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Abstract

We study an evolutionary model in which strategy revision protocols are based on agent
specific characteristics rather than wider social characteristics. We assume that agents are
primed to play a mixed strategy, with the weights on each pure strategy modifiable on the basis
of experience. At any time, the distribution of mixed strategies over agents in a large population
is described by a probability measure on the space of mixed strategies. In each round, a pair of
randomly chosen agents play a symmetric game, after which they update their mixed strategies
using a reinforcement learning rule based on payoff information. The resulting change in the
distribution over mixed strategies is described by a non-linear continuity equation — in its
simplest form a first order partial differential equation associated with the classical replicator
dynamics. We provide a general solution to this equation in terms of solutions to an associated
finite-dimensional dynamical system. We use these results to study in detail the evolution of
mixed strategies in various classes of symmetric games, and in a simple model of price dispersion.
A key finding is that, when agents carry mixed strategies, distributional considerations cannot
be subsumed under a classical approach such as the deterministic replicator dynamics.
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1 Introduction

It is well accepted that individuals arrive at most economic decisions through a learning process
that is based on their personal experience. This is well recognized in the extensive literature on
learning by individual players in finite player games (see Young, 2007 for a review of this literature).
Perhaps the simplest experienced-based learning protocol is reinforcement learning, a procedure
under which each of several possible actions open to an agent is rewarded (or penalized) according
to its performance against some learning criterion. Reinforcement protocols have considerable
empirical support (e.g. Erev and Roth, 1998). Under reinforcement learning, an individual carries
an internal mixed strategy, construed as the agent’s behavioral disposition, and it is this that is
modified by reinforcement through adjustment of the weights on each pure strategy. Such learning
has been extensively investigated, beginning with Cross (1973), who proposed a simple rule that
reinforcement should be proportional to a player’s payoff. This suggestion was later taken up
and elaborated by Börgers and Sarin (1997, 2000), Hopkins (1998) and Börgers et al (2004), who
showed that there is a close relationship between this type of learning rule and the classical replicator
dynamics of evolutionary game theory (Taylor and Jonker, 1978).

It is therefore reasonable to believe that individuals will also use experience based learning to
guide their behavior when they play as members of large populations. Yet, in the literature on
evolutionary game theory, which studies the evolution of social behavior in large populations, there
is scant recognition of this feature of human learning. Instead, agents are assumed to arrive at
decisions on which pure strategy to play on the basis of certain observations about some social
characteristics that are external to themselves. For example, in the imitative revision protocols
that generate the replicator dynamic, an individual imitates the strategy of a more successful
rival. In the best response protocol, an agent observes the current social state (the distribution in
the population of different pure strategy players) and plays the strategy yielding the best expected
payoff. We therefore believe that it is meaningful to ask what shape the evolution of social behaviour
takes when individual agents are allowed to interact on the basis of experience based learning. This
paper develops a formal approach to analyze this question.

The conditioning of revision protocols in evolutionary game theory on observations of external
social characteristics is a legacy of the origins of the field in biology. The evolutionary process
in biology is modeled as an automatic process, driven by births and deaths, working to increase
the frequency of better performing strategies. In economics, this has been directly translated
into imitative revision protocols yielding the replicator dynamic (Börnerstedt and Weibull, 1996;
Schlag, 1998). These protocols have the advantage that they require very little information for their
implementation; calling for nothing more than the ability to observe the strategy of a randomly
chosen member of the population. However, the range of situations of an economic or social
interest over we may expect naive imitative behavior to apply is likely to be limited. In order
to allow for more sophisticated behavior, evolutionary game theory has also incorporated more
elaborate revision procedures like best response or its smoothened version, the perturbed best

1



response.1 However, these revision protocols have the disadvantage of making extremely onerous
informational demands: an agent needs to observe the entire social state before calculating the
payoffs of each strategy as an expectation over the social state. It is unlikely that in a decentralized
environment agents would be privy to such detailed information about the social state, thereby
rendering the implementation of such revision protocols essentially unfeasible.

In contrast, the evolutionary framework that we construct is free from such onerous informa-
tional requirements, being based on strategy revision protocols that require only knowledge of
agent-specific characteristics rather than of wider social characteristics. This allows a greater range
of behaviors—whether resulting from conscious deliberation or from essentially subconsciously
processes—to be feasibly implemented, thereby doing justice to a greater range of the cognitive
abilities of human agents. In particular, we use revision protocols based on reinforcement learning,
since, as noted earlier, these are both simple and extremely parsimonious in the information re-
quired for their implementation, as well as having empirical support, as documented by Erev and
Roth (1998). However, our general theoretical framework can be adapted to other learning mech-
anisms like regret matching (Hart and Mas-Colell, 2000) or stochastic fictitious play (Fudenberg
and Levine, 1998). The application of rules from the learning literature to the study of evolution
of social behavior also formally links together the work in these two fields.

Within reinforcement learning, we focus on a specific rule—the Cross (1973) learning rule, as
developed by Börgers and Sarin (1997). Under this rule, the decision maker increases the probability
of the action he chose in the last round in proportion to the payoff received, while reducing the
probability of the other actions proportionately. Our focus on the Cross learning rule allows us to
adapt the axiomatic learning framework developed in Borgers et. al. (2004) into the analysis of
large population models. In this approach, learning rules are evaluated not the basis of any heuristic
plausibility but according to their confirmity to certain fundamental principles; namely absolute
expediency and monotonicity. The former condition requires that the expected payoff obtained
from a learning rule strictly increase over time whereas the latter demands that the probability
assigned to the best actions increase over time. This axiomatic approach clearly has the advantage
of establishing rigorous benchmarks for the admissibility of a strategy revision rule. Traditionally,
evolutionary game theory, instead of axiomatizing individual behavior, has adopted certain group
characteristics such as monotone percentage growth rate or Nash stationarity as the desiderata
that a dynamic model should satisfy.2 However, in a model of atomistic individuals guided by self
interest, we believe that the foundational principles used to validate a model should apply at the
level of individual behavior. The Cross rule, as shown in Börgers et. al. (2004), is the prototype
of the class of rules that satisfy their two fundamental axioms. Our approach therefore allows us

1These revision protocols generate respectively the best response dynamic (Gilboa and Matsui, 1991) and the
perturbed best response dynamic (Hofbauer and Sandholm, 2005). The prototypical perturbed best response dy-
namic is the logit dynamic (Fudenberg and Levine, 1998). See Weibull (1995), Hofbauer and Sigmund (1988, 1998),
Samuelson (1997), and Sandholm, 2009, for book level reviews of evolutionary game theory.

2See Sandholm (2009) for a review of these conditions. Monotone percentage growth rate, or its weaker counter-
part, positive correlation ensures a positive relationship between the payoff of a strategy and the growth rate of its
population share while Nash stationarity ensures that the population is at rest at a Nash equilibrium.
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to provide more rigorous foundations to evolutionary game theory.
The analysis in Börgers and Sarin (1997) also shows that under the Cross learning rule, the

expected change in the mixed strategy of a player is given by the replicator dynamic. Since they
focus on learning in finite player models, this finding does not have any immediate implication
concerning the evolutionary consequences of Cross-like rules in large population models. Neverthe-
less, this does suggest the possibility that the application of Cross’ rule in large population models
should lead to an evolutionary process that is associated to the replicator dynamic. We explore this
question in this paper and find that this is indeed so: under Cross’ rule (as deployed by Börgers
and Sarin, 1997), the evolution of the proportion of players playing a particular pure action is given
by an adjusted form of the replicator dynamic.

We begin by formalizing the application of a general experience based learning rule to a large
population model. The first key point is that, to apply reinforcement type learning to population
games, agents must be assumed to use individual mixed strategies. This contrasts sharply with
almost all developments of evolutionary game models, which assume that agents are primed to play
pure strategies, and that it is the proportions of players that play different pure strategies that
changes over time3. With agents playing mixed strategies, the population state is now specified
by a probability measure over the space of mixed strategies (a simplex), and it is this population
distribution that changes over time in response to agents’ learning. The main challenge is to develop
a technique to analyze the evolution of this population distribution. We consider a situation in
which players from the same population are randomly matched to play a two player symmetric game.
Matchings last for one period and in each new matching, players revise their mixed strategies using
some general experience based strategy revision rule such as reinforcement learning. We note that
this introduces a radical form of agent heterogeneity into the population, extending the classical
setting in which all agents use a fixed mixed strategy or, equivalently, a fixed mixture of pure
strategies. As players revise their strategies, the population state changes in a specifiable way that
depends on the form of the learning rule. By making the time difference between successive matches
go to zero, we are able to track the change in the population state by using a generalization to a
probability measure setting of a first-order partial differential equation system akin to the continuity
equations commonly encountered in physics in the study of conserved quantities, such as bulk
fluids.4 Under plausible assumptions, we construe this continuous-time limit of the discrete-time

3Hines (1980) and Zeeman (1981) are two examples from the early biology literature on the evolution of mixed
strategies. These papers use straightforward adaptations of different versions of the replicator dynamic (see footnote
13) to study the evolution of mixed strategies using the standard biological motivation that the growth of the popu-
lation share using a strategy is proportional to the advantage of that strategy over the mean strategy. This approach
cannot be directly translated into the study of human interaction since the analogous motivation of imitating suc-
cessful strategies is inapplicable due to the non-observability of mixed strategies. Our reinforcement based approach,
of course, does not suffer from this drawback.

4In physics, the continuity equation is a linear partial differential equation that describes the rate of change in the
mass of fluid in any part of the medium through which it is flowing. See, for example, Margenau and Murphy (1962).
However, our continuity equations concern the change in probability mass of agents in any part of mixed-strategy
space, and differ from classical versions encountered in physics in that they contain non-linearities. See Ramsza and
Seymour (2009) for an application of continuity equation techniques to track the evolution of fictitious play updating
weights in a population game. Our paper provides a more general method of constructing continuity equations that
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matching routine as equivalent to the limit as the population size becomes infinite.
From the general continuity equation, we generate one particular form—the replicator continuity

equation—using the Börgers and Sarin (1997) version of the Cross learning rule. The name we
have chosen for this dynamic reflects the connection between this rule and the classical replicator
dynamic. The continuity equation can also be applied to follow the evolution of the mean of the
population state which is the aggregate social state: the proportion of agents playing different pure
actions. We show that the mean dynamic corresponding to the replicator continuity equation is the
classical replicator dynamic adjusted for a covariance term. This confirms the intuition obtained
from Börgers and Sarin (1997) that the application of the Cross learning rule to a population
would generate an evolutionary process closely related to the classical replicator dynamic. We
reiterate, however, that the microfoundations of the continuity dynamic is very different from the
imitation type protocols usually invoked to generate the classical replicator dynamic. Further,
by applying learning algorithms explicitly to large population models, our work provides a more
general perspective on the link between learning and evolution.

We solve the replicator continuity equation using standard methods based on Liouville’s for-
mula.5 To characterize solutions explicitly requires us to derive an associated ODE system whose
solutions describe trajectories of certain aggregate quantities associated to the population means.
We call this ODE system the distributional replicator dynamics. We show that the continuity
replicator dynamics has many stationary solutions, in particular any probability distribution over
mixed strategies having mean that is a Nash equilibrium. Thus, equilibrium populations can be
very heterogeneous, with individuals playing any mixed strategy with positive probability, but with
population mean a Nash equilibrium.

We then apply the replicator continuity equation to the analysis of evolution in three classes
of symmetric games that have been extensively studied in evolutionary game theory literature:
negative definite and semi-definite games, positive definite games and doubly symmetric games.
We focus on the evolution of the mean of the population distribution. Even though agents are
playing mixed strategies, the observable social state is the distribution across pure actions. By the
law of large numbers, this is identical to the mean social state or the aggregate social state. In
addition, focusing on the aggregate state provides a natural way to compare our results with the
the results from conventional evolutionary game theory.

Under weak assumptions on the initial population distribution we show that, for negative-
definite games the unique Nash equilibrium is globally asymptotically stable. In contrast, for
positive definite games we show that any interior mixed Nash equilibrium is unstable. For doubly
symmetric games, we show that the mean state converges to some Nash equilibrium. These results
are of course consistent with the larger set of stability results under conventional evolutionary

can be used for a variety of learning algorithms.
5This formula expresses the time evolution of the probability density function as a function of the initial probability

density and the deterministic trajectories of the underlying characteristic ODE system, which describes the motion
of individual agents in the population– see, section 4 below. The classical Liouville formula describes the change in
volume along flow lines of an underlying dynamical system see, for example, Hartman (1964). Related versions are
discussed in Weibull (1995) and Hofbauer and Sigmund (1998).
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dynamics in these classes of games (for a review, see Sandholm 2009). Nevertheless, these results are
important since they hold even under the different evolutionary paradigm that we have developed.

However, even when the aggregate social state converges to a Nash equilibrium of the game
under the continuity replicator dynamics, it is not necessarily the case that the associated limiting
population probability distribution is a mass point at a Nash equilibrium. Equilibrium population
distributions over mixed strategies are often complex objects, defining highly heterogeneous behav-
iors within an equilibrium population, though the mean behavior is a Nash equilibrium. We go on
to characterize such limiting distributions.

We then discuss some simple examples. First, we characterize convergence of the mean popula-
tion state for generic 2×2 symmetric games. We find that the limiting aggregate social state is the
same Nash equilibrium that would result under the classical replicator dynamic, provided the initial
point in the latter case is identical to the initial aggregate state in the former case. However, this
conclusion does not hold for n×n symmetric games with n > 2, and we provide a counter-example
for n = 3 in which the two dynamics converge to different pure equilibria. Hence, expanding the
behavioral flexibility of agents to allow use of mixed strategies in evolutionary contexts has real
consequences, in that it can lead to radically different conclusions about the equilibrium social
state.

Finally, we provide an illustrative economic application of our model using a simplified case
of the Burdett and Judd (1983) model of price dispersion. We show that mixed equilibria (the
dispersed price equilibria) of this simplified model are unstable under the replicator continuity
equation. Results of a similar nature have been obtained in Hopkins and Seymour (2002) and
Lahkar (2010) under the replicator dynamic and logit dynamic, respectively. However, in our
model, players reinforce any particular price based on whether that price led to a sale or not in the
previous round of the game. In light of our comments about the greater plausibility of experience
based learning rather than observation based learning, we believe that this is a more realistic way
to model seller behavior.

The remainder of this paper is organized as follows. In section 2 we set out the formal evolution-
ary model based on an abstract form of reinforcement learning for 2 player symmetric games, and
show how the continuous-time limit of this general model leads to a continuity equation. Section 3
presents the Cross (1973) learning rule and shows that this rule generates the replicator continuity
equation. We also characterize the rest points under this dynamic. In section 4, we introduce Liou-
ville’s formula in a general context, and use this formula to solve a generalized form of the replicator
continuity equation in section 5. In section 6, we introduce the distributional replicator dynamics,
a system of autonomous ODEs and show how their solutions determine the distributional solution
of the replicator continuity equation. Section 7 contains applications to the three classes of games
mentioned above, and section 8 characterizes limiting population distributions for dynamics whose
mean converges to a Nash equilibrium. Section 9 considers the simple 2 × 2 and 3 × 3 examples,
and section 10 discusses the price dispersion example. Section 11 contains a concluding discussion.
Certain proofs and additional technical material are presented in the appendix.
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2 The General Continuity Equation for Population Games

We derive the continuity equation in the setting of population games. We consider the case in which
two players, chosen from the same population, are randomly matched to play a symmetric normal
form game.6 The game has set of pure actions n = {1, 2, · · · , n}. Each agent in the population
carries a mixed strategy which they use to determine their play when called upon to do so. The
state space for individual agents is therefore the simplex ∆ = ∆[n] ⊂ IRn whose elements are the
possible mixed strategies:

∆ =

{
x ∈ IRn : xi ≥ 0 for each i, with

n∑
i=1

xi = 1

}
. (1)

We assume that the population state (at a given time) is characterized by a Borel probability
measure P defined on the state space ∆ of mixed strategies7 Thus, if B ⊆ ∆ is a Borel set, then
P (B) can be regarded as the proportion of agents in the population playing mixed strategies in B.
The population mean strategy, denoted 〈P 〉 ∈ ∆, is given by

〈P 〉 =
∫

∆
xP (dx) . (2)

We interpret the mean 〈P 〉 as the aggregate social state generated by the measure P . Even though
agents are actually playing mixed strategies, the observable aggregate social state is the proportion
of agents playing different pure actions. By the law of large numbers, this distribution over pure
actions is equal to 〈P 〉. We make use of this concept of the aggregate social state in our later
applications of the continuity equation.

More generally, given a real, vector-valued continuous function φ(x) on ∆, we define its expec-
tation with respect to P by

〈φ | P 〉 =
∫

∆
φ(x)P (dx). (3)

In particular, 〈P 〉 = 〈ι | P 〉, where ι is the identity map on ∆.

2.1 Matching and updating

In each time interval of length τ , two agents from the population are randomly matched to play
the symmetric normal form game. We denote by Pt the probability measure characterizing the
population state at time t ≥ 0. Our objective is to track the evolution of the measures Pt over
time.

Suppose the two chosen players use the mixed strategy pair (x, y) ∈ ∆ × ∆. The probability
6We confine ourselves to two-player symmetric games merely for notational convenience. All the ideas involved can

be extended easily to multi-player symmetric as well as asymmetric games at the cost of more cumbersome notation.
7That is, P is a non-negative measure of total mass 1, defined on the σ-field of Borel sets in ∆, the smallest σ-field

containing the closed sets of ∆ – see, for example, Dunford and Schwatz (1964), p 137.
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that they play the action profile (i, j) ∈ n× n is given by

πij(x, y) = xiyj . (4)

Of course,
∑

i,j πij(x, y) = 1 for all (x, y). After a play of the game, and during the time interval
τ , a player updates his mixed strategy according to some revision protocol of the following general
form. Given that the action profile (i, j) has been played, we assume that the row player updates
his strategy x ∈ ∆ to x′ given by an updating rule of the form:

x′ = x+ ηfij (x) , (5)

where fij(x) defines the potential revision that can be realized by this play. The parameter η =
η(τ) is the proportion of this potential change that is realized in the revision exposure time τ .
Alternatively, η(τ) can be regarded as the probability that the change fij(x) is delivered in the
given time interval. We assume that η(τ) satisfies: (i) η(τ) is increasing in τ with η(τ) ≤ 1 for
all τ > 0; (ii) η(0) = 0; (iii) η′(0) > 0. Condition (i) says that more of the potential revision is
realized the longer the players are exposed to the revision stimulus consequent on the play of the
game. Condition (ii) says that no revision takes place if there is no exposure to the consequences
of play, and condition (iii) says that any positive exposure time delivers some of the potential
revision Without loss of generality we can (and will) assume that η′(0) = 1. To ensure that (5)
defines a mixed strategy, we require that

∑n
r=1 fij,r(x) = 0 for each x ∈ ∆. We assume also that

xr + fij,r(x) ≥ 0 for each 1 ≤ r ≤ n. Then xr + ηfij,r(x) ≥ η (xr + fij,r(x)) ≥ 0 for all 0 ≤ η ≤ 1.
The reinforcement potentials fij(x) define a function fij : ∆→ IRn0 , where

IRn0 = {z ∈ IRn :
n∑
r=1

zr = 0}. (6)

We call this the forward state change function: it specifies how the players’ states change going
forward in time. The associated backward state change function specifies where current states came
from, going backward in time. Thus the backward state change is a function bij : ∆ → IRn0 which
satisfies:

x = u+ ηfij (u) ⇐⇒ u = x− ηbij (x) . (7)

Thus, the transformations u↔ x define a continuous bijection ∆↔ ∆.
Between times t and t + τ , the population state makes the transition from Pt to Pt+τ , during

which time the row player’s mixed strategy changes from u = x− ηbij(x) to x, if the action profile
(i, j) has been played at time t against a random opponent. Using (4), the relationship between
the probability measure at the two time periods is given by

Pt+τ (dx) =
∑
i,j∈n

∫
y∈∆

uiyjPt (du)Pt(dy), (8)
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Now multiply (8) by a smooth, real-valued, but otherwise arbitrary ‘test function’ φ(x), then
integrate over x and use (2), (3) and (7) to obtain:

〈φ | Pt+τ 〉 =
∑
i,j∈n

∫
u∈∆

φ (u+ ηfij(u))Pt (du) 〈Pt〉j , (9)

This defines a general form of the discrete-time updating dynamics, determining the evolution of
Pt.

2.2 The continuous time limit

We shall be interested in the continuous-time updating dynamics obtained by taking the limit as
the exposure time τ → 0. To provide some justification for taking this limit, we suppose that the
matching rate 1

/
τ is an increasing function of the population size N . This reflects the idea that,

as the population gets larger, opportunities for interactions between agents increase, and the more
activity there is amongst agents, the faster do decisions have to be made and their consequences (in
the form of strategy revisions) delivered and absorbed. Thus, on this interpretation, the limit τ → 0
is equivalent to the infinite population limit, N → ∞. We can therefore construe the subsequent
discussion as relating to the evolutionary dynamics within a very large population.

We show in Appendix A.1 that the continuous-time limit τ → 0, applied to the discrete-time
dynamics (9), yields the following weak form of the continuity equation8:

d

dt
〈φ | Pt〉 =

∫
x∈∆
∇φ(x) · [F(x)〈Pt〉]Pt(dx), (10)

where F(x) is the n× n matrix whose (i, j)-th entry is:

Fij(x) =
n∑
r=1

xrfrj,i(x). (11)

The weak continuity equation (10) provides the dynamical equation that describe the evolution
of the probability measure Pt from a specified initial measure P0. Note that (10) is non-linear in
Pt.

2.3 Absolute Continuity and Strong Form of the Continuity Equation

If a probability measure P is absolutely continuous with respect to Lebesgue measure, then we can
write P (dx) = p(x)dx for some L1 probability density function p(x). We show in Appendix A.2
that if Pt is a solution to (10) with absolutely continuous initial measure P0, then Pt is absolutely
continuous for all t ≥ 0. In this case, the weak continuity equation (10) can be expressed in terms
of probability densities pt(x).

8For a differentiable scalar function φ : IRn → IR, the gradient of φ, ∇φ, is the vector field on IRn defined by
∇φ(x) = (∂φ(x)/∂x1, . . . , ∂φ(x)/∂xn). See, for example, Margenau and Murphy (1962) for a general discussion of
the differential operator ∇.
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If we assume in addition that the density function pt(x) is differentiable in both x and t, then
we may obtain the strong form of the continuity equation. Thus, taking φ(x) = 0 for x ∈ ∂∆ (the
boundary of ∆), using (3) and integrating by parts on the right-hand side in (10), we obtain9:∫

∆
φ (x)

{
∂pt(x)
∂t

+∇ · [pt(x)F(x)〈pt〉]
}
dx = 0.

Since this holds for all differentiable test functions φ(x) which vanish on ∂∆, we obtain the differ-
ential form of the continuity equation:

∂pt(x)
∂t

+∇ · [pt(x)F(x)〈pt〉] = 0, x ∈ int ∆, t > 0. (12)

This is the strong form of the continuity equation, which applies to differentiable density functions.
The strong continuity equation for smooth densities, (12) gives the dynamical equation that

describes the evolution of the probability density pt. Intuitively, F(x)〈pt〉 represents the adaptation
‘velocity’ of mixed strategy x.10 That is, [F(x)〈qt〉] τ is the expected change in mixed strategy x

in the small time interval τ in response to a play of the game. Since the mass of x is represented
by pt(x), [F(x)〈qt〉] pt(x) gives the probability mass flow at x. The divergence of this vector field
therefore gives the rate at which the probability mass in a small neighbourhood of x is expanding
or contracting.

3 Replicator Continuity Equations

Equation (10) gives the general (weak) form of the continuity equation for a symmetric, 2-player
game. In this section, we derive a particular form of this equation—the replicator continuity
equation. We generate this equation using a particular form of reinforcement learning—the Cross
(1973) learning rule as developed in Borgers and Sarin (1997)—as our forward state change rule.
This rule therefore provides the microfoundations for this particular continuity equation.

Reinforcement models have been widely studied in the learning literature. A group of players,
one in each role in the game, employ mixed strategies in each round of a game. Reinforcement
models are based on the idea that if the action currently employed obtains a high payoff, then the
probability assigned to it increases in the next round of play. Reinforcement models are therefore

9The formal argument has the following form. For X a vector field on the domain ∆, we use the identity
∇ · [φX] = φ∇ ·X +∇φ ·X to obtain∫

∆

∇φ ·XdV =

∫
∆

∇ · [φX] dV −
∫

∆

φ∇ ·XdV

Now use the divergence theorem (Margenau and Murphy, 1962) together with the assumption that φ = 0 on ∂∆ to
obtain: ∫

∆

∇ · [φX] dV =

∫
∂∆

(u ·X)φdA = 0.

10In the next section, we provide two strategy updating rules in which this velocity is given by the replicator
dynamic.
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extremely naive models of learning. Agents mechanically respond to stimuli from their environment
without seeking to create any model of the situation or strategically evaluate how they are doing.
Hence, they do not seek to exploit the pattern of opponents’ past play and predict the future
behaviour of their opponents.11 In this sense, agents are boundedly rational.

We describe the Cross rule now. If the row player plays action i ∈ n and the column player
plays action j ∈ n, the payoff to the row player is uij . The expected payoff to the row player’s
play of i against the column player’s mixed strategy x is (Ux)i, where U is the n×n payoff matrix
U = (uij). That is

ei · Ux = (Ux)i =
n∑
j=1

uijxj . (13)

Here, ei is the i-th standard basis vector of IRn: the vector whose r-th co-ordinate is δir. We
consider a player in a 2-player game who employs strategy x ∈ ∆, uses action i, and encounters
an opponent who uses action j in the current round. The player then updates her strategy to x′

according to an updating rule fij(x), as in (5). The Cross rule assumes that all payoffs satisfy
0 ≤ uij ≤ 1. Since it is always possible to rescale payoffs to meet these conditions without affecting
incentives, we do not consider this a severe restriction. Under this rule, the mixed strategy x′ and
the forward state change vector take the form

x′r = δiruijη + (1− uijη)xr, (14)

fij,r(x) = (δir − xr)uij . (15)

Note that
∑

r fij,r(x) = 0 and xr + fij,r(x) ≥ 0 because 0 ≤ uij ≤ 1. Hence, (14) defines an
allowable updating rule of the form (5). Clearly, strategy i is always positively reinforced if uij > 0
and xi < 1, and strategy r 6= i is negatively reinforced if xr > 0.

Recalling the notation of (13), we introduce the following family of operators R(x) : IRn → IRn0 ,
with IRn0 as in (6), defined for x ∈ ∆ by:

Ri (x) y = xi {(Uy)i − x · Uy} x ∈ ∆, y ∈ IRn. (16)

Clearly, the vector field v(x) = R(x)x defined for x ∈ ∆ is identical to the vector field generated by
the symmetric replicator dynamic on ∆ (Taylor, 1979). Hence, we call the n × n matrix operator
R(x) the symmetric replicator operator defined by the payoff matrix U .

Under the Cross rule, the specific form of the operator F(x) in (10) is simply the replicator
operator defined in (16). We establish this in the following lemma.

Lemma 3.1 Under the Cross learning rule (14)-(15), F(x) = R(x).
11Börgers and Sarin (1997) provide some justification of why agents respond to very limited information in these

models–only their own payoffs. They argue that the acquisition or processing of new information may be too costly
relative to benefits. Hence, they say, reinforcement models may be more plausible if agents’ behaviour is habitual
rather than the result of careful reflection.
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Proof. We show that for fij(x) given by (15), [F(x)y]r = Rr(x)y, for 1 ≤ r ≤ n and x, y ∈ ∆.
From (11) we have

[F (x) y]r =
n∑

i,j=1

xifij,r(x)yj

=
n∑

i,j=1

xiyj (δir − xr)uij

= xr

 n∑
j=1

urjyj −
n∑

i,j=1

xiuijyj


= xr {[Uy]r − x · Uy}

= Rr(x)y. �

The application of the Cross learning rule allows us to extend the axiomatic framework devel-
oped in Borgers et. al. (2004) to the analysis of evolution in a large population model. Their first
axiom, absolute expediency, requires that in expected terms, payoff obtained from a learning rule
strictly increase over time. Their second axiom, monotonicity, demands that, again in expected
terms, the probability assigned to the best actions increase over time. Together, the two properties
imply that in an environment of uncertainty (for example, where rivals’ strategies are not fixed),
the players move towards better choices monotonically in expected terms.12 Borgers et. al. (2004)
argue that among the wide variety of learning rules, those that possess these properties are the
ones that are most appropriate as models of experience based learning. Extending this axiomatic
approach to population games has the clear advantage of allowing the evaluation of any individual
behavioral norm in evolutionary game theory on the basis of rigorous principles rather than on the
grounds of heuristic plausibility.

The following proposition is now immediate.

Proposition 3.2 Under the forward state change rule (14)-(15), the continuity equation (10) is
given by

d

dt
〈φ | Pt〉 =

∫
x∈∆
∇φ(x) · [R(x)〈Pt〉]Pt(dx). (17)

We call (17) the replicator continuity equations. This is the weak form of the replicator conti-
nuity equation. There is an obvious strong form corresponding to (12) for measures characterized
by differentiable density functions.13

12Example 1 in Borgers et. al. (2004) establishes that the Cross rule satisfies these two axioms. While establishing
absolute expediency requires some additional calculations, monotonicity follows from the fact that the expected
change in the probability of any action is given by the replicator dynamic.

13Consider a symmetric game with payoff matrix U and let µt = 〈pt〉 be the mean. The strong form of the

replicator continuity equation is ∂pt(x)
∂t

+∇· [R(x)µtpt(x)] = 0. We note that this dynamic is very different from those
used in the early biology literature concerning the evolution of mixed strategies. For example, Zeeman (1981) uses

a straightforward adaptation of the replicator dynamic having the form ∂pt(x)
∂t

= pt(x) (x · Uµ− µ · Uµ), and Hines

(1980) uses the mean payoff adjusted replicator dynamic, ∂pt(x)
∂t

= pt(x)
µ·Uµ (x · Uµ− µ · Uµ) introduced in Maynard

Smith (1982) for pure strategies.
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Proposition 3.2 also establishes that the Cross rule does not provide a validation of the replicator
dynamic as an evolutionary dynamic, as argued in Borgers and Sarin (1997) or Borgers et. al.
(2004). In the population game, the replicator dynamic is simply the expected change in the mixed
strategy of a particular player. Instead, under the Cross rule, the population state evolves according
to the replicator continuity equation. Nevertheless, as we show in subsection 3.1 below, the change
in the population share of a pure action is closely related to the replicator dynamic.

3.1 Homogeneous populations

The simplest case of (17) occurs when the population of agents is homogeneous, in the sense that
they all begin by using the same mixed strategy x0 ∈ ∆. That is, the initial population distribution
is P0 = δx0 . In this case, the solution of (19) is Pt = δxt , where xt is the solution trajectory of the
classical replicator dynamics with initial condition x0.

To see this, it suffices to substitute this proposed solution into (17) and note that 〈Pt〉 = xt, to
obtain:

d

dt
[φ (xt)] = ∇φ(xt) · [R(xt)xt] .

The left-hand side is ∇φ(xt) · ẋt, which is equal to the right-hand side since xt is a solution of the
replicator dynamics, ẋ = R(x)x.

This shows that the classical replicator dynamics describes the evolutionary (continuity) dy-
namics of a homogeneous population, in which all agents use a common mixed strategy. However,
from other derivations of these dynamics, they can also be construed as mixed populations of pure-
strategy players, who use an updating rule such as imitation (see the Introduction), rather than
reinforcement. The use of the mixed strategy interpretation is adapted specifically to reinforcement
learning.

3.2 Mean replicator dynamics

As an example of (17), it is instructive to derive a more explicit form of the dynamics for the mean
µt = 〈Pt〉. Taking φ(x) = xi in (17), we have:

d

dt
µi(t) =

∫
∆
Ri(x)µ(t)Pt(dx)

=
∫

∆
xi (ei − x) · Uµ(t)Pt(dx)

= (ei · Uµ(t))
∫

∆
xiPt(dx)−

∫
∆
xix · Uµ(t)Pt(dx)

= (ei · Uµ(t))µi(t)− (µ(t) · Uµ(t))µi(t)− Covt (xi, x) · Uµ(t)

= Ri (µ(t))µ(t)− Covt (xi, x) · Uµ(t),

12



where Cov(x, x) is the covariance matrix

Cov(x, x)ij = Cov(xi, xj) =
∫

∆
(xi − µi)(xj − µj)P (dx). (18)

That is, the continuity replicator dynamics for means can be written in the form

dµ

dt
= R(µ)µ− Cov(x, x)Uµ. (19)

Equation (19) makes clear that the continuity replicator dynamics of means differs from the
classical replicator dynamics applied to the population mean through a covariance term, which
cannot be reduced to a function of the mean.14

3.3 Rest points

If x∗ is a rest point of the symmetric replicator operator, i.e. R(x∗)x∗ = 0, and we take P0 = δx∗ ,15

the mass-point distribution at x∗, then the initial mean is 〈P0〉 = x∗, and hence from (17), d
dt〈φ |

Pt〉|t=0 = 0. Thus, δx∗ defines a rest point of the replicator continuity dynamics (17). In particular,
this is the case if x∗ is a Nash equilibrium of the underlying game. In this section we give a general
characterization of rest points of the symmetric continuity equation (17).

Let µ ∈ ∆ be fixed, and define

∆(µ) = {x ∈ ∆ | R(x)µ = 0} , (20)

Define the generalised support of µ ∈ ∆ by

SU (µ) = {S ⊆ n | ei · Uµ = πS for each i ∈ S} . (21)

Here, πS denotes the common value of ei ·Uµ for i ∈ S. Note that {i} ∈ S(µ) for each i ∈ n. Now
observe that

x ∈ ∆(µ) ⇐⇒ supp(x) ∈ SU (µ), (22)

With this notation in place, we can now characterize rest points of the replicator continuity
dynamics.

Proposition 3.3 Let P0 be a probability distribution on ∆, with 〈P0〉 = µ ∈ ∆. Then Pt = P0 is
14We note that Hines (1980) derives an equation for mean dynamics from the mean-payoff adjusted replicator

dynamic (see footnote 13). His equation has the form

µ̇ =
1

µ · UµCov (x, x)Uµ.

15The mass-point, or Dirac measure at x∗ ∈ ∆ is defined by: 〈φ | δx∗〉 = φ(x∗) for any differentiable function φ
on ∆. By convention, this distribution is represented by the Dirac probability ‘density’: δx∗(dx) = δ(x− x∗)dx. We
sometimes adopt this convention.
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a stationary solution of the symmetric continuity replicator dynamics (17) if and only if

supp(P0) ⊆ ∆(µ). (23)

Proof. A. The stationarity condition for the symmetric replicator continuity equation is

d

dt
〈φ | Pt〉

∣∣∣∣
t=0

=
∫

∆
∇φ(x) · [R(x)µ]P0(dx) = 0,

for any differentiable test function φ. This condition holds if and only if R(x)µ = 0 for all x ∈
supp(P0)16. From (22), these conditions are equivalent to (23). �

We give two specific examples below.

3.3.1 Example

Suppose given µ ∈ ∆. Then R(ei)µ = 0 for 1 ≤ i ≤ n, and hence {e1, . . . , en} ⊂ ∆(µ). It follows
from proposition 3.3 that any initial probability distribution P0 with supp(P0) = {e1, . . . , en}
and 〈P0〉 = µ is a rest point of the symmetric replicator continuity dynamics (17). That is, any
probability distribution of the form

P0 =
n∑
i=1

µiδei , (24)

is a rest point of (17).

3.3.2 Example

We show that any initial distribution P0 whose mean x∗ a rest point of the replicator dynamics, is
a stationary solution of the continuity replicator dynamics (17). In particular, this is the case if x∗

is a Nash equilibrium of the game of the underlying game.
Suppose that µ = x∗ ∈ ∆ is a rest point of the replicator dynamics, so that R(x∗)x∗ = 0. Then

by definition of S(µ) as in (21), it follows that S ∈ S(µ) for any S ⊆ supp(µ). In particular, if x∗

has full support, then (22) implies that ∆(µ) = ∆. In this case (23) is automatically satisfied, so
proposition 3.3 implies that a probability distribution P0 is a rest point only if it’s mean is µ.

If x∗ does not have full support, then P0 cannot have mean µ = x∗ unless P0 is supported on
the lowest dimensional face of ∆ containing x∗. Since x∗ has full support on this face, the above
argument shows that P0 is a rest point if 〈P0〉 = x∗.

16Recall that the support of a Borel probability measure P is the smallest closed set C for which P (C) = 1.
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4 Solution of the General Continuity Equation: Liouville’s For-

mula

Our approach to solving the non-linear continuity equations we have constructed is to begin by
solving a different, but related problem. Thus, instead of confronting the non-linearities directly, we
first consider a linear continuity equation, but one defined by an explicitly time-dependent vector
field. We will later show how a solution of the non-linear continuity equations of interest can be
constructed from explicit solutions of linear continuity equations of this type.

4.1 Liouville’s Formula

Let X = X(x, t) ∈ IRn be a (possibly time-dependent) smooth vector field defined for x in a
neighbourhood of the state space Ω ⊂ IRn, where Ω is a compact, connected domain with non-
empty interior and piecewise smooth boundary. We assume that Ω is invariant under the flow
determined by X(x, t). Let Pt be a probability measure on Ω satisfying the linear weak continuity
equation

d

dt
〈φ | Pt〉 =

∫
Ω
∇φ(x) ·X(x, t)Pt(dx), (25)

for all smooth test functions φ(x), and for given initial measure P0. The solution to this initial-value
problem may be described as follows.

We first introduce some notation to describe the solution trajectories to the (non-autonomous)
differential equations defined by X,

dx

dt
= X(x, t). (26)

Let xt0,t(x), t ∈ IR, denote the solution trajectory to (26) that passes through the point x ∈ Ω
at time t0. Thus, the trajectory that passes through x at time t starts at the point xt,0(x) when
t = 0.17 After time s ≥ 0, this trajectory has reached the point xt,s(x) = x0,s (xt,0(x)). In
particular, xt,t(x) = x0,t (xt,0(x)) = x, and by definition xt,0 (x0,t(x)) = x.

We can now write down the solution to the initial value problem (25). For a Borel set B,

Pt(B) = P0 (xt,0(B)) . (27)

This is Liouville’s formula for measures. A proof is given in Appendix A.2.
In the case in which P0 is absolutely continuous, so that P0(dx) = p0(x)dx for an initial density

function p0(x), then it is also shown in Appendix A.2 that the solution (27) is described by a more
classical form of Liouville’s formula which determines the density function pt(x) associated to Pt:

pt(x) = p0 (xt,0(x)) exp
{
−
∫ t

0
[∇ ·X] (xt,s(x), s) ds

}
. (28)

17Note that the situation for a non-autonomous vector field is more complicated than for the more familiar au-
tonomous case. This is because the explicit time dependence of X(x, t) imposes an absolute, rather than a relative,
time-scale on the dynamics. In particular, the initial time t = 0 is exogenously determined.
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4.2 Expected Values

Liouville’s formula (27) allows us to calculate expected values of associated variables in terms of
the initial measure P0 and solutions of the characteristic system (26). Thus, for a smooth function
φ(x), define its expected value with respect to the probability density Pt satisfying (25) by:

〈φ | Pt〉 =
∫

Ω
φ(x)Pt(dx). (29)

Then we have:

Proposition 4.1 The expected value 〈φ | Pt〉 may be expressed in the form:

〈φ | Pt〉 =
∫

Ω
φ (x0,t(x))P0(dx). (30)

A proof is given in Appendix A.2.
As an example of the use of (30), the following Corollary shows that the trajectories of the

underlying characteristic dynamics (26) may be recovered as solutions of the continuity equation
(25) for initial conditions which are mass points.

5 Application of Liouville’s Formula to Replicator Continuity Equa-

tion

In this section, we use Liouville’s formula (27) to lay the foundations for a solution to the non-
linear replicator continuity equation (17). To do this, we replace the matching scenario described
in section 2.1 by the following simpler scenario.

Suppose given a specified mixed strategy history y(t) ∈ ∆, t ≥ 0. We assume there is a player
called ‘Nature’ (or the ‘Environment’) who uses the mixed strategy y(t) at time t when playing
against an opponent chosen from the given population. In effect, in the matching scenario of section
2.1, one of the two chosen players is replaced by ‘Nature’.

We associate a time-dependent replicator vector field to this scenario: X(x, t) = R(x)y(t). This
defines a continuity equation of the form (25). The associated characteristic ODE system (26)
we call the pseudo replicator dynamic associated to the history y(t). This takes the form of the
explicitly time-dependent dynamical system

ẋi = Ri(x)y(t) = xi(ei − x) · Uy(t), (31)

whose solutions specify the time-development of the population players’ mixed strategies in response
to to plays against Nature. To solve the associated continuity equation (25), we begin by solving
the characteristic system (31). We can then find the solution of any associated initial value problem
of the form (25) by means of Liouville’s formula (27).
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5.1 Solution of the pseudo Replicator Dynamics

Write c(t) = Uy(t) ∈ IRn, a time-dependent vector-payoff stream to row players. Then the pseudo-
replicator equations (31) can be written as:

dxi
dt

= xi (ei − x) · c(t), c(t) = Uy(t). (32)

Write

C(t) =
∫ t

0
c(s)ds. (33)

Then we can express the solutions of (32) as follows.

Proposition 5.1 The solution trajectory of the pseudo-replicator dynamics (32) passing through
x ∈ ∆ at time t = t0 is:

xt0,t(x)i =
xie

Ci(t)−Ci(t0)

x · eC(t)−C(t0)
. (34)

In particular:

x0,t(x)i =
xie

Ci(t)

x · eC(t)
, and xt,0(x)i =

xie
−Ci(t)

x · e−C(t)
. (35)

Proof. With xt0,t(x) given by (34), a direct calculation gives

d

dt
[xt0,t(x)i] = xt0,t(x)i {ei − xt0,t(x)} · c(t),

which shows that xt0,t(x) is a solution of (32). It also follows from (34) that xt0,t0(x) = x, as
required. �

5.2 Solution of the pseudo Replicator Continuity Equation

In the case in which P0 is absolutely continuous, we may use Liouville’s formula (28), together with
Proposition 5.1, to compute the solution to the replicator continuity equation (25) associated with
a pseudo-replicator vector field of the form (32). This is given in the following proposition, proved
in Appendix A.3.

Proposition 5.2 The solution of the initial value problem (25) with initial density p0(x), associ-
ated to the characteristic vector field (32) is:

pt(x) = p0

(
xe−C(t)

x · e−C(t)

)(
1

x · e−C(t)

)n
exp {−e · C(t)} , (36)

where C(t) ∈ IRn is given by (33) and e ∈ Rn is the vector all of whose entries are 1.
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More generally, we may obtain the expected value of a continuous function φ(x) from (30) and
(35):

〈φ | Pt〉 =
∫

∆
φ

(
xeC(t)

x · eC(t)

)
P0(dx). (37)

We now present an immediate implication of (37) giving conditions under which a row-player
pure strategy is eventually eliminated.

Proposition 5.3 Suppose there exists an i such that [Ci(t)−Cj(t)]→∞ as t→∞ for some j 6= i,
and the i-th face, ∂∆(i) = {x ∈ ∆ : xi = 0}, has P0-measure zero. Then 〈Pt〉j → 0 as t→∞.

Proof. For x ∈ ∆ \ ∂∆(i), we have xi > 0. Thus:

xje
Cj(t)

x · eC(t)
=

xje
Cj(t)

xieCi(t) +
∑

k 6=i xke
Ck(t)

=
xje
−[Ci(t)−Cj(t)]

xi +
∑

k 6=i xke
−[Ci(t)−Ck(t)]

→ 0 as t→∞,

since the denominator is never zero. Hence, from (37),

〈Pt〉j =
∫

∆\∂∆(i)

(
xje

Cj(t)

x · eC(t)

)
P0(dx) → 0 as t→∞. �

6 Distributional Replicator Dynamics

In this section we show how a solution to the replicator continuity equation (17) associated with a
2-player, n-strategy symmetric game having n×n payoff matrix U . In terms of the theory of section
5, this is the continuity equation associated to the time-dependent mixed strategy history given
by y(t) = 〈Pt〉. This identifies ‘Nature’ as an (average) population player. That is, c(t) = U〈Pt〉.
Thus, from (32) and (33) we have

dC(t)
dt

= c(t) = U〈Pt〉, (38)

and using (37) with φ = ι, we therefore obtain a system of n differential equations in the variables
C1, . . . , Cn:

dCi
dt

=
n∑
j=1

uij

∫
∆

(
xje

Cj

x · eC

)
P0(dx), Ci(0) = 0, 1 ≤ i ≤ n. (39)

We call equations (39) the symmetric distributional replicator dynamics (DRD) associated with
the initial measure P0. The solutions of these equations with the given initial conditions define
trajectories C(t), in terms of which the continuity dynamics can be completely specified as in (37),
or (36) in the absolutely continuous case.

Note that at most n−1 of equations (39) are independent.18 For example, setting Ai = Ci−Cn,
18Because of the constraints

∑
i〈Pt〉i = 1.
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equations (39) can be reduced to

dAi
dt

=
n∑
j=1

(uij − unj)
∫

Ω

(
xje

Aj

x · eA

)
P0(dx), Ai(0) = 0, 1 ≤ i ≤ n− 1, (40)

where Ω ⊂ IRn−1 is the projection of ∆ onto IRn−1 obtained by setting xn = 1 −
∑n−1

i=1 xi. Of
course An = 0. Note that the formulae (36) and (37) can be expressed in terms of the Ai’s.

6.1 Alternative forms of DRD

For our purposes, it is most useful to express the DRD (39) in a modified formulation. First write
equations (39) in the vector form

dC

dt
= UF

(
eC | P0

)
, C(0) = 0, (41)

where where F (· | P0) : IRn+ → ∆ is the function

Fi(ξ | P0) =
∫

∆

(
ξixi
ξ · x

)
P0(dx) 0 ≤ i ≤ n. (42)

Clearly 0 ≤ Fi ≤ 1 and e · F = 1, and hence F ∈ ∆. Further, F is homogeneous of degree 0 in ξ;
i.e. F (αξ | P0) = F (ξ | P0) for any non-zero scaler α. Also F (e | P0) = 〈P0〉. More generally, it
follows from (37) that if C(t) is the solution trajectory of (41) with C(0) = 0, then

F (eC(t) | P0) = 〈Pt〉. (43)

Additional key properties of the function F are proved in Appendix A.4.1.
Now define a new variable ξ = eC/(e · eC) ∈ ∆. Then a straightforward calculation shows that

the distributional replicator equation (41) can be written in the form

dξ

dt
= R(ξ)F (ξ | P0), ξ(0) =

1
n
e, (44)

where R(ξ) is the replicator operator defined in (16).

6.1.1 The classical replicator dynamics as DRD

We can reconstruct the trajectory of the classical replicator dynamics with given initial condition
x0 ∈ ∆ from a solution of (44) as follows. Take P0 = δx0 . Then from (42), F (e/n | P0) = 〈P0〉 = x0.
Thus, if ξt is the solution trajectory of (44) with initial condition ξ0 = e/n, then from (43),
F (ξt | P0) = 〈Pt〉, where Pt is the solution of the replicator continuity equation with initial condition
δx0 . As noted in section 3.1, this solution is Pt = δxt , where xt is the solution trajectory of the
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classical replicator dynamics with initial condition x0. In particular, 〈Pt〉 = xt, and hence

xt = F (ξt | δx0) =
x0ξt
x0 · ξt

. (45)

As discussed in section 3.1, this situation describes a homogeneous population in which all
agents use the same (evolving) mixed strategy.

In the following sections, we study the distributional replicator dynamics to explore properties
of solutions of the replicator continuity equation (17) for various classes of games.

7 Application to classes of games

7.1 Negative definite games

Example 3.3.2 establishes that any probability measure whose mean is a Nash equilibrium is a sta-
tionary solution of the replicator continuity equation (17). In this section, we study the convergence
of trajectories of this dynamic to such stationary points in the class of negative definite and nega-
tive semi-definite games. These results are of interest since this class of games encompass a wide
variety of well known games. For example, games with an interior ESS are negative definite games
whereas two player zero-sum games are negative semi-definite games. The stability properties of
Nash equilibria in such games have been established under a wide range of evolutionary dynam-
ics.19 Our interest is in seeing whether such stability results can be extended to our dynamical
formulation.

A symmetric game with n× n payoff matrix U is said to be negative semi-definite on IRn0 if

z · Uz ≤ 0 for all z ∈ IRn0 ,

and is negative definite if this inequality is strict when z 6= 0. An attractive feature of negative
definite games is that they have a unique Nash equilibrium (Sandholm, 2009; Theorem 3.3.16). For
a negative semi-definite game, the set of Nash equilibria is convex. Zero-sum games are the most
prominent examples of negative semi-definite games.

We show that in negative definite games, the mean social state always converges towards the
unique Nash equilibrium under the replicator continuity dynamics. The following theorem is proved
in Appendix A.4.2.

Theorem 7.1 Consider a symmetric n×n game with payoff matrix U , and suppose that U is nega-
tive definite on IRn0 , with unique Nash equilibrium x∗ ∈ ∆. Let P0 be a probability distribution on ∆
for which ∂∆ has zero P0-measure, and let Pt be the solution of the continuity replicator dynamics
with initial condition P0. Then the mean population state 〈Pt〉 → x∗ as t→∞. In particular, the
Nash equilibrium is globally asymptotically stable under the mean replicator dynamics.

19See Sandholm (2009) for a discussion of these results. Sandholm (2009) refers to negative semi- definite games
as stable games and negative definite games as strictly stable games.
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If the game U is negative semi-definite, then the convex set of Nash equilibria is Lyapunov
stable.

7.2 Positive definite games

A symmetric game with n × n payoff matrix U is positive definite if z · Uz > 0 for all non-zero
z ∈ IRn0 . Such a game is generic if U is invertible. In contrast to negative-definite games, a (generic)
positive-definite game can have many equilibria. However, if the game is generic and admits an
interior Nash equilibrium x∗ ∈ int ∆, then x∗ is unique and is given by

x∗ =
U−1e

e · U−1e
. (46)

In this section we show that if x∗ exits, then it is necessarily totally unstable under the continuity
replicator dynamics. That is, every trajectory of means beginning arbitrarily close to x∗ eventually
moves away from x∗. More precisely, in Appendix A.4.4 we prove the following.

Theorem 7.2 Let U be the n × n payoff matrix of a generic, positive-definite symmetric game
which admits an interior Nash equilibrium x∗ ∈ int ∆. Let P0 be a probability measure on ∆ for
which ∂∆ has zero P0-measure, and let Pt be the solution of the continuity replicator dynamics with
initial condition P0. Suppose that 〈P0〉 6= x∗. Then there exists a neighbourhood N0 of x∗ in int ∆
such that the forward trajectory of means 〈Pt〉 eventually leaves N0. That is, if there exists a t0 ≥ 0
such that 〈Pt0〉 ∈ N0, then there exists a t1 > t0 such that 〈Pt1〉 /∈ N0.

7.3 Doubly symmetric games and mean payoff

A symmetric population game is called doubly symmetric if the payoff matrix U itself is symmetric,
so that uij = uji (e.g. a coordination game with positive diagonal elements and zero off diagonal
elements). Define the mean payoff with respect to the distribution P to be w̄(µ) = µ · Uµ,
where µ = 〈P 〉 is the population mean. We first show that w̄(µ) increases along non-equilibrium
trajectories.20 We then use this result to establish convergence of the population mean to the set
of Nash equilibria. More precisely, in Appendix A.4.5 we prove the following.

Theorem 7.3 Let U be the payoff matrix of a symmetric game, and suppose that U is a symmetric
matrix. Let P0 be a probability measure on ∆ for which ∂∆ has zero P0-measure. Then w̄ (〈Pt〉)
increases along non-equilibrium trajectories of the continuity replicator dynamics, and the mean
〈Pt〉 converges to a level set (with respect to w̄) of Nash equilibria.

20The biological interpretation of this result is the well known Fundamental Theorem of Natural Selection in
classical population genetics, in which the entries of U are genotype fitnesses. We also note that the alternative
definition of mean payoff given by w̄ = 〈x · Ux〉 need not increase along non-equlibrium trajectories.
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8 Limiting distributions

Theorem 7.1 shows that, at least for negative definite games, the asymptotics of the mean are
essentially independent of the initial distribution. However, this does not mean that the asymptotic
distribution itself is independent of the initial distribution. As is evident from the characterization
of rest points in section 3.3, there are many such stationary distributions having mean x∗, and
in particular Pt need not converge to a mass-point distribution at x∗. This is very important.
Although on average, the equilibrium population plays the Nash equilibrium, at the individual
level the population can be very heterogeneous.

We can characterize such limiting probability distributions when they exist as follows. Suppose
P0 is a probability distribution on ∆ for which ∂∆ has zero P0-measure, and let {Pt}t≥0 be the
solution of the weak replicator continuity dynamics (17). We are interested in determining a limiting
probability distribution P∞ of this solution as t→∞. The appropriate notion of convergence here
is weak convergence of probability measures21. Thus, we say that {Pt}t≥0 converges weakly to P∞,
written Pt

w−→P∞ as t→∞ if
〈φ | Pt〉 −→ 〈φ | P∞〉, (47)

for every continuous function φ : ∆→ IR.
To determine a limiting density, consider the trajectory ξ(t) of the distributional replicator

dynamics (44), with initial condition ξ0 = (1/n)e. Then from (43) we have that 〈Pt〉 = F (ξ(t) |
P0)22. Suppose that ξ(t) → ξ∗ ∈ ∆ as t → ∞, and let x∗ = F (ξ∗ | P0) ∈ ∆. By Lemma A.2,
x∗ is uniquely determined by ξ∗, and conversely. Clearly ξ∗ is a rest point of the dynamics (44).
Thus, by Lemma A.3, x∗ is rest point of the replicator dynamics, and if a limiting distribution
P∞ of {Pt}t≥0 exists, then P∞ has mean x∗ and hence is a stationary distribution of the replicator
continuity equation (17) – see Example 3.3.2.

Under the above assumptions, we can be more specific concerning the limiting distribution, not
just its mean. For x ∈ int ∆, we have

Ξt(x)i :=
eCi(t)xi

eC(t) · x
=
ξi(t)xi
ξ(t) · x

−→ ξ∗i xi
ξ∗ · x

:= Ξ∗(x)i as t→∞. (48)

Thus, Ξ∗(x) is defined on int ∆, and supp (Ξ∗(x)) = supp(ξ∗). In particular, Ξ∗(x) is defined P0-a.e.
on ∆.

Now apply the characterization (37) of the solution of the weak continuity replicator dynamics
(17). Thus, if φ : ∆ → IR is a continuous function, then |φ(x)| is uniformly bounded on ∆, and

21See, for example, Parthasarathy (1967), chapter II, section 6.
22Recall that ξ = eC/(eC · e) and F (eC | P0) = F (ξ | P0).
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hence the Lebesgue dominated convergence theorem23 implies that

〈φ | Pt〉 =
∫

∆
φ (Ξt(x))P0(dx) −→ 〈φ | P∞〉 =

∫
∆
φ (Ξ∗(x))P0(dx) as t→∞. (49)

This defines the limiting probability distribution P∞.24 In fact, if B ⊂ ∆ is a Borel set, we have

P∞(B) =
∫

∆
χB (Ξ∗(x))P0(dx), (50)

where χB is the characteristic function of B.25

The above discussion is summarized in the following proposition.

Proposition 8.1 Let P0 be a probability measure on ∆ for which ∂∆ has zero P0-measure. Let
ξt be the solution trajectory of the distributional replicator dynamics (44) with initial condition
ξ0 = (1/n)e. Suppose that ξt → ξ∗ as t→∞, and let x∗ = F (ξ∗ | P0). Suppose supp(ξ∗) = S ⊆ n,
and let ∆S = {x ∈ ∆ | xj = 0 for j /∈ S} be the face defined by S. Let {Pt}t≥0 be the solution of the
weak continuity dynamics (17) with initial condition P0, and let P∞ be the probability distribution
given by (48) and (50). Then Pt

w−→P∞ as t→∞. Further, P∞ is supported on ∆S, and 〈P∞〉 =
x∗.

Note in particular, that if S = {i} is a pure strategy, then ξ∗ = x∗ = ei, and hence P∞ = δei is
a mass-point distribution on the pure strategy i.

9 Simple examples

9.1 Generic 2× 2 Symmetric Games

Consider a generic 2× 2 symmetric game with invertible payoff matrix U . We consider the generic
situation in which the payoff differences u11 − u21 and u22 − u12 are non-zero and have the same
sign. We define two parameters λ and x∗ by

λ = (u11 − u21) + (u22 − u12), and x∗ =
u22 − u12

(u11 − u21) + (u22 − u12)
. (51)

23Dunford and Schwartz (1964), Corollary 16, p151. Specifically, for any sequence tn ↑ ∞, define φn(x) =
φ (Ξtn(x)). Then φn is defined P0-a.e. on ∆ and is continuous on int ∆ for each n, and by (48) and the conti-
nuity of φ, φn(x) → φ∗(x) = φ (Ξ∗(x)) P0-a.e. Further, {|φn|} is uniformly bounded P0-a.e. on ∆. The Lebesque
theorem therefore implies that φ∗ is P0-integrable, and 〈φn | P0〉 → 〈φ∗ | P0〉. This yields the statement (49).

24The existence of P∞ satisfying (44) follows from a standard theorem which represents linear functionals on the
space of continuous functions as integrals with respect to a unique measure: for example, Parthasarathy (1967),
Theorem 5.8.

25More precisely, let {En}n≥0 be a sequence of open neighbourhoods of B in ∆ satisfying B ⊂ . . . ⊂ En ⊂
En−1 . . . ⊂ E0 and B = ∩nEn. Let φn : ∆ → [0, 1] be a continuous function satisfying φn(x) = 1 for x ∈ B and
φn(x) = 0 for x ∈ ∆ \ En. Then, using (49) we have

P∞(B) = inf
n
P∞(En) = lim

n→∞

∫
∆

φn (Ξ∗(x))P0(dx).
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Then z · Uz = 1
2λ|z|

2 for z ∈ IR2
0, and (x∗, 1− x∗) ∈ int ∆ is the unique interior Nash equilibrium.

The classical replicator dynamics for such a game can be expressed in terms of the parameters
λ and x∗. Thus, for x ∈ [0, 1] there is a single independent replicator dynamic equation

ẋ = λx(1− x)(x− x∗). (52)

This may be compared to the continuity replicator dynamics for means given by equation (19),
which in this case reduces to the single equation

µ̇ = λ {µ(1− µ)− V } (µ− x∗), (53)

where V is the variance:

Vt =
∫ 1

0
(x− µt)2Pt(dx). (54)

As observed in section 3.3, Example 3.3.1, any distribution of the form P0 = (1 − α)δ0 + αδ1

with α ∈ [0, 1] defines a rest point of the continuity equation (17), with mean µ = α and variance
V = α(1 − α). In particular δ0 and δ1 are rest points. However, in contrast to the classical case
(52), the sense in which these are (if they are) locally stable rest points of the continuity dynamics
is not immediately clear.

To address this question, we consider the distributional replicator dynamics in the form (40)
which, for the 2× 2 case, reduces to the single equation

Ȧ = λ
{
−x∗ + F (eA | P0)

}
, F (ξ | P0) =

∫ 1

0

xξ

1− x+ xξ
P0(dx), (55)

with initial condition A(0) = 0. Note that, if P0 has no mass points at x = 0 or x = 1, then
F (1 | P0) = 〈P0〉, and that F (ξ | P0) is monotonically increasing in ξ.

9.1.1 The case λ < 0: convergence to equilibrium distribution

In this case both payoff differences u11−u21 and u22−u12 are negative, and U is a negative definite
game. The unique interior Nash equilibrium x∗ is globally asymptotically stable for x ∈ (0, 1) under
the classical replicator dynamics (52). For the continuity replicator dynamics, Theorem 7.1 and
Proposition 8.1 are applicable, and determine a unique limiting distribution P∞ with 〈P∞〉 = x∗.

For example, suppose that P0 is represented by a probability density function on [0, 1], P0(dx) =
p0(x)dx. Then, using the variable A = C1 − C2, the equilibrium equation reduces to

F1(eA | P0) =
∫ 1

0

xeA

1− x+ xeA
p0(x)dx = x∗.

Since F1(eA | P0) is monotonically increasing in A, with F1(eA | P0) → 0 as A → −∞ and
F1(eA | P0)→ 1 as A→∞, this equation has a unique solution A∗ ∈ IR.
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Figure 1: The limiting density p∞(x) defined by equation (56) for the uniform distribution p0(x) =
1. In this example x∗ in (51) is x∗ = 0.2, and A∗ defined by (57) is A∗ = −2.0491. This density
has mean x∗ and variance 0.04875.

We can now use the formula (36) to obtain the limiting probability density:

p∞(x) = p0

(
xe−A

∗

1− x+ xe−A∗

)
e−A

∗

(1− x+ xe−A∗)2 . (56)

For example, for the uniform distribution, p0(x) = 1, A∗ is the solution of∫ 1

0

xeA

1− x+ xeA
dx =

eA
(
eA −A− 1

)
(eA − 1)2 = x∗. (57)

The resulting limiting probability density (56) is illustrated in Figure 1.

9.1.2 The case λ > 0: convergence to pure strategy equilibria

In this case both payoff differences u11−u21 and u22−u12 are positive. For the replicator dynamic
(52), the equilibria x = 0 and x = 1 are both locally asymptotically stable, with basins of attraction
0 ≤ x < x∗ and x∗ < x ≤ 1, respectively. For the distributional dynamic (55), the following lemma
relates the asymptotic behaviour of A(t) to the initial density function.

Lemma 9.1 Suppose λ > 0 and x∗ ∈ (0, 1), and that the initial distribution P0 has no mass point
at x = 0 or x = 1. Let µ0 = 〈P0〉 be the associated mean mixed strategy.

1. If µ0 < x∗, then A(t) is monotonically decreasing in t, and A(t)→ −∞ as t→∞.

2. If µ0 > x∗, then A(t) is monotonically increasing in t, and A(t)→∞ as t→∞.
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Proof. From (55), we have Ȧ(0) = λ (−x∗ + µ0). Since λ > 0, Ȧ(0) > 0 if µ0 > x∗ and Ȧ(0) < 0
if µ0 < x∗. Moreover, the monotonicity properties of F

(
eA | P0

)
imply that the initial conditions

are self-reinforcing as t increases. Hence, if µ0 > x∗, then Ȧ(t) > 0, and if µ0 < x∗, then Ȧ(t) < 0,
for all t ≥ 0. �

We now use Proposition 5.3 and Lemma 9.1 to derive the following proposition.

Proposition 9.2 Consider a generic 2 × 2 symmetric game with λ > 0 and 0 < x∗ < 1. Let
µt = 〈Pt〉 be the mean with respect to the solution measure Pt. If P0 has no mass point at x = 0 or
x = 1, then Pt → δ1 if µ0 > x∗, and hence µt → 1, and Pt → δ0 if µ0 < x∗, and hence µt → 0 as
t→∞.

Earlier, we interpreted the mean µt = 〈Pt〉 as the aggregate social state generated by Pt.
Proposition 9.2 implies in the type of 2 × 2 symmetric games we are considering, and for suitable
initial distributions, there is no difference in the long-run aggregate social state under the replicator
continuity equation and the classical replicator dynamic. In the long run either all agents play action
1 or all play action 2. Nevertheless, the time-course trajectories of the aggregate state under the
two dynamics generally differ. In principle, therefore, it would be possible to distinguish whether
agents are playing pure or mixed strategies by observing the solution trajectories.

9.2 Population heterogeneity: a 3× 3 example

As shown in section 9.1.2, for generic 2× 2 symmetric games there is no difference in the long-run
aggregate social state under the replicator continuity equation and the classical replicator dynamic.
This coincident asymptotic behavior is not, however, a general result, and does not hold for n× n
symmetric games with n > 2. In this section we give an example for n = 3.

This issue is closely related to population heterogeneity. As noted in section 3.1, solutions of
the classical replicator dynamics represent the evolutionary continuity dynamics of a homogeneous
population, in which all agents use the same mixed strategy, say P0 = δx0 . We compare this
with a simple heterogeneous population which initially contains two subpopulations, using mixed
strategies a1, a2 ∈ int ∆. In this case, P0 = α1δa1 + α2δa2 , where α1, α2 > 0 and α1 + α2 = 1.
Thus, αi is the proportion of the population using mixed strategy ai, i = 1, 2. We assume that the
two populations initially have the same mean: µ0 = α1a1 + α2a2 = x0. Thus, regarded as mixed
populations of pure strategy players, the two populations are initially indistinguishable.

Consider a symmetric 3×3 game with diagonal payoff matrix U = diag{λ1, λ2, λ3}. The classical
replicator dynamics are

ẋ1 = x1

{
λ1x1(1− x1)− λ2x

2
2 − λ3x

2
3

}
, (58)

ẋ2 = x2

{
−λ1x

2
1 + λ2x2(1− x2)− λ3x

2
3

}
, (59)

with x3 = 1 − x1 − x2. If λ1, λ2, λ3 are positive, then the pure strategy equilibria e1, e2, e3 are all
asymptotically stable, and there is an interior equilibrium x∗ with x∗i ∝ λ

−1
i , which is unstable.
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Figure 2: Trajectories of the replicator dynamics (58)-(59) (thin curve) and the mean (62) associated
with the distributional replicator dynamics (60)-(61). Initial conditions for both trajectories are
the same: (x1, x2) = (µ0,1, µ0,2). The parameters are: (λ1, λ2, λ3) = (1, 2, 15); (α1, α2) = (1

2 ,
1
2);

(a11, a12, a13) = (0.9, 0.05, 0.05); (a21, a22, a23) = (0.05, 0.9, 0.05).

The associated distributional replicator dynamics (40) are

dA1

dt
=

2∑
k=1

αk
λ1ak1e

A1 − λ3ak3

ak1eA1 + ak2eA2 + ak3
, (60)

dA2

dt
=

2∑
k=1

αk
λ2ak2e

A2 − λ3ak3

ak1eA1 + ak2eA2 + ak3
, (61)

with initial conditions A1(0) = A2(0) = 0. If (A1(t), A2(t)) is the solution trajectory of these
equations, then from (43) the associated trajectory of the mean µt = 〈Pt〉 is

µt,i =
2∑

k=1

αk
akie

Ai(t)

ak1eA1(t) + ak2eA2(t) + ak3
, i = 1, 2. (62)

We compare this trajectory with the trajectory of the replicator dynamics (58)-(59) with initial
condition x0 = µ0, and show that parameters can be chosen so that these two trajectories converge
to different pure-strategy equilibria. An example is shown in Figure 2.
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10 Application: A Price Dispersion game

We apply the results of Section 7 to analyze a model of pricing in which the unique equilibrium is
a dispersed price equilibrium. This is a mixed strategy equilibrium in which different sellers charge
different prices from consumers. We analyze this model in our evolutionary framework, allowing
sellers to use mixed strategies over prices, and to use reinforcement learning to update their pricing
strategies. The result we look for is whether this equilibrium is stable or not under the replicator
continuity dynamic.26

The model we consider a simplified case of the finite dimensional Burdett and Judd (1983) price
dispersion model analyzed in Lahkar (2010). There exists a large population of sellers, each selling
the same homogeneous product to a large population of consumers. A strategy for a seller is to
quote one of three prices p0, p1, p2 with 0 < p0 < p1 < p2. In this simplified case, we exogenously
restrict consumer behavior to two types. The first type of consumer picks a price quotation at
random and buys the product at that price. The second type uses a more discerning strategy,
paying a small cost to compare two random price quotations and then buying the product at the
lower of the two prices, or choosing either one with equal probability if they coincide. We denote
the proportion of the first type of consumer by y1 and that of the second type by y2 with 0 < y1 < 1
and y1 + y2 = 1.

An evolutionary analysis of this price dispersion model is credible for two reasons. First, there
is a large number of sellers in such a model so that it can be analyzed as a population game.
Second, sellers can be expected to behave in a myopic fashion since in the presence of a large
number of competitors, it would be unrealistic to assume that they would possess the level of
rationality and knowledge required to coordinate on the exact mixed equilibrium prediction. In
particular, information about prices charged by competitors (even successful ones) may not be
publicly available.

We first show that the game we have constructed is a positive definite game. We then identify
conditions under which the model has a unique interior mixed strategy equilibrium. This is the
dispersed price equilibrium. It then becomes a simple matter to apply Theorem 7.2 to argue that
the dispersed price equilibrium is unstable under reinforcement learning.

If we denote by xi the proportion of sellers charging price pi, i ∈ {0, 1, 2}, then the expected
payoff obtained by a seller charging price pi is

πi(x) =
1
2
pi

y1 + 2y2

xi
2

+
∑
j>i

xj

 . (63)

26Price dispersion is a well documented fact. See Hopkins (2006) for a review of the evidence on price dispersion.
Numerous theoretical models (for example; Varian, 1980; Burdett and Judd, 1983) explain this as a mixed strategy
equilibrium. But empirical and experimental results in Lach (2002) and Cason, Friedman and Wagener (2005)
respectively suggest dispersed price equilibria are unstable. This suggests we need to find some other explanation for
observed price dispersion. Lahkar (2010) argues theoretically that price dispersion may exist as an evolutionary limit
cycle.
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Formally this is equivalent to a symmetric 2-player 3 × 3 normal form game between sellers with
the following payoff matrix:

U =


1
2p2

1
2p2y1

1
2p2y1

1
2p1y1 + p1y2

1
2p1

1
2p1y1

1
2p0y1 + p0y2

1
2p0y1 + p0y2

1
2p0

 . (64)

Here, the rows correspond to bids of p2, p1, p0 from top to bottom, and the columns to p2, p1, p0

from left to right.
We now show that the game (64) is a positive definite game. For this purpose, we denote a

typical element in the subspace IR3
0 by z = {z0, z1, z2}.

Lemma 10.1 The game with payoff matrix U is a positive definite game.

Proof. In order to establish positive definiteness, we need to show z · Uz > 0, for all z ∈ IR3
0 \ {0}.

Writing z2 = −z0 − z1 and y2 = 1− y1, we obtain

z · Uz = (y1 − 1)
(
p0z

2
0 − p2 (z0 + z1)2 + p1z1 (2z0 + z1)

)
= (1− y1)

(
z2

0 (p1 − p0) + (z0 + z1)2 (p2 − p1)
)
> 0,

since 0 < y1 < 1 and p0 < p1 < p2. �

Now suppose that the game (64) has a cyclic best response structure. That is, p2 is a best-
response to p0, p1 is a best response to p2, and p0 is a best-response to p1. This is the case
if

p2y1 > p0, (65)

p1(y1 + 2y2) > p2, (66)

p0(y1 + 2y2) > max{p1, p2y1}. (67)

We also assume that
p1 ≥

1
2

(p0 + p2). (68)

For example, if (p0, p1, p2) = (1, 5
4 ,

3
2), then y1 must lie in the range 2

3 < y1 < 3
4 , and hence

1
4 < y2 <

1
3 .

Under these conditions, the game has a unique mixed strategy equilibrium in which pi is played
with probability x∗i , where x∗ = (x∗0, x

∗
1, x
∗
2) is given by

x∗ =
U−1e

e · U−1e
. (69)
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For example, for (p0, p1, p2) = (1, 5
4 ,

3
2) and y1 = 1

2(2
3 + 3

4) = 17
24 , we obtain

(x∗0, x
∗
1, x
∗
2) =

1
91

(19, 29, 43) .

Observe that x∗0 < x∗1 < x∗2, so that the highest price is offered with the highest frequency, and the
lowest with the lowest frequency.

We now analyze the stability properties of this equilibrium under reinforcement learning. A
naive approach would be to apply reinforcement learning directly to the payoff matrix in (64), obtain
the replicator continuity equation and then apply Theorem 7.2. There is, however, a difficulty with
this approach. The payoffs corresponding to each strategy profile in (64) are expected payoffs rather
than realized payoffs. For example, under the strategy profile (p1, p2) offered by two sellers to a
consumer, the realized payoff for the firm charging p1 is either p1 or 0 depending upon whether
the sale materializes or not, whereas the expected payoff to this seller is 1

2p1y1 + p1y2. Given that
reinforcement learning is determined by realized payoffs to individuals, we cannot straightforwardly
use (64) to derive the replicator continuity equation. Instead, we need to consider realized payoffs.

The realized payoff to a seller depends upon the type and action of the consumer with whom
he is dealing. A random consumer may adopt one of the following strategies with their respective
probabilities:

U1: Choose not to compare bids and award the bid to player 1: probability 1
2y1

U2: Choose not to compare bids and award the bid to player 2: probability 1
2y1

I1: Choose to compare bids and award bid to player 1 if there is a tie: probability 1
2y2

I2: Choose to compare bids and award bid to player 2 if there is a tie: probability 1
2y2

A choice of one of these pure strategies by the consumer determines a well-defined payoff matrix
for the symmetric game between the two sellers. The four realized payoff matrices (for seller player
1) corresponding to these consumer choices are:

UU1 =

p2 p2 p2

p1 p1 p1

p0 p0 p0

 , UU2 =

0 0 0
0 0 0
0 0 0

 ,

U I1 =

p2 0 0
p1 p1 0
p0 p0 p0

 , U I2 =

 0 0 0
p1 0 0
p0 p0 0

 .

(70)

As in (64), the rows in each of these matrices correspond to player 1 bids of p2, p1, p0 from top to
bottom, and the columns to player 2 bids of p2, p1, p0 from left to right. Given the possible behaviors
of consumers, each of these payoff matrices is generated according to the probability distribution
{zU1, zU2, zI1, zI2} =

{
1
2y1,

1
2y1,

1
2y2,

1
2y2

}
, where zα is the probability of the realization of the payoff

matrix Uα.
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We derive the continuity equation for this game with indeterminate payoffs. In doing so, we
need to account for the probabilistic nature of the realization of the payoff matrices. This is easily
done by incorporating the probability distribution z in the updating equation of the probability
measure P . If the consumer uses strategy α and the sellers play pure strategies (i, j), then the
updating rule (5) for player 1 is generalized to

x′ = x+ ηfαij(x). (71)

We now proceed exactly as in section 2 to obtain the (continuous time) weak form of the
continuity equation

d

dt
〈φ | Pt〉 =

∫
x∈∆
∇φ(x) · [F(x)〈Pt〉]Pt(dx), (72)

where now the operator F(x) of (11) is generalized to

Fij(x) =
∑
α

∑
r∈n

xrf
α
rj,i(x)zα. (73)

This has the same form as the continuity equation (10).
In particular, the Börgers and Sarin (1997) updating rule for an individual seller involved in a

game of type α, has the form

x′r = δiru
α
ijη + (1− uαijη)xr, (74)

fαij,r(x) = (δir − xr)uαij . (75)

Under this rule,27 we have from (73)

[F(x)y]r =
∑
j

Frj(x)yj

=
∑
j

∑
i,α

xif
α
ij,r(x)yjzα

=
∑
i,j,α

(δir − xr)uαijxiyjzα

= xr

∑
j,α

uαrjyjzα −
∑
i,j,α

uαijxiyjzα


= xr ([Uy]r − x · Uy) where U =

∑
α

Uαzα

= Rr(x)y. (76)
27We are using the payoff matrices in (70) to define the updating equations in (74). This, however, does not mean

we are assuming a random matching structure in this game; i.e. we are not assuming that a seller is aware of the
strategy being used by his consumer or of the identity of his rival in case the consumer is comparing two bids. All
that a player needs to know to apply (74) is his own realized payoff which is his quoted price if it results in a sale or
zero if there is no sale. The probabilities with which these payoffs occur are accounted for in the continuity equation
(72).
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Applying (76) to (72), we obtain the replicator continuity equation

d

dt
〈φ | Pt〉 =

∫
x∈∆
∇φ(x) · [R(x)〈Pt〉]Pt(dx). (77)

Note that despite the uncertainty in the realization of any particular payoff matrix in (70), the
continuity dynamic we obtain in (77) is exactly the same as that obtained in (17) for the case
with a deterministic payoff matrix. Hence, we can readily apply the general results obtained in
the previous sections to analyze the stability properties of the equilibrium in our price dispersion
model.

Proposition 10.2 Consider the game given by payoff function (63), or equivalently by the expected
payoff matrix U given by (64). Suppose the game has a unique interior equilibrium given by (69).
Then this dispersed price equilibrium is totally unstable under the replicator continuity dynamic.

Proof. First, we note that the expected payoff matrix U in (64) is equal to
∑

α U
αzα. It therefore

follows from (76) that (77) is also the replicator continuity equation associated with the payoff
matrix U . Hence, we obtain the desired result from Theorem 7.2 if we show that U is the payoff
matrix of a positive definite game. But this follows from Lemma 10.1. �

Now consider the three pure strategies in this game. That is, a seller is primed with a fixed price
that he asks if chosen to bid. If all sellers use such a pure strategy, then the population distribution
is a mass point at that pure strategy. These pure strategy mass point distributions are rest points
of the continuity replicator dynamics (Example 3.3.1). We show in Appendix A.5 that if the cyclic
best-response conditions (65)-(67) hold, then these are the only boundary rest points, and they are
all unstable.

It now follows that all equilibria are unstable, and the solution trajectory ξt converges onto
a heteroclinic cycle at the boundary of the simplex. This is illustrated in Fig 3 for an initial
probability distribution which is a mixture of three types of seller

P0 = α1δa1 + α2δa2 + α3δa3 , (78)

where α = (α1, α2, α3) and ai = (ai0, ai1, ai2) ∈ int ∆ for i = 1, 2, 3. Note that a type-i seller uses
the mixed strategy ai over prices (p0, p1, p2). The proportion of sellers of type i in the population
is αi. Also note that it follows from (37) that the distributional trajectory {Pt} in this example is
given by

〈φ | Pt〉 =
3∑
i=1

αiφ

(
ξtai
ξt · ai

)
, (79)

for any continuous function φ on ∆, where ξt is the trajectory of the distributional replicator
dynamics illustrated in Fig 3.

Results of a similar nature on the instability of dispersed price equilibria have been obtained
in Hopkins and Seymour (2002) (using the replicator dynamic) and Lahkar (2010) (using the logit
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Figure 3: The trajectory ξt of the distributional replicator dynamic (44) for the price-dispersion
game with expected payoff matrix (64) and initial probability distribution (78). The initial condition
(heavy dot) is ξ0 = (1/3)e. The unstable dispersed price equilibrium x∗ is indicated by the small
dot. The game parameters are: (p0, p1, p2) = 1

4(4, 5, 6), (y1, y2) = 1
24(17, 7) and x∗ = 1

91(19, 29, 43).
The seller distribution parameters are: (α1, α2, α3) = 1

30(13, 13, 4), and a1 = (0.1, 0.45, 0.45), a2 =
(0.45, 0.1, 0.45), a3 = (0.45, 0.45, 0.1).
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dynamic, Fudenberg and Levine, 1998). However, the microfoundations we use in deriving our result
are very different from those used in the other papers. In motivating our work on the replicator
continuity dynamic, we have expressed our reservations about the feasibility of the revision protocols
that generate the replicator or the logit dynamic. Even in the simplest imitative revision protocol
that generates the replicator dynamic, a seller would need to observe the price quotation observed
by some rival seller. On the other hand, under reinforcement learning as we have applied it here, a
seller need be guided only by his own personal experience without even requiring to observe the price
being charged by the seller with whom he is currently matched. The informational requirements of
our strategy revision procedure are therefore far less onerous. In many situations such a procedure
may be more realistic since agents are more likely to be guided by their personal histories than
by any information about the wider social state, even when information about the social state is
available.

11 Discussion and Conclusion

The motivation behind this paper was to provide rigorous, learning-based foundations for evolu-
tionary game theory that allow agents in large populations to practice a wider range of behaviors
based upon their individual histories and experience. Specifically, we have focused on reinforcement
learning, as formally developed by Cross (1973) and Börgers and Sarin (1997), and applied these
learning procedures in the context of population games. A byproduct of this approach is that it
allows experience based, in contrast to the more usual observation based, strategy revision models
into evolutionary game theory, permitting agents to exhibit adaptive behaviors even when they
may not possess any knowledge of wider social characteristics. Further, as shown in Börgers et.
al. (2004), the Cross learning rule is the archetypical representative of a wider class of learning
rules that satisfy conditions that these authors call absolute expediency and monotonicity. These
conditions provide criteria to judge individual behavioral norms in evolutionary models on the basis
of first principles. The theory developed here, therefore, can be seen as a first step towards the
systematic extension of the framework of Börgers et. al. (2004) to large population games.

In our model, players from a large population of agents, randomly matched in each time pe-
riod to play a two player symmetric game, apply the Cross learning rule to update their mixed
strategies. This leads to the replicator continuity equation (Section 3) that traces the evolution of
the probability measure over the set of mixed strategies, the population state in our model. This
is a particular example of the general class of continuity dynamics (Section 2) that are generated
when we allow agents to play mixed strategies instead of confining them to pure strategies as in
classical evolutionary models. The replicator continuity equation cannot be solved explicitly (any
more than can the classical replicator dynamic). But we have proposed a general solution method
using Liouville’s formula and an associated finite-dimensional, autonomous ODE system that we
call the distributional replicator dynamics, which can be applied to any finite normal form game.

We have shown in Section 3.3 that the replicator continuity dynamics admits a large class of
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stationary solutions; in particular, any probability distribution whose mean over the space of mixed
strategies is a Nash equilibrium (Example 3.3.2). This implies that equilibrium populations can
be very heterogeneous, in that different players can play very different mixed strategies. However,
the population is a ‘mixture’ of mixed strategy players, rather than of pure strategy players, as in
the classical case. This constitutes a much richer behavioral structure than is usually considered.
In particular, ‘rationality’ exists only at the aggregate mean level, with individual agents possibly
exhibiting inconsistent choices even at equilibrium.

We have shown that such a rich equilibrium can arise for negative-definite symmetric games, and
that the unique Nash equilibrium for such a game is globally attracting for the population mean.
However, although the equilibrium population mean is fixed, the equilibrium distribution depends
on the initial population distribution over agents’ behavioral dispositions (mixed strategies), and
thus is a function of ‘history’. We have also shown that the population mean converges globally to
a set of Nash equilibria in doubly symmetric games. In contrast, the unique interior equilibrium for
a positive-definite game is always totally unstable (i.e. unstable in every direction). Such results
on convergence and non-convergence in negative and positive definite games and doubly symmetric
games are, of course, standard in both learning and evolutionary game theory. It is, however,
significant that such results are obtained even when we have integrated the two approaches here.
We have obtained these results by requiring agents to know only their own personal history in
previous rounds of the game. This greatly expands the scope of evolutionary game theory from
its traditional focus on revision procedures that are functions of wider social characteristics. This
raises the interesting possibility that other well known results from the learning literature may also
be obtained in the context of population games. For example, it would be interesting to examine
whether, under the Hart and Mas-Colell (2000) regret matching rule, regrets would be eliminated
for all agents in the population as they are in learning in finite player games

By allowing agents to employ different mixed strategies, we have also been able to analyze the
effect of heterogeneity of agent behavior in the population. In the classical approach to evolutionary
game theory, agent behavior is homogeneous since all agents play the same mixed strategy at any
given time (equivalently, agents play only pure strategies so that there is a given mixture of pure
strategies in the population). We have focused on situations in which results from our distribu-
tional theory differ markedly from corresponding results for the standard replicator dynamics. In
particular, for 2 × 2 games with alternative pure strategy ESS, we have shown that convergence
results for the mean state under the continuity replicator dynamics follow those of the classical
replicator dynamics with equivalent initial conditions. However, this need not be true for n × n
games with n > 2, and we have constructed a 3 × 3 example in which the replicator continuity
equations lead to very different predictions about the observed long-run social state from those of
the classical replicator dynamic, even though the two dynamics have the same (mean) initial con-
dition (see Figure 3). This example illustrates the impact of initial agent heterogeneity on the long
run social state. For the classical replicator dynamics, such initial heterogeneity takes the form
of a specified population mixture of pure strategies — or, alternatively, a single mixed strategy
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used by all agents. In contrast, in the continuity case, the initial condition can represent a mixture
of mixed strategies, incorporating different subpopulations using different mixed strategies. This
shows that local stability properties of (in these cases, pure) ESS equilibria can be quite different
in the distributional context.

Finally, we have analyzed a simple model of price dispersion and concluded that the dispersed
price equilibria in this model is unstable under the replicator continuity equation. This follows
from our theorem on the instability of the interior equilibrium in positive definite games. However,
we have noted that the microfoundations of this result are quite different from similar results
obtained by Hopkins and Seymour (2002) and Lahkar (2010). Our result shows that the instability
of dispersed equilibria holds even in this new scenario where a seller cannot observe the behaviour
of rivals and needs to rely on his personal experience of different pricing strategies.

There are many directions in which our general continuity equation approach to population
games could be taken. For example, the analysis could be extended to consider a larger class of
reinforcement learning rules, such as those discussed in Börgers et al (2004). It should also be
possible to analyze mixed strategy evolution in other types of player-matching schemes than the
simple pairwise-matching scheme discussed here. In this paper, a player interacts with a potentially
different partner in each round of the game. However, the theory has a straightforward extension
to the case in which some fixed proportion of agents are matched in each round. Alternatively, one
may fix the population into matched pairs of players at the beginning, and allow these pairs to
interact repeatedly using some learning protocol. The change in the distribution of mixed strategies
in the populations can then be studied using a continuity equation. Or one can consider a more
realistic scenario of a combination of the two matching schemes — where players play with a fixed
partner for some number of periods and then change partners. Such problems can form a substantial
research agenda for the future.

A Appendix

A.1 The weak form of continuity equations

We work with probability measures defined on the Borel sets in ∆. Let Pt be a probability measure
at time t ≥ 0 for the population. As discussed in section 2, the updating equation (9) is

〈φ | Pt+τ 〉 =
∑
i,j∈n

∫
x∈∆

φ(x+ ηfij(x))xiPt (dx) 〈Pt〉j ,

for any real-valued differentiable function φ on ∆, and η = η(τ) satisfies conditions (i), (ii) and (iii)
given in section 2.1. Now Taylor expand the φ(·) term up to terms of order η to obtain

〈φ | Pt+τ 〉 =
∑
i,j∈n

∫
x∈∆
{φ(x) + η∇φ(x) · fij(x))}xiPt (dx) 〈Pt〉j +O

[
η2
]
.
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Noting that
∑

i,j xi〈Pt〉j = 1, and using (3), this can be written in the form:

1
τ

{∫
x∈∆

φ(x)Pt+τ (dx)−
∫
x∈∆

φ(x)Pt (dx)
}

=
η(τ)
τ

∑
i,j∈n

∫
x∈∆
∇φ(x) · fij(x)xiPt (dx) 〈Pt〉j +O

[(
η(τ)
τ

)
η(τ)

]

=
η(τ)
τ

∫
x∈∆
∇φ(x) ·

∑
i,j∈n

xifij(x)〈Pt〉j

Pt (dx) +O
[(

η(τ)
τ

)
η(τ)

]

=
η(τ)
τ

∫
x∈∆
∇φ(x) · [F(x)〈Pt〉]Pt (dx) +O

[(
η(τ)
τ

)
η(τ)

]
where F(x) is given by (11). Since η(τ) → 0, and η(τ)

/
τ → η′(0) = 1 as τ → 0 (see section 2.1),

taking the limit as τ → 0 now gives:

d

dt
〈φ | Pt〉 =

∫
x∈∆
∇φ(x) · [F(x)〈Pt〉]Pt (dx) . (80)

This is the weak form of the continuity equation for Borel probability measures (10), which exists
provided the integral on the right exists for all t ≥ 0. This is the case if, for example, the forward
state change vectors, fij(x), are continuous in x, since then F(x), given by (11), is also continuous,
and hence bounded on ∆. Since ∇φ(x) is continuous, and hence bounded, and Pt is a probability
measure, it follows that the integral always exists. This shows that 〈φ | Pt〉 is differentiable in t,
with time-derivative given by (80).

A.2 Proof of Liouville’s formula

We are required to solve a weak continuity equation of the form

d

dt
〈φ | Pt〉 =

∫
x∈Ω
∇φ(x) ·X(x, t)Pt (dx) , (81)

where X(x, t) is a smooth, time-dependent vector field on a compact, regular domain Ω ⊂ IRn,
a domain which is invariant under the flow defined by X, and we are given an initial probability
measure P0 at time t = 0. Let xt0,t(x) be the solutions trajectory of the characteristic system
ẋ = X(x, t), that passes through x at time t0.

Consider the generalized function γt defined by:

γt(φ) =
∫

Ω
φ (x0,t(x))P0 (dx) . (82)
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Then

dγt
dt

(φ) =
d

dt

∫
Ω
φ (x0,t(x))P0 (dx)

=
∫

Ω
∇φ(x0,t(x)) · ẋ0,t(x)P0 (dx)

=
∫

Ω
∇φ(x0,t(x)) ·X (x0,t(x), t)P0 (dx) .

Now apply the smooth change of variables ξ = x0,t(x), which has inverse x = xt,0(ξ), since Ω is
invariant under the flow defined by X. Then:

dγt
dt

(φ) =
∫

Ω
∇φ(ξ) ·X (ξ, t)Pt (dξ) , (83)

where Pt is the measure defined by28

Pt(B) = P0 (xt,0(B)) . (84)

Applying the same change of variable to (82), we also have:

γt(φ) =
∫

Ω
φ(ξ)Pt(dξ) = 〈φ | Pt〉,

and hence from (83)
d

dt
〈φ | Pt〉 =

∫
Ω
∇φ(ξ) ·X(ξ, t)Pt(dξ).

This shows that Pt given by (84) is the solution of the weak form of the continuity equation (81)
with the given initial measure P0. Equation (84) is a measure-theoretic form of Liouville’s formula.
We also obtain expected values of smooth test functions:

〈φ | Pt〉 =
∫

Ω
φ(ξ)Pt(dξ) =

∫
Ω
φ (x0,t(x))P0 (dx) . (85)

This yields the formula (30), and hence proves Proposition 4.1.

A.2.1 Absolute continuity

Now suppose that P0 is absolutely continuous with respect to Lebesgue measure. That is, there
is a Lebesgue-integrable density function p0(x) such that P0(dx) = p0(x)dx. Then it follows from
(84) that Pt(dξ) = P0 (xt,0(dξ)) = p0 (xt,0(ξ)) dxt,0(ξ). We also have dx = dxt,0(ξ) = |Jt(x; ξ)|dξ,
where Jt(x; ξ) is the Jacobian matrix:

Jt(x; ξ) = det
(
∂xi
∂ξj

)
.

28See Dunford and Schwartz (1964), Lemma 8, p 182, for the ‘change of variable’ result used here.
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To compute this Jacobian, consider the generalized Jacobian

Jt,s(ξ) = det
(
∂xt,s(ξ)i
∂ξj

)
.

Then Jt(x; ξ) = Jt,0(ξ), and Jt,t(ξ) = 1. Next, observe that, by definition of the trajectories xt,s(ξ),
we have

d

ds

[
∂xt,s(ξ)i
∂ξj

]
=

∂

∂ξj

[
dxt,s(ξ)i
ds

]
=

∂

∂ξj
[Xi (xt,s(ξ), s)] =

n∑
k=1

∂Xi

∂xk
(xt,s(ξ), s)

∂xt,s(ξ)k
∂ξj

. (86)

Let J (i)
t,s (ξ) be the determinant of the matrix obtained from Jt,s(ξ) by taking the time derivatives

with respect to s of the entries in the i-th row, as in (86), but leaving the other rows unchanged.
Let [Jt,s(ξ)]i,j be the ij-th minor of Jt,s(ξ).29 Then:

dJt,s(ξ)
ds

=
n∑
i=1

J
(i)
t,s (ξ)

=
n∑
i=1

n∑
j=1

(−1)i+j
d

ds

[
∂xt,s(ξ)i
∂ξj

]
[Jt,s(ξ)]i,j expanding J (i)

t,s (ξ) by the i-th row

=
n∑
i=1

n∑
j=1

n∑
k=1

(−1)i+j
∂Xi

∂xk
(xt,s(ξ), s)

∂xt,s(ξ)k
∂ξj

[Jt,s(ξ)]i,j using (86)

=
n∑
i=1

n∑
k=1

(−1)i+k
∂Xi

∂xk
(xt,s(ξ), s)


n∑
j=1

(−1)k+j ∂xt,s(ξ)k
∂ξj

[Jt,s(ξ)]i,j


=

n∑
i=1

n∑
k=1

(−1)i+k
∂Xi

∂xk
(xt,s(ξ), s) δikJt,s(ξ).

The last equality holds because, for k 6= i, the expression in {} is the determinant of an n × n
matrix whose i-th and k-th rows are identical, and hence is zero. We therefore have:

dJt,s(ξ)
ds

= Jt,s(ξ)
n∑
i=1

∂Xi

∂xi
(xt,s(ξ), s) = Jt,s(ξ) [∇ ·X] (xt,s(ξ), s) .

Integrating this from s = 0 to s = t and recalling that Jt,t(ξ) = 1 and Jt,0(ξ) = Jt(x; ξ), gives:

|Jt(x; ξ)| = exp
{
−
∫ t

0
[∇ ·X] (xt,s(ξ), s) ds

}
.

It now follows that Pt is absolutely continuous with respect to Lebesgue measure, with associated
29That is, the determinant of the (n− 1)× (n− 1)-matrix obtained from Jt,s(ξ) by deleting the i-th row and the

j-th column.
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density function pt(ξ) = p0 (xt,0(ξ)) |Jt(x; ξ)|. That is:

pt(ξ) = p0 (xt,0(ξ)) exp
{
−
∫ t

0
[∇ ·X] (xt,s(ξ), s) ds

}
.

This yields the probability-density function form of Liouville’s formula (28).

A.3 Proof of Proposition 5.2

For the pseudo-replicator vector field X(x, t) = R(x)y(t) on the simplex ∆ ⊂ IRn defined in (31),
we have

∑n1
i=1 xi = 1 and

∑n
i=1Xi = 0. Hence, the independent components are xi and Xi for

1 ≤ i ≤ n− 1. We therefore take the state space to be the projection of ∆ into IRn−1 defined by:

Ω1 =

{
(x1, . . . , xn−1) ∈ IRn−1 : 0 ≤ xi ≤

n−1∑
i=1

xi ≤ 1

}
. (87)

Then, if (x1, . . . , xn−1) ∈ Ω, the associated point x ∈ ∆ is x = (x1, . . . , xn−1, xn) with xn =
1 −

∑n−1
i=1 xi. Generally x denotes a point in ∆, but relevant operations often involve only the

independent components, i.e. the associated point in Ω.
Let Lij(x) = xi(δij − xj). Then, from (32) we can write the divergence of X on Ω as:

∇ ·X(x, t) =
n−1∑
i=1

{
∂

∂xi
− ∂

∂xn

}
Xi(x, t) =

n−1∑
i=1

n∑
j=1

{
∂

∂xi
− ∂

∂xn

}
Lij(x)cj(t),

for x ∈ ∆1. Also, for 1 ≤ i, j ≤ n− 1:

∂

∂xi
[Lij(x)] = (1− xi)δij − xj ,

∂

∂xi
[Lin(x)] = −xn,

∂

∂xn
[Lij(x)] = 0,

∂

∂xn
[Lin(x)] = −xi.

Hence,

∇ ·X(x, t) =
n−1∑
i,j=1

{(1− xi)δij − xj} cj(t) +
n−1∑
i=1

(xi − xn)cn(t)

=
n∑
i=1

ci(t)− n
n∑
i=1

xici(t)

= {e− nx} · c(t).

It now follows that, if xt,s(x) are the solution trajectories of the pseudo-replicator equations
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(34), then we obtain

[∇ ·X] (xt,s(x), s) = {e− nxt,s(x)} · c(s) = e · c(s)− n
n∑
i=1

xici(s)eCi(s,t)

x · eC(s,t)
,

where C(s, t) = C(s)− C(t). Thus∫ t

0
[∇ ·X] (xt,s(x), s) ds = e ·

∫ t

0
c(s)ds− n

n∑
i=1

∫ t

0

xie
Ci(s,t)

x · eC(s,t)
ci(s)ds

= e · C(t)− n
∫ t

0

d

ds

[
ln
(
x · eC(s,t)

)]
ds

= e · C(t) + n ln
[
x · e−C(t)

]
,

because C(t, t) = 0, C(0, t) = −C(t) and e · x = 1. We therefore have:

exp
{
−
∫ t

0
[∇ ·X] (xt,s(x), s) ds

}
=
(

1
x · e−C(t)

)n
exp {−e · C(t)} .

Substituting in Liouville’s formula (28), it now follows that the solution of the weak continuity
equation for density functions associated to a pseudo-replicator vector field (32) is given by (36).
�

A.4 Proofs for Section 7

A.4.1 Properties of F

We begin by proving some key properties of the function F defined in (42) .
First observe that the function F (ξ | P0) is well-defined for all ξ ∈ ∆ if ∂∆ has P0-measure

zero, because the integral in (42) can be taken over int ∆, and ξ · x is never zero for any ξ ∈ ∆
and x ∈ int ∆. In particular, this condition rules out initial distributions of the form (24). The
formulation (44) therefore extends the distributional replicator dynamics to a dynamical system
having compact phase space, namely the simplex ∆.30

In order to state the key properties of the function F (· | P0) : ∆ → ∆ that we shall need, we
require some notation.

Let S ⊆ n be a (possibly empty) set of pure strategies. Define a subspace IRnS = {x ∈ IRn |
xj = 0 for j /∈ S}, and let eS =

∑
i∈S ei ∈ IRnS .31 We note that IRn may be decomposed as

IRn = IRnS ⊕ IRnS′ , (88)

30We note that the form (44) defines an example of a larger class of dynamics: Positive Definite Adaptive (PDA)
dynamics with non-linear payoff function Π(ξ) = UF (ξ | P0). A general discussion of this class of dynamics is given
in Hopkins and Seymour (2002, section 3).

31We take IRn∅ = {0} and e∅ = 0.
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where S′ = n \ S is the complement of S in n. That is, IRnS′ = {x ∈ IRn | xi = 0 for i ∈ S}. In
addition, IRnS may be decomposed as

IRnS = [eS ]⊕ IRnS0, (89)

where [eS ] is the 1-dimensional subspace generated by eS , and IRnS0 = {x ∈ IRnS |
∑

i xi = 0}.
Recall that an n× n real matrix A is said to be positive (resp. negative) definite on a subspace

Σ ⊆ IRn if z · Az > 0 (resp. < 0) for all non-zero z ∈ Σ. We can now state the key properties of
F (· | P0) that we need.

Lemma A.1 Suppose ∂∆ has zero P0-measure. Then the derivative D̃F (ξ | P0) =
(
∂Fi(ξ | P0)

/
∂ ln ξj

)
is symmetric. If S = supp(ξ), then the j-th row and j-th column of D̃F (ξ) are zero for j /∈ S, and
eS · D̃F (ξ) = D̃F (ξ)eS = 0. Further, D̃F (ξ) is positive-definite on IRnS0.

Proof. Let ξ = eζ , and D̃F (ξ) =
(
∂Fi(ξ)
∂ζj

)
. A formal calculation from (42) shows that

∂Fi(ξ)
∂ζj

=
∫

∆

(
ξixi
ξ · x

){
δij −

(
ξjxj
ξ · x

)}
P0(dx). (90)

Clearly D̃F is symmetric. Also, if S = supp(ξ), then Fj(ξ) = 0 and the j-th row and j-th
column of D̃F defined by (90) are zero for j /∈ S. However, since int ∆ has positive P0-measure,
D̃F has positive diagonal entries and negative off-diagonal entries for row and column indices
i, j ∈ S. Further, from (90), we have D̃FeS = eS · D̃F = 0. Hence, D̃F maps IRn onto IRnS0. A
straightforward calculation from (90) now shows that, for z ∈ IRnS0,

z · D̃F (ξ)z =
∑
i∈S

Fi(ξ)(zi − z̄)2, where z̄ = z · F (ξ),

and hence D̃F (ξ) is positive-definite on IRnS0. �

Lemma A.2 Suppose ∂∆ has zero P0-measure. Then F (· | P0) : ∆ → ∆ is a homeomorphism,
and a diffeomorphism on int ∆. In particular, if F (ξ | P0) = u, then supp(ξ) = supp(u).

Proof. For ξ ∈ ∆, consider the dynamical system

ξ̇ = u− F (ξ | P0) ∈ IRn0 , (91)

because u, F ∈ ∆. Also,
ξ̇i

∣∣∣
ξi=0

= ui − Fi(ξ | P0)|ξi=0 = ui ≥ 0,

from which it follows that ∆ is forward-invariant under the flow of the system (91). It now follows
from standard results that ∆ contains at least one equilibrium ξ∗ = ξ∗(u) of (91).32 Further, it is
clear from the definition of F in (42) that supp(ξ∗) = supp(u).

32See, for example, Spanier (1966), Theorem 12, p197.
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It remains to show that ξ∗ is unique. Suppose that u, and hence ξ∗ has full support. For
ξ ∈ IRn+, let ζ = ln ξ, and consider the potential function

K(ζ | P0) = −u · ζ +
∫

∆
ln(eζ · x)P0(dx).

Then ∇K = −u+ F , and hence ∇K(ζ∗) = 0, where ζ∗ = ln ξ∗. Further

[∇2K]ij =
∂2K

∂ζi∂ζj
=
∂Fi
∂ζj

. (92)

That is ∇2K = D̃F , which is positive definite on IRn0 by Lemma A.1. Hence, ζ∗ is the unique
global minimum of K subject to the constraint e · eζ = e · ξ = 1. Since (91) can be written as
ζ̇ = −e−ζ∇K(ζ), it follows that any equilibria must satisfy ∇K(ζ) = 0, and hence ξ∗ = eζ

∗
is the

unique equilibrium satisfying the constraint ξ∗ ∈ ∆.
Now suppose that u does not have full support. If u = ei, then it is clear from the definition

(42) that ξ∗ = ei is the unique solution of F = ei. So, we may suppose that the support of u
contains at least two elements. If S = supp(u), then (92) defines an |S| × |S| symmetric matrix,
∇2KS , by taking i, j ∈ S. The argument of lemma A.1 shows that this matrix is positive definite
on IRnS0 (which has dimension at least 1), and hence ξ∗S = eζ

∗
S ∈ ∆S ⊂ IRnS is the unique solution of

F = u.
Now observe that, for ξ ∈ int ∆, the derivative DF (ξ) =

(
∂Fi
/
∂ξj
)

satisfies: DF (ξ) =
D̃F (ξ)W (ξ), where W (ξ) = diag{ξ−1

1 , . . . , ξ−1
n }. Thus, by Lemma A.1, DF (ξ) : Tξ∆ = IRn0 →

IRn0 = Tξ∆ is an isomorphism for all ξ ∈ int ∆. That F (ξ) is a diffeomorphism on int ∆ now
follows from the Inverse Function Theorem. Finally, since F (ξ) : ∆→ ∆ is a continuous bijection
with continuous inverse on int ∆, which is dense in ∆, it follows that the unique inverse F−1(x) is
continuous, and hence that F is a homeomorphism on ∆. �

Finally, we note the following observation concerning rest points.

Lemma A.3 Suppose ∂∆ has zero P0-measure. Let ξ∗ ∈ ∆ be a rest point of the distributional
replicator dynamics (44), and let x∗ = F (ξ∗ | P0). Then x∗ is a rest point of the relicator dynam-
ics. Hence, any probability distribution P∞ on ∆ with mean x∗ is a stationary distribution of the
replicator continuity equation (17).

Proof. If ξ∗ is a rest point of (44) with support S ⊆ n, then Ri(ξ∗)F (ξ∗ | P0) = Ri(ξ∗)x∗ =
ξi {ei − ξ∗} · Ux∗ = 0 for each i. In particular, ei · Ux∗ = ξ∗ · Ux∗ = π∗ (a constant) for each
i ∈ S. Since supp(x∗) = S by Lemma A.2, it follows that ei · Ux∗ = x∗ · Ux∗ = π∗ for each i ∈ S.
Hence, Ri(x∗)x∗ = 0. That is, x∗ is a rest point of the replicator dynamics ẋ = R(x)x. That any
probability distribution with mean x∗ is a stationary distribution for the continuity equation (17)
follows from the characterization rest points given in Example 3.3.2. �
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A.4.2 Proof of theorem 7.1

Let ξ∗ ∈ ∆ be the unique point satisfying F (ξ∗ | P0) = x∗ (Lemma A.2). For fixed P0, we show
the global dynamic stability of the equilibrium ξ∗ under the dynamics (44) using the Lyapunov
function

K (ξ | P0) = −x∗ · ln ξ +
∫

∆
ln (ξ · x)P0(dx). (93)

This is well-defined on the subset S(x∗) = {ξ ∈ ∆ | supp(x∗) ⊆ supp(ξ)}33. One checks that x∗ is
a global minimum of K on ∆ (cf. proof of lemma A.2). Then, for ξ 6= ξ∗,

dK

dt
=

n∑
i=1

1
ξi
{−x∗i + Fi(ξ | P0)} ξ̇i

=
n∑
i=1

{−x∗i + Fi(ξ | P0)} (e1
i − ξ) · UF (ξ) using (44)

= − (x∗ − F (ξ)) · UF (ξ)

= (x∗ − F (ξ)) · U (x∗ − F (ξ))− (x∗ − F (ξ)) · Ux∗.

The second term is non-negative since x∗ is a Nash equilibrium, and the first term is negative
if U is negative-definite, since x∗ − F (ξ) ∈ IRn0 . Clearly K̇(ξ∗) = 0. Thus, K(ξ) − K(ξ∗) is a
global Lyapunov function, and it follows that any trajectory beginning at ξ0 ∈ S(x∗) converges
asymptotically to ξ∗. In particular, the trajectory beginning at the initial condition ξ0 = (1/n)e.
But, by (43) and construction of the distributional replicator dynamics (44), this trajectory satisfies
F (ξt | P0) = 〈Pt〉 for t ≥ 0, and the result therefore follows.

If U is negative semi-definite, then K̇(ξ) ≤ 0, and the Lypunov stability of any Nash equilibrium
x∗ follows. �

A.4.3 Mean entropy

A standard proof of stability of evolutionarily stable equilibria for the classical replicator dynamics
uses the entropy function (e.g. Hofbauer and Sigmund, 1998, Chapter 7). For a Nash equilibrium
of a symmetric game, x∗, this is defined on the subset {x ∈ ∆ | S(x∗) ⊆ S(x)} by

L(x) = −
∑
i

x∗i ln(xi). (94)

In the distributional case, consider the mean entropy: L̄t = 〈L | Pt〉. Then using (37), we obtain

L̄t = −
∑
i

x∗i

∫
∆

ln
(
ξi(t)xi
ξ(t) · x

)
P0(dx)

= 〈L | P0〉 − x∗ · ln(ξt) +
∫

∆
ln(ξt · x)P0(dx).

33As usual, we take 0 ln 0 = 0.
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This provides a relationship between mean entropy and the Lyapunov function (93) used in the
proof of theorem 7.1, namely:

L̄t − L̄0 = K(ξt | P0)−K(ξ0 | P0), (95)

where ξt is the trajectory of the distributional replicator dynamics (44) with initial condition
ξ0 = (1/n)e. In particular, it follows from the proof of Theorem 7.1 that if U is negative definite
on IRn0 , with unique equilibrium x∗, then mean entropy decreases along this trajectory.

A.4.4 Proof of theorem 7.2

Let ξ∗ ∈ int ∆ be the unique equilibrium of the distributional replicator dynamics (44) satisfying
F (ξ∗ | P0) = x∗ (Lemma A.2). We first show that ξ∗ is a source node for the dynamics (44). Let
π∗ = x∗ · Ux∗ be the equilibrium payoff. We begin by considering the distributional replicator
dynamics in the form (41). Introduce a new set of variables by setting Γ(t) = C(t)− (π∗t)e. Then
the distributional replicator dynamics (41) can be written as

dΓ
dt

= U
{
−x∗ + F (eΓ | P0)

}
. (96)

Note that ξ = eC
/

(eC · e) = eΓ
/

(eΓ · e). It follows that Γ∗ = ln ξ∗ is an equilibrium of (96).
In fact, (96) admits a 1-dimensional affine subspace of equilibria E = {Γ∗ + αe | α ∈ IR}34. We
consider the stability of this equilibrium set.

The Jacobian matrix J for the system (96) is

J = U(DΓF ), DΓF =
(
∂Fi
∂Γj

)
, (97)

where
∂Fi
∂Γj

=
∫

∆

∂

∂Γj

(
xie

Γi

x · eΓ

)
P0(dx) =

∫
∆

(
xie

Γi

x · eΓ

){
δij −

(
xje

Γj

x · eΓ

)}
P0(dx).

Again, setting ξ = eΓ
/

(eΓ · e), we obtain DΓF = D̃F (ξ | P0), as defined in Lemma A.135. Thus,
since D̃F (ξ∗ | P0) is symmetric and positive definite on IRn0 (by Lemma A.1), and U is positive
definite on IRn0 , it follows that J(ξ∗)e = 0 and the eigenvalues of J(ξ∗) restricted to IRn0 all have
positive real part36. This shows that the set E of equilibria of (96) is unstable.

It now follows that there exists a neighbourhood M̃0 of E in IRn such that any trajectory Γt of
(96) with initial condition Γ0 ∈ M̃0 \ E eventually leaves M̃0.

Since E maps to ξ∗ under the map Γ → ξ = eΓ
/

(eΓ · e) ∈ ∆, it follows that this map projects
M̃0 onto a neighbourhood Ñ0 of ξ∗ in int ∆. Hence, Ñ0 has the property that any trajectory ξt of
the distributional replicator dynamics (44) with initial condition ξ0 ∈ Ñ0 \ {ξ∗} eventually leaves

34It is easy to see that Γ is an equilibrium of (96) if and only if Γ = Γ∗ + αe for some constant α.
35See equation (90).
36See, for example, Hines (1980), pp 338-39.

45



Ñ0.
By Lemma A.2, we can now define a neighbourhood N0 = F (Ñ0 | P0) of x∗ in int ∆. From (43),

〈Pt〉 = F (ξt | P0), where ξt is the trajectory of (44) with initial condition ξ0 = (1/n)e. It follows
that if 〈Pt0〉 ∈ N0 for some t0 ≥ 0, then ξt0 ∈ Ñ0, and hence there is a t1 > t0 such that ξt1 /∈ Ñ0.
Hence, 〈Pt1〉 = F (ξt1 | P0) /∈ N0. This proves the theorem. �

A.4.5 Proof of theorem 7.3

Write µt = 〈Pt〉. Since U is symmetric we have

1
2

˙̄w(µ) = µ · Uµ̇

= F (eC | P0) · UḞ (eC | P0)

= F (eC) · UDF (eC)Ċ

= F (eC) · UDF (eC)UF (eC) from (41)

= [(UF ) ·DF (UF )] (ξ).

This is positive by Lemma A.1, provided UF (ξ) has a non-zero component in IRnS0, where S =
supp(ξ). From the decomposition (88) and (89), this is not the case if and only if UF (ξ) = π∗eS +v

for some constant π∗ and v ∈ IRn with vi = 0 for i ∈ S, in which case ˙̄w(µ) = 0. If ξ∗ is such a
point, then R(ξ∗)F (ξ∗) = 0, and hence ξ∗ is an equilibrium of the distributional dynamics (44). If
x∗ = F (ξ∗), this implies that x∗ is a rest point of the standard replicator dynamic, R(x∗)x∗ = 0,
since supp(x∗) = supp(ξ∗).

Hence, ˙̄w(µ) ≥ 0, for all µ with the equality holding only if µ is a rest point of the classical
replicator dynamic. However, it is known that any local maximum of the mean payoff function of
a doubly symmetric game is a Nash equilibrium (see Sandholm, 2009; Theorem 3.1.7). Hence, the
mean population state converges to a level set of Nash equilibria along non-equilibrium trajectories.
�

A.5 Price dispersion: instability of pure equilibria

To prove the instability of the three pure equilibria in the price dispersion game of section 10
when the cyclic best-response conditions (65)-(67) hold, we consider the distributional replicator
dynamics (44) restricted to each face of the ξ-simplex.

Case 1 : ξ3 = 0.
Then ξ1 = 1 − ξ2, and F3(ξ) = 0, so that F1 = 1 − F2. Thus, the system reduces to the
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1-dimensional system

ξ̇2 = ξ2 (e2 − ξ2e2 − (1− ξ2)e1) · U (F2e2 + (1− F2)e1)

= ξ2(1− ξ2)(e2 − e1) · U (F2(e2 − e1) + e1)

= ξ2(1− ξ2) {F2(e2 − e1) · U(e2 − e1) + (e2 − e1) · Ue1}

Thus, since U is positive definite, ξ̇2 > 0 for all 0 < F2 < 1 if and only if (e2 − e1) · Ue1 ≥ 0. That
is, if and only if u21 − u11 ≥ 0. From (64) this condition is p1(y1 + 2y2) ≥ p2. But this is always
the case if (66) holds. This shows that e1 is unstable.

Case 2 : ξ2 = 0.
Then ξ3 = 1 − ξ1, and F2(ξ) = 0, so that F3 = 1 − F1. Thus, the system reduces to the

1-dimensional system

ξ̇1 = ξ1 (e1 − ξ1e1 − (1− ξ1)e3) · U (F1e1 + (1− F1)e3)

= ξ1(1− ξ1)(e1 − e3) · U (F1(e1 − e3) + e3)

= ξ1(1− ξ1) {F1(e1 − e3) · U(e1 − e3) + (e1 − e3) · Ue3}

Thus, since U is positive definite, ξ̇1 > 0 for all 0 < F1 < 1 if (e1 − e3) · Ue3 ≥ 0. That is, if
u13−u33 ≥ 0. From (64) this condition is p2y1 ≥ p0. But this is always the case if (65) holds. This
shows that e3 is unstable.

Case 3 : ξ1 = 0.
Then ξ2 = 1 − ξ3, and F1(ξ) = 0, so that F2 = 1 − F3. Thus, the system reduces to the

1-dimensional system

ξ̇3 = ξ3 (e3 − ξ3e3 − (1− ξ3)e2) · U (F3e3 + (1− F3)e2)

= ξ3(1− ξ3)(e3 − e2) · U (F3(e3 − e2) + e2)

= ξ3(1− ξ3) {F3(e3 − e2) · U(e3 − e2) + (e3 − e2) · Ue2}

Thus, since U is positive definite, ξ̇3 > 0 for all 0 < F3 < 1 if (e3 − e2) · Ue2 ≥ 0. That is, if
u32 − u22 ≥ 0. From (64) this condition is p0(y1 + 2y2) ≥ p1. But this is always the case if (67)
holds. In this case, e2 is unstable.
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