
Discussion Papers in Economics

Implementation in Multidimensional Dichotomous Domains

Debasis Mishra

Souvik Roy

September 2011

Discussion Paper 11-15

Indian Statistical Institute, Delhi
Planning Unit

7, S. J. S. Sansanwal Marg, New Delhi 110016, India



Implementation in Multidimensional
Dichotomous Domains ∗

Debasis Mishra † and Souvik Roy ‡

September 30, 2011

Abstract

We consider deterministic dominant strategy implementation in multidimensional

dichotomous domains in private values and quasi-linear utility setting. In such multidi-

mensional domains, an agent’s type is characterized by a single number, the value of the

agent, and a non-empty subset of acceptable alternatives. Each acceptable alternative

gives the agent utility equal to his value and other alternatives give him zero utility.

We show that generation monotonicity is necessary and sufficient for implementability

in any dichotomous domain. If such a domain satisfies a richness condition, then a

weaker version of generation monotonicity, which we call 2-generation monotonicity

(equivalent to 3-cycle monotonicity), is necessary and sufficient for implementation.

We use this result to derive the optimal mechanism in a one-sided matching problem

with agents having dichotomous types.

JEL Classification Codes: C78, C79, D02, D44.

Keywords: dominant strategy implementation; cycle monotonicity; dichotomous pref-

erences; generation monotonicity.

∗We are grateful to Sushil Bikhchandani, Dinko Dimitrov, Ron Lavi, Anup Pramanik, Arunava Sen, Tridib
Sharma, and seminar audience at Indian Statistical Institute, Delhi for valuable suggestions and feedbacks.

†Indian Statistical Institute
‡University of Caen

1



1 Introduction

We study multidimensional mechanism design in private value and quasi-linear environments,
e.g. auction domains, matching problems with transfers, choosing a public good among mul-
tiple public goods with transfers etc. We restrict attention to deterministic implementation

in dominant strategies. Our focus is on domains where agents have dichotomous preferences
over alternatives. We give a complete characterization of implementable allocation rules

when every agent has a dichotomous type. A dichotomous type ti of any agent i is charac-
terized by a positive real number v(ti), which we call the value of the agent at this type,

and a non-empty subset of alternatives A(ti), which we call the acceptable alternatives. The
interpretation is that an agent of dichotomous type ti gets (the same) utility v(ti) from each
alternative in his acceptable set A(ti), but gets zero utility on any alternative that is not

acceptable. Note that both v(ti) and A(ti) are private information of the agent. This makes
such type spaces multidimensional.

We call a type space a dichotomous domain if every type belonging to it is a dichotomous
type. We characterize the set of implementable allocation rules in dichotomous domains
using a condition called generation monotonicity. Generation monotonicity is a new (non-

trivial) simplification of the cycle monotonicity condition of Rochet (1987) in dichotomous
domains. Our most striking result comes in a particular class of dichotomous domains. We

show that for a large class of dichotomous domains, which we refer to as rich dichotomous
domains, a significantly weaker condition than generation monotonicity characterizes imple-

mentability. We refer to this weaker condition as 2-generation monotonicity, and show it to
be equivalent to 3-cycle monotonicity. 3-cycle monotonicity is significantly weaker than cycle
monotonicity but stronger than 2-cycle monotonicity, a condition used to characterize imple-

mentability in convex domains (Bikhchandani et al., 2006; Saks and Yu, 2005; Ashlagi et al.,
2010). A dichotomous domain is not convex, but still multidimensional. While most of the

earlier results found domains where 2-cycle monotonicity is necessary and sufficient for im-
plementability, to our knowledge, this paper is the first to identify multidimensional domains

where we see K-cycle monotonicity (K "= 2) is necessary and sufficient for implementation.
We demonstrate usefulness of our characterizations by deriving a revenue maximizing mech-
anism for the one-sided matching problem where agents having dichotomous preferences over

alternatives.
Though dichotomous types seem like a restrictive preference over alternatives, it is nat-

ural in many settings. Such preferences have been studied in social choice theory and
matching theory in models without monetary transfers - Bogomolnaia and Moulin (2004)
and Roth et al. (2005) study it in the context of matching; Bogomolnaia et al. (2005) study

it in a collective choice problem; and Vorsatz (2007, 2008) study it in the context of a voting
model. Allowing for transfers in some of these models is very natural. Dichotomous domains

were first studied with monetary transfers and quasi-linear utility in Babaioff et al. (2005).
We discuss two broad settings with transfers where it is plausible to assume that agents have

2



dichotomous types.
Collective Choice. In collective choice problems, agents want to collectively choose

an alternative - e.g., joint hiring of a staff by several departments in a university, joint

installation of a software for employees in an organization, choosing a communication or
transportation network to build for joint use. In each of these problems, it is plausible

to think that agents have dichotomous preferences over alternatives - in the staff hiring
example, a department gets a value from a staff if and only if he has the skills required

by the department; in the software installation problem, an employee gets a value from a
software if and only if it is compatible with his laptop; in the network selection problem, if
each agent uses the network for sending data from a source node to a destination node, then

he gets a value from a network if and only if it connects his source and destination nodes.
Private Good Allocation. In private good allocation problems, each agent receives

a different alternative and there is usually some feasibility constraint linking the allocations
of all the agents. For example, in scheduling problems, each agent has a task (a journey)

which can be completed by a machine (airline). The tasks (journeys) of different agents need
to be assigned to different time periods because the machine (airline) has capacity constraint
in each time period. But an agent may not be available in some time periods, and he gets

a value if and only if the task (journey) is assigned to a time period when he is available.
Related to this example is the general model of matching with transfers in dichotomous

domains - for example, in matching firms to job candidates, a firm may get a value from
a candidate if and only if the candidate has the required skills; in matching students to
schools, a student may get a value from a school if and only if the language or curriculum of

teaching is compatible with the student. The single-minded combinatorial auctions domain
(Lehmann et al., 2002) is another example of a dichotomous domain.

Our general characterization using generation monotonicity applies to all these domains.

Our specific characterization using 2-generation monotonicity applies to all the above do-
mains except the single-minded combinatorial auction domain.

1.1 Past Literature and Our Results

The study of implementable allocation rules in quasi-linear utility settings with private val-

ues began in the seminal paper of Myerson (1981), where he studied Bayes-Nash randomized
implementation for the one-dimensional model of the single object auction. For determin-

istic allocation rules and dominant strategy implementation, Myerson’s result can be easily
adapted as follows. He defined the notion of monotone allocation rules, which states that
given the type profile of other agents, if an agent gets the object at a type, then he must

get the object at a type with higher value. Myerson showed that an allocation rule is im-
plementable if and only if it is monotone in this sense - see extensions of this result for

various other one-dimensional problems in Archer and Tardos (2001); Archer et al. (2003);

3



Goldberg and Hartline (2005); Aggarwal and Hartline (2006); Dhangwatnotai et al. (2008).
For a general multidimensional type space model, Rochet (1987) showed that imple-

mentability is equivalent to cycle monotonicity, which requires that for every agent and

for every type profile of other agents, certain type graph should have no cycles of negative
length 1.

While cycle monotonicity characterization is very general, it is not an easy condition
to verify or interpret - see extensions and different interpretations in Rahman (2011) and

Kos and Messner (2011). Researchers have since tried to identify domains where a sim-
pler condition than cycle monotonicity is necessary and sufficient for (deterministic) im-
plementability. Bikhchandani et al. (2006) show that 2-cycle monotonicity, which requires

cycles having two nodes in the type graph to have non-negative length, is necessary and suffi-
cient for implementability in a variety of convex domains, including the unrestricted domain

and some auction domains. Saks and Yu (2005) generalize this result to show that 2-cycle
monotonicity is necessary and sufficient for implementability if the type space of every agent

is a convex subset of R|A|, where A is the set of alternatives. Ashlagi et al. (2010) show that
2-cycle monotonicity is necessary and sufficient for implementability if the closure of type
space of every agent is a convex subset of R|A|. Vohra (2011) has an excellent survey of these

results 2. Note that the 2-cycle monotonicity condition is equivalent to Myerson’s monotonic-
ity condition in the single object auction model 3. Our characterization of implementability

in rich dichotomous domains uses 2-generation monotonicity, which is equivalent to 3-cycle
monotonicity. Since 3-cycle monotonicity is slightly stronger than 2-cycle monotonicity, our
result helps further delineate the boundaries of multidimensional domains which permit a

characterization that is significantly simpler than Rochet’s cycle monotonicity.
This paper is not the first paper to study implementation in dichotomous domains.

Lehmann et al. (2002) consider the specific dichotomous domain of single-minded combina-
torial auctions. Under an additional assumption on allocation rules, Lehmann et al. (2002)

show that 2-cycle monotonicity characterizes implementability in these domains. Our results
are more general than this in the sense that we characterize implementability in arbitrary
dichotomous domains. Further, our main characterization in rich dichotomous domain does

1This interpretation of cycle monotonicity is due to Gui et al. (2004); Heydenreich et al. (2009). The
cycle monotonicity characterization of implementability is related to the characterization of subgradients of
convex functions using cycle monotonicity by Rockafellar (1970).

2Vohra (2011) and Heydenreich et al. (2009) discuss an alternate graph theoretic interpretation of cycle
monotonicity using allocation graphs. Cuff et al. (2011) have shown that if the type space is a full-dimensional
convex product space, then implementability is equivalent to every 2-cycle in the allocation graph having
zero length. Since allocation graph is a more complicated concept than the type graph, we do not discuss it
in detail in this paper.

3 There are many papers which characterize different extensions of implementability in convex do-
mains using 2-cycle monotonicity and additional technical conditions - for Bayes-Nash implementation,
see Jehiel et al. (1999) and Muller et al. (2007); for randomized implementation, see Archer and Kleinberg
(2008); for implementation with general value functions, see Berger et al. (2010) and Carbajal and Ely
(2011).

4



not apply to single minded auction domains since this domain is not rich in our sense.
A paper closely related to our work is Babaioff et al. (2005). Like us, they consider

deterministic implementation in dichotomous domains with monetary transfers. The main

difference between their characterization and our characterization is that theirs is a charac-
terization of “mechanisms” (allocation rules and payments), while ours is a characterization

of“allocation rules” only. Their characterization says that a mechanism is truthful if and only
if the corresponding allocation rule is value monotone, encourages winning, ensures minimal

payments, and the payments are by critical values 4. We view that our direct characteriza-
tions of implementable allocation rules are simpler to state and very different in spirit from
the result in Babaioff et al. (2005).

Importantly, our general characterization has many nice implications on specific dichoto-
mous domains, but the characterization in Babaioff et al. (2005) is silent in such domains.

Our general characterization using generation monotonicity identifies many specific dichoto-
mous domains where weaker versions of cycle monotonicity is necessary and sufficient for

implementability. In rich dichotomous domains, where 2-generation monotonicity charac-
terizes implementability, it implies a cutoff based characterization of implementable alloca-
tion rules. This cutoff based characterization extends the cut-off based characterization of

Myerson (1981) for single object auction, which states that for every agent and for every
type profile of other agents, there is a cutoff value above which this agent gets the object

and below which he does not get the object - see also Archer and Tardos (2001) for a gener-
alization of this cutoff based characterization to general one-dimensional models. Our cutoff
based characterization for the rich dichotomous domains is more involved.

We hope that such simple characterizations will lead to identifying optimal mecha-
nisms, mechanisms with fairness properties, and (almost) budget-balanced mechanisms in

our model. Further, efficiency is usually computationally difficult in many dichotomous do-
mains - for example in single-minded combinatorial auction domains (Blumrosen and Nisan,

2007). So, characterizing the entire class of implementable allocation rules will help us iden-
tify computationally tractable but approximately efficient implementable allocation rules.

We demonstrate the usefulness of our results by deriving the optimal mechanism for a

particular setting. We consider the one-sided matching problem with agents having dichoto-
mous preferences. In this problem, a set of objects need to be assigned to a set of agents,

where each agent can be assigned at most one object. Each agent finds only a subset of the
objects acceptable and derives a value if any of these objects are assigned to him. Such a

domain easily satisfies the assumptions of a rich dichotomous domain. Amongst the class of
dominant strategy incentive compatible and individually rational mechanisms, we identify
a mechanism which results in maximum expected revenue for the designer in this problem.

Our optimal mechanism extends the optimal auction for the single object case in Myerson
(1981).

Our derivation of optimal mechanism for the one-sided matching problem with dichoto-

4For a precise definitions of these terms, we refer the reader to Babaioff et al. (2005).

5



mous preferences is a contribution to the optimal multidimensional mechanism design lit-
erature. The multidimensional optimal mechanism design problem is believed to be a hard
problem. There is a long literature to it after Myerson’s seminal work on the single object

auction - see Rochet and Stole (2003) for a survey. This literature usually considers Bayes-
Nash randomized implementation. The usual approach in this literature is to consider spe-

cific multidimensional domains (sometimes with relaxed incentive constraints), and then ex-
tend Myerson’s methodology to such settings - see Armstrong (1996), Blackorby and Szalay

(2007), Iyengar and Kumar (2008), Pai and Vohra (2008), Manelli and Vincent (2007). Our
optimal mechanism design looks at a different multidimensional domain with deterministic
dominant strategy implementation.

2 The Single Agent Model

We consider a single agent model now. Later, we will show how we can extend our results

to n agents. The interpretation of the single agent model is that the type profile of other
agents is fixed, and we are looking at the image of an allocation rule where this agent’s type

is changing.
The single agent will be denoted by i. There is a finite set of alternatives A. The type

of agent i is a vector in R|A|. We will denote the type of agent i as ti, and the value of any

alternative a ∈ A at type ti as ti(a). The set of all possible types of agent i will be denoted
as Di, and will be referred to as the domain. Agent i has quasi-linear utility functions, i.e.,

if he pays a monetary transfer of pi and the alternative he receives is a ∈ A, then his net
utility is given by ti(a)−pi. We also assume private values - so, when we consider the model

with n agents, the net utility of every agent will be completely determined by his own type
and his own monetary transfers.

An allocation rule f is a mapping f : Di → A. A payment function of agent i is a

mapping pi : Di → R.

Definition 1 An allocation rule f is implementable (in dominant strategies) if there
exists a payment function pi such that for every si, ti ∈ Di,

si(f(si)) − pi(si) ≥ si(f(ti)) − pi(ti).

In such a case, we say that pi implements f .

We discuss a familiar notion of monotonicity for the allocation rules, and its relation to

implementability.

Definition 2 An allocation rule f is K-cycle monotone, where K ≥ 2 is a positive
integer, if for every finite sequence of types (t1i , t

2
i , . . . , t

k
i ) with k ≤ K, we have

k
∑

j=1

[tji (f(tji )) − tji (f(tj−1
i ))] ≥ 0, (1)

6



where t0i ≡ tki . An allocation rule f is cyclically monotone if it is K-cycle monotone for
all positive integers K ≥ 2.

Remark. If an allocation rule f is (K+1)-cycle monotone, then it is also K-cycle monotone.

In a seminal work, Rochet (1987) showed that an allocation rule is implementable if and

only if it is cyclically monotone - also see Rockafellar (1970). The explicit graph theoretic
interpretation is due to Gui et al. (2004), where they associate a type graph with every

domain Di, every set of alternatives A, and every allocation rule f : Di → A. This type
graph contains the set of types as the set of nodes, and is a complete graph (i.e., a directed
edge exists from every node to every other node). The length of the edge from node si to ti
is

!(si, ti) := ti(f(ti)) − ti(f(si)).

Then, it is easy to notice that Inequality (1) is requiring the length of the cycle (t1i , . . . , t
k
i , t

1
i )

to be non-negative.

Though mathematically elegant, this characterization of implementability involves veri-
fying the length of cycles involving arbitrary number of nodes. When the set of alternatives

is finite, as is assumed here, one only needs to verify cycles involving no more than |A| nodes.

Lemma 1 An allocation rule f is implementable if and only if it is |A|-cycle monotone,

where A is a finite set of alternatives.

Proof : The proof is in the appendix. !

The most general result in the literature, due to Ashlagi et al. (2010), shows that if the

closure of a domain is convex, then 2-cycle monotonicity is sufficient for implementation.
This is a significant improvement over Lemma 1.

3 Implementation in Dichotomous Domains

We now introduce the domain we study in this paper. We call this domain the dichotomous
domain.

Definition 3 A type ti ∈ R|A| is called a dichotomous type if there exists a positive real

number v(ti) ∈ R++ and a non-empty subset of alternatives A(ti) ⊆ A such that ti(a) = v(ti)
if a ∈ A(ti) and ti(a) = 0 if a /∈ A(ti).

The alternatives in A(ti) are called acceptable alternatives of agent i at ti and the
positive real number v(ti) is called the value of agent i at ti. The set A(ti) will be referred
to as the acceptable set of agent i at ti.

7



We will refer to the tuple of acceptable set and value as the type of the agent. A domain
Di ⊆ R

|A|
+ is called a dichotomous domain if every ti ∈ Di is a dichotomous type. For

simplicity, we will sometimes write the dichotomous type ti as (v(ti), A(ti)).

Note that there may be restrictions in a dichotomous domain. For example, a particular
alternative in A may never be acceptable to the agent - such an alternative always has value

zero, and will be referred to as a worthless alternative. For example, in the single-minded
combinatorial auction setting, one alternative is to not give any object to the agent. Such

an alternative always gives zero value to the agent, and is worthless.
Another restriction can be that if a particular alternative is in the acceptable set, then

some other alternative also has to be in the acceptable set. Later, we will give specific

domains where such restrictions are natural. However, our general result is not influenced
by any such restrictions.

The dichotomous domain is not convex as the following example illustrates.

Example 1 Let A = {a, b, c}. Consider a type where the acceptable set is {a, b} and value

is 2: ti = (2, 2, 0), and another type where the acceptable set is {a, c} and value is 3: si =
(3, 0, 3). Now, si+ti

2 = (2.5, 1, 1.5), and this is not a dichotomous type.

As a result, the earlier results in the literature on 2-cycle monotonicity being equivalent to

implementability does not apply in dichotomous domains.

3.1 Generation Monotonicity

We examine the implication of implementability in dichotomous domains. Unless stated

otherwise, Di is a dichotomous domain in this section. The outcome of an allocation rule at
a dichotomous type is easy to describe - an agent either gets an alternative in his acceptable
set or gets something outside his acceptable set. For every alternative a ∈ A and for every

dichotomous type ti, we define the indicator function δ(a, ti) ∈ {0, 1}, where δ(a, ti) = 1
implies that a ∈ A(ti) and δ(a, ti) = 0 implies that a /∈ A(ti). Note that in the type graph

of a dichotomous domain, the length of edge from type si to ti can be written as

!(si, ti) = ti(f(ti)) − ti(f(si)) = v(ti)[δ(f(ti), ti) − δ(f(si), ti)].

We now describe a new monotonicity property in dichotomous domains, and show it to
be equivalent to implementability. For this, we will need some notation. Given an allocation

rule f , a type ti is satisfied by si if δ(f(si), ti) = 1. If δ(f(ti), ti) = 1, we say that ti is
satisfied (by itself). If ti is not satisfied, then we say it is unsatisfied.

We will first define the notion of generations of unsatisfied types. For an allocation rule

f , define the first generation types of an unsatisfied type ti ∈ Di as

Gf
1(ti) = {si ∈ Di : δ(f(si), ti) = 1}.

8



So, Gf
1(ti) contains all the types which satisfy ti - of course, this will not contain ti since we

consider generations of unsatisfied types only. Also, Gf
1(ti) may be empty.

Having defined the k-th generation types of the unsatisfied type ti, we define the (k+1)-st

generation types of ti as follows

Gf
k+1(ti) = {si ∈ Di \ ∪

k
j=1G

f
j (ti) : δ(f(si), t̄i) = 1 for some t̄i ∈ Gf

k(ti)}.

So, Gf
k+1(ti) contains all the types which satisfy a k-th generation type of ti. Note that for

every unsatisfied type ti and every other type si, either si is not in any generation of ti or

si belongs to a unique generation of ti. It is possible that for an unsatisfied type ti ∈ Di,
Gf

k(ti) = ∅ for some k. Further, if ti is unsatisfied and si ∈ Gf
k(ti) for some generation k, then

there is no restriction that si itself is satisfied or not - we will show later that implementability
requires si to be satisfied.

We give an example to clarify the concept of generations.

Example 2 Let A = {a, b, c}. Suppose ti is a dichotomous type with v(ti) = 2 and A(ti) =
{a}. Consider an allocation rule f such that f(ti) = b. Hence, ti is not satisfied. Now,

consider a type t̄i with v(t̄i) = 3 and A(t̄i) = {a, b}, and let f(t̄i) = a. Hence, f(t̄i) ∈ A(ti),
and this implies that t̄i ∈ Gf

1(ti). Now, consider another type t̂i such that v(t̂i) = 1 and

A(t̂i) = {b}, and let f(t̂i) = b. Then, t̂i satisfies t̄i but it does not satisfy ti. Since t̄i satisfies
ti, we have t̂i ∈ Gf

2(ti).

We show that the number of generations of an unsatisfied type for any allocation rule is

finite.

Lemma 2 Suppose f : Di → A is an allocation rule. For all ti ∈ Di such that f(ti) /∈ A(ti),

if Gf
k(ti) "= ∅, then k ≤ |A|.

Proof : Fix any f : Di → A, and consider ti ∈ Di such that f(ti) /∈ A(ti). Suppose

Gf
k(ti) "= ∅, and assume for contradiction k > |A|. Then for each positive integer j ≤ γf (ti),

we pick some tji ∈ Gf
j (ti). Now, consider the set of types {t1i , . . . , t

k
i }. Since |A| < k, there

must exist at least two types, say tji and tj
′

i with j, j′ ∈ {1, . . . , k} such that f(tji ) = f(tj
′

i ).

Then it must be that tji and tj
′

i belong to the same generation of ti. This is a contradiction.
!

For an allocation rule f , define the generation number of an unsatisfied type ti in f as the
largest positive integer γf(ti) such that Gf

γf (ti)
(ti) "= ∅. By Lemma 2, it is well defined. We

now define another monotonicity property using generations of types, and show its connection
to cycle monotonicity.

Definition 4 An allocation rule f is K-generation monotone, where K is a positive
integer, if for every unsatisfied type ti ∈ Di and for every positive integer k ≤ K, the

following holds for all si ∈ Gf
k(ti),

9



1. Generation Self Satisfaction (GSS). si is satisfied,

2. Monotonicity (MON). v(si) ≥ v(ti).

An allocation rule f is generation monotone if it is K-generation monotone for all positive

integers K.

We strengthen the notion of generation monotonicity below.

Definition 5 An allocation rule f is strong K-generation monotone, where K is a
positive integer, if it is K-generation monotone and for every unsatisfied type ti ∈ Di and

for every positive integer k ≤ K, the following holds for all si ∈ Gf
k(ti),

1. No Rebirth (NR). ti does not satisfy si.

An allocation rule f is strong generation monotone if it is strong K-generation monotone

for all positive integers K.

Strong generation monotonicity and generation monotonicity are related in an obvious
way.

Lemma 3 Suppose f is (K +1)-generation monotone, then it is strong K-generation mono-

tone.

Proof : Suppose f is (K + 1)-generation monotone. Assume for contradiction that f is

not strong K-generation monotone. Then, for some ti such that f(ti) /∈ A(ti) and for some
si ∈ Gf

k(ti), where k ≤ K, we have that ti satisfies si (violation of NR). Then, ti ∈ Gf
k+1(ti).

Since f is (k + 1)-generation monotone, ti satisfies itself (GSS). This is a contradiction. !

Lemmas 2 and 3 immediately establish the following corollary.

Corollary 1 An allocation rule is strong generation monotone if and only if it is genera-
tion monotone.

To understand why generation monotonicity may be linked to implementability (cycle
monotonicity), consider 2-cycle monotonicity. Consider two types ti and si. The length of

the 2-cycle between si and ti is

v(ti)[δ(f(ti), ti) − δ(f(si), ti)] + v(si)[δ(f(si), si) − δ(f(ti), si)].

For this cycle to have non-negative length, we need to ensure that when one of the edges

has negative length, the other edge must have sufficiently large positive length. Suppose the
edge length !(si, ti) < 0. Then, it must be that δ(f(ti), ti) = 0 and δ(f(si), ti) = 1, i.e.,

si ∈ Gf
1(ti). The length of this edge is −v(ti). For the 2-cycle to have non-negative length,

we must have δ(f(si), si) = 1 (GSS), δ(f(ti), si) = 0 (NR), and v(si) ≥ v(ti) (MON). This

intuition carries forward to higher generations. The following proposition establishes the
exact connection between generation monotonicity and cycle monotonicity.

10



Proposition 1 For any positive integer K ≥ 2, an allocation rule is K-cycle monotone if
and only if it is strong (K − 1)-generation monotone.

Proof : The long proof is in the Appendix. !

We will now give a characterization of implementable allocation rules using generation
monotonicity. For this, we define certain notions. The generation number of an allocation

rule f : Di → A is a positive number defined as follows. If every ti ∈ Di is satisfied or every
unsatisfied ti ∈ Di is not satisfied by any other type (i.e., Gf

1(ti) = ∅ for all ti), then we let
γf = 1. Else,

γf = max
ti∈Di:f(ti)/∈A(ti)

γf(ti).

By Lemma 2, the value of γf ≤ |A|. We are now ready to state our main characterization.

Theorem 1 Suppose f : Di → A is an allocation rule with generation number γf . Then,

the following statements are equivalent.

1. f is implementable.

2. f is (γf + 1)-cycle monotone.

3. f is γf -generation monotone.

Proof : (1) ⇒ (2) follows from the fact that implementability implies cycle monotonicity.

For (2) ⇒ (3), note that if f is (γf + 1)-cycle monotone, by Proposition 1, it is strong γf -
generation monotone, and hence, γf -generation monotone. Finally, for (3) ⇒ (1), suppose

f is γf -generation monotone. Then, by definition of γf , f is generation monotone (this
follows from the observation that for any positive integer k > γf , and for any ti such that
f(ti) /∈ A(ti), we have Gf

k(ti) = ∅). In that case, by Lemma 3, f is strong generation

monotone. By Proposition 1, f satisfies cycle monotonicity. Hence, f is implementable. !

Note that the characterization in Theorem 1 holds in any dichotomous domain. In Ap-
pendix 2, we identify specific domains where we can find the generation number, and using

Theorem 1, we get immediate characterizations in these domains.

4 Rich Dichotomous Domain

We now move beyond the general characterization in Theorem 1. We will impose an ad-

ditional assumption on the domain, and use Theorem 1 to get a simpler characterization
of implementability in these domains. A dichotomous domain may have some restrictions.

For example, consider the single-minded combinatorial auction domain in Lehmann et al.
(2002). To remind, an auctioneer is selling a set of m objects, and the bidder is interested

11



only in a subset of objects, called his favorite bundle. The set of alternatives in this problem
is the set of all subsets of objects. However, if a single-minded bidder has a particular subset
of objects S in his acceptable set, then he must have every superset of S in his acceptable

set. This is a particular restriction on this dichotomous domain.
In this section, we impose a richness condition on the dichotomous domains. Our richness

condition rules out some restrictions.

Definition 6 A dichotomous domain Di is rich if

(a) the set of possible values of a dichotomous type is an interval V = (0, β), where β ∈
R++ ∪ {∞} 5.

(b) for every alternative a ∈ A which is not worthless 6 and every possible value x ∈ V ,

there is a dichotmous type ti such that v(ti) = x and A(ti) = {a}.

Condition (a) is plausible in almost all dichotomous domains. However, condition (b)

may not be satisfied in some domains. In particular, it is clearly violated in the single-
minded combinatorial auction domain. There are many interesting domains where condition

(b) holds. For example, it holds in all the collective choice problems we discussed in Section
1. It also holds in some private good allocation problems that we discussed in Section 1 -
e.g., in the scheduling problem and in the matching problem. Thus, it covers a wide variety

of dichotomous domains.
The main result of this section gives a characterization of implementable allocation rules

in rich dichotomous domains.

Theorem 2 For any allocation rule f : Di → A, where Di is a rich dichotomous domain,

the following statements are equivalent.

1. f is implementable.

2. f is 3-cycle monotone.

3. f is 2-generation monotone.

Remark. Theorem 2 is useful since 2-generation monotonicity is a significantly weaker con-

dition than the generation monotonicity condition in Theorem 1. Further, we use this to
derive a “cutoff-based” characterization, which is easier to interpret, in Section 4.2.

Remark. In contrast to convex domains, where 2-cycle monotonicity is known to be neces-
sary and sufficient for implementability, Theorem 2 shows that 3-cycle monotonicity implies

5Our results are true even if we consider intervals of the form (0, β].
6As defined earlier, an alternative is worthless if it can never be in the acceptable set at any dichotomous

type, e.g., the alternative where a firm is not matched to any candidate in the matching model.

12



cycle monotonicity in rich dichotomous domains. This helps us further delineate the bound-
aries where weaker cycle monotonicity conditions are necessary and sufficient for implemen-
tation.

The proof of Theorem 2 relies on a particular type of payment function that we construct.

For this, we define a function κf
i : A → R+ for an allocation rule f as follows.

If f(si) "= a for all si with A(si) = {a}, then we let κf
i (a) = 0. Also, if a is a worthless

alternative, then κf
i (a) = 0. Otherwise, for every other a ∈ A, let

κf
i (a) = inf{v(si) ∈ V : si ∈ Di, f(si) = a, A(si) = {a}}. (2)

In words, κf
i (a) is the minimum value at which any dichotomous type containing only a in

the acceptable set is satisfied. Because of our richness assumption, for all a ∈ A, κf
i (a) is

well defined. Note that κf
i (a) ≥ 0 for all a ∈ A.

Now, we define a payment function p∗i as follows. Given an allocation rule f , for every

si ∈ Di, define

p∗i (si) = κf
i (f(si))δ(f(si), si).

Note that an agent pays zero if he is not satisfied at a type.

Proposition 2 Suppose f : Di → A is 2-generation monotone, where Di is a rich dichoto-
mous domain. Then, p∗i implements f .

Proof : To show that p∗i implements f , we consider two types ti and si in Di. We show that

v(ti)δ(f(ti), ti) − p∗i (ti) ≥ v(ti)δ(f(si), ti) − p∗i (si)

or [v(ti) − κf
i (f(ti))]δ(f(ti), ti) ≥ v(ti)δ(f(si), ti) − κf

i (f(si))δ(f(si), si).

The LHS will be referred to as the payoff from truth and the RHS will be referred as the
payoff from lie.

We consider various cases.

Case 1: Suppose δ(f(ti), ti) = 0 and δ(f(si), ti) = 0. Then, the payoff from truth is zero,

and the payoff from lie is non-positive. Hence, we are done.

Case 2: Suppose δ(f(ti), ti) = 0 and δ(f(si), ti) = 1. Since si ∈ Gf
1(ti), by GSS, δ(f(si), si) =

1. Hence, payoff from truth is 0 and payoff from lie is v(ti)−κf
i (f(si)). Assume for contradic-

tion that v(ti) > κf
i (f(si)). Consider a type s̄i ∈ Di such that v(s̄i) = κf

i (f(si)) + ε < v(ti),

where ε > 0 but arbitrarily close to zero, and A(s̄i) = {f(si)}. By definition of κf
i , there

is some type ŝi with A(ŝi) = {f(si)} and v(ŝi) arbitrarily close to κf
i (f(si)) such that

f(ŝi) = f(si). Then, 1-generation monotonicity implies that f(s̄i) = f(ŝi) = f(si). Since
f(si) ∈ A(ti), s̄i satisfies ti. But δ(f(ti), ti) = 0 implies that s̄i ∈ Gf

1(ti). By MON,

13



v(s̄i) ≥ v(ti). This is a contradiction. This shows that v(ti) − κf
i (f(si)) ≤ 0, and hence, we

are done.

Case 3: Suppose δ(f(ti), ti) = 1 and δ(f(si), ti) = 0. In such a case, payoff from lie is non-
positive. Payoff from truth is v(ti) − κf

i (f(ti)), which we show to be non-negative. Assume

for contradiction v(ti) < κf
i (f(ti)). Consider a type t̄i ∈ Di such that v(t̄i) = v(ti)+ ε, where

ε > 0 and arbitrarily close to zero, and A(t̄i) = {f(ti)}. If f(t̄i) "= f(ti), then ti ∈ Gf
1(t̄i).

But v(t̄i) > v(ti) violates MON. Hence, f(t̄i) = f(ti). By definition of κf
i , v(t̄i) ≥ κf

i (f(ti)).
This is a contradiction since ε is sufficiently close to zero.

Case 4: Suppose δ(f(ti), ti) = 1 and δ(f(si), ti) = 1. We consider two sub-cases.

• Case 4a: Suppose δ(f(si), si) = 0. Then payoff from truth is v(ti) − κf
i (f(ti)) and

payoff from lie is v(ti). We show that κf
i (f(ti)) = 0. Assume for contradiction that

κf
i (f(ti)) > ε > 0, where ε is arbitrarily close to zero. Consider another type t̄i ∈ Di

such that v(t̄i) = κf
i (f(ti)) − ε and A(t̄i) = {f(ti)}. By definition of κf

i , f(t̄i) "= f(ti).
Hence, ti ∈ Gf

1(t̄i) and si ∈ Gf
2(t̄i) (since f(si) ∈ A(ti)). By GSS, δ(f(si), si) = 1. This

is a contradiction. Hence, κf
i (f(ti)) = 0, and hence, we are done.

• Case 4b: Suppose δ(f(si), si) = 1. Then, payoff from truth is v(ti) − κf
i (f(ti)) and

payoff from lie is v(ti) − κf
i (f(si)). We show that κf

i (f(ti)) ≤ κf
i (f(si)), and we are

done. If f(ti) = f(si), then obviously we are done. Else, assume for contradiction

κf
i (f(ti)) > κf

i (f(si)). Suppose κf
i (f(ti)) − κf

i (f(si)) = ε > 0. Then, we consider two
types t̄i and s̄i as follows:

v(t̄i) = κf
i (f(ti)) −

ε

3

v(s̄i) = κf
i (f(si)) +

ε

3
A(t̄i) = {f(ti)}

A(s̄i) = {f(si)}.

By definition of κf
i , f(t̄i) "= f(ti) and f(s̄i) = f(si). So, ti satisfies t̄i and s̄i satisfies

ti (since f(si) ∈ A(ti)). Hence, s̄i ∈ Gf
2(t̄i). By MON, v(s̄i) ≥ v(t̄i). This is a

contradiction.

!

The proof of Theorem 2 is now immediate.

14



Proof of Theorem 2.

Proof : Implementability implies 3-cycle monotonicity. Proposition 1 shows that 3-cycle

monotonicity implies strong 2-generation monotonicity, which implies 2-generation mono-
tonicity. Proposition 2 shows that 2-generation monotonicity implies implementability. !

4.1 1-Generation Monotonicity is not Sufficient

In this section, we give an example of an allocation rule in rich dichotomous domain which
satisfies 1-generation monotonicity but is not implementable. Let A = {a, b, c}. An allo-
cation rule f is shown in Figure 1, where all possible acceptable sets are depicted on top.

The allocation rule f has a cutoff for each acceptable set - for any acceptable set, a cutoff
specifies a value below which the type is not satisfied and above which the type is satisfied.

For example, in Figure 1, the cutoff for acceptable set {a} is 5, that for {b} is 2, for {b, c}
is zero, and so on. In Figure 1, these cutoffs are indicated by a dark line corresponding to

each acceptable set. The outcome of the allocation rule below and above these cutoffs are
shown in Figure 1. The dashed lines indicate the boundary where outcomes change (for a
given acceptable set). One can verify that f is 1-generation monotone.

But f is not 2-generation monotone. To see this, consider a type t0i such that v(t0i ) = 2−ε,
where ε > 0 and arbitrarily close to zero, and A(t0i ) = {b}. By definition f(t0i ) = c. Now,

consider a type t1i such that v(t1i ) = 2+ ε and A(t1i ) = {b, c}. By definition f(t1i ) = b. Hence,
t1i ∈ Gf

1(t
0
i ). Finally, consider a type t2i such that v(t2i ) = ε and A(t2i ) = {a, c}. By definition,

f(t2i ) = c. Hence, t2i ∈ Gf
2(t

0
i ). By 2-generation monotonicity, we must have v(t2i ) ≥ v(t0i ).

But this is not true.

Acceptable Sets

1

2

3

4

5

6

7

8
a b c a,b b,c c,a a,b,c

a

b

c

c c

a

b

c

b

a

c

a

b

c

c

Values

Figure 1: A 1-generation monotone allocation rule which is not 2-generation monotone

15



4.2 A Characterization Using Cutoffs

A remarkable feature of Myerson’s monotonicity characterization in the setting of single
object auction is that it implies a simpler characterization using cutoffs. In particular, it
says that if an allocation rule (which is deterministic) is implementable, then there must

exist a cutoff value for the agent such that below this cutoff value the agent does not get
the object and above this value he gets the object. The aim of this section is to give such a

cutoff-based characterization in rich dichotomous domains. A cutoff-based characterization
is simple to understand.

First, we define the notion of cutoffs in rich dichotomous domains. It is similar to κf
i

that we had defined earlier.

Definition 7 A cutoff is a mapping κi : A → R+ ∪{∞} such that κi(a) = 0 for all a ∈ A
which are worthless.

Note that there may be alternatives which are not worthless and still have zero cutoff. If

κi(a) = 0 then a is called a fulfilling alternative of cutoff κi. A cutoff κi is a feasible cutoff
if there is some alternative a ∈ A which is fulfilling. Feasibility is trivially satisfied if there

is a worthless alternative.
Given cutoffs on each alternative, we can define cutoffs on any acceptable set (i.e., any

non-empty subset of alternatives). We allow for the fact that not every subset of alternatives

may be an acceptable set in certain rich dichotomous domains. Indeed, our richness assump-
tion only requires that singleton alternatives (which are not worthless) can be acceptable

sets. Define the set of subsets of alternatives which can be acceptable sets as

Σ := {S ⊆ A : S = A(ti) for some ti ∈ Di}.

Note that if S ∈ Σ then S does not contain any worthless alternative. By our richness
assumption, if S ∈ Σ, then for all possible values x, (x, S) ∈ Di. Also, if a is not a worthless

alternative, then richness implies that {a} ∈ Σ.
Now, fix a cutoff mapping κi. For any acceptable set S ∈ Σ, define the cutoff induced by

κi on S as

Cκi(S) = min
a∈S

κi(a).

So, the cutoff for an acceptable set S is the minimum over cutoffs of the alternatives in S.

For any acceptable set S ∈ Σ, let

W κi(S) := {a ∈ S : Cκi(S) = κi(a)}.

The set W κi(S) contains all the alternatives in S that have the same cutoff as S itself. Note
that W κi(S) "= ∅.

16



Further, for every S ∈ Σ, let

Lκi(S) = {a /∈ S : κi(a) = 0}.

The set Lκi(S) contains all the alternatives outside S which are fulfilling. This set can be

potentially empty. Note that by the definition of feasible cutoff κi, for any acceptable set
S ∈ Σ, if Lκi(S) = ∅, then Cκi(S) = 0, and if Cκi(S) > 0, then there is some fulfilling

alternative a /∈ S such that κi(a) = 0, and this implies that Lκi(S) "= ∅.
Now, we are ready to formally define a cutoff-based rule, generalizing the idea of a cutoff-

based rule in single object auction setting.

Definition 8 An allocation rule f is cutoff-based if there exists a feasible cutoff κi such

that at every dichotomous type ti ≡ (A(ti), v(ti)),

1. if v(ti) > Cκi(A(ti)) then f(ti) ∈ A(ti) and if v(ti) < Cκi(A(ti)) then f(ti) /∈ A(ti),

2. if f(ti) ∈ A(ti) then f(ti) ∈ W κi(A(ti)) and if f(ti) /∈ A(ti) then f(ti) ∈ Lκi(A(ti)).

In other words, a cutoff-based allocation rule specifies cutoffs for each acceptable set

such that below this cutoff, types are not satisfied and above this cutoff, types are satisfied.
Further, whenever a type is satisfied, the outcome must be one of the alternatives whose

cutoff is equal to the cutoff of the acceptable set of this type. Whenever a type is not
satisfied, the outcome must be one of the fulfilling alternatives outside the acceptable set of

this type. Note how this generalizes the idea of a cutoff-based allocation rule in the single
object auction model. This leads us to the main result of this section.

Theorem 3 Suppose Di is a rich dichotomous domain. An allocation rule f : Di → A is

implementable if and only if it is cutoff-based.

The proof exploits the characterization in Theorem 2. We prove a series of claims showing the

implication of 1-generation monotonicity. 1-generation monotonicity will show that for every
acceptable set of alternatives, there is a cutoff value below which the type is not satisfied

and above which the type is satisfied. Further, these cutoff values can be derived from the
cutoffs for individual alternatives. 1-generation monotonicity also fixes the outcome at any

type when it is not satisfied. Finally, we show that 2-generation monotonicity is used to fix
the outcome at any type when it is satisfied. These small steps lead to the characterization
of the cutoff-based rule.

Proof : Let f : Di → A be an allocation rule, where Di is a rich dichotomous domain.

Suppose f is implementable. By Theorem 2, f is 2-generation monotone. Then, we can
define the cutoffs as follows. For every S ∈ Σ, let Ci(S) = ∞ if for all ti ∈ Di with A(ti) = S
we have f(ti) /∈ S. Else, define

Ci(S) = inf{v(ti) : ti ∈ Di, A(ti) = S, f(ti) ∈ S}. (3)

17



Since the domain Di is rich, for every ti ∈ Di we have that v(ti) ∈ V = (0, β), and this
ensures that Ci(S) ≥ 0. Now, we make a series of claims.

Claim 1 If f is 1-generation monotone, then for every ti ∈ Di, f(ti) ∈ A(ti) implies that

v(ti) ≥ Ci(A(ti)) and f(ti) /∈ A(ti) implies that v(ti) ≤ Ci(A(ti)).

Proof : The first part follows from the definition of Ci. For the second part, suppose that

f(ti) /∈ A(ti) and v(ti) > Ci(A(ti)). By definition of Ci(A(ti)), there is some type si such
that v(si) is arbitrarily close to Ci(A(ti)) and A(si) = A(ti) such that f(si) ∈ A(ti). Hence,

si ∈ Gf
1(ti). By 1-generation monotonicity, v(si) ≥ v(ti), which is a contradiction since v(si)

is arbitrarily close Ci(A(ti)). !

Claim 2 If f is 1-generation monotone, then for every S ∈ Σ

Ci(S) = min
a∈S

Ci({a}).

Proof : Consider any S ∈ Σ and let mina∈S Ci({a}) = Ci({b}). Assume for contradiction

that Ci(S) < Ci({b}). Then, consider the type ti where A(ti) = S and v(ti) = Ci(S) + ε <
Ci({b}) (such an ε > 0 clearly exists). By definition, f(ti) ∈ S. Let f(ti) = c. Then,
Ci({c}) > v(ti) implies that there is some type si with A(si) = {c} and v(si) = Ci({c}) −
ε′ > v(ti) such that f(si) "= c. Hence, ti satisfies si, and ti ∈ Gf

1(si). But, 1-generation
monotonicity implies that v(ti) ≥ v(si), which is a contradiction.

Hence, Ci(S) ≥ Ci({b}). Assume for contradiction that Ci(S) > Ci({b}). Consider two
types si and ti such that A(si) = S and A(ti) = {b} but v(si) = Ci(S) − ε > v(ti) =

Ci({b}) + ε′ (clearly, such ε, ε′ > 0 exists). By definition, f(si) /∈ S and f(ti) = b. This
implies that ti ∈ Gf

1(si). But 1-generation monotonicity implies that v(ti) ≥ v(si). This is a
contradiction. !

Using these claims, we can now define the following well-defined cutoff rule. For every

a ∈ A, let

κi(a) = Ci({a}),

if a is not worthless, and let κi(a) = 0 if a is worthless.
It remains to be shown that κi is a feasible cutoff. For this, we use the following claim.

Claim 3 Suppose ti is a dichotomous type such that f(ti) /∈ A(ti). If f is 1-generation
monotone, then f(ti) ∈ Lκi(A(ti)).

Proof : Suppose ti is a dichotomous type such that f(ti) = a /∈ A(ti). Assume for contradic-
tion that a /∈ Lκi(A(ti)). This means κi(a) > 0, and hence, a is not a worthless alternative.
Consider a dichotomous type t̄i such that A(t̄i) = {a} and v(t̄i) < κi(a). By definition,

18



f(t̄i) "= a. Hence, ti ∈ Gf
1(t̄i). By 1-generation monotonicity (GSS), ti must satisfy itself.

This is a contradiction. !

Now, to see that κi is a feasible cutoff, assume for contradiction that it is not. Then, for

every alternative a ∈ A, κi(a) > 0. Pick any a ∈ A. Since κi(a) > 0, for any dichotomous
type ti such that v(ti) < κi(a) and A(ti) = {a}, f(ti) "= a (by Claim 1). By Claim 3,
f(ti) ∈ Lκi({a}). But, by our assumption Lκi({a}) = ∅. This is a contradiction.

We now prove another claim.

Claim 4 Suppose ti is a dichotomous type such that f(ti) ∈ A(ti). If f is 2-generation

monotone, then κi(f(ti)) ≤ κi(a) for all a ∈ A(ti).

Proof : Let ti be a dichotomous type such that A(ti) = S and f(ti) = b ∈ S. Choose

a ∈ S \ {b}. Assume for contradiction that κi(b) − κi(a) > ε > 0 for some ε. Consider two
dichotomous types t̄i and t̂i such that

v(t̄i) = κi(b) −
ε

2
, A(t̄i) = {b}

v(t̂i) = κi(a) +
ε

2
, A(t̂i) = {a}.

By definition, f(t̄i) "= b and f(t̂i) = a. Hence, ti ∈ Gf
1(t̄i) and t̂i ∈ Gf

2(t̄i). By 2-generation

monotonicity, κi(a) + ε
2 ≥ κi(b) −

ε
2 . Hence, κi(b) − κi(a) ≤ ε, which is a contradiction. !

Claim 4 establishes that if for any dichotomous type ti we have f(ti) ∈ A(ti), then
κi(f(ti)) = mina∈A(ti) κi(a). Hence, f(ti) ∈ W κi(A(ti)). This establishes that if f is imple-

mentable then it is cutoff-based.
We now show that if f is cutoff-based then it is implementable. Let the feasible cutoff

corresponding to f be κi. We show that f is 2-generation monotone. Consider ti such that
f(ti) /∈ A(ti) and let si ∈ Gf

1(ti). Assume for contradiction that f(si) /∈ A(si). By the
definition of cutoff-based rule, f(si) ∈ Lκi(A(si)). This implies that κi(f(si)) = 0. But

f(si) ∈ A(ti) implies that mina∈A(ti) κi(a) = Cκi(A(ti)) = 0. Since, f is cutoff-based, this
means f(ti) ∈ A(ti). This is a contradiction. So, f(si) ∈ A(si). Now, using the definition of

cutoff-based rule and the definition of Cκi(·),

v(si) ≥ Cκi(A(si)) = κi(f(si)) ≥ Cκi(A(ti)) ≥ v(ti).

This shows that f is 1-generation monotone.
Now, consider s̄i such that s̄i ∈ Gf

2(ti). Assume for contradiction that f(s̄i) /∈ A(s̄i). In

that case, κi(f(s̄i)) = 0. But f(s̄i) ∈ A(si) implies that Cκi(A(si)) = 0. But we know that
si satisfies itself, and hence, κi(f(si)) = Cκi(A(si)) = 0 (by the definition of cut-off based
rule). Then, consider any type t̄i with A(t̄i) = {f(si)} and 0 < v(t̄i) < v(ti). By definition,

f(t̄i) = f(si) ∈ A(ti). Hence, t̄i ∈ Gf
1(ti). By 1-generation monotonicity, v(t̄i) ≥ v(ti).

19



This is a contradiction. Hence, f(s̄i) ∈ A(s̄i). By the definition of cutoff-based rule and the
definition of Cκi(·),

v(s̄i) ≥ κi(f(s̄i)) ≥ Cκi(A(si)) = κi(f(si)) ≥ Cκi(A(ti)) ≥ v(ti).

This shows that f is 2-generation monotone. !

Remark. The proof shows what 1-generation monotonicity alone gives us, and the addi-
tional implication of 2-generation monotonicity. It is clear that 2-generation monotonicity

is only used to fix the outcome when a dichotomous type is satisfied. When a dichotomous
type is satisfied, it must be satisfied only by an alternative in the acceptable set whose cutoff

value is the same as the cutoff value of the acceptable set.

Using Theorem 3, we can now fix the allocation rule in Figure 1. Since this allocation

rule already satisfies 1-generation monotonicity, the only modification we need to do is to
assign the correct outcome using Theorem 3 when a dichotomous type is satisfied. This is

shown in Figure 2.

Acceptable Sets

1

2

3

4

5

6

7

8
a b c a,b b,c c,a a,b,c

a

c c

c

b

c c cc

b

Values

Figure 2: A cut-off based allocation rule

4.3 Revenue Equivalence

In this section, we establish that revenue equivalence holds in rich dichotomous domains. The
seminal revenue equivalence result of Myerson (1981) has been extended to the multidimen-

sional set up by many authors - see for example, Milgrom and Segal (2002), Krishna and Maenner
(2001), Chung and Olszewski (2007), and Heydenreich et al. (2009). These papers establish

that every implementable allocation rule satisfies revenue equivalence if the domain satisfies
certain assumptions. The assumptions in these papers require that the domain be connected.

However, our domain is not connected. To see this, consider an example with three
alternatives: A = {a, b, c}. Suppose all possible acceptable sets are permissible, i.e. Σ =

20



{S : S ⊆ A, S "= ∅}. Suppose the value at any dichotomous type lies in (0,∞). Then, the
type space in R3 is shown in Figure 3. It consists of seven open rays originating from the origin
(but not including the origin). The positive parts of the three axes constitute three rays,

and they refer to those dichotomous types where there is a single acceptable alternative.
The positive parts of the 45-degree rays in xy,yz,zx planes are three more rays, and they

refer to those dichotomous types where the acceptable set consists of any two alternatives.
Finally, the positive part of the ray from the origin and passing through (1, 1, 1) consists of

all dichotomous types where the acceptable set is {a, b, c}. Note that this type space is not
connected since the origin is not part of it.

Value of c

Value of a

Value of b

Figure 3: A rich dichotomous domain with three alternatives

Heydenreich et al. (2009) give a condition for the allocation rule (instead of domain) such

that it satisfies revenue equivalence. We use this result in Heydenreich et al. (2009) to prove
revenue equivalence in rich dichotomous domains.

Theorem 4 If f : Di → A is an implementable allocation rule, where Di is a rich dichoto-

mous domain, and pi implements f then

pi(ti) = κf
i (f(ti))δ(f(ti), ti) + ci ∀ ti ∈ Di,

where ci is a constant and κf
i is as defined in Equation 2.

The proof of Theorem 4 is given in the Appendix. We use this result in Section 6 to

determine a revenue maximizing mechanism in a one-sided matching model with agents
having dichotomous types.

21



5 Extension to n Agents

In this section, we show how our results can be extended to a setting with more than
one agent. Suppose N = {1, . . . , n} be the set of n agents. An allocation rule f in the
dichotomous domain will now be a mapping f : D → An, where D = D1 × D2 × . . . × Dn

denotes the set of all dichotomous type profiles. Note that the outcome of an allocation rule
is in An. So, an allocation rule specifies an alternative for each agent at every type profile.

We denote the allocation of agent i at type profile t as fi(t) ∈ A. We assume absence
of allocative externality. So, the value of an agent is completely determined by his own

allocation.
There may be feasibility constraints linking the allocations of different agents at each

type profile. For instance, in the collective choice problems, such as the problems of hiring a

staff jointly by departments and choosing a network to build, all agents must get the same
alternative as allocation, i.e., for every type profile t, we must have fi(t) = fj(t) for all

i, j ∈ N . The richness restriction (b) in Section 4 applies to the set of alternatives A.
On the other hand, in private good problems, like single-minded combinatorial auction

or matching with transfers, each agent i is faced with a set of alternatives A. In the case

of single-minded combinatorial auction, A is the set of all subsets of objects. In the case
of matching with transfers in job market, the set of alternatives for a firm is the set of all

job candidates. An allocation rule chooses an alternative in A for every agent such that it
constitutes a feasible outcome, e.g., in case of matching it is a feasible matching (no candidate

is assigned more than one job). The richness restriction (b) in Definition 6 applies to the set
of alternatives A. With this interpretation, all our definitions and results extend easily.

An allocation rule f is implementable if there exists payment functions p1, . . . , pn, where

pi : D → R for all i ∈ N , such that for every i ∈ N and every t−i, we have

vi(ti)δ(fi(ti, t−i), ti) − pi(ti, t−i) ≥ vi(ti)δ(fi(si, t−i), ti) − pi(si, t−i) ∀ si, ti ∈ Di.

Analogously, we can extend the definition of cycle monotonicity and generation mono-
tonicity. For cycle monotonicity, we now have to define a type graph for every agent i at

every type profile t−i of other agents, and denote the length of an edge from si to ti in such
a type graph as

!f
t−i

(si, ti) = vi(ti)[δ(fi(ti, t−i), ti) − δ(fi(si, t−i), ti)].

An allocation rule f is K-cycle monotone, where K is a positive integer not less than two, if
for every agent i ∈ N , every t−i, and for every sequence of types (t1i , t

2
i , . . . , t

k
i ) with k ≤ K,

we have

!f
t−i

(t1i , t
2
i ) + . . . + !f

t−i
(tk−1

i , tki ) + !f
t−i

(tki , t
1
i ) ≥ 0.

An allocation rule f is cyclically monotone if it is K-cycle monotone for all positive integers
K ≥ 2.

22



We can also extend the notion of generations with many agents. Given an allocation rule
f , a type ti is satisfied by si at t−i if δ(fi(si, t−i), ti) = 1. If δ(fi(ti, t−i), ti) = 1, we say that
ti is satisfied (by itself) at t−i. If ti is not satisfied at t−i, then we say it is unsatisfied at t−i.

Define the first generation types of an unsatisfied type ti ∈ Di at t−i in f as

Gf,t−i

1 (ti) = {si ∈ Di : δ(fi(si, t−i), ti) = 1}.

Having defined the k-th generation types of the unsatisfied type ti at t−i, we define the
(k + 1)-st generation types of ti at t−i as follows

Gf,t−i

k+1 (ti) = {si ∈ Di \ ∪
k
j=1G

f,t−i

j (ti) : δ(fi(si, t−i), t̄i) = 1 for some t̄i ∈ Gf,t−i

k (ti)}.

For every t−i, it is possible that for some ti ∈ Di and some positive integer k, Gf,t−i

k (ti) =
∅. The notion of generation number can also be extended analogously. Generation number
γf,t−i(ti) of an unsatisfied type ti at t−i is the largest positive integer k such that Gf,t−i

k (ti) "= ∅.
Generation number γf is defined as

γf := max
i∈N

max
(ti,t−i)∈D:fi(ti,t−i)/∈A(ti)

γf,t−i(ti).

The definition of generation monotonicity can then be extended straightforwardly.

Definition 9 An allocation rule f is K-generation monotone, where K is a positive

integer, if for every agent i ∈ N , every t−i, and for every unsatisfied type ti ∈ Di at t−i and
every positive integer k ≤ K, the following holds for all si ∈ Gf,t−i

k (ti)

1. Generation Self Satisfaction (GSS). si is satisfied at t−i,

2. Monotonicity (MON). v(si) ≥ v(ti),

An allocation rule f is generation monotone if it is K-generation monotone for all positive

integers K.
An allocation rule f is strong K-generation monotone, where K is a positive integer,

if it is K-generation monotone and for every agent i ∈ N , every t−i, and for every unsatisfied
type ti ∈ Di at t−i and every positive integer k ≤ K, the following holds for all si ∈ Gf,t−i

k (ti),

1. No Rebirth (NR). ti does not satisfy si at t−i.

An allocation rule f is strong generation monotone if it is strong K-generation monotone
for all positive integers K.

With these changes in definitions, all our results can be straightforwardly extended to the
n-agents case.

We highlight two important modifications that need to be made. First, in the n-agent
model, cutoffs are always defined on A. These cutoffs are also specific to every agent i and

23



every type profile t−i of other agents. So, κi,t−i
: A → R+ ∪ {∞} defines a cutoff mapping,

and Theorem 3 can now be modified keeping this in mind.
Second, the revenue equivalence result in Theorem 4 can be extended when there are

n agents. The only difference in Theorem 4 will be that instead of arbitrary constants ci

for every agent i ∈ N , we will now have a function ci : D−i → R, where D−i is the set of

dichotomous type profiles of agents other than agent i.

6 Application: Revenue Maximizing Matching with

Dichotomous Preferences

In this section, we apply our results on characterizing implementable allocation rules in rich
dichotomous domains. We derive an optimal mechanism in a one-sided matching problem

where agents have dichotomous types. We will assume that the set of alternatives is A,
and this includes a worthless alternative a0. We will denote the set of alternatives without

a0 as A0 ≡ A \ {a0}. The interpretation of A0 can be a set of objects (time periods
where an airline ticket is available or schools to which a student can be assigned etc). The
worthless alternative a0 can be interpreted as the alternative where an agent is not assigned

any object. Let N = {1, . . . , n} be the set of n agents. The acceptable set of each agent
i ∈ N is a subset of A0. Using our earlier notation, we let Σ := {A ⊆ A0 : A "= ∅}. We

assume that at any dichotomous type, the value of any agent i ∈ N lies in the interval
Vi = (0, βi), where βi ∈ R++ ∪ {∞}. This ensures that the type space of every agent is

a rich dichotomous domain. We refer to this problem as the one-sided matching with
dichotomous preferences.

An allocation rule f is a mapping f : D → An. So, f assigns each agent an alternative

in A - this is a private good allocation problem. There may be feasibility constraints. For
instance, there may be a finite number of units of every object. In the example of students

matching to schools, a school may have a capacity constraint on the number of students
they can take. In the example of agents assigned to different time periods of an airline, the

number of tickets available in a time period may be finite. We denote such constraints on
the outcome of f as F , and assume that there is no restriction on number of agents who
can be assigned the alternative a0. An outcome of an allocation rule is an element of An

satisfying feasibility constraints of F , and will be called an assignment.
We assume that the type of each agent’s type is drawn independently as follows. The

probability that A ⊆ A0 is the acceptable set of agent i is given by hi(A). The value of
agent i is drawn using a distribution gi with cdf Gi. Note that we assume that the value
of agent i is independent of his acceptable set. We assume that the hazard rate gi(vi)

1−Gi(vi)
is

non-decreasing in vi. Let wi : Vi → R be the virtual valuation function of agent i, defined
as

wi(vi) = vi −
1 − Gi(vi)

gi(vi)
∀ vi ∈ Vi.

24



Since the hazard rate is non-decreasing, the virtual valuation function is increasing.
Now, fix an allocation rule f . We denote the alternative assigned to agent i at any

type profile t as fi(t). Suppose f is implementable and p ≡ (p1, . . . , pn) implements f . In

such a case, we will say that the mechanism (f, p) is dominant strategy incentive compatible
(DSIC). Then, the expected revenue in mechanism (f, p) is given by

Π(f, p) =
∑

i∈N

Et[pi(t)],

where Et[·] denotes the expectation over all the type profiles. A mechanism (f, p) is indi-
vidually rational if at every type profile t ∈ D, we have v(ti)δ(fi(t), ti) − pi(t) ≥ 0 for all

i ∈ N .

Definition 10 A mechanism (f, p) is an optimal mechanism if it is DSIC, individually

rational, and there does not exist another mechanism (f ′, p′) such that (f ′, p′) is DSIC,
individually rational, and Π(f ′, p′) > Π(f, p).

Consider a DSIC mechanism (f, p) and a rich dichotomous type profile t ≡ (t1, . . . , tn).

By Theorem 4, the payment of agent i ∈ N at type profile t is given by

pi(t) = ci(t−i) + κf
i,t−i

(fi(t))δ(fi(t), ti), (4)

where κf
i,t−i

is the cutoff of agent i corresponding to the allocation rule f (as defined in
Equation 2) and ci : D−i → R is an arbitrary function. Using the definition of cutoff
κf

i,t−i
(fi(t)) and our characterization result of Theorem 3, we know that for any dichotomous

type with A(ti) as acceptable set, agent i is satisfied at all values above κf
i,t−i

(fi(t)) and is

not satisfied at all values below κf
i,t−i

(fi(t)). Hence, we can write the payment of agent i at
type profile t as

pi(t) = ci(t−i) + v(ti)δ(fi(t), ti) −

∫ v(ti)

0

δ(fi((xi, A(ti)), t−i), (xi, A(ti)))dxi, (5)

where we write (xi, A(ti)) to denote a dichotomous type with value xi and acceptable set

A(ti). To see how Equations 4 and 5 are equivalent, note that by our characterization of
implementable rule using cutoffs in Theorem 3, we can conclude that the value of the integral

in Equation 5 is 0 if δ(fi(t), ti) = 0 and [v(ti) − κf
i,t−i

(fi(t))] if δ(fi(t), ti) = 1.
Once we have the expression for the payment in this form, we employ the methodology of

Myerson (1981) to express the expected revenue in terms of virtual valuations. The expected

25



payment of agent i in the DSIC mechanism (f, p) is given by

πi(f, p) = Et−i

[

ci(t−i) +
∑

A∈A0

[
∫ βi

0

ziδ(fi((zi, A), t−i), (zi, A))gi(zi)dzi

−

∫ βi

0

(

∫ zi

0

δ(fi((xi, A), t−i), (xi, A))dxi

)

gi(zi)dzi

]

hi(A)

]

= Et−i

[

ci(t−i) +
∑

A∈A0

[
∫ βi

0

ziδ(fi((zi, A), t−i), (zi, A))gi(zi)dzi

−

∫ zi

0

(1 − Gi(zi))δ(fi((zi, A), t−i), (zi, A))dzi

]

hi(A)

]

(changing order of integration)

= Et−i

[

ci(t−i) +
∑

A∈A0

[
∫ βi

0

(

zi −
1 − Gi(zi)

gi(zi)

)

δ(fi((zi, A), t−i), (zi, A))gi(zi)dzi

]

hi(A)

]

.

Hence, the expected revenue in the DSIC mechanism (f, p) is given by

Π(f, p) =
∑

i∈N

Et−i

[

ci(t−i) +
∑

A∈A0

[

∫ βi

0

wi(zi)δ(fi((zi, A), t−i), (zi, A))gi(zi)dzi]hi(A)

]

.

Note that if (f, p) is individually rational, then for every i ∈ N and every t−i, we have
ci(t−i) ≤ 0. If (f, p) is individually rational and we want to maximize the expected revenue,

then we must have ci(t−i) = 0 for all i ∈ N and for all t−i. Using this, the expression of the
expected revenue in the DISC mechanism (f, p) is reduced to

Π(f, p) =
∑

i∈N

Et−i

[

∑

A∈A0

[

∫ βi

0

wi(zi)δ(fi((zi, A), t−i), (zi, A))gi(zi)dzi]hi(A)

]

= Et

[

∑

i∈N

wi(v(ti))δ(fi(t), ti)

]

If we sidestep the fact that f needs to be 2-generation monotone (for it to be imple-

mentable), the above expression can be maximized by doing point-wise maximization. So,
at every type profile, we look at those agents whose virtual values are non-negative. For any

agent whose virtual valuation is not positive, he is assigned the alternative a0. Else, an alter-
native ai ∈ A is assigned to agent i such that (a1, . . . , an) ∈ F (i.e., a feasible allocation), and
the sum of virtual values of all the agents who have positive virtual values is maximized from

this allocation. Formally, at every type profile t ∈ D, let W (t) := {i ∈ N : wi(v(ti)) > 0}.
The optimal allocation rule f ∗ is defined as follows. For every type profile t, denote by

An(t) ⊆ An be the set of feasible assignments where each agent i /∈ W (t) is assigned the
worthless alternative a0. In other words, at every type profile t, if we take any a ∈ An(t),

then for every i /∈ W (t), we have ai = a0, where ai is the alternative assigned to agent i in
assignment a. Then, f ∗ is defined as,

26



f ∗(t) = arg max
(a1,...,an)∈An(t)

[

∑

i∈W (t)

wi(v(ti))δ(a
i, A(ti))

]

, (6)

where we assume f ∗
i (t) = a0 if δ(f ∗

i (t), ti) = 0, i.e., if an agent is unsatisfied then he is

assigned a0 (note that this does not influence the outcome of the maximization). We show
that f ∗ is implementable.

Proposition 3 The allocation rule f ∗ is implementable.

Proof : Using Theorem 2, we only need to show that f ∗ satisfies 2-generation monotonicity.
Fix an agent i and type profile t−i of other agents. Let ti be a type of agent i such that

f ∗
i (ti, t−i) = a0. Suppose si is a 1st generation type of ti at t−i. Then f ∗

i (si, t−i) ∈ A(ti). This
implies that f ∗

i (si, t−i) "= a0. Hence, we have f ∗
i (si, t−i) ∈ A(si) - if f ∗

i (si, t−i) /∈ A(si) then

by definition of f ∗, f ∗
i (si, t−i) = a0, which is not possible. This establishes GSS. Note that by

definition, wi(v(si)) > 0. If wi(v(ti)) ≤ 0, then wi(v(si)) > 0 implies that v(si) > v(ti) (since

the virtual valuation function is increasing). This establishes MON when wi(v(ti)) ≤ 0.
Now, assume wi(v(ti)) > 0. Let W (t−i) := {j ∈ N : wj(v(tj) > 0}. Denote the allocation of
any agent j ∈ N at type profile (ti, t−i) as Tj and that at type profile (si, t−i) as Sj . Using

definition of f ∗, we can write the following two inequalities.

wi(v(ti))δ(Ti, ti) +
∑

j∈W (t−i)

wj(v(tj))δ(Tj, tj) ≥ wi(v(ti))δ(Si, ti) +
∑

j∈W (t−i)

wj(v(tj))δ(Sj , tj)

wi(v(si))δ(Si, si) +
∑

j∈W (t−i)

wj(v(tj))δ(Sj, tj) ≥ wi(v(si))δ(Ti, si) +
∑

j∈W (t−i)

wj(v(tj))δ(Tj, tj).

Adding these two inequalities, and using the fact that δ(Ti, ti) = 0, δ(Si, ti) = 1, and
δ(Si, si) = 1 we get

wi(v(si)) − wi(v(si))δ(Ti, si) ≥ wi(v(ti)).

Since wi(v(ti)) > 0, the above inequality is feasible only if δ(Ti, si) = 0 and v(si) ≥ v(ti).

This establishes MON. Hence, f ∗ is 1-generation monotone.
Now, for 2-generation monotonicity consider s′i which is a 2nd generation type of ti

at t−i. Suppose s′i satisfies si, where si is a 1st generation type of ti. Note that since

f ∗
i (s′i, t−i) ∈ A(si), f ∗

i (s′i, t−i) "= a0, and by the definition of f ∗, we have f ∗
i (s′i, t−i) ∈ A(s′i).

This establishes GSS.

Since f ∗
i (s′i, t−i) ∈ A(s′i), this means wi(v(s′i)) > 0. If wi(v(ti)) ≤ 0, then v(s′i) > v(ti)

(since the virtual valuation function is increasing). Consider the case where wi(v(ti)) > 0.

Suppose the allocation of any agent j ∈ N in type profile (ti, t−i) is Tj , in type profile

27



(si, t−i) is Sj , and in type profile (s′i, t−i) is S ′
j . Using the definition of f ∗, we get the

following inequalities.

wi(v(ti))δ(Ti, ti) +
∑

j∈W (t−i)

wj(v(tj))δ(Tj , tj) ≥ wi(v(ti))δ(Si, ti) +
∑

j∈W (t−i)

wj(v(tj))δ(Sj, tj)

wi(v(si))δ(Si, si) +
∑

j∈W (t−i)

wj(v(tj))δ(Sj, tj) ≥ wi(v(si))δ(S
′
i, si) +

∑

j∈W (t−i)

wj(v(tj))δ(S
′
j, tj)

wi(v(s′i))δ(S
′
i, s

′
i) +

∑

j∈W (t−i)

wj(v(tj))δ(S
′
j, tj) ≥ wi(v(s′i))δ(Ti, s

′
i) +

∑

j∈W (t−i)

wj(v(tj))δ(Tj , tj).

Using the facts that δ(Si, si) = δ(Si, ti) = δ(S ′
i, si) = δ(S ′

i, s
′
i) = 1 and δ(Ti, ti) = 0, and

adding the above inequalities we get that

wi(v(s′i)) − wi(v(s′i))δ(Ti, s
′
i) ≥ wi(v(ti)).

Since wi(v(ti)) > 0, the above inequality is feasible only if δ(Ti, s′i) = 0 and v(s′i) ≥ v(ti).
This establishes MON. Hence, f ∗ is 2-generation monotone. !

This shows that f ∗ along with the cutoff payment defined in Proposition 2 is the optimal
mechanism. This is summarized in the following theorem.

Theorem 5 In the one-sided matching problem with dichotomous preferences, the optimal
mechanism is given by (f ∗, p∗), where f ∗ is defined as in Equation 6, and for every t ∈ D
and every i ∈ N , p∗i (t) = κf∗

i,t−i
(f ∗

i (t))δ(f ∗
i (t), ti), where κf∗

i,t−i
is defined as in Equation 2.

Remark. One notices that the optimal mechanism is independent of the probability dis-
tribution of acceptable sets. Intuitively, the payments are determined by cutoffs of values.

Revenue maximization is therefore related to how values are distributed. Since we assumed
the value distribution is independent of the distribution of acceptable sets, the optimal mech-

anism is only dependent on the distribution of values.

Remark. A special case of the optimal mechanism occurs when there is just one agent. This
problem is referred to as the revenue maximization of a multiple good monopolist seller, and is
recognized as a hard problem if the type of the buyer is multidimensional (Manelli and Vincent,

2007). Theorem 5 says that if there is one agent i, then the optimal mechanism is to set
a reserve price equal to r∗ which solves r∗ = 1−Gi(r∗)

gi(r∗) - there is a unique solution to this if

the hazard rate is non-decreasing. Agent i is satisfied by allocating any alternative in his
acceptable set if his value is above r∗, and not satisfied by allocating a0 if his value is less
than or equal to r∗.

Remark. Unlike Myerson (1981), who searched for optimal mechanism in the single object

auction case over all Bayesian incentive compatible and randomized mechanisms, we are

28



searching over all DSIC and deterministic mechanisms. Most of the literature on optimal
mechanism design in multidimensional type spaces also consider Bayes-Nash randomized
implementation (for example, Iyengar and Kumar (2008) and Pai and Vohra (2008)). For

single object auctions, this restriction is without loss of generality since the optimal mech-
anism is a DSIC and deterministic mechanism - see a more general result for the single

object auction case in Manelli and Vincent (2010). However, we do not know if we enlarge
our search to include Bayesian incentive compatible and randomized mechanisms, we will

improve expected revenues in this setting.

7 Conclusion

The seminal paper of Myerson (Myerson, 1981) contained three important results in mech-
anism design in quasi-linear environments for the single object auction case: (1) a char-

acterization of implementable allocation rules; (2) illustration of revenue equivalence; (3)
derivation of optimal mechanism. Each of these results have been generalized to various

multidimensional settings. We contribute to this literature by extending these results to
specific dichotomous domains.

Our general methodology in the paper is to derive a simplification of cycle monotonic-

ity in the specific multidimensional dichotomous domains. Whether we can derive similar
simplifications in other interesting non-convex domains, and then use it to derive an easy

characterization of implementability remains an open question. It will also be interesting to
extend our results with randomization and/or considering relaxed form of implementability
like Bayes-Nash implementability.

Appendix 1: Omitted Proofs

Proof of Lemma 1

Proof : Let K = |A|, and let f be a K-cycle monotone allocation rule. Consider any cycle
C ≡ (t1i , . . . , t

k
i , t

1
i ) in the type graph. We do the proof by induction on k. If k ≤ K, then

by definition this cycle has non-negative length. Suppose k > K, and assume that all cycles

with less than k nodes have non-negative length. Since k > K, there are two types thi and tji
in the cycle C such that f(thi ) = f(tji ). Note that the length of the edges (thi , t

j
i ) and (tji , t

h
i )

are both zero. Assume without loss of generality h < j. We consider two cases.

Case 1: If h = j − 1, then note that the length of the edge (thi , t
j+1
i ) is the same as the

length of the edge (tji , t
j+1
i ). Hence, the length of the cycle C ′ ≡ (t1i , . . . , t

h
i , t

j+1
i , . . . , tki , t

1
i ) is

the same as the length of the cycle C. But C ′ has one less node than C. By our induction

hypothesis, the length of cycle C ′ is non-negative. So, the length of cycle C is non-negative.

29



Case 2: If h = 1 and j = k, then we repeat Case 1, but this time we consider the cycle
C ′ ≡ (t2i , . . . , t

k
i , t

2
i ).

Case 3: In this case, there is at least one node between thi and tki , and at least one
node between tki and thi in cycle C. We can now break the cycle C into two parts C1 ≡
(t1i , . . . , t

h
i , t

j
i , t

j+1
i , . . . , tki , t

1
i ) and C2 ≡ (thi , t

h+1
i , . . . , tji , t

h
i ). Since f(tji ) = f(fh

i ), the edges
(thi , t

j
i ) and (tji , t

h
i ) have zero length. Hence, the total length of both the cycles C1 and C2

combined is equal to the length of the cycle C. Further, C1 and C2 have less than k number
of nodes. By our induction hypothesis, both C1 and C2 have non-negative length. Hence,
the length of the cycle C is non-negative. !

Proof of Proposition 1

Proof : Fix a positive integer K ≥ 2 and an allocation rule f . Suppose f is K-cycle

monotone. To show that f is strong (K −1)-generation monotone, consider any type ti such
that ti is not satisfied (if no such ti exists, then we are done vacuously). Pick any tki ∈ Gf

k(ti),

where k ≤ (K − 1). We show that f satisfies GSS, MON, and NR by using induction on k.
For k = 1, consider the 2-cycle (ti, t1i , ti). The length of the edge from t1i to ti is −v(ti).

Hence, the length of the edge from ti to t1i is at least v(ti). But the length of the edge from

ti to t1i is

v(t1i )[δ(f(t1i ), t
1
i ) − δ(f(ti), t

1
i )].

This length is at least v(ti) only if δ(f(t1i ), t
1
i ) = 1 (GSS), δ(f(ti), t1i ) = 0 (NR), and v(t1i ) ≥

v(ti) (MON).
Now, assume that f satisfies GSS, MON, and NR for all k < r ≤ (K − 1). We will show

that for any tri ∈ Gf
r (ti), we have tri is satisfied, v(tri ) ≥ v(ti), and ti does not satisfy tri . We

pick t1i , t
2
i , . . . , t

r−1
i such that tji ∈ Gf

j (ti) for all j ∈ {1, . . . , r − 1} and δ(f(tji ), t
j−1
i ) = 1 for

all j ∈ {1, . . . , r − 1}, where t0i = ti. By our induction hypothesis, δ(f(tji ), t
j
i ) = 1 (GSS) for

all j ∈ {1, . . . , r − 1}. As a result, for any j ∈ {2, . . . , r}, the length of the edge (tji , t
j−1
i ) is

zero. So, the length of the cycle C ≡ (ti, tri , t
r−1
i , . . . , t1i , ti) is

v(tri )[δ(f(tri ), t
r
i ) − δ(f(ti), t

r
i )] + v(ti)[δ(f(ti), ti) − δ(f(t1i ), ti)].

By our assumption δ(f(t1i ), ti) = 1 and δ(f(ti), ti) = 0. Hence, the length of the cycle C is

v(tri )[δ(f(tri ), t
r
i ) − δ(f(ti), t

r
i )] − v(ti).

By our assumption the length of the cycle C is non-negative. This can be made non-negative

only if v(tri ) ≥ v(ti) (MON), δ(f(tri ), t
r
i ) = 1 (GSS), and δ(f(ti), tri ) = 0 (NR). This concludes

the proof that f is strong (K − 1)-generation monotone.

Now, for the converse, suppose f is strong (K − 1)-generation monotone. We show that
f is K-cycle monotone. We use induction on K. We do the proof in several steps. Step 1

30



establishes the base case (K = 2) of induction, while various sub-steps of Step 2 proves the
inductive step.

Step 1: Consider K = 2. We show that f is 2-cycle monotone. Consider a cycle (si, ti, si),
and assume for contradiction that it has negative length. Then, at least one of the edges

in the cycle has negative length. Without loss of generality, let the length of edge from
si to ti be negative. Then, v(ti)[δ(f(ti), ti) − δ(f(si), ti)] = −v(ti) < 0. This implies that

δ(f(ti), ti) = 0 but δ(f(si), ti) = 1. Hence, ti is not satisfied but si ∈ Gf
1(ti). By strong

generation monotonicity, si is satisfied, v(si) ≥ v(ti), and si is not satisfied by ti. This
implies that the length of the edge (ti, si) is v(si) ≥ v(ti). Hence, the length of the 2-cycle is

non-negative, which is a contradiction.

Step 2: Consider K > 2. Suppose f is k-cycle monotone for all k < K. We show that f is
K-cycle monotone. We do the proof in several sub-steps.

Step 2a: We consider any cycle C ≡ (t1i , . . . , t
K
i , t1i ), such that tji is satisfied for all

j ∈ {1, . . . , K}. In that case, the length of any arbitrary edge (tji , t
j+1
i ) of this cycle is

v(tj+1
i )[δ(f(tj+1

i ), tj+1
i ) − δ(f(tji ), t

j+1
i )] ≥ 0, where we denote (j + 1) ≡ 1 if j = K. Hence,

the cycle C has non-negative length.

Step 2b: We consider any cycle with K nodes where exactly one node, say ti, is not satisfied
and all other nodes are satisfied. Denote this cycle by C ≡ (ti, t

K−1
i , tK−2

i , . . . , t1i , ti). Note

that the length of any edge (tji , t
j−1
i ) for any j ∈ {2, . . . , K}, where tKi ≡ ti, is equal to

v(tj−1
i )[δ(f(tj−1

i ), tj−1
i ) − δ(f(tji ), t

j−1
i )] = v(tj−1

i )[1 − δ(f(tji ), t
j−1
i )],

which is equal to v(tj−1
i ) if tj−1

i is not satisfied by tji and equal to zero if tj−1
i is satisfied by

tji . Thus, all such edges have non-negative length.
Now, consider the edge (t1i , ti). The length of this edge is

v(ti)[δ(f(ti), ti) − δ(f(t1i ), ti)] = −v(ti)δ(f(t1i ), ti).

If δ(f(t1i ), ti) = 0, then the length of the cycle C is non-negative. Else, the length of the edge

(t1i , ti) is −v(ti), and it is the only negative length edge of C. In this case, t1i ∈ Gf
1(ti). By

MON, v(t1i ) ≥ v(ti). Now, we evaluate the length of edge (t2i , t
1
i ). If δ(f(t2i ), t

1
i ) = 0 then the

length of the edge (t2i , t
1
i ) is v(t1i ) ≥ v(ti), and hence, the length of the cycle C is non-negative.

Else, δ(f(t2i ), t
1
i ) = 1 implies that t2i ∈ Gf

2(ti). By generation monotonicity, v(t2i ) ≥ v(ti).
Continuing in this manner, we will either find a node/type tji , where j ∈ {2, . . . , K − 1},
such that v(tji ) ≥ v(ti) and δ(f(tji ), t

j−1
i ) = 0 or we will reach at edge (ti, t

K−1
i ) with tK−1

i ∈
Gf

K−1(ti). The length of this edge is

v(tK−1
i )[δ(f(tK−1

i ), tK−1
i ) − δ(f(ti), t

K−1
i )].

31



By strong (K − 1)-generation monotonicity, v(tK−1
i ) ≥ v(ti), δ(f(tK−1

i ), tK−1
i ) = 1, and

δ(f(ti), t
K−1
i ) = 0. Hence, the length of this edge is v(tK−1

i ) ≥ v(ti). This shows that the
length of the cycle C is non-negative.

Step 2c: In this step, we show that for any si and ti such that si and ti are not satisfied, the

length of the edge (si, ti) is zero. Consider any 2-cycle C ≡ (si, ti, si) such that si and ti are
not satisfied. The length of C is zero. To see this, note that the length of C is non-negative

since f is 2-cycle monotone by our induction hypothesis. Further, the length of C is

v(ti)[δ(f(ti), ti) − δ(f(si), ti)] + v(si)[δ(f(si), si) − δ(f(ti), si)]

= −[v(ti)δ(f(si), ti) + v(si)δ(f(ti), si)] ≤ 0.

This shows that the length of C is zero. Hence, the length of the edges from si to ti and from
ti to si are both zero. This shows that in any cycle where all the nodes are not satisfied, the

length of the edges in this cycle must be zero.

Step 2d: Now, we will show that the length of a particular cycle is non-negative. A cycle
(t1i , . . . , t

h
i , t

1
i ) is an interior cycle if h ≥ 3, t1i and thi are not satisfied and tji is satisfied for

all j ∈ {2, . . . , h − 1}. Consider an interior cycle C ≡ (t1i , . . . , t
K
i , t1i ) with K > 2. We will

show that its length is non-negative. Since C is an interior cycle, assume without loss of
generality that t1i and tKi are not satisfied, but tji is satisfied for all j ∈ {2, . . . , K − 1}. Since

f is 2-cycle monotone (by our induction hypothesis), the length of edge (tKi , t1i ) is zero - this
follows from Step 2c. The length of the edge (tK−1

i , tKi ) is

v(tKi )[δ(f(tKi ), tKi ) − δ(f(tK−1
i ), tKi )].

Since δ(f(tKi ), tKi ) = 0, the length of the edge (tK−1
i , tKi ) is non-positive. Now, consider any

edge (tji , t
j+1
i ) in cycle C such that (tji , t

j+1
i ) /∈ {(tK−1

i , tKi ), (tKi , t1i )}, where (j + 1) ≡ 1 if
j = K. By definition, δ(f(tj+1

i ), tj+1
i ) = 1. Hence, length of this edge is non-negative.

Hence, the only edge in C which may have a negative length is (tK−1
i , tKi ). Suppose the

length of edge (tK−1
i , tKi ) is negative. In that case, δ(f(tK−1

i ), tKi ) = 1, and the length of the
edge is −v(tKi ). We will show that some other edge in C has a length greater than or equal

to v(tKi ).
Note that tK−1

i ∈ Gf
1(t

K
i ). By strong generation monotonicity, v(tK−1

i ) ≥ v(tKi ). The

length of the edge (tK−2
i , tK−1

i ) is either zero or v(tK−1
i ). If it is v(tK−1

i ), we are done.
Else, δ(f(tK−2

i ), tK−1
i ) = 1 implies that tK−2

i ∈ Gf
2(t

K
i ). By strong generation monotonic-

ity again, v(tK−2
i ) ≥ v(tKi ). Continuing in this manner, we will either find an edge whose

length is greater than or equal to v(tKi ) or reach the edge (t1i , t
2
i ) with zero edge length,

and t1i ∈ Gf
K−1(t

K
i ). In that case, strong (K − 1)-generation monotonicity will imply that

δ(f(t1i ), t
1
i ) = 1, which is a contradiction.

32



Step 2e: In the final step, we will consider a cycle with K nodes, where K > 2. By Steps
2B-2D, we need to consider only the case where C has at least two nodes not satisfied, and
C is not an interior cycle. In that case, we find a node, say t1i such that t1i is not satisfied

but t2i is satisfied. Note that if no such node exists, then either C is an interior cycle or all
nodes are not satisfied, which is not possible by the definition of C.

Now, starting from t1i , we go along the cycle C, and let tji be the next node which is
not satisfied by f . By construction 2 < j < K. We break C into two cycles C1 and C2,

where C1 = (t1i , . . . , t
j
i , t

1
i ) and C2 = (tji , t

j+1
i , . . . , tKi , t1i , t

j
i ). Note that the total length of C1

and C2 is the total length of C and the length of the 2-cycle (tji , t
1
i , t

j
i ). But by Step 2c, the

2-cycle (tji , t
1
i , t

j
i ) has zero length. Hence, the length of C and the total length of C1 and

C2 are equal. Note that C1 and C2 have less than K nodes. By our induction hypothesis,
the total length of C1 and C2 is non-negative. Hence, the length of C is non-negative. This

concludes the proof. !

Proof of Theorem 4

Proof : We use a result in Heydenreich et al. (2009) to prove our theorem. We say that an
implementable allocation rule f satisfies revenue equivalence if for any two payment rules pi

and p′i there exists a constant ci such that for all si, pi(si) = p′i(si) + ci. Heydenreich et al.

(2009) characterize allocation rules which satisfy revenue equivalence. To describe and use
their result, we need the following notations.

Consider the type graph corresponding to rich dichotomous domain Di and allocation
rule f . For any pair of types si and ti, a path in the type graph from si to ti is a sequence

of distinct nodes P ≡ (si, s1
i , . . . , s

k
i , ti). Denote by l(P ) the length of a path P . Let Psi,ti

be the set of all paths from si to ti. Define distf (si, ti) := infP∈Psi,ti
l(P ), i.e., the length

of the shortest path from si to ti in the type graph. If f is implementable then it can be

shown that for all si, ti ∈ Di, distf(si, ti) is a real number and distf (si, ti) + distf(ti, si) ≥ 0
(Heydenreich et al., 2009).

Heydenreich et al. (2009) show that an allocation rule f satisfies revenue equivalence if
and only if for all si, ti ∈ Di, we have distf (si, ti) + distf(ti, si) = 0. We show that this
condition holds in our domain. Consider two dichotomous types si, ti ∈ Di. Assume for

contradiction, distf (si, ti) + distf(ti, si) = ε > 0. Consider two types s̄i and t̄i such that
A(s̄i) = A(si), A(t̄i) = A(ti), v(s̄i) < v(si), v(t̄i) < v(ti), and v(s̄i) + v(t̄i) < ε. Note that

because of this

!(s̄i, t̄i) + !(t̄i, s̄i) < ε.

We now look at the shortest paths between si and s̄i. Note that si and s̄i have the
same acceptable set. If δ(f(si), si) = δ(f(s̄i), s̄i), then !(si, s̄i) + !(s̄i, si) = 0, and hence,

distf (si, s̄i) + distf(s̄i, si) = 0. Else, since v(s̄i) < v(si), by Theorem 3, δ(f(si), si) = 1
and δ(f(s̄i), s̄i) = 0. Let the cutoff corresponding to A(si) be C(A(si)). Then, we have

33



v(si) ≥ C(A(si)) ≥ v(s̄i). Consider the type s′i such that A(s′i) = A(si) and v(s′i) = C(A(si)).
We consider two cases.

Case 1: Suppose f(s′i) ∈ A(si). Then, v(s̄i) < C(A(si)). Choose another type s′′i such that
A(s′′i ) = A(si) and v(s′′i ) = v(s′i) − ε′ > v(s̄i). The 2-cycle between si and s′i has length zero

since A(si) = A(s′i) and δ(f(si), si) = δ(f(s′i), s
′
i) = 1. Further, the 2-cycle between s′′i and s̄i

has length zero since A(s̄i) = A(s′′i ) and δ(f(s′′i ), s
′′
i ) = δ(f(s̄i), s̄i) = 0. Finally, the 2-cycle

between s′i and s′′i has a length equal to

v(s′i)[δ(f(s′i), s
′
i) − δ(f(s′′i ), s

′
i)] + v(s′′i )[δ(f(s′′i ), s

′′
i ) − δ(f(s′i), s

′′
i )] = v(s′i) − v(s′′i ) = ε′.

Hence, sum of lengths of the path (si, s′i, s
′′
i , s̄i) and the path (s̄i, s′′i , s

′
i, si) is ε′.

Case 2: Suppose f(s′i) /∈ A(si). Then v(si) > C(A(si)), and we can choose s′′i to be a

type such that A(s′′i ) = A(si) and v(s′′i ) = v(s′i) + ε′ < v(si). Using a similar argument to
Case 1, we can show that the length of the 2-cycle between s′i and s′′i is ε′. Further, the

2-cycles between si and s′′i and between s′i and s̄i is zero. Hence, sum of lengths of the path
(si, s′′i , s

′
i, s̄i) and the path (s̄i, s′i, s

′′
i , si) is ε′.

So, we conclude that distf (si, s̄i) + distf (s̄i, si) ≤ ε′. Since ε′ can be chosen arbitrarily
close to zero, we conclude that distf (si, s̄i) + distf(s̄i, si) = 0. Because of this, there is a

path P from si to s̄i and another path P ′ from s′i to si such that l(P ) + l(P ′) is arbitrarily
close to zero.

Using a similar argument, we can show that distf(ti, t̄i) + distf (t̄i, ti) = 0. Because of
this, there is a path Q from ti to t̄i and another path Q′ from t̄i to ti such that l(Q) + l(Q′)

is arbitrarily close to zero.
Hence, the total length of l(P ) + !(s̄i, t̄i) + l(Q′) + l(Q) + !(t̄i, s̄i) + l(P ′) < ε. This is

a contradiction to the fact that distf(si, ti) + distf (ti, si) = ε. The proof is now concluded

by observing from Proposition 2 that one payment rule p∗ which implements f is p∗i (ti) =
κf

i (f(ti))δ(f(ti), ti) for all ti. !

Appendix 2: Applications to Specific Dichotomous Domains

In this section, we will look at very specific dichotomous domains and apply our general

characterization result of Theorem 1 to these specific domains. We stick to the model of a
single agent, denoted by i. We do not require the richness assumption for these domains.

Unique Dichotomous Domain

Consider a domain where the dichotomous type always has a single element in the acceptable
set. For example, in the scheduling problem discussed in Section 1, the task is available only

34



for one period. We call such a dichotomous type, a unique dichotomous type. A domain
Di is called a unique dichotomous domain if each type ti ∈ Di is a unique dichotomous
type. Formally, a unique dichotomous type ti ∈ Di satisfies |A(ti)| = 1. An implication of

Theorem 1 is that 1-generation monotonicity (equivalently 2-cycle monotonicity) is necessary
and sufficient for implementability in unique dichotomous domain.

Theorem 6 Suppose f : Di → A, where Di is a unique dichotomous domain. Then, f is
implementable if and only if it is 2-cycle monotone.

Proof : Consider any allocation rule f : Di → A, where Di is a unique dichotomous domain.

We already know that implementability implies 2-cycle monotonicity. Now, suppose f is 2-
cycle monotone. Then, by Proposition 1, f is strong 1-generation monotone. We will show

that γf = 1. Assume for contradiction that γf > 1. This means that there is at least
one unsatisfied ti, which is satisfied at some si ∈ Di, i.e., si ∈ Gf

1(ti) and there is some

s̄i ∈ Gf
2(ti) such that si is satisfied at s̄i. By 1-generation monotonicity, si must satisfy itself.

So, A(si) = {f(si)}. Since ti is satisfied at si, it must be that A(si) = A(ti) = {f(si)}. But
A(si) = {f(s̄i)}. This implies that A(ti) = {f(s̄i)}. This means that s̄i ∈ Gf

1(ti), which is a

contradiction.
As a consequence of this, strong 1-generation monotonicity implies strong K-generation

monotonicity, for all positive integer K. But this implies implementability by Theorem 1. !

Remark. A unique dichotomous domain is not convex in R|A|. But Theorem 6 shows that

2-cycle monotonicity is necessary and sufficient for implementability in this domain. This
result does not contradict Ashlagi et al. (2010), who give a characterization of domains where
2-cycle monotonicity is equivalent to randomized and finite-valued implementability.

Unit Demand Dichotomous Domain

We now study another specific dichotomous domain. Here the set of alternatives is con-
structed from a ground set. Suppose M is a finite set of objects, and let |M | = m ≥ 2. The
set of alternatives is the set of all non-empty subsets of objects: A = {S ⊆ M : S "= ∅}.
The favorite set of the agent at any type ti is described by a subset of objects, denoted by
F (ti) ⊆ M . The interpretation of F (ti) is that if the agent gets any object from F (ti) then

he gets a value of v(ti), else he gets a value of zero. So, the acceptable set of the agent is
A(ti) = {S ∈ A : F (ti)∩S "= ∅}. Any domain Di in which every type ti ∈ Di is characterized

by such favorite objects is called a unit demand dichotomous domain. Note that a unit
demand dichotomous domain is not a rich domain.

There are collective choice problems where unit demand dichotomous domain is plausible.

Consider the problem of a firm which wants to hire a group of consultants for giving training
to employees in different departments. Each consultant has different expertise, and can give

35



training in a specific area. Each department in the firm has a specific training requirement.
So, every department has a favorite set of consultants, and that determines its acceptable
sets.

We can use our general result in Theorem 1 to derive a precise characterization of imple-
mentability in such domains.

Theorem 7 Suppose f : Di → A is an allocation rule, where Di is a unit demand dichoto-
mous domain. Then, f is implementable if and only if it is m-cycle monotone if and only if

it is (m − 1)-generation monotone.

Proof : Consider an allocation rule f : Di → A, where Di is a unit demand dichotomous
domain. It is well known that if f is implementable then it is cycle monotone, and hence,

m-cycle monotone. For the converse, suppose f is m-cycle monotone. By Proposition 1,
f is strong (m − 1)-generation monotone. We will show that γf ≤ (m − 1), and hence, f

is then strong γf -generation monotone. Using Theorem 1, we can then conclude that f is
implementable.

Assume for contradiction that γf > (m− 1). Then, there must exist a type ti ∈ Di such

that for every integer k ≤ m, there exists tki ∈ Gf
k(ti). For simplicity of notation, denote ti

as t0i , and for all k ∈ {0, . . . , m}, denote F (tki ) as F k and f(tki ) as T k.

We will first show that for every k ∈ {0, . . . , m − 1}, | ∪k
j=0 F j ∪ T 0| ≥ (k + 2). Since ti

does not satisfy itself, |F 0 ∪ T 0| ≥ 2. Hence, the claim is true for k = 0. Now, we will use
induction. Suppose the claim is true for all k < K, where (m − 1) ≥ K > 0, and we show

that it holds for k = K. By definition, tK+1
i ∈ Gf

K+1(ti) exists. Further, TK+1 ∩ F j = ∅ for
all j ∈ {0, 1, . . . , K − 1}. Hence, TK+1 ⊆

(

M \ ∪K−1
j=0 F j

)

. Since TK+1 ∩ F K "= ∅, we get

that F K contains at least one object which is not present in ∪K−1
j=0 F j . By strong (m − 1)-

generation monotonicity, T 0 ∩ F j = ∅ for all j ∈ {0, 1, . . . , K}. Hence, F K contains at least

one object which is not present in ∪K−1
j=0 F j ∪ T 0. Using our induction hypothesis, we know

that | ∪K−1
j=0 F j ∪ T 0| ≥ (K + 1). Hence, | ∪K

j=0 F j ∪ T 0| ≥ (K + 2). But this implies that
| ∪m−1

j=0 F m−1 ∪ T 0| ≥ (m + 1). This is a contradiction since the number of objects is m.

Since the number of generations is (m − 1), strong (m − 1)-generation monotonicity is
equivalent to (m − 1)-generation monotonicity. !

Single-Minded Domain

Single-minded domain is a particular dichotomous domain. Like unit demand dichotomous

domain, a ground set M is given, say a set of objects. The set of alternatives is all subsets
of M , i.e., A = {S : S ⊆ M} - note that the empty set can also be an alternative, which
is worthless. A domain Di is single minded if for every dichotomous type ti ∈ Di, there

exists a non-empty set of objects M(ti) ⊆ M such that A(ti) = {S ∈ A : M(ti) ⊆ S}. A
type in the single-minded domain will be referred to as a single-minded type. Given a type,

36



ti ≡ (A(ti), v(ti)), the bundle of objects M(ti) is called the favorite bundle of objects and
v(ti) is the value of any bundle of objects containing M(ti).

It is well-known that the 2-cycle monotonicity does not imply implementability in single-

minded domains (Babaioff et al., 2005). First we examine this domain with some restrictions
on the allocation rules.

Definition 11 An allocation rule f : Di → A, where Di is a single-minded domain, is

weakly exact if for every single-minded type ti ∈ Di, f(ti) ⊆ M(ti). Allocation rule f is
exact if for every single-minded type ti ∈ Di, f(ti) ∈ {∅, M(ti)}.

We now show that the generation number of implementable weakly exact allocation rule

is one.

Theorem 8 Suppose f : Di → A is a weakly exact allocation rule, where Di is a single-
minded domain. Then, f is implementable if and only if it is 2-cycle monotone.

Proof : Implementability implies cycle monotonicity, and hence, 2-cycle monotonicity. Sup-
pose f is weakly exact and satisfies 2-cycle monotonicity. By Proposition 1, f is strong

1-generation monotone. We will show that γf = 1, and by Theorem 1, f is implementable.
Assume for contradiction that γf > 1. Then, there exists a single minded type ti ∈ Di and

t1i ∈ Gf
1(ti) and t2i ∈ Gf

2(ti). By GSS and weak exactness, M(t1i ) = f(t1i ). Also, by definition,
M(ti) ⊆ f(t1i ), and hence, M(ti) ⊆ M(t1i ). By GSS and weak exactness, M(t2i ) = f(t2i ), and
M(t1i ) ⊆ f(t2i ). But this implies that M(ti) ⊆ f(t2i ). This means that t2i ∈ Gf

1(ti), which is

a contradiction. !

As a corollary, we recover a well known result for single-minded domains.

Corollary 2 (Lehmann et al. (2002)) Suppose f : Di → A is an exact allocation rule,

where Di is a single-minded domain. Then, f is implementable if and only if it is 2-cycle
monotone.

Remark. Weak exactness may be more appealing than exactness in some settings. Consider
a seller who is faced with many buyers (more than the number of objects). Suppose the seller
never wants to retain any object - may be due to high inventory costs. In that case, an exact

allocation rule will not allocate all the objects in some instances, but a weakly exact allocation
rule will allocate all the objects if the number of buyers is more than the number of objects.

These results show that if we restrict the class of allocation rules in single-minded do-
mains in a certain way, then the generation number of single-minded domain is one.

Remark. In general, it is possible to determine the generation number of a single-minded
domain without any restriction on the allocation rules. Unfortunately, it turns out that the

generation number of single-minded domain is an exponential function of m. A formal proof
of this fact is available upon request. We omit the result here since we already know that

the generation number in any domain is bounded above by |A| = 2m, and our finding does
not simplify this characterization significantly.

37



References

Aggarwal, G. and J. Hartline (2006): “Knapsack Auctions,” in Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Springer (Lecture Notes
in Computer Science).

Archer, A. and R. Kleinberg (2008): “Truthful Germs are Contagious: A Local to
Global Characterization of Truthfulness,” in In Proceedings of the 9th ACM conference on

Electronic commerce (EC-08), Springer (Lecture Notes in Computer Science).

Archer, A., C. Papadimitriou, K. Talwar, and E. Tardos (2003): “An Approxi-

mate Truthful Mechanism for Combinatorial Auctions with Single Parameter Agents,” in
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
SIAM Press.

Archer, A. and E. Tardos (2001): “Truthful Mechanisms for One Parameter Agents,” in
Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS),

IEEE Press.

Armstrong, M. (1996): “Multiproduct Nonlinear Pricing,” Econometrica, 64, 51–75.

Ashlagi, I., M. Braverman, A. Hassidim, and D. Monderer (2010): “Monotonicity
and Implementability,” Econometrica, 78, 1749–1772.

Babaioff, M., R. Lavi, and E. Pavlov (2005): “Mechanism Design for Single-Value

Domains,” in In Proceedings of the 20th National Conference on Artificial Intelligence
(AAAI-05), American Association of Artificial Intelligence.

Berger, A., R. Muller, and S. H. Naeemi (2010): “Path-Monotonicity and Incentive
Compatibility,” Working Paper, Maastricht University.

Bikhchandani, S., S. Chatterji, R. Lavi, A. Mualem, N. Nisan, and A. Sen
(2006): “Weak Monotonicity Characterizes Deterministic Dominant Strategy Implemen-
tation,” Econometrica, 74, 1109–1132.

Blackorby, C. and D. Szalay (2007): “Multidimensional Screening, Affiliation, and Full
Separation,” Working Paper, University of Bonn.

Blumrosen, L. and N. Nisan (2007): Algorithmic Game Theory, Cambridge University
Press, chap. Combinatorial Auctions, 267–300, editors: Noam Nisan and Tim Roughgar-

den and Eva Tardos and Vijay Vazirani.

Bogomolnaia, A. and H. Moulin (2004): “Random Matching under Dichotomous Pref-
erences,” Econometrica, 72, 257–279.

38



Bogomolnaia, A., H. Moulin, and R. Strong (2005): “Collective Choice under Di-
chotomous Preferences,” Journal of Economic Theory, 122, 165–184.

Carbajal, J. C. and J. Ely (2011): “Mechanism Design without Revenue Equivalence,”

Working Paper, Northwestern University and University of Queensland.

Chung, K.-S. and W. Olszewski (2007): “A Non-Differentiable Approach to Revenue

Equivalence,” Theoretical Economics, 2, 1–19.

Cuff, K., S. Hong, J. A. Schwartz, Q. Wen, and J. Weymark (2011): “Domi-

nant Strategy Implementation with a Convex Product Space of Valuations,” Manuscript,
Vanderbilt University.

Dhangwatnotai, P., S. Dobzinski, S. Dughmi, and T. Roughgarden (2008):
“Truthful Approximation Schemes for Single-Parameter Agents,” in Proceedings of the
49th IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Press.

Goldberg, A. and J. Hartline (2005): “Collusion-Resistant Auctions for Single Pa-
rameter Agents,” in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), Springer (Lecture Notes in Computer Science).

Gui, H., R. Muller, and R. Vohra (2004): “Characterizing Dominant Strategy Mech-
anisms with Multidimensional Types,” Working Paper, Northwestern University.

Heydenreich, B., R. Muller, M. Uetz, and R. V. Vohra (2009): “Characterization
of Revenue Equivalence,” Econometrica, 77, 307–316.

Iyengar, G. and A. Kumar (2008): “Optimal Procurement Mechanisms for Divisible
Goods with Capacitated Suppliers,” Review of Economic Design, 12, 129–154.

Jehiel, P., B. Moldovanu, and E. Stacchetti (1999): “Multidimensional Mechanism
Design for Auctions with Externalities,” Journal Economic Theory, 85, 258–293.

Kos, N. and M. Messner (2011): “Extremal Incentive Compatible Transfers,” Working
Paper, Bocconi University.

Krishna, V. and E. Maenner (2001): “Convex Potentials with an Application to Mech-

anism Design,” Econometrica, 69, 1113–1119.

Lehmann, D., L. I. O’Callaghan, and Y. Shoham (2002): “Truth Revelation in Ap-

proximately Efficient Combinatorial Auctions,” Journal of the ACM, 49, 577–602.

Manelli, A. M. and D. Vincent (2007): “Multidimensional Mechanism Design: Revenue

Maximization and the Multiple Good Monopoly,”Journal of Economic Theory, 137, 153–
185.

39



Manelli, A. M. and D. R. Vincent (2010): “Bayesian and Dominant Strategy Imple-
mentation in the Independent Private Values Model,” Econometrica, 78, 1905–1938.

Milgrom, P. and I. Segal (2002): “Envelope Theorems for Arbitrary Choice Sets,”

Econometrica, 70, 583–601.

Muller, R., A. Perea, and S. Wolf (2007): “Weak Monotonicity and Bayes-Nash

Incentive Compatibility,” Games and Economics Behavior, 61, 344–358.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Research,

6, 58–73.

Pai, M. and R. Vohra (2008): “Optimal Auctions with Financially Constrained Bidders,”

Working Paper, Kellogg School of Management.

Rahman, D. (2011): “Detecting Profitable Deviations,” Working Paper, University of Min-
nesota.

Rochet, J. C. (1987): “A Necessary and Sufficient Condition for Rationalizability in a
Quasi-linear Context,” Journal of Mathematical Economics, 16, 191–200.

Rochet, J.-C. and L. A. Stole (2003): In Advances in Economics and Economet-
rics, Volume I, Cambridge University Press, Cambridge, chap. The Economics of Multidi-

mensional Screening, 150–197, editors: Mathias Dewatripont and Lars Peter Hansen and
Stephen J. Turnovsky.

Rockafellar, R. T. (1970): Convex Analysis, Princeton University Press.

Roth, A., T. Sonmez, and M. U. Unver (2005): “Pairwise Kidney Exchange,” Journal
of Economic Theory, 125, 151–188.

Saks, M. E. and L. Yu (2005): “Weak Monotonicity Suffices for Truthfulness on Convex
Domains,” in Proceedings of 7th ACM Conference on Electronic Commerce, ACM Press,

286–293.

Vohra, R. V. (2011): Mechanism Design: A Linear Programming Approach, Cambridge
University Press.

Vorsatz, M. (2007): “Approval Voting on Dichotomous Preferences,” Social Choice and
Welfare, 28, 127–141.

——— (2008): “Scoring Rules on Dichotomous Preferences,” Social Choice and Welfare, 31,
151–162.

40


	Introduction
	Past Literature and Our Results

	The Single Agent Model
	Implementation in Dichotomous Domains
	Generation Monotonicity

	Rich Dichotomous Domain
	1-Generation Monotonicity is not Sufficient
	A Characterization Using Cutoffs
	Revenue Equivalence

	Extension to n Agents
	Application: Revenue Maximizing Matching with Dichotomous Preferences
	Conclusion

