
Discussion Papers in Economics

Implementation in Multidimensional Domains
with Ordinal Restrictions

Debasis Mishra

Anup Pramanik

Souvik Roy

May 2013

Discussion Paper 13-07

Indian Statistical Institute, Delhi
Economics and Planning Unit

7, S. J. S. Sansanwal Marg, New Delhi 110016, India

Implementation in Multidimensional Domains

with Ordinal Restrictions

Debasis Mishra, Anup Pramanik, and Souvik Roy ∗

May 28, 2013

Abstract

We consider implementation of a deterministic allocation rule using transfers in

quasi-linear private values environments. We show that if the type space is a mul-

tidimensional domain satisfying some ordinal restrictions, then an allocation rule is

implementable in such a domain if and only if it satisfies a familiar and simple con-

dition called 2-cycle monotonicity. Our ordinal restrictions cover type spaces which

are non-convex, e.g., the single peaked domain and its generalizations. We apply our

result to show that in the single peaked domain, a local version of 2-cycle monotonicity

is necessary and sufficient for implementation and every locally incentive compatible

mechanism is incentive compatible.

Keywords. implementation, 2-cycle monotonicity, revenue equivalence, local incentive

compatibility.

JEL codes. D44, D47, D71, D82, D86.

∗All authors are affiliated to Economics and Planning Unit, Indian Statistical Institute, New Delhi.

Corresponding author: Debasis Mishra, Economics and Planning Unit, Indian Statistical Institute, 7, SJS

Sansanwal Marg, New Delhi - 110016, India, Email: dmishra@isid.ac.in.

1

1 Introduction

An enduring theme in mechanism design is to investigate conditions that are necessary

and sufficient for implementing an allocation rule. We investigate this question in private

values and quasi-linear utility environments when the set of alternatives is finite and the

allocation rule is deterministic (i.e., does not randomize). An allocation rule in such an

environment is implementable if there exists a payment rule such that truth-telling is a

dominant strategy for the agents in the resulting mechanism. Our main result is that in a

large class of multidimensional domains (type spaces) that satisfy some ordinal restrictions,

implementability is equivalent to a simple condition called 2-cycle monotonicity. The 2-

cycle monotonicity condition requires the following: given the types of other agents, if the

alternative chosen by the allocation rule is a when agent i reports its type to be ti and the

alternative chosen by the allocation rule is b when agent i reports its type to be si, then it

must be that

ti(a) − ti(b) ≥ si(a) − si(b),

where for any alternative x, ti(x) and si(x) denote the values of alternative x in types ti and

si respectively.

One of the earliest papers to pursue this question was Rochet (1987), who proved a very

general result. He showed that a significantly stronger condition called cycle monotonicity is

necessary and sufficient for implementability in any type space - see also Rockafellar (1970).

When the set of alternatives is finite and the type space is convex, 2-cycle monotonicity im-

plies cycle monotonicity (Bikhchandani et al., 2006; Saks and Yu, 2005; Ashlagi et al., 2010).

Though convexity is a natural geometric property satisfied in many economic environments,

it excludes many interesting type spaces. Moreover, how far this result extends to domains

that do not satisfy convexity remain an intriguing question - we discuss this issue in detail

in Section 2. A primary objective of this paper is to formulate restrictions on type spaces

without the convexity assumption made in the literature and answer the question of im-

plementability in such multidimensional type spaces. Indeed, our restrictions allow many

interesting multidimensional non-convex type spaces. Prominent type spaces covered by our

formulation are the single peaked domain 1 and its generalizations. In all these domains,

we show that 2-cycle monotonicity is necessary and sufficient for implementability. To our

knowledge, this paper is the first to identify such a large class of interesting non-convex

domains where 2-cycle monotonicity characterizes implementability.

A characterization of implementability using 2-cycle monotonicity is useful because the

1Roughly, a single peaked type is defined using a strict and complete order on the set of alternatives. A

type is single peaked if the values of alternatives decrease as we go to the left or right (where left and right

are defined with respect to the given order) of the peak (the highest valued alternative).

2

cycle monotonicity condition, which can be used to characterize implementability in any

domain, is a difficult condition to use and interpret. On the other hand, 2-cycle monotonicity

is a simpler condition and the appropriate extension of the monotonicity condition used by

Myerson (1981) to characterize implementability in the single object auction model. For this

reason, 2-cycle monotonicity is often referred to as weak monotonicity (Bikhchandani et al.,

2006; Saks and Yu, 2005) or monotonicity (Ashlagi et al., 2010).

A contribution of this paper is to apply the 2-cycle monotonicity characterization to

derive sharper results in the single peaked domain. We consider a local version of the 2-cycle

monotonicity condition, where we require the 2-cycle monotonicity condition to hold between

a type and all types in its ǫ-neighborhood. We show that such a local 2-cycle monotonicity

condition is necessary and sufficient for implementation in the single peaked domain. Then,

we explore the consequence of imposing local incentive compatibility for mechanisms in the

single peaked domain. Local incentive compatibility requires that incentive constraints to

hold between a type and all its types in the ǫ-neighborhood. We show that in the single

peaked domain, every locally incentive compatible mechanism is incentive compatible. The

counterparts of these results are only known for convex type spaces (Archer and Kleinberg,

2008; Carroll, 2012).

We use a novel method to impose ordinal restriction on type spaces. Such a method of

imposing ordinal restriction is usually followed in the mechanism design literature without

transfers (a la strategic voting or social choice theory literature). To see how such restrictions

can be imposed in a cardinal environment like ours, note that a type in our environment is a

vector in R
|A|, where A is the set of alternatives. Now, let us restrict attention to strict types,

where value of no two alternatives is the same. Such a type must induce a complete and strict

ordering on A. We put restrictions by allowing only a subset of orderings that can be induced

by any type. In particular, we require the permissible orderings to satisfy two properties,

which we call connectedness and lifting - we discuss them in detail in Section 3. The set of

all strict types in R
|A|
++ that induce an ordering belonging to a set of permissible orderings

define our ordinally admissible domain. Ordinally admissible domains can be generated, for

instance, by considering all orderings over A that are single peaked and then considering all

types that induce these single peaked orderings - this will generate the single peaked domain.

The complete domain (R
|A|
++) is also an ordinally admissible domain. Many generalizations

of the single peaked domain are also ordinally admissible.

We are aware of only one instance where such an idea of ordinal restriction was pursued in

this literature. The order-based domain considered in Bikhchandani et al. (2006) is defined

by considering a weak partial order on the set of alternatives and every type must induce

this order. Firstly, an order-based domain is convex. Second, we consider a set of strict

and complete orders and a type in our domain must induce one of the orders in this set. In

3

that sense, our domain restriction is different from the order-based domains, but neither is

stronger than the other.

We allow for indifferences by considering domains that are closures of some ordinally

admissible domain and show that 2-cycle monotonicity is necessary and sufficient for im-

plementability in these domains too. Further, in all these domains, revenue equivalence

holds.

The rest of the paper is organized as follows. We start by giving a background on im-

plementability and cycle monotonicity in Section 2. This allows us to cover the relevant

literature in some detail in that section. We then motivate our research question by ana-

lyzing an example in Section 2.1. Our domain restriction and the main results are stated

in Section 3. We give various examples where our domain restrictions hold in Section 3.1.

Section 3.2 discusses the proof of our main result (Theorem 1), but all other proofs are in

the Appendix. Section 3.3 discusses payments and revenue equivalence results. Section 4

discusses application of our results in the single peaked domain. In order to make formal

connection with our model and definitions, we defer a detailed discussion on related literature

till Section 5. We conclude by giving some future research directions in Section 6.

2 Implementation and Cycle Monotonicity

We consider a model with a single agent. As is well known in this literature, this is without

loss of generality. All our results generalize easily to a model with multiple agents. The single

agent is denoted by i. The set of alternatives for agent i is denoted by Ai. In an n-agent

model, Ai denotes the possible allocations of agent i. 2 The type (private information) of

agent i is a vector ti ∈ R
|Ai|. If agent i has type ti, then ti(a) will denote the value of agent

i for alternative a. We assume private values and quasi-linear utility. This means that if

alternative a is chosen and agent i with type ti makes a payment of pi, then his net utility

is given by ti(a) − pi.

Not all possible vectors in R
|Ai| can be a type of agent i. Let Di ⊆ R

|Ai| be the type

space of agent i - these are the permissible types of agent i. The set Di will be referred to

as a domain of agent i. An allocation rule is a mapping f : Di → Ai. A payment rule

of agent i is a mapping pi : Di → R. A mechanism consists of an allocation rule and a

payment rule.

Definition 1 An allocation rule f is implementable if there exists a payment rule pi such

2For instance, in a model with n agents and n objects, where each agent can be assigned exactly one

object, Ai will be the set of objects and not the set of matchings.

4

that for every si, ti ∈ Di, we have

si(f(si)) − pi(si) ≥ si(f(ti)) − pi(ti).

In this case, we will say that pi implements f and (f, pi) is an incentive compatible

mechanism.

The primary objective of this paper is to give a simple necessary condition on the allo-

cation rule that is also sufficient for implementability in a large class of interesting domains.

For this, we revisit a classic condition that is already known to be necessary and sufficient

for implementability in any domain.

Definition 2 An allocation rule f is K-cycle monotone, where K ≥ 2 is a positive

integer, if for every finite sequence of types (t1i , t
2
i , . . . , t

k
i), with k ≤ K, we have

k
∑

j=1

[

tji (f(tji)) − tji (f(tj−1
i))

]

≥ 0, (1)

where t0i ≡ tki . An allocation rule f is cyclically monotone if it is K-cycle monotone for

every positive integer K ≥ 2.

It is well known that implementability is equivalent to cycle monotonicity (Rochet, 1987;

Rockafellar, 1970). This result is very general - it works on any domain Di and does not

even require Ai to be finite. 3 However, cycle monotonicity is a difficult condition to use

and interpret since it requires verifying non-negativity of Inequality 1 for arbitrary length

sequences of types. In a series of papers, it has been established that a significantly weaker

condition than cycle monotonicity is sufficient for implementation in various interesting do-

mains. Bikhchandani et al. (2006) showed that 2-cycle monotonicity is sufficient for imple-

mentability if Di is an order-based domain - this includes many interesting auction domains.

Saks and Yu (2005) show that 2-cycle monotonicity is sufficient for implementation if Di is

convex - this extends the result in Bikhchandani et al. (2006) because an order-based domain

is convex. Ashlagi et al. (2010) extend this result to show that if the closure of Di convex,

then 2-cycle monotonicity is sufficient for implementation.

However, Mishra and Roy (2013) show that there are interesting non convex domains

where 2-cycle monotonicity is not sufficient for implementation. Further, they identify an

interesting class of non-convex domains where 3-cycle monotonicity is sufficient for imple-

mentation but 2-cycle monotonicity is not sufficient.

3 When the set of alternatives is finite, this result can be slightly strengthened to say that implementability

is equivalent to |Ai|-cycle monotonicity (Mishra and Roy, 2013).

5

Interestingly, Ashlagi et al. (2010) establish a surprising result by allowing for random-

ization, i.e., an allocation rule picks a probability distribution over alternatives. They show

that if every 2-cycle monotone randomized allocation rule is also cyclically monotone in a

domain Di of dimension at least 2, then the closure of Di must be convex.

It is not clear how far this result is true if f is allowed to be deterministic. Vohra (2011)

contains a simple example of a non-convex domain with four alternatives where every de-

terministic allocation rule satisfying 2-cycle monotonicity is implementable. In his example,

Vohra (2011) considers the sale of two objects α and β to agents. The set of alternatives

is the set of all subsets of {α, β}. The restriction on values of agents is the following:

ti({α, β}) = max(ti({α}), ti({β})) for each i. Hence, each agent desires at most one object,

though he may be assigned both the objects. The type space here is non-convex. To see

this, consider two types of agent i

ti(∅) = 0, ti({α}) = 3, ti({β}) = 4, ti({α, β}) = 4

si(∅) = 0, si({α}) = 5, si({β}) = 4, si({α, β}) = 5.

A convex combination of (0.5, 0.5) of these two types generates values 4 for objects α and β

but a value of 4.5 for the bundle of objects {α, β}. This violates the restriction on the type

space.

Note that if we allow at most one object to be assigned to an agent, then the type space

becomes convex, and we can apply earlier result to conclude that 2-cycle monotonicity is

sufficient for implementation. However, by allowing the alternative {α, β}, but still having

a restriction that agents desire at most one object, we get to a non-convex type space. The

result in Vohra (2011) shows that 2-cycle monotonicity is sufficient for implementation in

such an example. It is not clear on how to extend the proof of this example if there are more

than two objects.

2.1 A Motivating Example

Since the type space in the example in Vohra (2011) seems to be a slight modification of

a convex type space, it is still unclear whether there are interesting non-convex type space

where 2-cycle monotonicity is sufficient for implementation. The result in Ashlagi et al.

(2010) shows that if every 2-cycle monotone randomized allocation rule is implementable in

a multidimensional domain, then it must be convex. This shows that there is a significant

gap in understanding implementability of deterministic allocation rules in non-convex multi-

dimensional domains. We give below a motivating example to show that there are interesting

non-convex domains where the current results are silent. Our results in the paper will apply

to such domains.

6

Consider a general scheduling problem as follows. A number of firms procure prod-

ucts/parts from a supplier over a time horizon. In each time period, the supplier can only

supply to one firm. Every firm i has a time period τ ∗
i where it gets the maximum value from

getting its products supplied. The firms have single peaked preference over time, i.e., for firm

i for any time periods τ, τ ′, if τ < τ ′ < τ ∗
i or τ > τ ′ > τ ∗

i , then firm i values supply of its

products at time period τ ′ to time period τ (this may be due to inventory carrying cost and

delivery delay costs).

The type space in this example is non-convex. To see this, suppose there are just three

time periods {1, 2, 3} and consider two single peaked types of agent (firm) i: si := (6, 4, 3)

(peak is period 1) and ti := (3, 4, 6) (peak is period 3). A convex combination si+ti
2

produces

the type (4.5, 4, 4.5), which is no longer single peaked.

In such non-convex domains, we characterize implementability using 2-cycle monotonicity

and apply this result to obtain other interesting results on incentive compatible mechanisms.

Thus, there are interesting type spaces where earlier results are silent and our results provide

sharp characterizations of implementability and incentive compatibility.

3 Domains with Ordinal Restrictions

We now formally define our domain. Every type ti induces a weak order on the set of

alternatives. Let P be the set of all strict orderings of the set of alternatives Ai. A type ti

is strict if ti(a) 6= ti(b) for all a, b ∈ Ai. A strict type ti is consistent with a strict ordering

P ∈ P if ti induces the strict ordering P . Let D ⊆ P be some subset of strict orderings of

the set of alternatives Ai. We denote by T (D) the set of all strict types in R
|Ai|
++ that are

consistent with the strict orderings in D, i.e.,

T (D) := {ti ∈ R
|Ai|
++ : ti is consistent with some P ∈ D}.

The type spaces we consider in the paper are of the nature T (D), where D is some subset

of P. 4 Our restriction on type space will be derived by imposing conditions on D. We use

the notation P (k) to denote the k-th ranked alternative in ordering P . Let D ⊆ P.

1. The first condition is a notion of connectedness. Construct an undirected graph G(D) as

follows. The set of nodes in G(D) is the set of alternatives Ai. For any a, b ∈ Ai, there

is an edge {a, b} in G(D) if and only if there is an ordering P ∈ D such that P (1) = a

and P (2) = b, and another ordering P ′ ∈ D such that P ′(1) = b and P ′(2) = a. So,

there is an edge between a pair of alternatives a and b if there is a preference ordering

4We will extend our results to allow for indifferences and then the type space will be of the form cl(T (D)),

where cl(·) denotes the closure.

7

where a is top and b is second and another preference ordering where b is top and a is

second. We will say a pair of alternatives a, b ∈ Ai are neighbors if there is an edge

{a, b} in the graph G(D). We say D is connected if G(D) is connected, i.e., for every

pair of alternatives a, b ∈ Ai there is a path in G(D) between a and b. Note that we do

not require that there is an edge between every pair of alternatives. We only require

that they are connected by a path.

2. Then, we have two conditions on lifting.

(a) We say D satisfies top lifting if for every pair of alternatives a, b ∈ Ai and for

every ordering P ∈ D such that aPb, there exists an ordering P ′ ∈ D such that

(a) P ′(1) = a and (b) if bP c for any alternative c then bP ′c.

Table 1 illustrates the idea of top lifting. Suppose Ai = {x, y, z, x′, y′, a, b} and P

(as shown in Table 1) is in D. Consider a, b ∈ Ai. Note that in P ′, a is the top

ranked alternative. The alternatives that were worse than b in P continue to be

worse than P ′. The ordering P ′ thus allows the pair of alternatives a and b to

satisfy top lifting at P .

P P ′

x [a]

y x

[a] z

z [b]

[b] y

x′ y′

y′ x′

Table 1: Top Lifting Property

(b) Another condition allows us to lift a neighbor. We say D satisfies neighbor

lifting if for any pair of alternatives a and b such that a and b are neighbors and

for any ordering P where P (1) = a and P (k+1) = b for some integer k ≥ 1, there

exists an ordering P ′ where P ′(k) = P (k + 1) = b and P ′(k + 1) = P (k) and for

all j 6= {k, k + 1} we have P ′(j) = P (j).

We illustrate the neighbor lifting property using an example in Table 2. Suppose

Ai = {x, y, z, a, b, x′, y′}. Consider x and z that are neighbors in some D. Suppose

P ∈ D, where P is as shown in Table 2. If D satisfies neighbor lifting, then all the

orderings shown in Table 2 belongs to D. Note that as we go from the left most

8

ordering to right in Table 2, the alternative z swaps position with the alternative

just above it and the ranking of other alternatives remain the same - this is

highlighted in Table 2 by putting the position of alternatives x and z in square

brackets.

P P ′ P̄ P̂

[x] [x] [x] [z]

y y [z] [x]

a [z] y y

[z] a a a

b b b b

x′ x′ x′ x′

y′ y′ y′ y′

Table 2: Neighbor Lifting Property

We say D satisfies lifting if it satisfies top lifting and neighbor lifting.

Definition 3 A domain Di is ordinally admissible if there exists a connected D ⊆ P

satisfying lifting such that Di = T (D).

Our main result is that in ordinally admissible domains, 2-cycle monotonicity is necessary

and sufficient for implementation.

Theorem 1 Suppose Di is an ordinally admissible domain and f : Di → Ai is an onto

allocation rule. Then, f is implementable if and only if it is 2-cycle monotone.

The proof of Theorem 1 is given in Section 3.2. Though we assume that every type in

Di induces a strict ordering on Ai, we can allow for indifference. We denote by cl(Di) the

closure of the set Di.

Theorem 2 Let Di be an ordinally admissible domain and f : cl(Di) → Ai is an onto

allocation rule. Then, f is implementable if and only if it is 2-cycle monotone.

The proof of Theorem 2 is given in the Appendix and it uses Theorem 1.

9

3.1 Examples

Before presenting the proof of Theorem 1, we give various examples of D that satisfy the

connectedness and the lifting property. The first example is a convex domain, and hence,

the earlier results already imply Theorem 1 in this domain. The remaining examples are

of non-convex multidimensional domains, and hence, the earlier results are silent on such

examples.

1. Complete domain. In the complete domain, D is the set of all possible orderings

over Ai. As a result, G(D) is a complete graph - there is an edge between every

pair of alternatives. So, connectedness holds. Further, lifting is satisfied since all

possible orderings are in D. Note that the complete domain covers the multi-object

auction model with unit demand. To see this, let Ai be the set of heterogeneous

objects and agent i can be assigned exactly one object from Ai. Then, the complete

domain assumption requires that any vector of positive valuations can be assigned to

the objects.

2. Single peaked domain. The single-peaked domain is a well studied domain in social

choice theory (Moulin, 1980). The set of admissible orderings D in the single peaked

domain is defined as follows. There is an exogenously given ordering ≻ on the set of

alternatives Ai. We say an ordering P is a single-peaked ordering if for any pair of

alternatives a, b ∈ Ai, P (1) ≻ a and a ≻ b implies aPb and b ≻ a and a ≻ P (1) implies

aPb. In words, as we go away from the peak of an ordering, the agent must prefer the

alternatives less.

The set of admissible orderings D in the single peaked domain induces a graph G(D)

in which every node has degree either one or two. Alternatives a and b are neighbors in

the single peaked domain if there are no alternatives between a and b in the ordering

≻. Clearly, if an alternative a ∈ Ai is a peak in an ordering P ∈ D, then only one

of the neighbors of a can be second ranked in P . Hence, there is an edge between a

and each of its neighbors. The top ranked and worst ranked alternatives according

to ≻ has exactly one neighbor and they have only degree one in G(D). It is easy to

see that G(D) is a line graph, and hence, D is connected. Figure 1 shows G(D) for

Ai = {a, b, c, x, y} and a ≻ b ≻ c ≻ x ≻ y.

ya b c x

Figure 1: Graph G(D) for the single peaked domain D.

10

We next argue that D satisfies lifting. To see this, consider any pair of alternatives

a, b ∈ Ai. Suppose a ≻ b (a similar argument works if b ≻ a). Let L(a) := {c : c ≻ a},

R(b) := {c : b ≻ c}, and B(a, b) := {c : c ≻ b}∩{c : a ≻ c}. Now, we can always find a

single peaked preference ordering in which (1) a is the peak, (2) alternatives in B(a, b)

lie below a but above b, (3) alternatives in R(b) lie below b, and (4) alternatives in

L(a) are below a but can be put in any position. Hence, from any preference ordering

P ∈ D where aPb we can construct an ordering P ′ such that top lifting is satisfied.

Figure 2 shows a graphical illustration of how a type si (in solid blue lines) can be

converted to a type s′i to satisfy top lifting for a pair of alternatives a, b. Note that if

P is the ordering induced by si we have aPb. Now, consider the type s′i (in dashed red

lines in Figure 2) and suppose it induces the ordering P ′. Now, note that in P ′, a is

the top alternative and the alternatives that were below b in P continue to be below b

in P ′. Hence, top lifting is satisfied.

b

s_i

s’_i

a

Figure 2: Illustration of top lifting in the single peaked domain.

The same observation also enables the domain to satisfy neighbor lifting. To see this,

suppose a and b are two neighbors with a ≻ b and there is an ordering P where aPb

and P (1) = a. By definition b is the top ranked alternative among alternatives in R(a).

Clearly, increasing the rank of b will either maintain a to be the peak or make b the

peak, and in both cases, it will not disturb the single peakedness.

3. Semi single peaked domain. In semi single peaked domain, the ordering of alter-

natives to one of the sides may not decrease but on the other side, it must decrease as

in the single peaked domain. Formally, there is an exogenously given ordering ≻ on

the set of alternatives Ai. We say an ordering P is a single-peaked to left if for any

pair of alternatives a, b ∈ Ai, b ≻ a and a ≻ P (1) implies aPb. Similarly, an ordering

P is single-peaked to right if for any pair of alternatives a, b ∈ Ai, P (1) ≻ a and a ≻ b

implies aPb.

The set of admissible orderings D is a semi single peaked domain if it consists of either

all left single peaked orderings or all right single peaked orderings. Consider a semi

11

single peaked domain D and assume that it consists of all right single peaked orderings.

Then, every alternative a has an edge with alternative b in G(D) if B(a, b) = ∅, where

B(a, b) is the set of alternatives between a and b according to ≻. Note that a can be

top ranked in an ordering and any alternative b ∈ L(a) can be second ranked. However,

if b is top ranked, a can be second ranked only if B(a, b) = ∅. For this reason, G(D) is

a line graph, which is connected. 5

We can verify that the semi single peaked domain satisfies top lifting. To see this,

consider an ordering P ∈ D, where aPb. If b ∈ L(a), we can construct an ordering

where a is top ranked and b is second ranked by lowering all the alternatives (except a)

below b but maintaining single peaked to the right of a. If b ∈ R(a), then alternatives

to the left of a can be lowered sufficiently to make a the peak and it will automatically

maintain single peakedness to the right of a.

Finally, we verify that the semi single peaked domain satisfies neighbor lifting. Since

the neighbors of an alternative are the same in the semi single peaked domain and the

single peaked domain, the argument for this is similar to the argument which showed

that the single peaked domain satisfies neighbor lifting.

4. Single peaked domain with characteristics. This is a generalization of the

single peaked domain. We are now exogenously given a set of orderings S over the

set of alternatives. The domain D consists of all orderings that are single peaked with

respect to some ≻∈ S. If S is a singleton, this is precisely the single peaked domain.

Suppose the set of alternatives are objects. An element of S can be interpreted as a

“characteristic”of the objects. Depending on the characteristic used by an agent to rank

the objects, his preference must be single peaked with respect to that characteristic.

Consider an example with Ai = {a, b, c, x, y} and let S = {≻1,≻2}, where a ≻1

b ≻1 c ≻1 x ≻1 y and y ≻2 a ≻2 b ≻2 x ≻2 c. Figure 3 shows the graph G(D)

for this domain. The edges are derived from the single peaked restrictions on each

characteristics.

In general, the graph G(D) is connected since D contains the single peaked domain,

which is connected. Also, D satisfies lifting property. To see this, consider any a, b ∈ A

and suppose there is a preference ordering P where aPb. Since P is single peaked

with respect to some ≻∈ S, we can apply the arguments for the single peaked domain

to show that there is some ordering P ′ that is single peaked with respect to ≻ such

that top lifting holds for a and b at P . Similarly, neighbor lifting lifting is satisfied by

5The single peaked and the single peaked domains induce the same graph. This shows that two different

domains can induce the same graph.

12

xa

b c

y

Figure 3: Graph G(D) for the single peaked domain with two characteristics.

mimicking the argument of the single peaked domain.

5. Single peaked domain on a tree. This is another generalization of the single

peaked domain. Here, we are given a graph G which is a tree (connected and without

any cycles). The preferences are single peaked along paths of this tree G. It is not

difficult to see that the graph G(D) is exactly the graph G itself. For the example with

Ai = {a, b, c, x, y}, Figure 4 shows a possible tree. The graph G(D) for this domain is

also the same graph. To see that D satisfies top lifting, consider P ∈ D and a, b ∈ Ai

xa

b c

y

Figure 4: Graph G(D) for the single peaked domain on a tree.

such that aPb. There is a unique path Π in G involving a and b. By definition, we

can construct an ordering P ′ where all alternatives that do not lie on Π lie below the

alternatives in Π by maintaining single peakedness on paths. For instance, in Figure 4,

if the unique path between c and x is (c, b, x) and we can construct an ordering where

x is the top, followed by b, c, a, y, and this will satisfy single peakedness on the tree.

Now, we can mimic the arguments of the single peaked domain on alternatives in Π to

show that top lifting is satisfied. Similarly, if P (1) = a and a and b are neighbors then

again we can use this argument to construct P ′ and then mimic the arguments of the

13

single peaked domain on alternatives in Π to show that neighbor lifting is satisfied.

3.2 Proof of Theorem 1

The proof of Theorem 1 will be done using a series of Lemmas. These lemmas will reveal the

underlying structure of the domain. First, by Rochet (1987), if f : Di → Ai is implementable,

then it is 2-cycle monotone. Next, again by Rochet (1987), if f is cyclically monotone, then

it is implementable. So, we will show that if f is 2-cycle monotone, then it is cyclically

monotone. In the remainder of the section, we assume that f is 2-cycle monotone.

Suppose Di = T (D) for some connected D satisfying lifting. For every a ∈ Ai, define

Di(a) as follows.

Di(a) := {ti ∈ Di : f(ti) = a}.

Since f is onto, Di(a) is non-empty. Next, for every si, ti ∈ Di, define ℓ(si, ti) as follows.

ℓ(si, ti) := ti(f(ti)) − ti(f(si)).

Notice that 2-cycle monotonicity is equivalent to requiring that for every si, ti ∈ Di, we have

ℓ(si, ti) + ℓ(ti, si) ≥ 0. Now, for every a, b ∈ Ai, define d(a, b) as follows.

d(a, b) := inf
ti∈Di(b)

[

ti(b) − ti(a)
]

.

We state below a well known fact - see, for instance, Lemma 6 in Bikhchandani et al. (2006).

Lemma 1 For every a, b ∈ Ai, d(a, b) + d(b, a) ≥ 0.

Proof : Suppose d(a, b) + d(b, a) = −ǫ < 0 for some a, b ∈ Ai. This means, there is a

si ∈ Di(b) and ti ∈ Di(a) such that [si(b) − si(a)] + [ti(a) − ti(b)] < 0. But this means that

ℓ(si, ti) + ℓ(ti, si) < 0, a contradiction to 2-cycle monotonicity. �

The first step of the proof of Theorem 1 is the following lemma.

Lemma 2 If a, b are neighbors, then d(a, b) + d(b, a) = 0.

Proof : Consider a, b ∈ Ai such that a and b are neighbors. By Lemma 1, d(a, b)+d(b, a) ≥ 0.

Assume for contradiction d(a, b) + d(b, a) = ǫ > 0. Then, either d(a, b) > 0 or d(b, a) > 0.

Suppose d(a, b) > 0 - a similar proof works if d(b, a) > 0. Then, there is a type si ∈ Di(b)

such that d(a, b) ≤ si(b)−si(a) < d(a, b)+ ǫ1, for any ǫ1 > 0 arbitrarily close to zero. Hence,

si(b) > si(a). Since a and b are neighbors and D is connected, there exists a P ∈ D such

14

that b is top ranked and a is second ranked. We can construct a type ui ∈ Di that induces

P and

ui(x) =

si(x) if x = a

si(x) − δ if x = b

< min(si(x) − δ, si(a)) if x /∈ {a, b},

where δ ∈ (ǫ1, si(b) − si(a)). Notice that since si(b) > si(a), we have ui(b) > ui(a) for

sufficiently small δ > ǫ1.

We will now argue that f(ui) = a. First, if f(ui) = x /∈ {a, b}, we have ui(x) − ui(b) <

(si(x) − δ) − (si(b) − δ) = si(x) − si(b), which violates 2-cycle monotonicity. Second, if

f(ui) = b, we have ui(b) − ui(a) = si(b) − δ − si(a) ≤ d(a, b) − (δ − ǫ1) < d(a, b), which

violates the definition of d(a, b). Hence, f(ui) = a.

But this implies that d(b, a) ≤ ui(a) − ui(b) = si(a) − si(b) + δ ≤ −d(a, b) + δ. Hence,

d(b, a) + d(a, b) ≤ δ. Since δ, ǫ1 can be chosen arbitrarily close to zero, this contradicts the

fact that d(a, b) + d(b, a) = ǫ > 0. �

The next lemma establishes a crucial property.

Lemma 3 For every pair of alternatives a, c ∈ Ai such that a and c are not neighbors and

any path Π(a, c) between a and c in G(D), there exists an alternative b in this path such that

d(a, b) + d(b, c) ≤ d(a, c).

Proof : Fix a, c ∈ Ai and a path Π(a, c) between a and c in G(D). Choose an ǫ > 0 ar-

bitrarily close to zero and a ti ∈ Di(c) such that d(a, c) ≤ ti(c) − ti(a) < d(a, c) + ǫ. We

consider two cases.

Case 1. ti(c) > ti(a). Choose an alternative b in Π(a, c) between a and c in G(D) such

that b is a neighbor of c. Let the ordering induced by ti be P . By top lifting, there exists

an ordering P ′ ∈ D such that (a) P ′(1) = c and (b) if aPc′ for any alternative c′ then aP ′c′.

Hence, we can construct a type t′i ∈ Di that induce P ′ and t′i(c) = ti(c), t′i(a) = ti(a)−ǫ′, and

t′i(x) < ti(x) for all x /∈ {a, c}, where ǫ′ > 0 but arbitrarily close to zero. Since t′i(c) = ti(c)

and t′i(x) < ti(x) for all x 6= c, we have [t′i(x) − t′i(c)] + [ti(c) − ti(x)] < 0 for all x 6= c, and

hence, by 2-cycle monotonicity, f(t′i) = c. Further, d(a, c) ≤ t′i(c) − t′i(a) < d(a, c) + ǫ.

Let δ ∈ (t′i(c) − t′i(b) − d(b, c), t′i(c) − t′i(b) − d(b, c) + ǫ′′), for some ǫ′′ > 0 but arbitrarily

close to zero. Since f(t′) = c, we have t′i(c) − t′i(b) ≥ d(b, c). Hence, δ > 0 but arbitrarily

close to t′i(c)− t′i(b)− d(b, c), which in turn is arbitrarily close to ti(c)− ti(b)− d(b, c). Now,

we construct a new type si as follows.

si(x) =

t′i(x) if x = c

t′i(x) + δ if x = b

t′i(x) − ǫ′′ if x ∈ A \ {b, c}

15

Note that si is constructed by increasing the value of alternative b from t′i(b) to t′i(b)+ δ and

decreasing the value of other alternatives by arbitrarily small amount. Further, c is top at

t′i and b is the neighbor of c in Π(c, a). Hence, by successive application of neighbor lifting,

si ∈ Di.

We argue that f(si) = b. First, suppose f(si) = x /∈ {b, c}. Then, si(x) − si(c) <

t′i(x) − t′i(c), and this contradicts 2-cycle monotonicity. Next, suppose f(si) = c. Then,

d(b, c) ≤ si(c) − si(b) = t′i(c) − t′i(b) − δ < d(b, c), a contradiction. Hence, f(si) = b.

Now, d(a, b) ≤ si(b)− si(a) = [t′i(b)− t′i(a)+ δ] + ǫ′′. Since δ < [t′i(c)− t′i(b)]− d(b, c)+ ǫ′′,

we have d(a, b) < [t′i(c) − t′i(a)] − d(b, c) + 2ǫ′′ ≤ d(a, c) + ǫ− d(b, c) + 2ǫ′′. This implies that

d(a, b) + d(b, c) < d(a, c) + ǫ + 2ǫ′′. Since ǫ and ǫ′′ can be chosen arbitrarily close to zero, we

conclude that d(a, b) + d(b, c) ≤ d(a, c).

Case 2. ti(c) < ti(a). This case is similar to Case 1 except that the roles of a and c are

reversed from Case 1. �

Now, consider the following lemma.

Lemma 4 For any pair of alternatives a1, ak ∈ Ai, let (a1, a2, . . . , ak) be a sequence of alter-

natives on any path Π(a1, ak) between a1 and ak in G(D). Then, the following are true.

d(a1, a2) + d(a2, a3) + . . . + d(ak−1, ak) ≤ d(a1, ak)

d(ak, ak−1) + d(ak−1, ak−2) + . . . + d(a2, a1) ≤ d(ak, a1).

Proof : Consider any pair of alternatives a1, ak ∈ Ai and let (a1, a2, . . . , ak) be a sequence

of alternatives on any path Π(a1, ak) between a1 and ak in G(D). We do the proof using

induction on k. If k = 2, then the claim is vacuously true. Suppose the claim is true for

all k < K. If k = K, then by Lemma 3, there is an alternative ar ∈ {a2, . . . , aK−1} such

that d(a1, ar) + d(ar, aK) ≤ d(a1, aK). The paths (a1, . . . , ar) and (ar, . . . , aK) each contain

less than K nodes. By our induction hypothesis, d(a1, a2) + . . . + d(ar−1, ar) ≤ d(a1, ar) and

d(ar, ar+1) + . . . + d(aK−1, aK) ≤ d(ar, aK). Hence, d(a1, a2) + . . . + d(aK−1, aK) ≤ d(a1, aK).

A similar argument shows that d(ak, ak−1) + d(ak−1, ak−2) + . . . + d(a2, a1) ≤ d(ak, a1) �

The following lemma is well known - see, for instance, Heydenreich et al. (2009).

Lemma 5 Suppose for every sequence of alternatives (a1, . . . , ak), we have

k
∑

j=1

d(aj, aj+1) ≥ 0,

where ak+1 ≡ a1. Then, f is cyclically monotone.

16

Proof : Consider any sequence of types (t1i , . . . , t
k
i) such that f(tji) = aj for all j ∈ {1, . . . , k}.

Then, [t2i (a2)−t2i (a1)]+. . .+[tki (ak)−tki (ak−1)]+[t1i (a1)−t1i (ak)] ≥ d(a1, a2)+. . .+d(ak−1, ak)+

d(ak, a1) ≥ 0, where d(a, a) = 0 for any a ∈ Ai by convention. Hence, f is cyclically

monotone. �

Lemma 6 Suppose (a1, . . . , ak) is a path in G(D). Then,

k
∑

j=1

d(aj, aj+1) ≥ 0,

where ak+1 ≡ a1.

Proof : Let (a1, . . . , ak) be a path in G(D). By Lemma 4, d(ak, a1) ≥ d(ak, ak−1) + . . . +

d(a2, a1). Hence,

d(a1, a2) + d(a2, a3) + . . . + d(ak−1, ak) + d(ak, a1) ≥
k−1
∑

j=1

[

d(aj , aj+1) + d(aj+1, aj)
]

= 0,

where the last equality follows from the fact that aj and aj+1 are neighbors for all j ∈

{1, . . . , k − 1} and Lemma 2. �

At this point, it will be useful to consider another graph Gf . 6 The set of nodes in

Gf is the set of alternatives Ai. It is a complete directed graph. Hence, for every pair of

alternatives a, b ∈ Ai, there is an edge from a to b and an edge from b to a. The path from

an alternative a to another alternative b in Gf is a directed path. Note that for every path

(a1, a2, . . . , ak) in Gf from a1 to ak, the corresponding undirected path may or may not exist

in G(D). For any pair of alternatives a1, ak ∈ Ai, denote by distf (a1, ak) the shortest path

length from a1 to ak in Gf .

Lemma 7 For any pair of alternatives a, b ∈ Ai, there exists a path (a1, a2, . . . , ak) in G(D),

where a ≡ a1 and b ≡ ak, such that

k−1
∑

j=1

d(aj, aj+1) = distf(a, b).

Proof : Fix a, b ∈ Ai and choose a shortest path from a to b in Gf . Let this path be

(a′
1, . . . , a

′
h), where a′

1 ≡ a and a′
h ≡ b. Now, take any edge (x, y) in this path. If x and y are

6In Heydenreich et al. (2009), this graph is called the allocation graph.

17

not neighbors in G(D), then by Lemma 5, we can pick any path (x, c1, . . . , cr, y) in G(D) from

x to y, and d(x, y) ≥ d(x, c1)+d(c1, c2)+. . .+d(cr−1, cr)+d(cr, y). For every j ∈ {1, . . . , h−1},

denote such a path from a′
j to a′

j+1 in G(D) as Π(a′
j , a

′
j+1). Combining the paths Π(a′

j, a
′
j+1)

for all j ∈ {1, . . . , k−1}, we get a path from a to b in G(D), which we denote by (a1, . . . , ak)

with a ≡ a1 and b ≡ ak, and some cycles in G(D). By Lemma 6, these cycles have non-

negative length (according to weights defined in Gf). Hence, distf (a, b) ≥
∑k−1

j=1 d(aj, aj+1).

By definition, distf(a, b) ≤
∑k−1

j=1 d(aj, aj+1). Hence, distf(a, b) =
∑k−1

j=1 d(aj , aj+1). �

This leads to the final lemma in the proof of Theorem 1.

Lemma 8 Every cycle of Gf has non-negative length.

Proof : Consider a cycle (a1, . . . , ak, a1) in Gf . By Lemma 7, there is some path (a1, b1, . . . , br, ak)

in G(D) such that d(a1, b1)+d(b1, b2)+. . .+d(br−1, br)+d(br, ak) = distf (a1, ak) ≤ d(a1, a2)+

. . . + d(ak−1, ak). This shows that

d(a1, a2) + . . . + d(ak−1, ak) ≥ d(a1, b1) + d(b1, b2) + . . . + d(br−1, br) + d(br, ak).

Now, consider the path (ak, br, . . . , b1, a1) from ak to a1. By Lemma 4,

d(ak, a1) ≥ d(ak, br) + d(br, br−1) + . . . + d(b2, b1) + d(b1, a1).

Adding the previous two inequalities, we get

k
∑

j=1

d(aj , aj+1) ≥ [d(a1, b1) + d(b1, a1)] + [d(b1, b2) + d(b2, b1)] + . . .

+ [d(br−1, br) + d(br, br−1)] + [d(ak, br) + d(br, ak)]

= 0,

where ak ≡ a1 and the last equality follows from Lemma 2 and the fact that consecutive

alternatives on the path (a1, b1, . . . , br, ak) are neighbors. �

Lemmas 8 and 5 establish that f is cyclically monotone, and hence, implementable. This

completes the proof of Theorem 1.

Remark. The proof of Theorem 1 shows that we only use the lifting properties in Lemma 3.

Hence, Theorem 1 is true in any domain induced from a connected D and satisfying Lemma

3. Further, lifting property can be weakened and we can still satisfy Lemma 3. Such modi-

fications turn out to be cumbersome and do not add any significant domain where Theorem

18

1 holds. Hence, we do not report them here.

Remark. In many contexts, it is natural to assume that there is an alternative whose value

is always zero (for instance, in auction problems, the alternative of not getting any object

gives zero value to the agent). Though we do not explicitly allow this in our model, our

proof can be modified straightforwardly to accommodate the fact that there is an alternative

which is worst ranked and has value zero at every type.

3.3 Payments and Revenue Equivalence

It is well know that if f is implementable, then the following payment rule implements f .

Fix a type si ∈ Di and set pi(ti) = 0 for all ti with f(ti) = f(si). For all ti ∈ Di such

that f(ti) 6= f(si), set pi(ti) equal to distf(f(si), f(ti)). If f is cyclically monotone, then, pi

implements f - see for instance, Vohra (2011) and Kos and Messner (2013).

The characterization of the set of all payment rules that implement an allocation rule is

done using the revenue equivalence principle.

Definition 4 An allocation rule f satisfies revenue equivalence if for all payment rules

pi, qi that implement f , there exists a constant αi ∈ R such that for all ti ∈ Di

pi(ti) = qi(ti) + αi.

In ordinally admissible domain, every onto implementable allocation rule satisfies revenue

equivalence.

Theorem 3 Suppose Di is an ordinally admissible domain. Then every onto implementable

allocation rule f : Di → Ai satisfies revenue equivalence.

The proof of Theorem 3 is in the Appendix. We remark that Chung and Olszewski (2007)

and Heydenreich et al. (2009) have shown that if Di is a connected subset of a topological

space, then every implementable allocation rule satisfies revenue equivalence in such a do-

main. However, since D consists of strict orderings, Di is not connected and hence, our result

is not a direct corollary of their results.

Our domain allows us to be precise on the nature of the shortest paths between any pair

of nodes in Gf . Suppose f is implementable. Now, for any pair of alternatives a, b ∈ Ai,

consider any path (a1, . . . , ak) in G(D), where a1 ≡ a and b ≡ ak. Then, distf(a, b) =

19

∑k−1
j=1 d(aj, aj+1). This follows from the fact that

0 = distf(a, b) + distf(b, a)

≤
k−1
∑

j=1

d(aj, aj+1) +

1
∑

j=k−1

d(aj+1, aj)

=
k−1
∑

j=1

[

d(aj, aj+1) + d(aj+1, aj)
]

= 0,

where the first equality follows from Theorem 3 and the last equality from Lemma 2. Since

in many examples, we know the structure of G(D), this allows us to know the payments in

these domains explicitly.

4 Applications to Single Peaked Domain

We show some applications of our main result in the single peaked domain. To remind,

a single peaked domain is defined as follows. There is a strict ordering ≻ on the set of

alternatives. For any type ti (inducing a strict ordering), we say a ∈ Ai is a peak at ti if

ti(a) > ti(b) for all b ∈ Ai. The peak at type ti will be denoted as τ(ti). A type ti is single

peaked (with respect to ≻) if (a) τ(ti) ≻ a and a ≻ b, implies ti(a) > ti(b) and (b) a ≻ τ(ti)

and b ≻ a implies ti(a) > ti(b). Let D≻
i be the set of all single peaked types in R++. As was

shown earlier, D≻
i is an ordinally admissible domain and our results can be directly applied

on this domain. We show some applications of our results on this domain. We will use the

following notation for the single peaked domain. For any pair of alternatives a, b ∈ Ai with

a ≻ b, denote by B(a, b) the set of all alternatives that are between a and b according to ≻,

i.e., B(a, b) := {c : a ≻ c, c ≻ b}. As before, for any pair of alternatives a, b ∈ Ai with a ≻ b,

a and b are called neighbors if B(a, b) = ∅.

4.1 Local 2-Cycle Monotonicity

In this section, we show that a local version of the 2-cycle monotonicity condition is equivalent

to implementability in single peaked domain. A similar notion of local 2-cycle monotonicity

was defined in Archer and Kleinberg (2008), who used it to show that if the domain is convex,

then local 2-cycle monotonicity is equivalent to implementability. 7

7The result in Archer and Kleinberg (2008) is more general since they consider the case where Ai need

not be finite, but in that case they assume an additional technical condition on f .

20

Definition 5 For any ǫ > 0, an allocation rule f : Di → Ai is 2-cycle monotone in ǫ

neighborhoods if for every ti ∈ Di, and for every si in the open ball around ti of radius ǫ,

[

ti(f(ti)) − ti(f(si))
]

+
[

si(f(si)) − si(f(ti))
]

≥ 0.

An allocation rule f : Di → Ai is locally 2-cycle monotone if it 2-cycle monotone in ǫ

neighborhoods for some ǫ > 0.

We show that this result is true in the single peaked domain.

Theorem 4 Let D≻
i be the single peaked domain. An onto allocation rule f : D≻

i → Ai is

implementable if and only if it is locally 2-cycle monotone.

The proof of Theorem 4 is in the Appendix. It shows that 2-cycle monotonicity is ensured if

it is satisfied in small neighborhoods around every type. Then, the result can be established

by applying Theorem 1.

4.2 Local Incentive Compatibility

We now explore the implications of local incentive compatibility in the single peaked domain.

Definition 6 For any ǫ > 0, a mechanism (f, p) is incentive compatible in ǫ neighborhoods

if for every ti ∈ Di, and for every si in the open ball around ti of radius ǫ,

ti(f(ti)) − pi(ti) ≥ ti(f(si)) − pi(si),

si(f(si)) − pi(si) ≥ si(f(ti)) − pi(ti).

A mechanism (f, p) is locally incentive compatible if it is incentive compatible in ǫ

neighborhoods for some ǫ > 0.

Notice that local incentive compatibility is a local version of incentive compatibility for mech-

anisms. Carroll (2012) shows that if the domain Di is convex, local incentive compatibility

implies incentive compatibility. We show that in the single peaked domain, local incentive

compatibility implies incentive compatibility. 8

Theorem 5 Let D≻
i be the single peaked domain and f : D≻

i → Ai be an allocation rule and

pi : D≻
i → Ai be a payment rule. If (f, pi) is locally incentive compatible then it is incentive

compatible.

8 Carroll (2012) also considers local incentive compatibility in standard ordinal voting models without

transfers, where he considers single peaked domains. His notion of local incentive compatibility in ordinal

models is quite different (see also Sato (2013)).

21

The proof of Theorem 5 is in the Appendix. It uses Theorem 4 and other structural properties

of ordinally admissible domains that we had shown in Section 3.2. The result in Carroll (2012)

requires convex domain assumption and his proof is direct. However, we make use of local

implementability characterization to derive our result. Thus, we make a connection between

local implementability and local incentive compatibility.

5 Relation to the Literature

We discuss specific literature and its relation to our results. In the one dimensional model

of single object auctions, Myerson (1981) characterizes implementable allocation rules using

a monotonicity condition, which is equivalent to 2-cycle monotonicity (Myerson allows for

randomization and considers Bayesian implementation). The cycle monotonicity character-

ization in Rochet (1987) can be thought of as an extension of Myerson’s characterization

to multidimensional models. The recent literature on multidimensional mechanism design

started with the paper of Jehiel et al. (1999) who observed that besides 2-cycle monotonic-

ity, an integral condition is required to ensure Bayesian implementability in multidimensional

environments with randomization. However, if the set of alternatives is finite, the alloca-

tion rule is deterministic and the type space is convex, only 2-cycle monotonicity is suffi-

cient (Bikhchandani et al., 2006; Saks and Yu, 2005; Ashlagi et al., 2010; Gui et al., 2004;

Cuff et al., 2012). 9 Our results are extensions of these results to non-convex type spaces.

Mishra and Roy (2013) also consider a non-convex domain, which they call rich dichotomous

domain, and show that 3-cycle monotonicity is sufficient for implementability in their domain

but 2-cycle monotonicity is not sufficient.

A parallel literature in multidimensional mechanism design pursues domains where rev-

enue equivalence result in Myerson (1981) holds. Contributions to this are Krishna and Maenner

(2001); Milgrom and Segal (2002); Chung and Olszewski (2007); Heydenreich et al. (2009);

Carbajal (2010); Kos and Messner (2013). We use a characterization in Heydenreich et al.

(2009) to prove revenue equivalence in our domains.

Most of the domain restrictions in multidimensional mechanism design is geometric (using

assumptions like convexity or connectedness in topological spaces). Our ordinally admissi-

ble domain formulation is influenced by a vast literature in strategic social choice theory

where transfers are not allowed. For instance, the connectedness and lifting properties

9There are many papers which characterize different extensions of implementability in convex do-

mains using 2-cycle monotonicity and additional technical conditions - for Bayes-Nash implementation,

see Jehiel et al. (1999) and Muller et al. (2007); for randomized implementation, see Archer and Kleinberg

(2008); for implementation with general value functions, see Berger et al. (2010) and Carbajal and Ely

(2013); for extension of cycle monotonicity to general environments, see Rahman (2011).

22

we discuss have close resemblance to similar properties being used to identify dictatorial

domains (Aswal et al., 2003), median domains (Chatterji et al., 2013; Nehring and Puppe,

2007), tops-only domains (Chatterji and Sen, 2011; Weymark, 2008) in social choice theory.

We find it interesting to observe that such conditions could be used in multidimensional

mechanism design models with transfers to derive sufficient conditions for implementability.

Since most of our non-convex domains are single peaked domains or their generalizations,

we will like to point out that strategic social choice theory, starting with Moulin (1980)

and Sprumont (1991), have a long tradition of studying these domains without monetary

transfers. However, allowing for transfers in many of these domains is practical in many of

these models. Hence, our results extend this literature to the case of transfers. At the same

time, our characterizations using 2-cycle monotonicity are only implicit characterizations,

unlike the characterizations in the strategic social choice theory, which are more explicit

in describing the form of the implementable allocation rules. The counterpart to such ex-

plicit characterizations in the multidimensional mechanism design with transfers literature

is Roberts’ theorem (Roberts, 1979), who showed that affine maximizers are the only imple-

mentable allocation rules in the complete domain. We leave such characterizations in single

peaked domains for future research.

We applied our results to derive specific results in the single peaked domain. A small

literature in computer science has applied cycle monotonicity to derive computational results

- see for instance Lavi and Swamy (2009); Babaioff et al. (2013). In contrast, our application

is about understanding the connection between local incentive constraints and incentive

compatibility.

6 Conclusion

We have provided necessary and sufficient conditions for implementability in domains involv-

ing some ordinal restrictions. Our domains include many interesting non-convex domains

such as the single peaked domain and its generalizations. However, many interesting (non-

convex) domains are still not covered by our result. Investigation of such domains is left

as a direction for future research. Some other relaxations of the current model can also be

investigated. For instance, the consequence of allowing infinite set of alternatives, consid-

ering randomized allocation rules, and Bayesian incentive compatibility in such models is

not known yet. These questions are left for future. Finally, the difficult problem of finding

expected revenue maximizing mechanisms in such multidimensional domains still remains an

open problem.

23

Appendix: Omitted Proofs

Proof of Theorem 2.

Proof : By Rochet (1987); Rockafellar (1970), implementability implies cycle monotonicity.

Suppose Di is an ordinally admissible domain and f : cl(Di) → Ai is 2-cycle monotone.

Let f̄ : Di → Ai be the restriction of f to Di. Since f is 2-cycle monotone, f̄ is 2-cycle

monotone. By Theorem 1, f̄ is implementable, and hence cyclically monotone. Assume for

contradiction that f is not cyclically monotone. Then, by Lemma 5, there exists a sequence

of alternatives (a1, . . . , ak) such that
∑k

j=1 d(aj, aj+1) < 0, where ak+1 ≡ a1.

Now, consider any j ∈ {1, . . . , k}, let ti ∈ cl(Di) be such that f(ti) = aj+1 and

d(aj, aj+1) < ti(aj+1) − ti(aj) < d(aj , aj+1) + ǫ for some ǫ > 0 and arbitrarily close to

zero. By definition, there must exist an ordering P ∈ D such that ti is the limit point of a

sequence of types in Di each inducing the ordering P . Notice that for any pair of alternatives

a, b ∈ Ai, if aPb then ti(a) ≥ ti(b).

Suppose aj+1Paj - a similar proof works if ajPaj+1. By top lifting, there is an ordering

P ′ ∈ D such that P ′(1) = aj+1 and for all a ∈ Ai if aPaj then aP ′aj and if ajPa then ajP
′a.

Now, choose ǫ′ > 0 but arbitrarily close to zero and construct a new type tj+1
i satisfying the

following requirement:

tj+1
i (x) =

ti(x) if x = aj+1

ti(x) − ǫ if x = aj

∈ (0, ti(x)) if x /∈ {aj , aj+1},

Note that by top lifting, such a tj+1
i can be constructed such that it lies in Di and induces

P ′ ∈ D. Further, since tj+1
i (aj+1) − ti(aj+1) = 0 > tj+1

i (a) − ti(a) for all a 6= aj+1, 2-cycle

monotonicity implies that f(tj+1
i) = f̄(tj+1

i) = aj+1.

Finally, tj+1
i (aj+1) − tj+1

i (aj) = ti(aj+1) − ti(aj) + ǫ′. Hence, d(aj, aj+1) < tj+1
i (aj+1) −

tj+1
i (aj) < d(aj, aj+1)+ ǫ′ + ǫ. Adding over all j ∈ {1, . . . , k} and denoting ak+1 ≡ a1, we get

k
∑

j=1

[

tj+1
i (aj+1) − tj+1

i (aj)
]

<

k
∑

j=1

d(aj , aj+1) + k(ǫ′ + ǫ).

Since ǫ and ǫ′ can be made arbitrarily close to zero,

k
∑

j=1

[

tj+1
i (aj+1) − tj+1

i (aj)
]

≤
k

∑

j=1

d(aj , aj+1) < 0,

where the last inequality follows from our assumption. However, the ordering induced by

24

tj+1
i is a strict ordering, and hence, tj+1

i ∈ Di. By cycle monotonicity of f̄ , we know that

k
∑

j=1

[

tj+1
i (aj+1) − tj+1

i (aj)
]

≥ 0.

This is a contradiction. �

Proof of Theorem 3.

Proof : Heydenreich et al. (2009) showed that an implementable allocation rule f satisfies

revenue equivalence if and only if distf(a, b) + distf (b, a) = 0 for all a, b ∈ Ai. We show

that this property is satisfied in our ordinally admissible domains. To see this, fix a pair of

alternatives, a, b ∈ Ai. Since f is cyclically monotone, distf (a, b)+distf (b, a) ≥ 0 - the union

of a shortest path from a to b and a shortest path from b to a gives rise to cycles, which have

non-negative length due to cycle monotonicity. We show that distf (a, b) + distf (b, a) ≤ 0,

and this will prove the theorem. By Lemma 7, there is some path (a1, . . . , ak), with a ≡ a1

and b ≡ ak between a and b in G(D) such that distf(a, b) =
∑k−1

j=1 d(aj , aj+1). But

distf (a, b) +
1

∑

j=k−1

d(aj+1, aj) =
k−1
∑

j=1

[

d(aj, aj+1) + d(aj+1, aj)
]

= 0,

where the equality follows from Lemma 2. By definition, distf(b, a) ≤
∑1

j=k−1 d(aj+1, aj).

Hence, distf(a, b) + distf(b, a) ≤ 0. �

Proof of Theorem 4.

Proof : Let f : D≻
i → Ai be a locally 2-cycle monotone allocation rule. We will show that

f is 2-cycle monotone, and by Theorem 1, f is implementable. Suppose ǫ > 0 such that for

every t̄i ∈ D≻
i and every s̄i in the open ball around t̄i of radius ǫ, the 2-cycle monotonicity

condition between s̄i and t̄i holds.

Consider any two types si, ti and let f(si) = a, f(ti) = b. If a = b, then [ti(f(ti)) −

ti(f(si))]+ [si(f(si))− si(f(ti))] = 0, and we are done. So, assume that a 6= b. In particular,

suppose a ≻ b. Assume for contradiction [ti(b) − ti(a)] + [si(a) − si(b)] < 0. Suppose

si(a) < si(b). Let the strict ordering induced by si be P . Notice that the set of all types

that induce the ordering P is a convex set - we denote this set as Di(P). The restriction of f

onto Di(P) is locally monotone and since Di(P) is convex, by Archer and Kleinberg (2008),

f restricted to Di(P) is 2-cycle monotone. As a result, we can construct the following type

s′i ∈ Di(P) and apply 2-cycle monotonicity between si and s′i. Choose ǫ′ > 0 but arbitrarily

25

close to zero.

s′i(x) =

si(x) if x = a

si(x) − ǫ′ if x = b

∈ (si(b) − ǫ′, si(b)) if si(x) > si(b)

∈ (si(a), si(a) + ǫ′) if si(a) < si(x) < si(b)

∈ (0, ǫ′) otherwise.

Figure 5 shows a rough sketch of how s′i can be constructed from si. The type si is shown

with solid blue lines and the type s′i is shown with dashed red lines in Figure 5.

s’_i

a b

s_i

Figure 5: Illustration of si and s′i.

Since s′i(x) < si(x) for all x 6= a and s′i(a) = si(a), by 2-cycle monotonicity f(s′i) = a.

Notice that the value of s′i(a)−s′i(b) is arbitrarily close to si(a)−si(b). The type s′i need not

satisfy τ(s′i) = b. But we can construct a type s′′i by perturbing s′i around its ǫ neighborhood

and lowering the value of all alternatives which are above b by a small amount and the value

of all other alternatives except a, by even smaller amount such that τ(s′′i) = b. This is

possible because for all x with s′i(x) > s′i(b), we have s′i(x) ∈ (si(b) − ǫ′, si(b)). Hence, we

can apply local 2-cycle monotonicity between s′i and s′′i to conclude that f(s′′i) = a. Let the

ordering induced by s′′i be P ′. We can again lower the values of all the alternatives which

lie in B(a, b) to a value in (s′′i (a), s′′i (a) + ǫ′) and which lie outside B(a, b) (but not a or

b) to a value in (0, ǫ′), while still inducing the ordering P ′. Let this type be ŝi. Applying

2-cycle monotonicity between s′′i and ŝi, we conclude that f(ŝi) = a. Further, ŝi(a) − ŝi(b)

is arbitrarily close to si(a) − si(b) and τ(ŝi) = b.

We now consider two cases.

Case 1. ti(b) > ti(a). Then, as we constructed ŝi, we can construct a new type t̂i inducing

the ordering P ′ with f(t̂i) = b, τ(t̂i) = b, and t̂i(b) − t̂i(a) arbitrarily close to ti(b) − ti(a).

Since t̂i and ŝi induce the same ordering P ′, we can apply 2-cycle monotonicity between

them to conclude [ŝi(a) − ŝi(b)] + [t̂i(b) − t̂i(a)] ≥ 0. But [ŝi(a) − ŝi(b)] + [t̂i(b) − t̂i(a)] is

26

arbitrarily close to [si(a) − si(b)] + [ti(b) − ti(a)], which is negative. This is a contradiction.

Case 2. ti(a) > ti(b). Then, as we constructed ŝi, we can construct a new type t̂i such that

f(t̂i) = b, τ(t̂i) = a, and t̂i(b)− t̂i(a) arbitrarily close to ti(b)−ti(a). Next, we transform t̂i to

t̄i as follows. From t̂i, we decrease the value of all alternatives except a and b by arbitrarily

small amount and we decrease the value of alternative a to a level arbitrarily close to t̂i(b)

but still making it the peak. This new type is t̄i. Note that we can do this transformation

such that t̄i and t̂i induce the same ordering. Hence, by 2-cycle monotonicity, f(t̄i) = b.

Further, τ(t̄i) = a, and t̄i(b) − t̄i(a) < 0 but arbitrarily close to zero. Then, we construct a

new type t∗i by perturbing t̄i around its ǫ neighborhood to induce the ordering induced by

ŝi. Further, we can do so by maintaining t∗i (b) = t̄i(b) and t∗i (x) < t̄i(x) for all x 6= b. By

local 2-cycle monotonicity, f(t∗i) = f(t̄i) = b. Since t∗i and ŝi induce the same ordering, we

can apply 2-cycle monotonicity between them to conclude [ŝi(a)− ŝi(b)]+ [t∗i (b)− t∗i (a)] ≥ 0.

But t∗i (b)− t∗i (a) is arbitrarily close to zero and ŝi(a)− ŝi(b) < 0. This is a contradiction. �

Proof of Theorem 5.

Proof : Since (f, pi) is locally incentive compatible, adding the incentive constraints of any

pair of types in an ǫ neighborhood ensures that f is locally 2-cycle monotone. By Theorem

4, f is cycle monotone. We use this fact and do the proof in three steps.

Step 1. First, we show that for any type ti ∈ D≻
i , agent i cannot manipulate to a type

si ∈ D≻
i such that f(si) = f(ti). Assume for contradiction that si, ti ∈ D≻

i such that

f(si) = f(ti) = a and ti(a) − pi(ti) < ti(a) − pi(si) or pi(si) < pi(ti).

Now, we go from si to another type s̄i, where τ(s̄i) = a. This can be done in a sequence of

steps. In each step, value of alternative a is increased slightly, but value of other alternatives

are decreased. In particular, value of those alternatives whose value is larger than si(a)

are decreased at a faster rate than those whose value is smaller than si(a). These rates

can be chosen such that the value of alternatives except a can be made arbitrarily close to

zero. If these sequence of types are within ǫ neighborhood of each other, local incentive

compatibility holds between them. Further, by 2-cycle monotonicity f chooses a in each

type of this sequence. By local incentive compatibility, the payment at each type in this

sequence must be the same. Hence, f(s̄i) = a and pi(s̄i) = pi(si).

In a similar fashion, we can construct a type t̄i with f(t̄i) = a, τ(t̄i) = a, pi(t̄i) = pi(ti),

and t̄i(x) is arbitrarily close to zero if x 6= a. If t̄i(a) = s̄i(a), then s̄i is in the ǫ neighborhood

of t̄i. Hence, local incentive compatibility implies that pi(t̄i) = pi(s̄i). This is a contradiction.

Else, suppose t̄i(a) < s̄i(a) - a similar proof works if t̄i(a) > s̄i(a). Now, we increase the

27

value of t̄i(a) in small steps to reach s̄i(a) value, and denote this new type as s̃i. By virtue

of 2-cycle monotonicity, for each type in this sequence, f chooses a. Further, local incentive

compatibility ensures that the payment for each type in this sequence is the same. Hence,

f(s̃i) = a and pi(s̃i) = pi(s̄i) = pi(si). But s̃i is in the ǫ neighborhood of t̄i. Hence, local in-

centive compatibility implies pi(s̃i) = pi(t̄i). This implies that pi(si) = pi(ti), a contradiction.

Step 2. Next, we show that for any type ti ∈ D≻
i , agent i cannot manipulate to a type

si ∈ D≻
i such that f(si) and f(ti) are neighbors. Assume for contradiction that si, ti ∈ D≻

i

such that f(ti) = a, f(si) = b, a and b are neighbors, and ti(a) − pi(ti) < ti(b) − pi(si). By

Step 1, we can abuse notation to write pi as a map pi : A → R. Hence, pi(a) − pi(b) >

ti(a) − ti(b) ≥ d(b, a). Hence, there is a type t̄i such that f(t̄i) = a and t̄i(a) − t̄i(b) is

arbitrarily close to d(b, a). Moreover, by 2-cycle monotonicity, such a type t̄i can be chosen

such that the value of all alternatives besides a and b are arbitrarily close to zero. By Lemma

2, if f is 2-cycle monotone, d(a, b) = −d(b, a). Hence, there is a type t̃i arbitrarily close to t̄i

such that f(t̃i) = b and t̃i(b) − t̃i(a) is arbitrarily close to d(a, b). Then, we can apply local

incentive compatibility between t̄i and t̃i to conclude that t̄i(a) − pi(a) ≥ t̄i(b) − pi(b). This

implies that t̄i(a)− t̄i(b) ≥ pi(a)− pi(b). Since t̄i(a)− t̄i(b) is arbitrarily close to d(b, a), this

contradicts the fact that pi(a) − pi(b) > d(b, a).

Step 3. Now, to show (f, pi) is incentive compatible, it suffices to show that for every

a, b ∈ A,

pi(b) − pi(a) ≤ d(a, b).

Choose a, b ∈ A, and assume without loss of generality that a ≻ b. Consider a sequence

of alternatives (a0 ≡ a, a1, . . . , ak, ak+1 ≡ b) such that for all j ∈ {0, 1, . . . , k}, we have aj

and aj+1 are neighbors and aj ≻ aj+1. By Step 2, we get pi(aj+1) − pi(aj) ≤ d(aj, aj+1)

for all j ∈ {0, 1, . . . , k}. Adding these over all j ∈ {0, 1, . . . , k}, we get pi(b) − pi(a) ≤
∑k

j=0 d(aj , aj+1) ≤ d(a, b), where the last inequality is due to 2-cycle monotonicity and

Lemma 4. �

References

Archer, A. and R. Kleinberg (2008): “Truthful Germs are Contagious: A Local to

Global Characterization of Truthfulness,” in In Proceedings of the 9th ACM conference on

Electronic commerce (EC-08), Springer (Lecture Notes in Computer Science).

28

Ashlagi, I., M. Braverman, A. Hassidim, and D. Monderer (2010): “Monotonicity

and Implementability,” Econometrica, 78, 1749–1772.

Aswal, N., S. Chatterji, and A. Sen (2003): “Dictatorial domains,”Economic Theory,

22, 45–62.

Babaioff, M., R. Kleinberg, and A. Slivkins (2013): “Multi-parameter Mechanisms

with Implicit Payment Computation,” in Proceedings of the ACM Conference on Electronic

Commerce, ACM Press, Forthcoming.

Berger, A., R. Muller, and S. H. Naeemi (2010): “Path-Monotonicity and Incentive

Compatibility,” Working Paper, Maastricht University.

Bikhchandani, S., S. Chatterji, R. Lavi, A. Mualem, N. Nisan, and A. Sen

(2006): “Weak Monotonicity Characterizes Deterministic Dominant Strategy Implemen-

tation,” Econometrica, 74, 1109–1132.

Carbajal, J. C. (2010): “On the Uniqueness of Groves Mechanisms and the Payoff Equiv-

alence Principle,” Games and Economic Behavior, 68, 763–772.

Carbajal, J. C. and J. Ely (2013): “Mechanism Design without Revenue Equivalence,”

Journal of Economic Theory, 148, 104–133.

Carroll, G. (2012): “When Are Local Incentive Constraints Sufficient?” Econometrica,

80, 661–686.

Chatterji, S., R. Sanver, and A. Sen (2013): “On domains that admit well-behaved

strategy-proof social choice functions,” Journal of Economic Theory, 148, 1050–1073.

Chatterji, S. and A. Sen (2011): “Tops-only domains,” Economic Theory, 46, 255–282.

Chung, K.-S. and W. Olszewski (2007): “A Non-Differentiable Approach to Revenue

Equivalence,” Theoretical Economics, 2, 1–19.

Cuff, K., S. Hong, J. A. Schwartz, Q. Wen, and J. Weymark (2012): “Dominant

Strategy Implementation with a Convex Product Space of Valuations,” Social Choice and

Welfare, 39, 567–597.

Gui, H., R. Muller, and R. Vohra (2004): “Characterizing Dominant Strategy Mech-

anisms with Multidimensional Types,” Working Paper, Northwestern University.

Heydenreich, B., R. Muller, M. Uetz, and R. V. Vohra (2009): “Characterization

of Revenue Equivalence,” Econometrica, 77, 307–316.

29

Jehiel, P., B. Moldovanu, and E. Stacchetti (1999): “Multidimensional Mechanism

Design for Auctions with Externalities,” Journal Economic Theory, 85, 258–293.

Kos, N. and M. Messner (2013): “Extremal Incentive Compatible Transfers,” Journal of

Economic Theory, 148, 134–164.

Krishna, V. and E. Maenner (2001): “Convex Potentials with an Application to Mech-

anism Design,” Econometrica, 69, 1113–1119.

Lavi, R. and C. Swamy (2009): “Truthful Mechanism Design for Multidimensional

Scheduling via Cycle Monotonicity,” Games and Economic Behavior, 67, 99–124.

Milgrom, P. and I. Segal (2002): “Envelope Theorems for Arbitrary Choice Sets,”

Econometrica, 70, 583–601.

Mishra, D. and S. Roy (2013): “Implementation in Multidimensional Dichotomous Do-

mains,” Theoretical Economics, 8, 431–466.

Moulin, H. (1980): “On Strategyproofness and Single-peakedness,” Public Choice, 35, 437–

455.

Muller, R., A. Perea, and S. Wolf (2007): “Weak Monotonicity and Bayes-Nash

Incentive Compatibility,” Games and Economics Behavior, 61, 344–358.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Research,

6, 58–73.

Nehring, K. and C. Puppe (2007): “The structure of strategy-proof social choiceÑPart I:

General characterization and possibility results on median spaces,” Journal of Economic

Theory, 135, 269–305.

Rahman, D. (2011): “Detecting Profitable Deviations,” Working Paper, University of Min-

nesota.

Roberts, K. (1979): The Characterization of Implementable Choice Rules, North Holland

Publishing, chap. Aggregation and Revelation of Preferences, 321–348, editor: J-J. Laffont.

Rochet, J. C. (1987): “A Necessary and Sufficient Condition for Rationalizability in a

Quasi-linear Context,” Journal of Mathematical Economics, 16, 191–200.

Rockafellar, R. T. (1970): Convex Analysis, Princeton University Press.

30

Saks, M. E. and L. Yu (2005): “Weak Monotonicity Suffices for Truthfulness on Convex

Domains,” in Proceedings of 7th ACM Conference on Electronic Commerce, ACM Press,

286–293.

Sato, S. (2013): “A Sufficient Condition for the Equivalence of Strategy-proofness and

Nonmanipulability by Preferences Adjacent to the Sincere One,” Journal of Economic

Theory, 148, 259–278.

Sprumont, Y. (1991): “The Division Problem with Single-Peaked Preferences: A Charac-

terization of the Uniform Allocation Rule,” Econometrica, 59, 509–519.

Vohra, R. V. (2011): Mechanism Design: A Linear Programming Approach, Cambridge

University Press.

Weymark, J. A. (2008): “Strategy-Proofness and the Tops-Only Property,” Journal of

Public Economic Theory, 10, 7–26.

31

	dp12-04cov
	cycle-1
	Introduction
	Implementation and Cycle Monotonicity
	A Motivating Example

	Domains with Ordinal Restrictions
	Examples
	Proof of Theorem 1
	Payments and Revenue Equivalence

	Applications to Single Peaked Domain
	Local 2-Cycle Monotonicity
	Local Incentive Compatibility

	Relation to the Literature
	Conclusion

