1 ≤ h2. Similarly, by considering any node j where consumers buy
only brand 2, we get h2 ≤ h1.

Hence, h1 = h2. But,this contradicts Lemma 1.

Proof of Lemma 2: Suppose that for every node i with aij(p1, p2) > 0,
we have h(pj, a, i) < 0. Since there is strong market segmentation, pj > 0.
Therefore, by Lemma 1, h(pj, a, i) < h(pk, a, i).

By continuity of a, firm j can raise price pj slightly - admissibility of a
ensure that consumption of brand j at each node remains as before. So, firm
j′s profit is higher. This contradicts the assumption that (p1, p2, a) is an
equilibrium.

Proof of Theorem 2: Suppose to the contrary that (p1, p2, a) is an
equilibrium with strong market segmentation. If |I| ≤ 3, this is ruled out by
Theorem 1. So let |I| > 3. We proceed in steps.

Step 1: At all nodes i, either ai1(p1, p2) = α or ai2(p1, p2) = α. That is, all
consumers at each node buy one of the two brands.

Proof of Step 1: Since both prices are positive, lemma 1 implies that the
hedonic prices of the two brands at each node are unequal. So, consumers at
each node will completely specialize in one brand if they buy at all. Hence,
we only need to prove that no consumer abstains from consumption.

Since there is market segmentation, there must be some node i where all
consumers buy say brand 1. We want to show that no consumer at node
(i − 1) abstains from consumption. In an equilibrium with strong market
segmentation, either all consumers at node (i−1) buy the same brand, or no
consumer at this node buys either brand. Suppose the latter is true. Now,

12The latter follows because consumers at node i were purchasing at prices (p1, p2), and

so had non-negative utility. Hence, they must be purchasing at price p′
2 since the hedonic

price of brand 2 is now lower.
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at node (i + 1), either consumers purchase brand 1 or brand 2 or neither.
So at node i, the hedonic price h(p1, a, i) of brand 1 is either p1 − 2α, or
p1 − (1 + θ)α, or p1 − α. From rationality at node i, therefore,

p1 − 2α ≤ 0

Notice that if firm 1 lowers price to p
′
1, an arbitrarily small reduction from

p1, then p
′
1−2α < 0. By Assumption C, no consumer at node (i−1) will then

abstain from consumption; indeed, given that at (p1, p2) no one at this node
consumed, at (p

′
1, p2) they will all purchase brand 1. Because firm 1′s price

reduction can be arbitrarily small, it can increase its profit by capturing this
node in this fashion. This contradicts the assumption that (p1, p2, a) is an
equilibrium. We have thus shown that consumers at (i− 1) must be buying
some brand.

Step 2: If brand j is consumed at node i, then it is consumed at either node
(i− 1) or node (i + 1).

Proof of Step 2: From Step 1, we know that consumers at nodes i− 1 and
i + 1 consume one of the two brands. If Step 2 is wrong, then brand k must
be consumed at nodes (i− 1) and (i + 1). By rationality at i, we have

pj − α− 2θα < pk − 2α− θα (1)

The smallest possible hedonic price of brand k at node (i−1) is pk−2α−θα
- this happens when consumers at (i − 2) consume k. The largest possible
hedonic price of brand j at (i− 1) is pj − α− 2θα. Equation (1) shows that
the hedonic price of brand k is higher than the hedonic price of brand j at
node i− 1. This implies that rationality is violated at node (i− 1).

Step 3: p1 = p2 = (2 + θ)α.

Proof of Step 3: Since g is a circle, Steps 1 and 2 imply that there exist
nodes i and (i+1) such that consumers at nodes i and (i−1) consume brand
j, while consumers at nodes (i+1) and (i+2) consume brand k. We will call
nodes i and i + 1 marginal nodes.13 So, the hedonic prices of brands j and k
at nodes i and (i + 1) respectively are pj − 2α− θα and pk − 2α− θα. Also,
if brand j is consumed at some node q, then its hedonic price at q cannot
exceed pj − 2α− θα.14 Lemma 2 now completes the proof of Step 3.

13That is, a node is marginal if consumers at one of its neighbors consume a different

brand.
14It could be pj − 3α if j is consumed at both nodes (q − 1) and (q + 1).
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Step 4: Suppose N1 is the set of nodes where brand 1 is consumed. Without
loss of generality, let #N1 = n1 ≤ n

2
. Firm 1’s profit is

π1(p1, p2) = p1n1α = n1(2 + θ)α2 ≤ n

2
(2 + θ)α2

Let firm 1 lower price to p′1 = (1 + 2θ)α− ε. Let i be any marginal node
for brand 2 at prices (p1, p2). The hedonic price of brand 1 at i corresponding
to p′1 is now −ε. Hence, all consumers at i switch over to brand 1. Now,
suppose consumers at i+1 were consuming brand 2 at (p1, p2), and i+1 was
not a marginal node for brand 2. Since ai1(p

′
1, p2) = α, the hedonic price of

1 at i+1 corresponding to p′1 is also −ε. So, all consumers at i+1 must also
switch to brand 1.

Continuing in this way, it is clear that at (p′1, p2), firm 1 captures the
entire market. Its profit is now

π1(p
′
1, p2) = ((1 + 2θ)α− ε)nα =

n

2
(2 + 4θ)α2 − nαε

Firm 1 can choose ε sufficiently small so that π1(p
′
1, p2) > π1(p1, p2).

Hence, (p1, p2, a) cannot be an equilibrium. This completes the proof of
the theorem.

Proof of Theorem 3: Let g satisfy Condition C∗. Consider the pair
(L1, L2) figuring in the definition of Condition C∗. Let p∗i ≡ Γm(Li) be the
price of good i.

Also, let a∗ be an allocation which satisfies the following restrictions.
For i = 1, 2, j 6= i, for all internal nodes k of Li,

Γm(Li)− pj ≤ (1− θ)Γk(Li) → a∗ki(Γm(Li), pj) = αk (2)

For i = 1, 2, j 6= i, for all external nodes k of Li,

Γm(Li)− pj ≤ (1− θ)(αk + αn(k,Li) − αe(k,Li)) → a∗ki(Γm(Li), pj) = αk (3)

These restrictions are easily interpreted. Notice that if k is an internal node
of Li, then θΓk(Li) is the network benefit that an individual located at node
k will get from consuming brand j if all other individuals located at nodes
in N(Li) consume brand i. So, (1 − θ)Γk(Li) is the gain in network benefit
from consuming brand i instead of brand j. Equation 2 states that if the
difference between p∗i and pj is smaller than the gain in network benefit, then
all consumers at node k buy brand i. Equation 3 has an exactly similar
interpretation for external nodes.

We first show that a∗ is an admissible allocation. By definition, p∗i en-
sures that h(p∗i , a

∗, k) is non-positive at all nodes k. We first show that
h(p∗i , a

∗, k) < h(p∗j , a
∗, k) for all nodes k ∈ N(Li).

25



Suppose k is an internal node of Li. It follows straightaway from (ii) of
Condition C∗ that Γm(Lj) > p̄j. Then,

h(p∗j , a
∗, k) = Γm(Lj)− θΓk

> p̄j − θΓk

≥ Γm(Li)− (1− θ)Γk − θΓk

= h(Γm(Li), a
∗, k)

Suppose k is an extremal node of Li. Then,

h(p∗j , a
∗, k) = Γm(Lj)− αe(k,Li) − θ(αk + αn(k,Li))

> p̄j − αe(k,Li) − θ(αk + αn(k,Li))

≥ Γm(Li)− (1− θ)(αk + αn(k,Li) − αe(k,Li))− αe(k,Li) − θ(αk + αk−1)

= h(Γm(Li), a
∗, k)

That is, h(p∗i , a
∗, k) < h(p∗j , a

∗, k) for all nodes k ∈ N(Li), and so no
consumer located at nodes in N(Li) wants to switch to consumption of good
j. So, a∗ satisfies Rationality.

From Assumption 1, an increase in price of good i cannot attract con-
sumers located at nodes in N(Lj). Any pi > p∗i will also imply that the
resulting hedonic price of good i will be strictly positive at some node k in
N(Li). Hence, a price increase will result in a smaller market size. Let pi cor-
respond to some Γm(g′) where g′ is a subgraph of Li. Then, N(g′)∪K(Li, g

′)
is the set of nodes in N(Li) where the hedonic price is non-positive. Part (ii)
of Condition C∗ ensures that the revenue corresponding to pi is not higher
than the revenue corresponding to p∗i .

Hence, neither firm has any incentive to raise the price.
Finally, we show that neither firm has an incentive to reduce price. We

demonstrate this for firm j.
We now show that p̄j is the maximum price at which firm j can steal

some node in Li. From equation 2, it is clear that if pj exceeds p̄j, then all
customers at any internal node k of N(Li) will continue to consume brand
j. Equation 3 implies the same for external nodes of N(Li).

Suppose indeed that firm j can capture the entire market at price p̄j.
Part (ii) of Condition C∗ ensures that firm j’s profit still does not exceed its
current profit.

This completes the proof of the theorem.

Proof of Corollary 1: Consider a partition of g into lines {L1, L2} such
that each N(Li) consists of n

2
nodes. Then, Γm(Li) = 2α, and Γm(Li) is

maximal for Li. (Note that the network benefit at an extremal node is 2α,
so the hedonic price of the brand i consumed there is zero. So, raising price
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pi beyond Γm(Li) = 2α will lose the extremal node. But then, the network
benefit at the neighboring node consuming brand i reduces from 3α to 2α,
and is less than any price pi higher than Γm(Li). Carrying this argument
further, we see that raising price pi beyond Γm(Li) loses all nodes consuming
brand i). Hence, (i) of Condition C∗ is satisfied. To check (ii), let i∗ be an
extremal node of Li. To attract a consumer at i∗ to consume brand j, the
price pj must drop sufficiently to compensate for the loss of network benefit,
which equals α. Thus p̄j = Γm(Li)−α = α. So, the inequality of (ii) reduces
to

n(α)2 ≤ 2α(
n

2
α),

which holds.
Notice, however, that if θ = 0, αi = α for all i ∈ I, and I contains an odd

number of nodes, then Condition C∗ is not satisfied. In fact it can be shown
that in this case, there is no equilibrium with strong market segmentation.

Proof of Theorem 4: Let p∗1 = αn + α1∗ , and p∗2 = α2∗ + θαn.
Consider an allocation a∗ such that

a∗i1(p
∗
1, p

∗
2) = αi for all i ∈ {j ∈ M1|αj ≥ α1∗} ∪ {n}

a∗i2(p
∗
1, p

∗
2) = αi for all i ∈ {j ∈ M2|αj ≥ α2∗}

and
a∗ij(p

∗
1, p

∗
2) = 0 for all other nodes i, for j = 1, 2

We first check that this specification does not violate rationality.
Suppose i is a peripheral node where consumers consume brand 1. Then,

h(p∗1, a
∗, i) = α1∗ − αi ≤ 0 < h(p∗2, a

∗, i) = p∗2

If i is a peripheral node consuming brand 2, then

h(p∗2, a
∗, i) = α2∗ − αi ≤ 0 < h(p∗1, a

∗, i) = α1∗ − θαi

The last inequality follows from the fact that if peripheral node i consumes
brand 2, at prices (p∗1, p

∗
2), then α2∗ − αi ≤ 0; so for the inequality to hold

for all such nodes i, it is sufficient that α1∗ − θα2∗ > 0. But this follows from
part (ii) of Condition S∗.

Also, for the Center n,

h(p∗1, a
∗, n) = (αn + α1∗)− A1∗ − θA2∗

and
h(p∗2, a

∗, n) = (α2∗ + θαn)− A2∗ − θA1∗
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Part (i) of Condition S∗ ensures that h(p∗1, a
∗, n) < h(p∗2, a

∗, n).
So, the specification of a∗ does not violate rationality.
It is easy to check that neither firm has an incentive to raise prices.
Suppose also that a∗ satisfies the following

an1(p
∗
1, p2) = αn if (A2∗ − A1∗)(1− θ) + αn + α1∗ ≤ 0

This is consistent with rationality if all consumers at node n expect other
consumers at node n to consume good 1 so long as the inequality is satisfied.

Then, it follows from part (i) of Condition S∗ that the producer of brand
2 cannot induce consumers at node n to switch consumption at any positive
price.

Finally, note that producer 1 must reduce price by at least α1∗ − θα2∗ to
induce nodes in M2 to switch to consumption of good 1. The loss in revenue
from existing customers is (α1∗ − θα2∗)(αn + A1∗). The maximum possible
gain in revenue occurs if all consumers currently not consuming 1 switch to
consumption of 1. Hence, the maximum gain in revenue is [(αn+α1∗)−(α1∗−
θα2∗)](

∑
i∈I

αi − αn − A1∗). Part (ii) of Condition S∗ ensures that the loss in

revenue from existing customers is at least as large as the gain in revenue
from new customers.

Hence, no producer has an incentive to reduce prices. So, (p∗1, p
∗
2, a

∗)
constitutes an equilibrium with market segmentation.

Proof of Corollary 2: Partition the peripheral nodes into sets {M1, M2}
such that (|M1| − 1) ≥ |M2|. This can always be done as long as there are
at least 3 peripheral nodes. Since αi = α for all i, A1∗ = |M1|α, A2∗ =
|M2|α. Then, (i) of Condition S∗ is satisfied. It also follows easily that (ii)
of Condition S∗ is satisfied.
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