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1. Introduction 

Auctions have become extremely popular for transferring goods and services. Their use can be 

traced back to 500 B.C. in ancient Babylon. Since Vickrey (1961)
1
 economists have tried to 

explore bidding and auction outcomes under various experimental settings.
2
 In induced value 

first-price auctions, subjects bid in excess of the risk-neutral-Nash predictions in classroom 

conditions (“Overbidding” Anomaly: Cox et al 1982, 1988, 1996; Harrison 1989). Although risk 

aversion can explain such aggressive behavior, skepticism surrounding risk aversion as the sole 

explanation has prompted scholars to explore other behavioral alternatives
3
 (Salo and Weber 

1995, Goeree et al. 2002, Dorsey and Razzolini 2003, Morgan, Steiglitz and Reis 2003, Kagel 

1995, Filiz-Ozbay and Ozbay 2007). In this paper I propose a different alternative which 

combines elements of Prospect theory: loss aversion and nonlinear probability weighting. 

                  In first-price sealed bid auctions, the probability of winning for a given bid depends 

on the joint distribution of induced values, risk attitudes, and the unknown strategies of rival 

bidders. Thus, missing information about other bidders’ induced values, risk posture, and/or 

bidding strategies exposes bidders to submit bids in an inherently “ambiguous”
4
 environment. 

Ambiguity effects as captured in Ellsberg paradox (1961) have been observed in market 

experiments (Camerer and Kunreuther 1989, Sarin and Weber 1993)
5
 and could influence 

bidding in auctions as well (Salo and Weber 1995, Chen et al 2007)
6
. In auctions against human 

bidders, prior bidding experience could make it easier to derive missing information thereby 

reducing the level of ambiguity. Moreover, additional controls for missing information have been 

applied which present even smaller levels of ambiguity in these auctions. For example, when 

bidding against risk-neutral Nash computer bidders, there is no uncertainty about bidders’ risk 

attitudes and bidding strategies. Therefore, ambiguity effects should become smaller in these 

                                                
1 Vickrey (1961) provides the theoretical foundations of various auction mechanisms. 
2 There is a rich variation of classroom and field experiments that employ various types of subjects and auctioned 

objects. 
3 Some other behavioral explanations include-nonlinear probability weighting (ambiguity aversion), spiteful 

preferences, regret aversion, etc. 
4 Thus, ambiguity reflects a scenario where missing probabilistic information must be derived. 
5 In Sarin and Weber (1993) the market prices for ambiguous assets were consistently below the corresponding 

prices for equivalent unambiguous assets. An asset is a two-stage lottery with risk (well-defined probabilities) and 
ambiguity (probabilities not well-defined). This effect was stronger when these assets were traded simultaneously. 

However there is weaker evidence that ambiguity affects insurance markets in Camerer and Kunreuther (1989). 
6 Ambiguity (unlike risk) better characterizes decision making in many real-world situations. E.g., the success rate 

of new drugs, insurance against previously unknown environmental hazards, terrorist activities, outcomes of R&D 

and success of new products in consumer goods markets (see references in Chen et al. 2007).  



 3 

 

auction environments. While efforts have been made to explore the effect of ambiguity on 

bidding in first-price auctions (Chen et al. 2007) some other behavioral explanations can’t 

explain overbidding in auctions against Nash computer bidders’.
7
 In this paper, I exploit the 

difference between bidding against human bidders versus computer bidders to demonstrate the 

existence of ambiguity effects as well as another determinant of behavior: loss aversion.   

        I base the analysis in this paper on a model of loss aversion with endogenous reference 

points similar to Koszegi and Rabin (2006). This is different from an approach with an 

exogenous fixed reference point in which winning the auction is interpreted as a “gain” while 

losing leaves the initial wealth unaffected. I argue that the reference point may get influenced by 

expected gains and therefore auction outcomes could be interpreted as “gains” or “losses.” It is 

plausible that a bidder who draws a high value and expects to win the auction interprets “not 

winning” as a “loss” and likewise that a bidder with low induced value interprets winning the 

auction as a “gain.” This has been observed in other contexts. For example, loss aversion has 

been observed in trading of various commodities – from chocolate bars to coffee mugs, coins, or 

sportscards – for money or other goods (Knetsch 1989; Tversky and Kahneman 1991; 

Kahneman, Knetsch, and Thaler 1990; Benartzi and Thaler 1995, List 2003). I show that loss 

aversion by itself (irrespective of other behavioral explanations) can explain aggressive bidding 

in first-price auctions and captures an important behavioral influence on bidding. Thus, my 

approach provides a justification for aggressive bidding in auctions where ambiguity effects 

could be minimal or altogether absent. Other behavioral explanations-spiteful preferences, 

nonlinear probability weighting, anticipated regret aversion, disappointment aversion - could 

explain aggressive bidding loss aversion. Unlike a regret-based explanation (Ozbay and Filiz-

Ozbay 2007), my approach does not rely on ex-post information to explain aggressive bidding; 

spiteful preferences (Morgan, Steiglitz and Reis 2003) can’t explain why human bidders bid 

aggressively against computer bidders. And finally, when the auction winner earns only the  

monetary profit as in classroom experiments,
8
 my approach is equivalent to the disappointment 

aversion model as in Gul (1991).
9
   

                                                
7 Spiteful preferences or ambiguity aversion cannot explain why humans bid aggressively against computers whose 
bidding strategies are known, and therefore the objective probability of winning the auction conditional on bid can 

be derived fairly easily or conveyed to the human bidder. 
8 This is different in field where auction object is exchanged for a monetary price (bid).  In Lange and Ratan (2009) 

we discuss the differences that could arise between the auctions conducted in induced value (classroom) settings and 

field in the context of the model, offered here. 
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        Two prominent approaches to address ambiguity attitudes in the literature are the maximin 

expected utility (MMEU model) (Gilboa and Schmeidler 1989) and Choquet expected utility 

(CEU) model (Gilboa 1987, Schmeidler 1989). I take the CEU approach, which allows 

subjective distortion of objective probability measures to capture attitudes towards ambiguity, 

exactly as in Salo and Weber (1995) and Goeree et al (2002). This is consistent with Prospect 

theory, which allows nonlinear probability weighting and loss aversion.  I propose a model of 

endogenous expectations, similar to Koszegi and Rabin (2006), to accommodate reference-

dependent preferences and attitudes towards ambiguity.  

                  Theoretically, as special cases of my approach, either non-linear probability 

weighting or loss aversion can explain observed bidding outcomes. I show that when bidders are 

loss-averse and fully anticipate potential losses, overbidding is justified even without nonlinear 

probability weighting. Thus, I suggest loss aversion as an alternative explanation for aggressive 

bidding in auctions. When I rely on nonlinear probability weighting alone, my approach is 

behaviorally equivalent to previous explanations that explain overbidding in terms of risk 

aversion or ambiguity aversion (Salo and Weber 1995; Goeree et al 2002).  

      Using data from experimental auctions, I provide evidence that the general approach that 

combines loss aversion and nonlinear probability weighting provides a good fit for observed 

bids. This approach is capable of addressing the differences in ambiguity across auction 

environments and explains aggressive bidding in auctions with prior experience (with loss 

aversion) against (i) experienced human bidders and (ii) risk-neutral Nash-computer bidders. In 

these auctions, drawing probabilistic inferences (conditional on bids) is relatively easier, and  

ambiguity effects could be irrelevant,
10

 and therefore smaller deviations between subjective and 

objective probabilities are expected.
11

   

          I estimate the behavioral parameters in my models using experimental data (Cox et al 

1982, Harrison 1989) and test the hypothesis for probability weighting under less ambiguous 

                                                                                                                                                       
9 Since I allow nonlinear probability weighting, my approach differs from Gul’s approach; in the special case of 

linear probability weighting, the two approaches are similar. This equivalence breaks down in field auctions where 

the auction object is exchanged for the bid. The implications of a model based on loss aversion for various auction 

settings are further explored in Lange and Ratan (2009). 
10 In an experiment reported in Dorsey and Razzolini (2003), the probability of winning conditional on bids is 
conveyed to the subjects. 
11 The evidence on ambiguity attitudes suggests that ambiguity aversion is more prevalent. In addition to the 

experiments that are replications of the Ellsberg paradox (Fox and Tversky 1998), Sarin and Weber (1993) find that 

the price of ambiguous two-stage lotteries is lower than equivalent unambiguous lotteries obtained through double-

market auctions. 
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circumstances.  I provide evidence that in auctions against human bidders aggressive bidding can 

be rationalized as a combination of “loss aversion” and “ambiguity aversion”; the estimates for 

loss aversion in auctions with human bidders (irrespective of prior experience) are similar, 

whereas probability weighting becomes less convex in auctions that present successively reduced 

levels of ambiguity. This results in smaller deviations between subjective and objective 

probabilities. When loss aversion is allowed, this yields an almost linear probability weighting in 

auctions with prior experience against (i) experienced human and (ii) risk-neutral Nash bidders.  

          In the following sections I motivate the general Prospect theory model for bidding in 

auctions (sections 2 and 3). I apply the model to auctions with risk-neutral Nash bidders (section 

4), and analyze the experimental data in sections 5 and 6. Finally, I discuss my results and 

conclude (sections 7 and 8). 

2. Prospect Theory: Reference-Dependence and Nonlinear Probability 

Weighting 

In this section I describe the behavioral assumptions in my approach to address bidding in 

classroom first-price auctions. In classroom auctions, induced values are induced and profits are 

paid in monetary units. Thus, consumption occurs in a single dimension.
12

  Following Koszegi 

and Rabin (2006), an individual’s utility ( | )u c r  depends both on her consumption c  and 

her reference level r .  The “direct” consumption utility ( )v c  is obtained when realized 

consumption is the same as the reference level, i.e., ( ) ( | )v c u c c , and the individual utility when 

her consumption differs from her reference is defined as 

( | ) ( ) - max[0, ( ) - ( )]lu c r v c k v r v c     (1) 

with 0 lk . lk
 
is the scalar gradient which captures the sensation of “loss” when less favorable 

outcomes are realized.
13

 

Ex ante, both reference levels and consumption could be stochastic. Following Köszegi and 

Rabin (2006), the reference level is a probability measure G  over  and consumption is drawn 

                                                
12 Unlike classroom auctions where induced values are induced in money and profits are paid in monetary units, in 

real auctions the object is awarded to the winner in return for money. In Lange and Ratan (2009), we discuss the 

implications arising from this difference when loss aversion associated with the object and money may differ. 
13 I normalize psychological “gains” to zero.   
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according to the probability measure H  over . Then, the individual’s overall expected utility 

over risky outcomes is given by 

( | ) ( | ) ( ) ( )U H G u c r dG r dH c  (2) 

In an equilibrium (for a first-price auction) captured by a strictly increasing symmetric bidding 

function, the bid determines the probability of winning and the consequent profits for a bidder.  

Since no further action is possible after placing the bid, the bid not only defines the probability of 

consumption outcomes ( H ) but also defines the probability of reference outcomes ( G ). Thus, 

for a bidder with rational expectations H G , and the reference point G  is endogenously 

determined.
14

  

The other important feature of prospect theory is nonlinear probability weighting (Kahneman and 

Tversky 1979). As discussed earlier, auction environments could vary in terms of underlying 

ambiguity. Two prominent approaches to address ambiguity attitudes in the literature are 

maximin expected utility (MMEU) (Gilboa and Schmeidler 1989) and Choquet expected utility 

(CEU) (Gilboa 1987, Schmeidler 1989). In the MMEU model, decision makers have a set of 

priors over outcomes and choose the actions that maximize the minimum expected utility over 

the set of priors. In the CEU model, decision makers’ beliefs are represented by a set of non-

additive probability measure (capacities).
15

 I take the CEU approach, which allows subjective 

distortion of objective probability measures to capture attitudes towards ambiguity.
16

 Ambiguity 

effects should become smaller in auctions with prior bidding experience and/or against risk-

neutral Nash bidders, thereby producing smaller distortions of objective probabilities. I therefore 

assume that each bidder distorts the objective probability measure P  through the following 

probability weighting function as in Salo and Weber (1995) and Goeree et al (2002): 

                                                
14 Alternative reference-dependent models with endogenous definition of reference points are given by Sugden 

(2003) and Munro and Sugden (2003) who assume the reference to be given by the current endowment which might 

adjust over the time. One other fixed reference could be the weighted expected value of the prospect, which is also 

determined endogenously in one-shot games (Kahnemann and Tversky 1979). 
15

 Some recent contributions aim at characterizing ambiguity without restricting attention to specific decision 

models, or functional-form considerations. E.g. Klibanoff, Marinacci and Mukerji (2005). 
16 Thus, I assume that probability distortions arise entirely as a response to ambiguity. This approach is similar to 

Salo and Weber (1995) and Goeree et al (2002). 
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( )P P where 0  
17

                                                     (3) 

Under this assumption H  and G  in (2) could be nonlinearly weighted measures of probability as 

defined in (3).
18

 Thus an individual solves the following program: 

max ( | )U H H                                                                 (4) 

This specification is however slightly different from the general setting discussed by Köszegi 

and Rabin (2006). In their approach, action takes place after a reference distribution has been 

formed. Given a reference distribution G , the individual therefore chooses ( )H G  to maximize

( | )U H G . In equilibrium, rational expectations then require that the consumption distribution is 

chosen such that it is consistent with the formulation of the reference point, i.e. ( )H G G .  In 

sealed-bid auction equilibrium, given the beliefs of bidders’ bidding strategies, a bid uniquely 

determines the probability of various auction outcomes for each bidder. This allows the 

formulation of a probability distribution over consumption and reference outcomes 

simultaneously. A rational bidder applies the same weighting to the objective probability 

measure associated with reference and consumption levels. This allows a complete specification 

of overall expected utility for a bidder who fully anticipates ensuing losses as defined in (4). 

3. The First-Price Auction Environment 

In this section I discuss the bidding problem in a first-price auction for a bidder with behavioral 

characteristics as described in the previous section. 

I consider n  bidders 1,...,i n . I assume symmetric behavioral preferences, i.e. that bidders share 

the same characteristics for loss aversion and probability weighting; this is common knowledge. 

In my framework, unique identification of risk preferences and nonlinear probability weighting 

may not be possible. Therefore, bidders are assumed to be risk-neutral in the numeraire 

                                                
17 

 
governs the elevation of the probability weighting function with respect to the 45-degree line. The 45-degree 

line describes linear probability weighting. ( )1
 
implies overweighting (underweighting) of probability. This 

functional specification is a special case of the probability weighting function described in Prelec (1998): 

( ) exp( ( log ) )P P  , in which 1 ; thus, my approach is less general. Moreover, in previous attempts 

to fit the more general form for bidding in first-price auctions, I found that 1. Later I discuss other evidence 

in the literature that supports this functional form for uncertain circumstances where probabilities are derived and 

not known exclusively. 
18 Later, I show how the auction outcomes are weighted in my model. 
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consumption, i.e. ( )iv c c . In the classroom auction, iv
 
is directly induced in monetary units. 

Each bidder draws her induced value iv
 

from a probability distribution defined by the 

distribution function F  defined over [ , ]v v  ( 0v v ); each bidder knows his induced value, and 

knows that other bidders’ induced values are also drawn independently from distribution F .
19

 

The bidding problem for a typical bidder in a classroom first-price auction is described in figure 

1. In equilibrium for symmetric bidders, which can be depicted through a strictly increasing bid 

function ( ) ( )j j jB v B v where j i  for all other bidders, a bid iB   for bidder i  defines her 

objective probability of winning the auction. This is weighted nonlinearly by the bidder. Thus, a 

bidder can formulate an endogenous reference lottery for each feasible bid that captures his 

expectations (beliefs) of various auction outcomes. The auction outcome follows. Ex-ante, losing 

the auction could be interpreted as loss and weighted with respect to the endogenous reference 

formulated at the time of bidding. 

Note that a bidder’s reference is defined by her beliefs about the relevant outcomes held between 

the time she formulates her bid and shortly before the auction outcome is observed. The 

degenerate utility in a first -price sealed bid auction that captures the gain-loss utility as 

described in (1) takes the following values:

 
 

Figure 1: Bidding Problem in a First-Price Auction 

 

                                                
19 In classroom auctions, overbidding beyond induced value entails negative payoff and is always suboptimal. 

However, in Harrison (1989) this restriction is not imposed explicitly. 

Draw Value; Submit bid; 
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Pr( )Lose

Pr( )Lose
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0

0
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The overall expected utility for a bidder with preferences as given in section 2 (based on 

conditions (1)-(4)) is given by: 

( , ) ( ( ))( ) ( ( ))(1 ( ( )))( )PT i i i i i l i i i iv B f B v B k f B f B v B
          

(5) 

where ( )if B
 
and ( ( ))if B are the objective and weighted probability of winning for a given bid. 

The first probability term captures direct consumption utility and the second captures the 

psychological losses when the bidder unexpectedly loses the auction.
20

 Note that bidding yields 

nonnegative payoff for moderate levels of loss aversion; for high levels of loss aversion bidding 

i iB v  maximizes overall payoff.
21

 Also note that weighted expected value is also determined 

endogenously for an equilibrium bid and could be used as a fixed reference to evaluate the 

reference-dependent utility of various outcomes (Kahnemann and Tversky 1979). This is 

equivalent to the lottery (Koszegi-Rabin) approach as discussed in the previous section and 

yields the same overall expected utility as in (5).
 22

As mentioned before, with linear probability 

weighting and induced value (classroom) settings where auction winner earns the monetary 

profit, my approach is equivalent to the disappointment aversion model as in Gul (1991).
23

   

It should be noted that (5) implies that a non-negative expected utility gain ( , )PT i iv B
 from 

participating in the auction can only result if 1 (1 ( ( )))l ik f B . That is, auction yields positive 

utility only for agents with ( ( )) 1 1/i lf B k . If 1lk , this condition holds for all agents. If 

                                                
20 Note when there is no loss aversion, 0lk

 
, this becomes a probability weighted model alone. In addition, when 

there is no probability weighting, this becomes a risk-neutral Nash model. 
21 The maximum payoff in this case is zero. 
22 In the fixed reference approach, only the auction outcome of not winning yields psychological loss with respect to 

the reference of the expected value for a given bid. 
23 In Gul’s model, disappointment could arise from paying a higher than expected price and/or losing the profit 

(based on higher price) due to losing the lottery. In a first-price auction, the price paid equals the bid in case of 

winning; so the only source of disappointment arises from not realizing the expected profit (certainty equivalent-

( )( )i i if B v B ) when the auction is lost which occurs with probability (1 ( ))if B . The last term therefore fully 

captures the disappointment as discussed in Gul (1991). 
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1lk , the condition implies only agents with a sufficiently large probability to win derive 

positive payoff from placing positive bids.  

I restrict attention to symmetric monotonically increasing equilibria in pure strategies. In 

equilibrium, the chances of player i  to win are given by 1( )n

iH v . With the above argument, 

auction yields positive utility only if 
1( ( )) 1 1/n

i lH v k . Given (.) , the threshold value ˆ( )lv k  

beyond which positive utility is realized is defined by  

1 ˆ( ( ( ))) max[0,1 1/ ]n

l lH v k k     (5a) 

Note that ˆ( )lv k v  if 1lk . Agents with ˆ[ ( ), ]j lv v k v  shall place positive equilibrium bids that 

yield positive overall payoff. Maximizing (5) with respect to iB  yields a strictly increasing 

(optimal) bid function. 

 

Proposition 1: (-First Price Auction against Human bidders-) The unique monotonically 

increasing symmetric Bayesian Nash equilibrium (BNE) bid function for loss-averse bidders who 

weigh probabilities nonlinearly is 

1 1

ˆ( )

1 1

[1 (1 2 ( ( ))] ( ( ))

( ) ˆfor ( )
( ( ))[1 (1 ( ( )))]

ˆfor ( )

i

l

v

n n

l

v k

i PT i ln n

i l i

i i l

x k F x d F x

B v v v k
F v k F v

v v v k

 

Proof: See Appendix. 

 

It is clear from the above that (i) ˆ( )lv k
 
 varies with lk

 and  and (ii) for agents with ˆ( )i lv v k the 

equilibrium bid depends on lk
 and .

24
 Thus, for ˆ( )i lv v k

 
we can explore the marginal effects 

of changes in  and lk
 on equilibrium bids.  

 

                                                
24

 For ˆ( )i lv v k  equilibrium bid ( )i iB v v  does not depend on  lk
 
and . 
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Proposition 2 (i) (-Effect of loss aversion-) Greater loss aversion yields aggressive bidding, i.e.,

0PT

l

B

k
 (ii) (-Effect of probability weighting-) Greater  (more convex probability weighting) 

yields more aggressive bidding, i.e. , 0PTB
 except when 0.9951 1lk

 
and bidders with very 

small induced values such that 2 2 2( ) 2 3 (1 ) (1 ) (1 ) ln 0i l i l l i l l l i iZ y k y k k y k k k y y
 
(where 

( 1)( ) n

i iy F v  ) who bid less aggressively i.e.  0PTB
. 

Proof: See Appendix. 

 

Intuitively, the tradeoff that determines the optimal bid for loss-averse bidders differs from the 

tradeoff without loss aversion. Loss-averse bidders are willing to pay a higher price to avoid the 

“loss” from not realizing the profits upon winning. This induces more aggressive bidding for any 

monotonic probability weighting. Thus, anticipated loss aversion by itself explains overbidding 

with respect to risk-neutral Nash equilibrium.
25

 For example, if the ambiguity confronting the 

bidder is smaller, (such that ambiguity effects could be smaller or altogether irrelevant
26

) then 

anticipated loss aversion would suffice to rationalize aggressive bidding.  

           Before I explore the effect of probability weighting on equilibrium bidding it is 

noteworthy that bidders could avoid losses in the following ways: (a) if the value draw is not 

high enough then bid upto their value to avoid losses, (b) and if the value draw is high enough 

they could either bid (i) more aggressively or (ii) less aggressively, in response to more convex 

probability weighting. In the latter scenario, when the value draw is high enough less aggressive 

bidding could happen because bid also affects the expectation of auction outcomes 

simultaneously. Higher  means lower elevation of the probability weighting curve and causes 

more aggressive bidding which suggests ambiguity aversion (or bidder pessimism) in most 

circumstances except the following: when 0.9951 1lk
 
some bidders with very small induced 

                                                
25 In addition to other behavioral influences that would suggest aggressive bidding with respect to the RNNE bid. 
26 For example, in auctions with experienced bidders and/or against risk-neutral Nash bidding strategies, deriving 

missing information regarding the probability of winning for a bid could be easier. Such auctions therefore present 

smaller levels of ambiguity for a bidder. 
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values could bid less aggressively. 
27

 Therefore, as a special case of Proposition 1, one can 

justify aggressive bidding entirely as a response to underlying ambiguity with nonlinear 

probability weighting (without loss aversion 0lk ). Aggressive bidding with respect to the 

RNNE would then suggest that “ambiguity aversion” or “bidder pessimism” causes 

underweighting the probability of winning for given bids (Salo and Weber 1995, Goeree. et al 

2002). 

 

Proposition 3: Greater competition (more bidders) yields more aggressive bidding, i.e.,

( )
0PT iB v

n
 except when 0.9951 1lk

 
and bidders with very small induced values such that 

2 2 2( ) 2 3 (1 ) (1 ) (1 ) ln 0i l i l l i l l l i iZ y k y k k y k k k y y
 
(where ( 1)( ) n

i iy F v  ) who bid less 

aggressively i.e. 
( )

0PT iB v

n
. 

Proof: See Appendix. 

 

The marginal response to greater competition is similar to the effect of probability weighting; as 

before, when value draw is high enough, bidders could avoid losses more or less aggressively, in 

response to more competition; this happens because their bid affects their expectation of auction 

outcomes simultaneously. The effect of greater competition is analogous to more convex 

probability weighting and causes aggressive bidding in most circumstances except the following: 

when 0.9951 1lk
 
some bidders with very small induced values could bid less aggressively. 

Thus, despite behavioral preferences, in most circumstances bidders respond to greater 

competition along conventional lines by bidding more aggressively.
28

 

In the following sections, I provide evidence that my approach that allows loss aversion performs 

quite well in induced value auctions, but identifying suitable reference points
29

presents a major 

                                                
27 For any bidder, more convex probability weighting, affects overall payoffs by affecting the weighted probability 

of winning, direct expected payoff and anticipated losses; for most bidders the net effect of more convex probability 

is such that it yields more aggressive bidding; however when 0.9951 1lk for some bidders with low induced 

values the net effect could yields less aggressive bidding.  
28 Except when 0.9951 1lk

 
  some bidders with very small induced values the net effect of greater competition 

yields less aggressive bidding, as in the case of probability weighting before. 
29 How people develop reference points could be contextual and plausible reference points could differ under 

different circumstances. 
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challenge in applying Prospect theory based approaches to other contexts, e.g., in common value 

auctions.  

           As discussed earlier, the general model is capable of addressing the differences in 

ambiguity across auction environments. Intuitively, ambiguity effects should become smaller in 

auctions where bidders have prior bidding experience against (i) experienced human bidders and 

(ii) risk-neutral Nash bidders, thereby producing smaller deviations between weighted and 

objective probabilities. I shall explore this hypothesis in the following section. It should be 

noted, however, that bidding against Nash risk-neutral bidders is not a special case of the 

equilibrium bid as discussed so far. Instead, it merely represents the best response of the player. 

In the following I derive the best response bid under given behavioral assumptions in these 

auctions.  

4. Auctions against Nash (risk-neutral) bidders 

In this section I address bidding in induced value auctions against Nash risk-neutral computer 

bidders. In these auctions bidders are informed ex-ante that other bidders always bid a certain 

fraction of their induced values.
30

 The auction environment is the same except that bidders face 

Nash risk-neutral computer bidders. There is no uncertainty in these auctions about risk attitudes 

and equilibrium strategies that rival bidders employ. Thus, the ambiguity confronting the bidder 

becomes smaller in these auctions. Some other behavioral explanations for overbidding 

(considered in isolation) do not apply in these auctions. E.g., it is unlikely that humans will show 

spite against computer bidders; thus, spiteful preferences cannot explain aggressive bidding in 

these auctions. Similarly, risk aversion does not yield estimates of risk attitudes similar to those 

observed in auctions against human bidders.
31

 Although combining risk aversion with spite could 

explain overbidding against risk-neutral Nash computerized bidders, such a model by itself is not 

capable of addressing the changes in ambiguity on bidding behavior.
32

 The Prospect theoretic 

framework is capable of addressing changes in ambiguity on bidding behavior.  

                                                
30 In some variants of these experiments (Dorsey and Razzolini, 2003), probability of winning, conditional upon bids 

was also shown to bidders. 
31 This is obvious by looking at the estimates of the probability-weighted model (no loss aversion) in auctions 
against risk- neutral Nash bidders (Table 5). Variations in probability weighting would therefore suggest variation in 

risk attitudes. 
32 Among other explanations, ambiguity aversion and risk aversion could also rationalize bidding outcomes in these 

auctions. However, uniquely identifying risk and ambiguity attitudes could be extremely difficult when they are 

modeled together.  
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Each bidder relies only on her induced characteristics, as described in the preference structure 

defined in (1)-(4).
33

 Consistent with the experimental setup, I assume that induced values are 

drawn from a uniform distribution over the support [0,1]  . Since it is known that bidders’ bids 

are Nash (risk-neutral) best responses,
34

 the bidder need not take into account the strategic 

consequences of his bids. 

This yields the following overall expected utility for the bidder who maximizes expected 

payoffs: 

1 1 1max ( , ) (( ) ) (( ) )(1 (( ) ) ( )
i

n n n

PT i i i l i i i i
v B v

v B B k B B v B              (7) 

where / ( 1)n n  , 1( )n

iB , and 1(( ) )n

iB
 
are the objective and weighted probability of 

winning conditional on bid. The first probability term captures direct consumption utility and the 

second captures the psychological losses when the bidder loses but had expected to win the 

auction. Given the risk-neutral-Nash opponent bidders, agents can ensure winning by placing a 

bid- ( 1) /n v n . 

As before, (7) implies that a non-negative expected utility gain ( , )PT i iv B  from participating in 

the auction can only result if 1 (1 ( ( )))l ik f B . That is, auction yields positive utility only for 

agents with ( ( )) 1 1/i lf B k . If 1lk , this condition holds for all agents. If 1lk , the 

condition implies only agents with a sufficiently large probability of winning shall derive 

positive payoff from the auction by placing positive bids.  

I restrict attention to symmetric monotonically increasing equilibria. In equilibrium, the chances 

of player i  to win, are given by 1 1( ) ( )n n

i iB H v . With the above argument, auction yields 

positive utility only if 
1( ( )) 1 1/n

i lH v k . Given (.) , the threshold value ˆ( )lv k  beyond which 

positive utility is realized is defined by  

1 ˆ( ( )) max[0,1 1/ ]n

lH v k     (7a) 

Note that ˆ( )lv k v  if 1lk . For agents with ˆ( )i lv v k
 
bidding their induced value ensures 

maximizes overall payoff. Agents with ˆ[ ( ), ]j lv v k v  shall place positive equilibrium bids that 

                                                
33 We don’t need to assume symmetric behavioral characteristics to derive the optimal bid response. 
34 For example, in a first-price auction with 4 bidders, computers always bid three-quarters of their induced value. 
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yield positive overall payoff. Maximizing (7) with respect to iB  yields a strictly increasing 

(optimal) bid response function.
35

  

 

Proposition 4: (-First-price auction against Nash bidders-) The unique optimal bid for loss-

averse bidders who weigh probabilities nonlinearly (against Nash risk-neutral bidders) is 

captured through the following monotonic relationship:  

( 1)

( 1)

1- ( ) -1
ˆmin , for ( )

( 1) 1- 2 ( )

ˆfor ( )

n

i l l i
i i ln

i l l i

i i l

B k k B n
B v v v k

v n k k B n

B v v k

 

Proof: See Appendix. 

 

It is clear from the above that (i) ˆ( )lv k
 
 varies with lk  and  and (ii) for agents with ˆ( )i lv v k

 
the 

equilibrium bid depends on lk  and . For iv v , the optimal bid attains a corner solution i.e.  

( 1)

( 1)

1- ( ) -1

( 1) 1- 2 ( )

n

i l l i
i n

l l i

B k k B n
B v

n k k B n
. This suggests that beyond the threshold induced 

value v  it is optimal for bidders to bid ( 1) /n v n

 

 that ensures winning the auction. If a bidder 

chooses a bid below ( 1) /n v n  and anticipates losses, then her bid is adjusted against loss 

aversion. For agents with ˆ( )i lv v k  equilibrium bid ( )i iB v v  does not depend on  lk
 and . As a 

special case, when bidders aren’t loss-averse and do not weigh probabilities nonlinearly, this 

yields a best response in a Nash equilibrium. This allows characterizing the effect of loss 

aversion on bidding. 

 

Proposition 5: (i) (-Effect of Loss Aversion-) In auctions with induced values (against Nash 

risk-neutral bidders), for ˆ( )l iv k v v  loss aversion induces more aggressive bidding, i.e.  

0PT

l

B

k
 

(ii) (-Effect of probability weighting-) Greater  (more convex probability 

                                                
35

 For all plausible parameters 
 
and lk  the payoff function has a unique interior or corner optimum. 
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weighting) yields more aggressive bidding i.e. 0PTB
 except when  

* 1lk k   and bidders 

such that 
( 1) ln( ) ( )

[1 (1 2 ( ))]
[1 (1 ( ))]

l i i l
l i

l i

n k B B k
k B

k B
,  who bid less aggressively i.e. 

0PTB
.  

Proof: See appendix. 

 

This suggests that loss aversion has no effect on bidding when bidders either have very high or 

low induced values. Beyond a certain threshold induced value v

 

 it is optimal to bid ( 1) /n v n  

and ensure winning the auction against risk-neutral Nash computer bidders.
36

 Bidders with very 

low induced values, avoid losses by bidding their upto their value. However, for most bidders 

with intermediate range of induced values, anticipated loss aversion justifies aggressive bidding, 

with or without nonlinear probability weighting. Since the role of probability weighting is 

limited in these auctions, loss aversion by itself provides a sufficient justification for aggressive 

bidding, as evident in auction outcomes obtained thru classroom experimentation. 

               While discussing the effect of probability weighting on bidding, it is important to 

understand that the effect of probability weighting in such auctions could be limited. 

Nevertheless, just like in auction against human bidders, bidders could avoid losses in the 

following ways: (a) if the value draw is not high enough then bid upto their value to avoid losses, 

(b) and if the value draw is high enough they could either bid (i) more aggressively or (ii) less 

aggressively, in response to more convex probability weighting; this happens because bid affects 

the expectation of auction outcomes simultaneously. Higher  means lower elevation of the 

probability weighting curve and in most circumstances causes more aggressive bidding which 

suggests ambiguity aversion (or bidder pessimism); except when * 1lk k   and for iv  such that 

( 1) ln( ) ( )
[1 (1 2 ( ))]

[1 (1 ( ))]

l i i l
l i

l i

n k B B k
k B

k B
, more convex probability weighting causes less 

aggressive bidding. 

 

                                                
36

 Note that, ( 1) /n v n  is the highest possible bid in a risk-neutral Nash model. 
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Proposition 6: (-Effect of greater competition-) For most human bidders (in most 

circumstances) greater competition yields more aggressive bidding i.e. 0PTB

n  
except when  

ˆ 1lk k  and bidders such that 
( 1)[ (1 ) ln( )] ( )

[1 (1 2 ( ))]
[1 (1 ( ))]

i i i i l
l i

l i

n B B B B k
k B

k B
, 

who bid less aggressively i.e. 0PTB

n
.  

Proof: See Appendix 

 

The marginal response to greater competition (more bidders) is similar to the marginal effect of 

probability weighting; as before, bidders could more or less aggressively, in response to greater 

competition; this happens because their bid also affects their expectation of auction outcomes 

simultaneously. The effect of greater competition is analogous to more convex probability 

weighting and in most circumstances causes more aggressive bidding; for  ˆ 1lk k  and for iv  

such that 
( 1)[ (1 ) ln( )] ( )

[1 (1 2 ( ))]
[1 (1 ( ))]

i i i i l
l i

l i

n B B B B k
k B

k B
, bidders bid less 

aggressively in response to greater competition. Thus, despite behavioral preferences, in most 

circumstances bidders respond to greater competition along conventional lines by bidding more 

aggressively. 

    In the following section I fit the general model with probability weighting and loss aversion 

and its restricted versions which take into account loss aversion and nonlinear probability 

weighting in isolation to explain bidding using data from auctions with (i) human bidders and (ii) 

risk-neutral Nash computer bidders. Note that the equilibrium bidding behavior as specified in 

Propositions 1 and 3 differs across these auctions. 

5. Empirical Analysis 

Data 
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I use data from induced value first-price auctions reported in Cox et al. (1982) and Harrison 

(1989).  Cox et al. (1982) reports 210 auctions with different number of bidders, totaling 1170 

bids in first-price auctions.
37

 A description of the data in Cox et al. (1982) is provided in Table 1.  

[Table 1 here] 

The experiments in Cox et al. (1982) employed undergraduate students enrolled in introductory 

economics classes at the University of Arizona and Indiana University and were conducted over 

a number of years in the 1980s. The results based on this data have formed a benchmark for 

investigation of bidding outcomes in first-price auctions experiments (see Harrison 1989, Salo 

and Weber 1995, Goeree et al. 2002). The first-price auctions were conducted in sessions along 

with Dutch and second-price auctions for single (hypothetical) objects. All sessions consisted of 

30 sequential auctions (e.g., 10 Dutch, 10 first-price, and 10 Dutch). These auctions had the 

following features: Identifying variables include auction series, type of auction, observed 

bid/price, number of bidders, period, subject, and the support of the uniform distribution from 

which induced values were drawn and induced.  Bidders were paid $3.00 for participation and a 

series of 30 auctions had an expected profit of $12. Thus, the total expected earnings were about 

$15 per subject. A session lasted for about one hour. Induced values (in discrete multiples of 10 

cents) were induced from uniform distributions with support over 0 and an upper limit that 

varied across different sets of auctions (see Table 2 for description). The number of bidders and 

the support from which induced values were drawn (with replacement) were varied such that 

expected gains were similar across auctions. Overbidding beyond induced values was not 

allowed, the object was awarded to the highest bidder at his bid, and the winning bid was 

displayed after the auction was concluded. The winner’s identity and bid were not conveyed to 

the other bidders.
38

 The summary statistics of the data reported in Cox et al (1982) is provided in 

table 2. 

[Table 2 here] 

                                                
37 I ignore auctions with 3 bidders in these experiments. The results for these auctions are considered anomalous, 
and breakdown of non-cooperative bidding is suspected (Cox et al. 1982) 
38 This is quite unlike in real first-price auctions where such information can be public. The non-availability of ex-

post information that becomes the basis of “regret” therefore weakens anticipated “regret” as an explanation for 

overbidding in these auctions (Ozbay and Filiz-Ozbay 2007). Note that my explanation is invariant to ex-post 

information structure in these auctions.  
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The series of auctions where bidders have prior experience of bidding in first-price auctions have 

a suffix “x” in the name (see Table 1).  Thus, for auctions with 4 and 5 bidders, we can explore 

the effect of “experience” on behavioral parameters.  

I also use data from Harrison (1989) in addition to Cox et al. (1982). Six experimental sessions 

were conducted using the design indicated in Table 3. The general procedures follow those 

introduced by Cox, Smith and Walker (1985b) and Cox et al. (1988), and are broadly similar to 

Cox et al.(1982). All subjects were economics undergraduates at the University of Western 

Ontario and received $3 just for showing up at the experimental session. The expected profit for 

a session of 20 auctions was roughly $10. Therefore, total expected earnings were $13 for each 

subject. All experimental sessions had 4 bidders whose induced values were drawn from a 

uniform distribution with lower and upper valuations of $0.01 (or 1 point) and $10.00 (or 1000 

points). A description of the data reported in Harrison (1989) is provided in Table 3.  

[Table 3 here] 

I restrict my analysis to auctions with dollar payoff and compare the auctions with auctions 

involving inexperienced human rival in the following treatments: (i) subject experience and (ii) 

use of computer-simulated “Nash risk-neutral bidders.” Subjects have a similar level of 

experience in series 1, 2, and 3, respectively. In auctions against risk-neutral Nash bidders, a 

computer entered risk-neutral Nash equilibrium bids for the 3 bidders that each human bidder 

faces in an auction.  Subjects were informed ex-ante that the computer would bid 75% of the 

valuation that it drew for each of the 3 simulated bidders. The auctions in Harrison (1989) are 

different from the auctions in Cox et al. (1982) in the following ways: Bidding beyond induced 

value is allowed in Harrison.  Bidders (human or simulated) were assigned randomly in each 

period. This controls for the use of multi-period strategies that can be employed when this 

randomization procedure is not in use. Valuations vary across agents in a given replication and 

across periods. Each replication in a given period also employs the same N valuations, since 

replications occur simultaneously in a given experiment. The summary statistics of the auctions 

in Harrison (1989) is provided in Table 4. 

[Table 4 Here] 

Pooling of data 

1.  Induced value distributions were varied across auctions with varying numbers of bidders 

in Cox et al. (1982) such that expected gains from participation in auctions were roughly 
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similar. In my framework this design may not have the desired effect. Also, auctions with 

different numbers of bidders may present unique levels of ambiguity. Therefore, I do not 

pool the data from all the auctions together.  

2. In Cox et al. (1982) there are two series of auctions, “fdf” and “dfd” each composed of 10 

consecutive auctions of a type. For example, “fdf” represents 10 first-price, 10 dutch, and 

10 first-price auctions, and “dfd” represents 10 dutch, 10 first-price, and 10 dutch 

auctions. I pool data from 20 first-price auctions from the series “fdf” and 10 first-price 

auctions from the series “dfd”.  

         Similarly, data from 20 sequential first-price auctions are pooled together from 

Harrison (1989). As observed earlier, randomization procedures adopted in Harrison 

(1989) control for the use of multi-period strategies that can be employed when this 

randomization procedure is not in use. (1989).  

An overview of bidding behavior 

An overview of bidding across auctions in Cox et al. (1982) and Harrison (1989) (in tables 2 and 

4) reveals the following: (a) in auctions with 4 bidders, the number of bids above the risk-neutral 

Nash (henceforth overbids) ranges between 81-91% in Harrison (1989), as compared to 77.5-

82.5% in Cox et al. (1982); (b) and in auctions with 5 or more bidders in Cox et al. (1982), the 

number of overbids ranges between 66-86%. For all auctions (a) the amount by which bids 

exceed the risk-neutral Nash bids (overbid
39

) in Harrison (1989) is also higher (around 22%) than 

in Cox et al (1982) (around 16%) and (b) the percentage absolute deviation
40

 around RNNE is 

also higher in Harrison (19-24%)  than in Cox et al. (1982) (12-20%).  

            In Cox et al.(1982)(a) in the second set of auctions with 6 bidders (series b), the number 

of overbids is substantially lower (66.7%) than in any other auctions; the average percentage 

overbid is also the lowest among all auctions, whereas the average percentage bid below the risk 

neutral Nash (henceforth underbid) is similar to other auctions; (b) in the other set of auctions 

with 6 bidders (series a) the number of overbids is 78.3%, which is similar to other auctions, but 

the average percentage underbid is around 23%, which is somewhat high; (c) in both series of 

auctions with 6 bidders, 4 out of 10 bidders bid below RNNE in 50% of the auctions; and (d) in 

                                                
39 Overbid=(bid-RNNE)/RNNE; Underbid=(RNNE-bid)/RNNE. 
40 Absolute deviation=abs(bid-RNNE)/RNNE. 
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auctions with 9 bidders, low valuation bidders tended to bid close to zero, which yields an 

unusually high average underbid of around 27% below RNNE; 4 out of 10 bidders bid below 

RNNE 50% of the time. Clearly, observed bids reflect differences in auction procedures, payoffs, 

and bidder characteristics.  

    In Harrison (1989) prior experience seems to affect bidding in against human bidders and 

against Risk-neutral Nash bidders. The number of bids above RNNE declines from 91% in 

auctions with inexperienced bidders to 89% in auctions with experienced bidders. This further 

declines to 81% in auctions with experienced bidders who face Nash bidders (see Table 4). The 

average percentage overbid above the RNNE declines from 23% to 21% in auctions against 

human bidders. This declines further to 18% in auctions with experienced bidders against Nash 

bidders. The average percentage absolute deviation around RNNE declines from 24% to 21% in 

auctions against human bidders. This further declines to 19% in auctions with experienced 

bidders against Nash bidders.  

             Such effects are not obvious in auctions in Cox et al. (1982). In auctions with 4 bidders, 

number of overbids increase from 77.5% with inexperienced bidders to 82.5% with experienced 

bidders. However, average overbid (underbid) declines from 16.3% (34.2%) to 15.5% (20.9%). 

This yields a decline in average absolute deviation around RNNE from 20% to 16.3%.  Thus, 

prior experience lowers absolute deviation around RNNE. However, an opposite effect is 

observed in auctions with 5 bidders. Although the number of bids with prior experience above 

RNNE declines from 86.7% to 80%, the average percentage overbid declines from 14.2% to 

13.8%; the average percentage underbid however increases from 17.6 to 20.5%. The average 

percentage absolute deviation around RNNE increases from 14.6% to 15.1%. Clearly, the effect 

of experience in auctions with 5 bidders, in terms of average percentage absolute deviations 

around RNNE, is different from that observed in other auctions.  

Omitted Observations 

In Cox et al. (1982), I estimate the parameters for different levels of competition without pooling 

the data. In auctions with 9 bidders, bidders with low induced values tend to bid close to zero, 

clearly suggesting that cognitive costs of bidding exceed potential gains from optimal bidding. 

All bids that suggest more than 20% absolute deviation around RNNE (most of these bids are 

underbids close to zero) are therefore ignored for estimation purposes. I ignore bids that exceed 
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induced values in Harrison (1989). In auctions against risk-neutral Nash bidders, only those bids 

that do not exceed the highest possible bid of 750 have been considered. Thus, the number of 

bids considered for estimation purposes are less than the number of bids reported in Harrison 

(1989). Outliers have been removed throughout. 

Estimation Procedure 

I use nonlinear least squares estimation to identify the parameters for the bidding function in a 

symmetric Bayesian Nash equilibrium.
41

 This estimation has been done for the general model 

(outlined in Proposition 1) and the restricted versions of the general model which allow loss 

aversion and nonlinear probability weighting in isolation. I have used MATLAB to implement a 

“Trust-region reflective Newton” search for the best-fitting parameters
42

.  

Estimates 

The combined results for all the auctions are listed in Table 5; the table lists estimated behavioral 

parameters for auctions with varying levels of experience, number of bidders, and nature of 

opponent bidders ( humans or risk-neutral Nash bidders). The estimates for auctions against risk-

neutral Nash bidders are reported in the last set of rows in Table 5. 

[Table 5 here] 

i. Probability weighting and loss aversion in the general model 

The estimates of  are greater than 1 (and significantly different from zero in most cases
43

) in 

auctions against human bidders in both Cox et al. (1982) and Harrison (1989). Except for the 

auctions with 6 bidders in Cox et al. (1982), the estimates of 
 
are greater than 1.

44
 This yields 

convex probability weighting and therefore suggests “ambiguity aversion” along the lines of Salo 

                                                
41 If the errors between the predicted and observed bids are assumed independent identical normal random variables 

i.e.
2~ (0, )i NID  , then maximum likelihood and nonlinear least squares estimation are equivalent. ML 

estimates are consistent, asymptotically efficient and asymptotically normal; however, if this does not hold nonlinear 
least squares though not efficient remain consistent and asymptotically normal. 
42 The programming code underlying all the ensuing results is available upon request. 
43 Based on t-ratio. 
44 In auctions with 6 bidders (series B), the number of overbids is substantially lower (66.7%) than for any other 

auctions; the average overbid is also the lowest among all auctions, whereas the average underbid is similar to other 

auctions. In the other set of auctions with 6 bidders (series a) the number of overbids is 78.3%, which is similar to 

other auctions, but the average underbid is around 23%, which is somewhat high. In both series of auctions with 6 

bidders, 4 out of 10 bidders bid below RNNE in 50% of the auctions. These auctions are therefore unusual and the 

estimates of 
 
which suggest overweighting (concave probability weighting), are somewhat out of order. 
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and Weber (1995) and Goeree et al. (2002). In Harrison (1989), the estimates of  successively 

decline from 1.51 in auctions with inexperienced human bidders to 1.16 in auctions against 

human bidders and prior experience; this further declines to 1.01 in auctions against risk-neutral 

Nash bidders and prior experience. Note that a model based on risk-aversion alone cannot 

explain these changes.
45

  

The estimates of lk  are approximately close to 1 and significantly different from zero in most 

auctions against human bidders in Cox et al. (1982) and Harrison (1989). Except for auctions 

against risk-neutral Nash bidders in Harrison (1989), where the estimate of lk
 
is smaller but not 

significantly different from zero, the estimates are approximately close to 1, which supports loss 

aversion based on my model.  

ii. Probability weighting without loss aversion 

Although the estimates of  are greater than 1 and significantly different from zero in all 

auctions against human bidders for  in both Cox et al. (1982) and Harrison (1989), their 

magnitude is much larger. This yields more convex probability weighting and suggests larger 

deviations between the objective and weighted probabilities of auction outcomes.
46

 The estimates 

for auctions with 6 bidders in Cox et al. (1982) are much lower than the estimates for all other 

auctions. In Harrison (1989) the estimates of  decline from 3.02 in auctions with inexperienced 

bidders to 2.32 in auctions with human bidders and prior bidding experience; this further 

declines to 1.70 in auctions against risk-neutral Nash bidders and prior experience. As before, a 

model based on risk-aversion alone cannot explain these changes. 

 

iii. Loss aversion without probability weighting 

The estimates of lk  for most auctions in Cox et al (1982), except for auctions with 6 bidders 

(series B), are approximately close to 1 and significantly different from zero. The estimates of lk  

in auctions in Harrison (1989) are 1.00, 1.01, and 0.91 respectively and significantly different 

                                                
45 Another aspect of the estimates for  relate to the deviation from 1 in the expected utility based models. In most 

auctions, when the estimates are greater than 1 in more than 50% cases (more than half of the auctions) they 

significantly improve the explanatory power of the model based on sum of squared errors and F-test. 
46 Also note than when loss aversion was considered the estimates for probability weighting were quite similar to 

each other which is not true when loss aversion is ignored. 
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from zero. Thus, even when probability weighting is ignored, based on the estimates obtained for 

auctions in Harrison (1989), these estimates become smaller in auctions with smaller ambiguity 

levels (with human bidders and prior experience or Nash bidders).  

   The estimates of the gradient associated with losses lk
 
are approximately close to 1 in models 

where loss aversion is allowed except for auctions against risk-neutral-Nash bidders in Harrison 

(1989) where the estimate is smaller than 1 and significantly different from zero.  

           The implied ratio of loss-gain utility is therefore close to 2. Tversky and Kahneman 

(1991)
47

 suggest a ratio of 2:1 for the “gains” and “losses” based on acceptable lottery gambles.
48

 

The estimates I obtain suggest that the ratio of “gain-loss” utility is qualitatively similar to that 

observed in Tversky and Kahneman (1991) and reported elsewhere (Ho, Lim and Camerer, 

2006).
49

 Note that my model with linear probability weighting and 1lk  is equivalent to a model 

with risk-aversion with Arrow-Pratt coefficient of 0.5. This similarity is supported by the 

estimates obtained for  and lk , in auctions with least ambiguous circumstances. However, 

unlike the model based on risk-aversion (constant relative risk-aversion or CRRAM) alone, the 

general prospect theory model, can address changes in ambiguity levels; the estimates for 

probability weighting obtained across these auctions, is consistent with how individuals should 

respond to changes in underlying circumstances.   

     In the following section, I state the results based on differences in estimates for  and lk
 

obtained in auctions with prior bidding experience and/or against Nash risk-neutral bidders; in 

section 7, I further discuss the implications of my results in the context of related literature. 

6. The effect of bidding experience and type of opponent bidders 

Ambiguity aversion has attracted attention because individuals are typically not aware of precise 

probabilities in the real world. In auctions, the probability of winning for a given bid depends on 

bidders’ bidding strategies, which is not readily known in most induced value auctions. Clearly, 

                                                
47 “…these findings suggest that a loss aversion coefficient of about two may explain both risky and riskless choices 

involving monetary outcomes and consumption goods” (Tversky and Kahneman, 1991, p.1053) 
48 As mentioned earlier, not winning the auction does not result in monetary losses; thus a ratio of losses to gains 

would be (1 ) /1lk
 
.  

49 The estimated coefficient for loss aversion makes my model equivalent to a model with risk-aversion coefficient 

of 0.5 without nonlinear probability weighting; the generality due to nonlinear probability weighting adds to the 

explanatory power of my model over a model with risk-aversion alone.  
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deriving probabilities in these auctions is a complicated task, and therefore ambiguity could 

affect bidding as in other market experiments (Sarin and Weber 1993, Salo and Weber 1995). As 

people become familiar and gain experience of bidding, deriving probabilities of various 

outcomes could become easier.
50

 In my model, this could result in smaller deviations between 

subjective and objective probabilities under less ambiguous circumstances. The data for auctions 

where bidders have prior bidding experience and/or face risk-neutral Nash bidders present an 

opportunity to explore these effects. Since these induced value auctions are similar, besides 

variations in experience level and the nature of opponent bidders, as a preliminary hypothesis 

one could argue that changes in the underlying circumstances (ambiguity) are not likely to affect 

the degree of loss aversion (the gradient for loss aversion).
51

,
52

 In this section I discuss the 

experimental evidence which supports my hypothesis and suggests minimal role for nonlinear 

probability weighting in auctions characterized by less ambiguous circumstances. 

Based on my discussion above, I propose the following hypothesis. 

 

Hypothesis: (a) The deviations between weighted and objective probabilities become smaller as 

auctions environments become less ambiguous, i.e, 

 exp exp exp

humanrivals humanrivals RNNrivals

in erienced erienced erienced  

whereas (b) the coefficient of loss-gain utility lk
 
is similar across auction environments. 

Since my hypothesis pertains to both loss aversion and probability weighting, I shall focus only 

on the results from the general model to explore the effect of prior bidding experience against 

experienced human and risk-neutral Nash bidders
53

.  

I first test the following hypothesis for (gradient of) loss aversion using a generalized likelihood 

ratio test: 

                                                
50 Such expertise is likely to develop faster in other contexts, e.g., in games of chance. 
51 Loss aversion may vary across commodities (Horowitz and McConnell 2002, Koszegi and Rabin 2006) and could 

potentially depend on availability of substitutes and trading intentions (Kahneman, Knetsch and Thaler 1990; List 

2003). 
52 The assumption in Kahnemann and Tversky (1979), which suggests that probability weighting and loss aversion 

are independent, is too simplistic. There is some literature that suggests that probability weighting and loss aversion 
could be related. Intuitively it is plausible that loss aversion could become smaller in less ambiguous circumstances 

(Chambers and Melkonyan 2008, Plott and Zeiler 2005).  
53 Going by the sum of squared residuals (SSE) alone, the restricted versions of the general model do not throw 

unambiguous evidence in favor of one approach over the other. As observed earlier, the similarity of estimates 

suffer, when either of these influences on behavior is ignored. 
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, ,

0 1 0: , :i g j h

l lH k k H Not H  

where i,j=level of experience and g,h=nature of bidders. Then I test the following hypothesis for 

probability weighting:  

0 1 0: ; :g h

i jH H Not H  

If the first test does not reject the null hypothesis, I test the following hypothesis for probability 

weighting under the assumption that loss aversion remains the same for robustness: 

0 1 0: | ; :g h g h

i j li ljH k k H Not H  

The likelihood ratio has a 
2

r  
distribution where r  is the number of restrictions imposed in the 

null hypothesis. On the basis of these tests (see Table 6), I obtain the following result. (figures 1-

5 in appendix for bidding functions and probability weighting functions, which are based on the 

estimates listed in Table 5, supplement the results below). 

 

Result 1.A: (-Less convex probability weighting due to experience-) Prior bidding 

experience reduces the nonlinearity of probability weighting in auctions (i) against 

experienced human bidders and (ii) against risk-neutral Nash bidders. This yields smaller 

deviations between subjective and objective probabilities of equilibrium auction outcomes.  

 

This result addresses the effect of prior experience on bidding in auctions which present 

successively smaller levels of ambiguity as opponents change from (i) experienced human 

bidders to (ii) risk-neutral Nash bidders.  

First, I shall address the former auctions. The estimates for  are smaller in these auctions with 

4 bidders and prior bidding experience (compared to auctions with bidders without experience) 

in Harrison (1989) and Cox et al. (1982). This decline is significant at the 1% level for auctions 

in Harrison (1989) and not significant for auctions with 4 bidders in Cox et al. (1982) (see Table 

6). In auctions with 5 bidders, the increase in the estimate of 
 
for experienced bidders in Cox et 

al. (1982) contradicts my hypothesis but is not significant. If prior experience is expected to 

reduce deviations with respect to the risk-neutral Nash bid then the deviations obtained in 

auctions with 5 bidders belies the expectation, which parallels the movements obtained for  .  

    Next, in auctions against risk neutral Nash bidders (Harrison 1989), bidders have prior bidding 

experience as well. Thus, of all auctions under consideration, bidding in these auctions occurs in 



 27 

 

least ambiguous circumstances. In these auctions, the decline in the estimate of  as compared 

to auctions without prior bidding experience is significant. This supports my primary hypothesis 

about the effect of ambiguity on bidding in these auctions.  

 

Result 1.B: (-Less convex probability weighting due to fixed opponents’ strategies-) In 

auctions with prior bidding experience against risk-neutral Nash bidders, fixing the 

opponents’ bidding strategies reduces the nonlinearity of probability weighting (with and 

without loss aversion). This yields smaller deviations between subjective and objective 

probabilities of equilibrium auction outcomes.  

 

While the previous result compares the estimates for  with prior bidding experience, the 

auctions against risk-neutral Nash rivals differ from the auctions with human opponent bidders 

(with same experience levels) since the opponents bidding strategies are fixed. The focus of 

previous attempts (Salo and Weber 1995) to explain aggressive bidding relates to the ambiguous 

circumstances arising due to uncertain behavior of opponent bidders. The extra control in 

bidding against risk-neutral Nash bidders allows us to examine the implications for  using my 

approach. As before, in auctions against risk-neutral Nash bidders (Harrison 1989), the decline in 

the estimate of  as compared to auctions against human bidders, is significant.  

Thus, so far, as we move from auctions with inexperienced bidders to auctions with experienced 

bidders and risk-neutral Nash opponent bidders, the estimates of  display significant downward 

movement with successively smaller levels of ambiguity. It is therefore appropriate to reflect on 

the role of ambiguity attitudes in auctions with least ambiguous circumstances, based on the 

estimates obtained for behavioral parameters. 

 

Result 1.C: (-Linear probability weighting in least ambiguous circumstances-) In auctions, 

with prior bidding experience, against risk-neutral Nash bidders, by allowing loss aversion, an 

almost linear probability weighting function is obtained. 

 

Without loss aversion, although nonlinearity of probability weighting declines with successively 

smaller levels of ambiguity, the deviations between subjective and objective probabilities 

remain.  However, with loss aversion, I obtain almost linear probability weighting which 
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suggests that aggressive bidding can be rationalized by loss aversion alone without invoking 

ambiguity effects.  

I shall now turn to the estimates for loss aversion observed in various auctions.  

 

Result 2.A: (-No effect on loss aversion due to experience-) Prior bidding experience has no 

effect on loss aversion in auctions against experienced human bidders.  

 

Result 2.B: (-Loss aversion declines in least ambiguous circumstances-) The degree of loss 

aversion obtained in auctions with prior bidding experience against risk-neutral Nash bidders 

is smaller than that obtained in auctions with human opponent bidders. 

 

The estimates for lk
 
are almost identical in all the auctions except in auctions against risk-

neutral Nash bidders, where the estimated gradient for losses lk  is smaller. This decline is 

significant when compared to the estimates obtained in auctions with human bidders in Harrison 

(1989). This allows a reflection of the possible shortcomings of my approach. In more general 

field settings, the degree of loss aversion may vary across commodities (Horowitz and 

McConnell 2002, Koszegi and Rabin 2006). It may be affected by the availability of market 

substitutes (Horowitz and McConnell 2002) or trading intentions (List 2003, 2004; Kahnemann, 

Knetsch and Thaler 1990). The difference in loss aversion obtained in induced values settings 

(where the above do not apply) possibly suggests that behavioral influences, other than 

probability weighting and loss aversion, coexist. For example, if bidders display spite against 

human bidders and not against Nash bidders (computers), the differences in loss aversion as 

obtained are expected.
54

  

7. Further discussion of the empirical findings 

 In this section I discuss the significance of my findings in the context of the experimental 

literature on auctions as well as the experimental literature in general. I compare my findings to 

previous literature that explores probability weighting and loss aversion in experiments. 

                                                
54 The changes in estimates for 

 
and  lk

 
(when considered in isolation) are also similar to the change in estimates 

obtained in the general model. 
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Several studies on decision under risk show the tendency of subjects to overweight small 

objective probabilities and underweight medium and large objective probabilities (Tversky and 

Kahneman 1992, Camerer and Ho 1994, Fox and Tversky 1998, Gonzalez and Wu 1999). This 

pattern yields an inverted S-shaped probability weighting function as in Kahneman and Tversky 

(1979).
55

In the real world actual probabilities may not be known precisely. Recent evidence 

(Barron and Erev 2003; Hertwig et al. 2004; Barron and Ursino 2007) suggests that the inverted 

S-shaped curve does not capture decision making under uncertainty where probabilities are 

typically derived through repeated sampling (experience)
56

.This literature suggests that 

individuals underweight small probabilities under uncertainty, which is different from what they 

do under risky circumstances as reflected in the inverted S-shaped probability weighting (Prelec 

1998, Wu and Gonzalez 1999).
57

 In an auction equilibrium, winning is a rare event for bidders 

with low induced values. Thus, the estimated convex probability weighting in my models (with 

or without loss aversion) is consistent with this literature. As discussed earlier, this is also 

consistent with Salo and Weber (1995) and Goeree et al (2002) who suggest “ambiguity 

aversion” in auctions.
58

 

The literature suggests loss aversion in various settings and provides experimental evidence for 

choices over trade of mugs, pens, candy bars, subscription for electric services, job attributes, 

sportscards, etc.  (Knetsch 1989, Tversky and Kahneman 1991, Kahneman, Knetsch, and Thaler 

1990, Benartzi and Thaler 1995, List 2003). The estimate for the ratio of the slopes of the value 

function in two domains, for small and moderate gains and losses of money, is about 2:1 

(Tversky and Kahneman 1991).  In a slightly different context, Kahneman, Knetsch, and Thaler 

(1990) investigate loss aversion in a purely deterministic environment. In an experiment, half of 

                                                
55

 This function typically intersects the linear probability weighting function somewhere between 0.3 and 0.4. 
56 In these experiments subjects were asked to choose among two options; for example, when asked to choose 

between a sure $3 , and $4 with probability 0.8, and $0 with probability 0.2. In one treatment the probabilities are 

specified clearly (descriptive) and in the other the probabilities are derived by random sampling of the options 

(experience-based learning). The proportion of subjects who choose the risky ($4 with probability 0.8) option is 

significantly higher in the treatment with uncertainty (experience-induced learning). 
57 In experiments, underweighting of rare events could occur due to sampling errors. For example, people are likely 

to draw rare events less often than objective probability implies, especially if their samples are small. Barron and 

Ursino (2007) find that underweighting of rare events as observed in one-shot decisions is robust to removal of 

unrepresentative samples. This suggests that underweighting of rare events in experience-based decisions occurs due 

to overweighting of most recent outcomes. 
58 In Chen et al. (2007), ambiguity attitudes could get confounded with the pessimistic reasoning that applies to 

symmetric bidders. For example, when a rival’s induced value distribution is unknown , a bidder with low valuation 

might assume that the rival also makes a similar assumption about his values (symmetry). This could produce lower 

bids in equilibrium. Thus the experimental design in Chen et al. (2007) does not separates “ambiguity attitudes” 

from such ex ante pessimistic reasoning.  
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a group of Cornell students are given a Cornell insignia coffee mug, while the other half are not. 

When mug owners are given an opportunity to trade and nonowners are given an opportunity to 

buy, Kahneman, Knetsch, and Thaler (1990) found that the reservation prices for the two groups 

were significantly different. Specifically, the ratio of the median of the reservation price of the 

sellers to the buyers is roughly 2.5:1. My findings are broadly consistent with this literature 

(Tversky and Kahneman, 1991; Ho, Lim and Camerer, 2006).
59

 

It is however important to emphasize that doubts have been raised in the literature about the 

robustness of loss aversion as a description of individual preferences. List (2003, 2004) provides 

evidence using field experiments that loss aversion attenuates with previous trading experience. 

Plott and Zeiler (2005) suggest that an endowment effect arises due to subject misconceptions 

(ambiguity) about experimental tasks. They suggest that when all known controls for subject 

misconceptions are employed the WTA-WTP disparity is not observed.
60

 The lessons from this 

literature suggest the following possibilities: (i) ambiguity affects loss aversion; (ii) trading 

intentions could affect choices such that loss aversion disappears and (iii) market experience, 

which could affect both ambiguity and/or trading intentions  and thereby loss aversion. My 

results that are obtained within the context of induced value classroom experiments add to this 

literature and provide support along the lines of List (2003, 2004) which suggest that loss 

aversion could become smaller in the field. However, unlike List (2003, 2004), my results do not 

suggest that loss aversion will disappear completely. This might be due to the complexity of the 

auction environment. If cognitive capital that attenuates loss aversion develops slowly, then such 

learning is likely to be slower in auctions than in other simpler choice/trading environments as in 

List (2003, 2004). My results also suggest that ambiguity could affect loss aversion since the 

estimates for loss aversion are slightly smaller in auctions against risk-neutral Nash bidders. 

However, in field auctions, even if ambiguity effects can be ruled out, trading intentions could 

still influence loss aversion. 
61

  

                                                
59 Note however that because loss aversion is modeled slightly differently in my approach, this equivalence is not 

obvious. If ( ) 0; ( ) 0u x x for x x for x . Therefore, 1lk . Clearly, these estimates suggest

0lk . My approach rules out very high levels of loss aversion so bidding remains acceptable.  

60
 Although, recent research seems to raise doubts about the claims in Plott and Zeiler (2005) (see Isoni, Loomes 

and Robert Sugden ,2009 ) 

 
61 This is further explored in Ratan (2009). 



 31 

 

8. Conclusions  

In this chapter, I provide a model of bidding in first-price auctions that combines loss aversion 

and nonlinear probability weighting. This approach applies to a wider domain of auction 

environments which differ in terms of levels of ambiguity. In auctions against human bidders, 

missing information about bidders’ risk postures and bidding strategies present greater levels of 

uncertainty (ambiguity) in comparison to bidding against risk-neutral Nash (computer) bidders. 

The analysis of experimental auction data suggests that aggressive bidding against inexperienced 

human bidders can be rationalized by anticipated loss aversion and ambiguity effects. 

Interestingly, my approach suggests that ambiguity effects become less relevant as levels of 

ambiguity decline with prior experience in auctions against (i) experienced human bidders and 

(ii) risk-neutral Nash bidders. When loss aversion is taken into account, the best-fitting 

parameters in auctions with smaller levels of ambiguity yield almost linear probability 

weighting.  

However, other behavioral explanations that induce aggressive bidding in these auctions may 

coexist with the influences that are prominent in my approach. For example, theoretically, risk 

aversion could be combined with spiteful preferences and/or nonlinear probability weighting 

(ambiguity aversion) to create a bidding response that is observationally equivalent to my 

approach. However, using this approach, in auctions against risk-neutral Nash bidders where 

ambiguity effects and spitefulness could be altogether irrelevant, the obtained level of aggregate 

risk aversion is still very high.
62

 This brings out the advantages of my approach over other 

approaches: it provides a reasonable account of aggregate bidding behavior, and addresses the 

role of ambiguity very well. The declining role of ambiguity effects in auctions that present 

successively smaller levels of ambiguity is consistent with the smaller levels of nonlinear 

probability weighting obtained using my approach. This enhances the performance criteria for 

other behavioral approaches that can be applied in auction environments. Further research is 

required to disentangle the effects of various behavioral influences in auctions to attain this 

objective.  

                                                
62

 For example, using constant-risk-aversion approach and linear probability weighting (similar to that in obtained 

using my approach), the Arrow-Pratt measure for auctions in Harrison (1989) with prior experience in auctions 

against (a) human bidders and (b) risk-neutral Nash bidders would vary between 0.42-0.52. 
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More investigation of the indirect effects of ambiguity on loss aversion could possibly help 

refine the Prospect theory based accounts of behavior under risk and/or uncertainty. However, 

attaining these objectives within the complexity of auction environments could be difficult. 
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Appendix A 

Proof for Proposition 1 

For ˆ( ),[1 (1 ( ( )))] 0i l l iv v k k f B v  maximizing (5), agent i  chooses iB  according to 

' '( )( ) '( )[1 2 ( ) ]( ) ( )(1 ( )) 0i i i i

i i i i l i i lf B v B f f B f k v B f f k   (A.1) 

Here 
1 1( ) ( ( ))i n

i if f B F B B  and therefore 
1 1 1'( ) ( ) '( ( ))( ) '( )n

i i if B F B B B B . In 

equilibrium, we have
1( )i iB B v ,

1( ) '( ) 1/ '( )i iB B B v , and 
1( )i n

if F v . Rearranging (A.1) 

gives 

1 1 1 1'( ) '( ) [1 (1 2 ( ( ))) ] [ ( ( ))(1 (1 ( ( )))) ( )]'n n n n

i i i l i l i iF v v F v k F v k F v B v               (A.2) 

Integrating yields 

1 1

ˆ( )

1 1

[1 (1 2 ( ( ))] ( ( ))

( )
( ( ))[1 (1 ( ( )))]

i

l

v

n n

l

v k

i PT n n

i l i

x k F x d F x

B v
F v k F v

                                                      

(A.3)                                                                                         

as the unique candidate for a symmetric monotonic bidding equilibrium. Monotonicity of ( )i PTB v  

can easily be established by differentiating (A.3) and using the following:  

for ˆ( ),[1 (1 ( ( )))] 0 [1 (1 2 ( ( )))] 0i l l i l iv v k k f B v k f B v .  

It remains to show the second order condition for the maximization problem. Using the envelope 

theorem and (A.1), this is equivalent to 
2 ( ( ), ) / 0PT i i iB v v B v  which holds true since 

2 ( ( ), ) / ' '( ( ))[1 (1 2 ( ( )))] 0PT i i i i l iB v v B v f B v k f B v  since [1 (1 ( ( )))] 0l ik f B v  

Applying L’hospital’s rule to (A.3) yields the bid for lowest induced value. 

For ˆ( ), ( )i l i iv v k B v v maximizes payoff (yields zero payoff). 

  

Proof for Proposition 2 (i)    
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Note first that by definition of ˆ( )lv k , 
ˆ( )

0l

l

v k

k
; for  ˆ( )i lv v k rewrite bid function (A.3) as   

1 1

1 1

( ( ))[1 (1 ( ( ))]

( )
( ( ))[1 (1 ( ( )))]

iv

n n

l

v

i PT i n n

i l i

F x k F x dx

B v v
F v k F v

   (2.1)

 

From above 

2 [ ( )(1 ( )) ( )(1 ( )) ( ( ) ( )(1 ( ))) ]
i iv v

PT
i i l

l v v

B
den den x x dx v v x k x x dx

k
 

where 
1 1( ) ( )(1 ( ) ; ( ) ( ( ) ), ( ) ( ( ) )n n

i i i l i iden v v v k v F v x F x
 
. Upon expansion 

and cancellation this reduces to  2 (1 ( )) (1 ( ))
i iv v

PT
i

l v v

B
den x dx v dx

k
 . For all ix v  and 

monotonic probability weighting ( ) ( )iv x . Thus,

 

0PT

l

B

k
 .  

Proof for Proposition 2 (ii) 

Note first that by definition of ˆ( )lv k , 
ˆ( )

0lv k
; for  ˆ( )i lv v k  I show that (i) ( ) 0iB v for 

1lk  (ii)  and ( ) 0iB v is guaranteed for 0 0.995066lk  

Let 
1( ) ( )nP x F x  and  

1( ) ( )nP v F v  and drop subscript i for simplicity. From (2.1) 

( ( )) 1 (1 ( ( )))[ ( ( )) 1 (1 ( ( ))) ]

( ) 0
( ( )) 1 (1 ( ( )))

( ( )) 1 (1 ( ( )))

i

i

v

ll
v

i v

l

l

v

P x k P x dxP v k P v

B v
P v k P v

P x k P x dx

   

(3.1)

 

Now 

( ( ))
( ( )) 1 (1 ( ( ))) 1 (1 2 ( ( )))l l

P v
P v k P v k P v

 

where  
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( ( )) ( ( ) )
( ( )) ln ( )

P v P v
P v P v

 

Since   ln ( ) 0P v

   

(3.1) is equivalent to

           

 

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

i iv v

l l

v v

l l

P x k P x dx P x P x k P x dx

P v k P v P x P v k P v

 

To show this, it is sufficient to show that for  

x v

 

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

1 (1 ( ( ))) ln ( ) 1 (1 2 ( ( )))

1 (1 ( ( ))) ln ( ) 1 (1 2 ( ( )))

l l

l l

l l

l l

P x k P x P x P x k P x

P v k P v P v P v k P v

k P x P x k P x

k P v P v k P v
    (3.1a) 

which is equivalent to  

ln ( ) 1 (1 2 ( ( ))) ln ( ) 1 (1 2 ( ( )))1

1 (1 ( ( ))) 1 (1 ( ( )))

ln ( ( ) 1 (1 2 ( ( )))1

1 (1 ( ( )))

l l

l l

l

l

P x k P x P x k P x

k P x k P x

P x k P x

k P x

  

being increasing in x  ; Or equivalently 

ln 1 (1 2 )
( )

1 (1 )

l

l

y k y
T y

k y
       being increasing in y when 0 1y ;  

i.e. 
1

[1 (1 )][1 (1 2 )] (1 ) log 0l l l l

T
k y k y k k y

y y
                                         (3.2)   

Case 1: For 1lk , 0 0
T B

y
 for 0 1y . 
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For  1lk , ˆ( )lv k v . (i) Since 
ˆ

0
v

 more bidders bid B v  (bid more aggressively in 

response to greater ambiguity).  (ii)  For ˆ( )i lv v k , 

[1 (1 ( ( )))] 0 [1 (1 2 ( ( )))] 0l i l ik f B v k f B v
 

0 0
T B

y
 for 0 1y .

 

Case 2: For 1lk , all ˆ( )i lv v k when 0lk or 1lk , 0 0
T B

y
 

Let 
2 2 2( ) 2 3 (1 ) (1 ) (1 ) lnl l l l l lZ y k y k k y k k k y y

              (3.3)
 

Then we need to show ( ) 0Z y for 0 1y  

( )Z y is strictly convex with a strict minimum attained at *y such that 
*

( ) 0
y y

Z y
y

       (3.4) 

i.e. 
4 *

ln * 4
1

l

l

k y
y

k
                                                                  (3.5) 

The function [
4

ln
1

l

l

k y
y

k
] is a strictly monotonically increasing continuous function of y

which increases from  at 0y  to 
4

1

l

l

k

k
at 1y . Hence there exists a unique *y at which 

(3.4) holds. Using (3.3) it can be shown that 
2 2 2( *) (1 ) 2 * (1 ) *l l l lZ y k k y k k y ; 

rearranging  (3.5) yields  

4 ln *

4 ln * 4 *
l

y
k

y y
                                                              (3.5) 

Again using (3.4) it can be shown that 
*ln *

( *) (1 ) 1 (1 *)
2

l l

y y
Z y k k y . Thus   

( *) 0Z y  iff 
*ln *

[1 *] 1
2

l

y y
k y  

 i.e.  
4 ln * *ln *

[1 *] 1
4 ln * 4 * 2

y y y
y

y y
.  Suppose ln 4y  then 

4y e ; and since 

44
ln ln * 4 ln * 4 * 0

1

l

l

k y
y y y e y y

k
. 
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Hence ( *) 0Z y  iff  (4 ln *)(2 *ln * 2 *) 2(4 ln * 4 *)y y y y y y   i.e. ,
6*y e     (3.6)  

From (3.5)  lk increases as *y decreases.  Thus 
6*y e  iff  

6

6 6

4 ln
0.995066

4 ln 4
l

e
k

e e
.  

Thus, when 
 

6

6 6

4 ln
0.995066

4 ln 4
l

e
k

e e
 0 0

T B

y  

is guaranteed.  

From (3.6) when  
6

6 6

4 ln

4 ln 4
l

e
k

e e
, if there exists 

( 1) 6* ( ) 0.0025ny F v e
 ; then for 

very small induced values such that  ( ) 0Z y as specified in (3.3), 0 0
T B

y
. 

Proof for Proposition 3  

Note first that by definition of ˆ( )lv k , 
ˆ( )

0lv k

n
; for  ˆ( )i lv v k

 
I show that (i) ( ) 0iB v

n
for 

1lk  (ii) and ( ) 0iB v
n  

is guaranteed for 0 0.995066lk .  

Let 
1( ) ( )nP x F x  and  

1( ) ( )nP v F v  and drop subscript i for simplicity 

ˆ

ˆ

( ( )) 1 (1 ( ( )))[ ( ( )) 1 (1 ( ( ))) ]

( ) 0
( ( )) 1 (1 ( ( )))

( ( )) 1 (1 ( ( )))

i

i

v

l
l

v
i v

l

l

v

P x k P x dxP v k P v nnB v
n P v k P v

P x k P x dx

  (4.1)

 

Also 

( ( ))
( ( )) 1 (1 ( ( ))) 1 (1 2 ( ( )))l l

P v
P v k P v k P v

n n
 

Where 

( 1)
( 1)( ( )) ( ( ) )

ln ( ) ( ) ln ( ) ( ( )) 0
n

nP v F v
F v F v F v P v

n n  

Since  ln ( ) 0P v   (4.1) is equivalent to 

ˆ ˆ

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

( ( )) 1 (1 ( ( ))) ln ( ) ( ( )) 1 (1 2 ( ( )))

i iv v

l l

v v

l l

P x k P x dx F x P x k P x dx

P v k P v F x P v k P v
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Upon multiplying both sides by  we get the same inequality (3.1a). Thus, the rest of the proof 

is the same as outlined above for proposition 2(ii) for various range of value for lk . The same 

conclusions follow. 

  

Proof for Proposition 4 

I shall first characterize the interior solution underlying the first-order condition for the objective 

function, assuming a monotonic bid-value relationship exists. Then show that (i) the best-

response bid-value relationship is strictly increasing for ˆ( )l iv k v v  and (ii) the expected 

payoff is local and global maximum at the optimal bid.  

(i) 
1 1 1max ( , ) (( ) ) (( ) )(1 (( ) )) ( )

i

n n n

PT i i i l i i i i
v B v

v B B k B B v B
                 (2.1)                                         

 

 For ˆ( ),[1 (1 ( ( )))] 0i l l iv v k k f B v and iv v , 

1 1

1
1

(( ) ) 1 (1 (( ) ))
0

(( ) )
1 (1 2 (( ) ))

n n

i i lPT
i i n

nii
i l

i

B B k
v B

BB
B k

B
                       (2.2)          

 

This defines a unique bid for each value.  

For ˆ( ), ( )i l i iv v k B v v maximizes payoff (yields zero payoff). 

For iv v  the following holds: 
-1

( )i

n
B v v

n
 

 (ii)  For 0, ˆ( ),[1 (1 ( ( )))] 0i l l iv v k k f B v
 
and iv v using (2.2) we obtained the 

following above:  
( 1)

( 1)

1 ( )

( 1) 1 2 ( )

n

i l l i
i i n

l l i

B k k B
v B

n k k B
 

1
( 1) ( 1)

i

i i

Bv Z Z

B n B n
     where 

( 1)

( 1)

1 ( )
[0,1]

1 2 ( )

n

l l i

n

l l i

k k B
Z

k k B
; and 

( 1) ( 1) 1 ( 1) ( 1) 1

( 1) 2 ( 1) 2

(1 ) (1 )

(1 2 ( ) ) ( 1) ( 1) (1 2 ( ) )

n n n n

l l i i i l l i

n n

i l l i i l l i

k k B B B k k BZ Z

B k k B n B n k k B
 For 
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0 1lk  , 1 0 0
( 1)

i

i i

B Z v

n B B
; For 1lk  , the numerator and denominator are 

such that 0 0
( 1)

i

i i

B Z v

n B B
. 

Thus the bid-value relationship is strictly increasing for ˆ( )l iv k v v . 

(iii) For ˆ( ),[1 (1 ( ( )))] 0i l l iv v k k f B v
 
and iv v at the optimal bid 0PT

iB
. To show  

2

2
0PT

iB
. Differentiate the first order condition 0PT

iB
 with respect to iv   yields 

2 2

2
0iPT PT

i i i i

B

B v B v
.  Then we need to show that 

2

0PT

i iB v
 for the proof to work since

0
i

B

v
. Differentiating (2.1) with respect to iv   yields

12 (( ) )
[1 (1 2 ( ( )))]

n

iPT
l i

i i i

B
k f B

B v B
 . Since 

1(( ) )
0

n

i

i

B

B
 and 

[1 (1 ( ( ))] 0 [1 (1 2 ( ( ))] 0l i l ik f B k f B ;  therefore

2

0PT

i iB v
. Thus, the first order 

condition describes a global optimum. Bidding 
1n

v
n    

ensures that the auction is won. 

Therefore for iv v , the global optimum is given by 
1n

B v
n

 

  

Proof for Proposition 5 

For  ˆ( )l iv k v v   we need to show that  0i

l

B

k
. Differentiate 0PT

iB
 with respect to lk   

yields 

2 2

2
0iPT PT

i l i l

B

B k B k
.  Then we need to show that 

2

0PT

i lB k
 for the proof to work 

since it has been shown (above for proposition 4) that 

2

2
0PT

iB
. Differentiating (2.1) with 
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respect to lk  yields

2

2 2

(1 2 )( 1) (1 )(2 1) 2
0

( 1) (1 2 ) ( 1) (1 2 )

i l l l l iPT

i l l l l l

B k k Y Y k k Y Y B Y Y

B k n k k Y n k k Y
 

where 
( 1)( ) 0n

iY B ; thus from above, 
2

0 0iPT

i l l

B

B k k   

  

Proof: for Proposition 5(ii)  

If  
( 1)

( 1)

1- ( )
0

( 1) 1- 2 ( )

n

i l l i
i i n

l l i

B k k B
v B

n k k B
 is equivalent to ( , ( )) 0F B where subscript i 

is dropped for simplicity.  By implicit function theorem, if 0
F

B
, then /

B F F

B   

 

2

2 2

1

2

(.) (.)( 1)(.)

( 1) (.)

(.) (.)( 1)(.)
1

( 1) (.)

l

l

A X kB

B n D

A X k

n D
 
where

( 1) ( 1)

2 1( 1)

( 1)

1- ( ) ( )
(.) , (.) , (.) (.) ln( ) 0, (.)

1- 2 ( ) ( 1) ( )

and (.) 1- 2 ( )

n n

l l i i
l ln

l l i

n

l l i

k k B B B
A X k n B X k n

k k B n B

D k k B

 

It is relatively straightforward to show that for ˆ( ), (.) 0, (.) 0lv v k D  

1

2

2 2

1

(.) (.)( 1)(.)
1 0

( 1) (.)

( 1) (.) (.) (.) (.) (.)( 1) ( 1)

l

l

A X k

n D

n D D A X k n

  

Since 
2(.) (.) 0D the above holds if 

2( 1) (.) ( 1) (.)(1 )l ln D n k k . Note that this holds 

when 1lk . When 1lk , the above is equivalent to 

2 2 2(.) (.)(1 ) [(1 ) 4 (.) ] 4 (.) / (1 ) (.)

(1 ) (.)(1 4 )

l l l l l

l l

D k k k k k

k k
 

which holds for all 1lk . Therefore 1

2

(.) (.)( 1)(.)
1 0

( 1) (.)

lA X k

n D
. 
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Thus ( )0
F

B
iff 2

2 2

(.) (.)( 1)(.)
( )0

( 1) (.)

lA X kB

n D
 

i.e. 
22

2

(.)( 1)(.)
( )0 (.) (.) ( ) ln( )( 1)[ ( ) ]

( 1) (.)

l
l l

X kB
D n B k B k

n D
 

when 1lk , the LHS exceeds the RHS since ln( ) 0B . Therefore 0PTB
.  

When 1lk , as 0iB
 
or iB , the LHS exceeds the RHS ; given the bids and values are 

monotonically increasing therefore for the extreme induced values 0PTB
; for some   

* 1lk k  for iv
 
it follows from above, if  

( 1) ln( ) ( )
[1 (1 2 ( ))]

[1 (1 ( ))]

l i i l
l i

l i

n k B B k
k B

k B
, 

then 0PTB
.  

 

Proof: for Proposition 6 

As before,  
( 1)

( 1)

1- ( )
0

( 1) 1- 2 ( )

n

i l l i
i i n

l l i

B k k B
v B

n k k B
 is equivalent to ( , ( )) 0F n B n where 

subscript i is dropped for simplicity.  By implicit function theorem, if 0
F

B
, then 

/
B F F

n n B    
i.e. 

2

2 2 2

1

2

(.) (.)( 1)(.)

( 1) (.)

(.) (.)( 1)(.)
1

( 1) (.)

l

l

A X kB

B n D

A X kn

n D

 where

( 1)

2( 1)

( 1)
( 1)

1

1- ( ) ( 1)
(.) , (.) , (.) [ (.)( ln( ) )] 0,

1- 2 ( ) ( 1)

( )
(.) and (.) 1- 2 ( )

( )

n

l l i i
ln

l l i

n
n

l l l i

k k B B B n n
A X k B B

k k B n n

B
X k n D k k B

B

 

It is relatively straightforward to show (as shown before in the proof for Prop.5(ii))  that for 

ˆ( )lv v k and for all lk ,  

1

2

(.) (.)( 1)(.)
1 0

( 1) (.)

lA X k

n D
. 
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Thus ( )0
F

B  
iff 2

2 2 2

(.) (.)( 1)(.)
( )0

( 1) (.)

lA X kB

n D
 

i.e. 2

2

(.)( 1)(.)
( )0

( 1) 1 (.)

lX kB

n n D             (6.1) 

which can be shown to be equivalent to 

(.)
(1 )(1 2 (.)) ( ) ( 1) (.)[ ln( ) ( (1 1/ ) 1)]

1

l
l l l

l

k
k k n k B B B n

k
 

When 1lk , the LHS exceeds the RHS in equation (6.1) since 2 0X . Therefore 0PTB

n
. 

When 1lk , as 0iB
 
or iB , the LHS exceeds the RHS ; given the bids and values are 

monotonically increasing therefore for the extreme induced values 0PTB

n
; for some   

ˆ 1lk k  for iv
 
it follows from above that if  

( 1)[ (1 ) ln( )] ( )
[1 (1 2 ( ))]

[1 (1 ( ))]

i i i i l
l i

l i

n B B B B k
k B

k B
, then 0PTB

n
.   
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Appendix B: Tables  

 

Table 1: Auctions in Cox, Roberson and Smith (1982) 

 n=4 (No. of Auctions) n=5 (No. of Auctions) n=6 (No. of Auctions) n=9 (No. of Auctions) 

Inexperienced 

Bidders 

fdf8 (20) 

dfd8 (10) 

fdf9 (20) 

dfd9 (10) 

fdf2(20) , fdf4 (20) 

dfd2 (10), dfd2 (10) 

fdf5 (20) 

dfd5 (10) 

Experienced 

Bidders 

fdf8x (20) 

dfd8x (10) 
fdf9x (20) 

dfd9x (10)   

(1) “n” denotes the number of bidders in a first-price auction 
 

Table 2: Descriptive Statistics for Auctions in Cox, Roberson and Smith (1982) 
Observations No. of Bidders 

(Experience) 
 Highest 

Value 
Value Bid No of 

Overbids (%) 
Average 

Overbid 

(%) 

Average 

Underbid 

(%) 

Average 

Deviation 

(%) 

120 
4 

(Inexperienced) 
Mean 
(Std) 

8.1 

(-) 

4.0 

(2.3) 

3.4 

(2.1) 

77.5 

(-) 

16.3 

(-) 

34.2 

(-) 

20.0 

(-) 

120 
4 

(Experienced) 
Mean 
(Std) 

8.1 

(-) 

4.5 

(2.3) 

3.8 

(2.0) 

82.5 

(-) 

15.5 

(-) 

20.9 

(-) 

16.3 

(-) 

150 
5 

(Inexperienced) 
Mean 

(Std) 

12.1 

(-) 

6.5 

(3.4) 

5.8 

(3.1) 

86.7 

(-) 

14.2 

(-) 

17.6 

(-) 

14.6 

(-) 

150 
5 

(Experienced) 
Mean 
(Std) 

12.1 

(-) 

5.6 

(3.5) 

5.1 

(3.2) 

80.0 

(-) 

13.8 

(-) 

20.5 

(-) 

15.1 

(-) 

180 
6-seriesA 

(Inexperienced) 
Mean 
(Std) 

16.9 

(-) 

8.6 

(4.9) 

7.7 

(4.5) 

78.3 

(-) 

12.2 

(-) 

22.9 

(-) 

14.3 

(-) 

180 
6-series B 

(Inexperienced) 
Mean 
(Std) 

16.9 

(-) 

8.8 

(5.0) 

7.6 

(4.5) 

66.7 

(-) 

9.5 

(-) 

21.0 

(-) 

13.1 

(-) 

270 
9 

(Inexperienced) 
Mean 

(Std) 

36.1 

(-) 

19.2 

(10.0) 

17.9 

(10.0) 

77.4 

(-) 

7.4 

(-) 

26.8 

(-) 

11.8 

(-) 

Note: (i) Overbid % defined with respect to RNNE i.e. no. of bids above the RNNE (ii) Overbid is 100*(bid-RNNE)/RNNE for each bid above 

RNNE (iii) Underbid is 100*(RNNE-bid)/RNNE for each bid below RNNE (iv) Deviation is 100*|(bid-RNNE)|/RNNE  
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Table 3: First-Price Auctions in Harrison (1989) 

Common Design Features: 4N , $0.01v  or 1 Point, $10.00v  or 1000 Points, 20 Periods 

Experiment Level of Experience 

Payoff in Dollars or 

Lottery Points 

Simulated Nash 

Opponent? 

Number of 

Replications per 

period? 

Total Number of 

Human Bids? 

1 Inexperienced Dollars No 4 320 

1P Inexperienced Points No 4 320 

2 Experienced Dollars No 5 400 

2P Experienced Points No 4 320 

3 Experienced Dollars Yes 14 280 

3P Experienced Points Yes 16 320 

 

 

Table 4: Descriptive Statistics for Auctions in Harrison (1989) 
Observations No. of Bidders 

(Experience) 

Rivals 

 Highest 

Value 

Value Bid No. of 

Overbids 

(%) 

Average 

Overbid 

(%) 

Average 

Underbid 

(%) 

Average 

Deviation 

(%) 

320 

4 

(Inexperienced) 

Human 

Mean 

(Std) 

10 

(-) 

5.09 

(2.64) 

4.56 

(2.40) 

91 

(-) 

23 

(-) 

26 

(-) 

24 

(-) 

400 

4 

(Experienced) 

Human 

Mean 

(Std) 

10 

(-) 

5.09 

(2.64) 

4.42 

(2.31) 

89 

(-) 

21 

(-) 

25 

(-) 

21 

(-) 

280 

4 

(Experienced) 

Nash  

Mean 

(Std) 

10 

(-) 

4.65 

(2.26) 

3.85 

(1.98) 

81 

(-) 

18 

(-) 

27 

(-) 

19 

(-) 

Note: (i) Overbid % defined with respect to RNNE i.e. no. of bids above the RNNE (ii) Overbid is 100*(bid-RNNE)/RNNE for each bid above 

RNNE (iii) Underbid is 100*(RNNE-bid)/RNNE for each bid below RNNE (iv) Deviation is 100*|(bid-RNNE)|/RNNE  
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Table 5: Prospect Theory Models of Bidding 
Cox, Roberson and Smith(1982) 

No. of Bidders 

(Experience) 

(Rivals) 

No. of Observations 

(Periods Bidders-

outliers) 

Model ˆ( . .)S E  ˆ ( . .)lk S E  
Residual Sum 

of Squares 

(SSE) 

4 

(Inexperienced) 

Human 

115 General 

PW 

RD 

RNN 

1.17(0.78) 

2.13(0.76)** 

- 

- 

0.98(0.16)** 

- 

0.99(0.06)** 

- 

12.28 

13.26 

12.85 

46.15 

4 

(Experienced) 

Human 

118 General 

PW 

RD 

RNN 

1.02(0.48)* 

1.96(0.59)** 

- 

- 

0.99(0.11)** 

- 

0.99(0.07)** 

- 

12.43 

12.81 

12.44 

46.59 

5 

(Inexperienced) 

Human 

146 General 

PW 

RD 

RNN 

1.17(0.50)** 

2.26(0.74)* 

- 

- 

1.00(0.02)** 

- 

1.00(0.004)** 

- 

26.62 

27.22 

28.10 

107.21 

5 

(Experienced) 

Human 

146 General 

PW 

RD 

RNN 

1.20(0.52)** 

2.31(0.82)** 

- 

- 

1.00(0.01)** 

- 

1.00(0.003)** 

- 

24.40 

25.50 

26.09 

94.64 

6-series A 

(Inexperienced) 

Human 

175 General 

PW 

RD 

RNN 

0.92(0.48) 

1.89(0.83)** 

- 

- 

1.00(0.003)** 

- 

1.00(0.002)** 

- 

142.55 

142.76 

143.63 

223.84 

6-series B 

(Inexperienced) 

Human 

174 General 

PW 

RD 

RNN 

0.70(0.28)** 

1.37(0.47)** 

- 

- 

1.00(0.02)** 

- 

0.85(0.35)** 

- 

130.24 

131.08 

139.64 

159.91 

9 

(Inexperienced) 

Human 

248 General 

PW 

RD 

RNN 

1.28(0.45)** 

2.28(0.66)** 

- 

- 

1.00(0.001)** 

- 

1.00(0.001)** 

- 

196.03 

203.31 

204.55 

644.96 

 

4 

(Inexperienced) 

Human 

306# General 

PW 

RD 

RNN 

1.51(1.00) 

3.03(1.61) 

- 

- 

1.00(0.01)** 

- 

1.00(0.01)** 

- 

67.10 

67.27 

85.32 

293.89 

4 

(Experienced) 

Human 

371# General 

PW 

RD 

RNN 

1.16(0.09)** 

2.32(0.90)** 

- 

- 

1.00(0.01)** 

- 

1.01(0.03)** 

- 

65.81 

66.00 

68.31 

253.01 

4 

(Experienced) 

Nash 

268~ General 

PW 

RD 

RNN 

1.02(1.61) 

1.70(0.95) 

- 

- 

0.91(0.89) 

- 

0.91(0.37)* 

- 

156.89 

162.98 

156.91 

248.01 

Notes: (1) The General model is based on Proposition 1;allows Nonlinear Probability Weighting and Loss-aversion (2) The PW model allows for 

Nonlinear Probability Weighting (no Loss-aversion)  (3) The LA model allows loss-aversion defined in assumption B (linear Probability 

Weighting) only (4) The RNNE model is based on linear probability weighting where 1  and no loss-aversion (5) Asymptotic Standard 

Errors in brackets (6) SSE: Sum of squared errors based on the difference between actual and predicted bid (7) The estimates are based on search 

algorithms developed using MATLAB for the data described in Cox, Roberson and Smith (1982) (8)#Overbids beyond Private Values removed; 

~Overbids beyond (3/4)*1000=Highest possible RNN bid removed (9) ** denotes significance at 1% level and * denotes significance at 5% level 
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Table 6: Hypothesis Tests 

Cox, Roberson and Smith(1982) 

No. of bidders 

(Observations) 

Experience Levels 

(Bidders) 

Test Estimated Log- likelihood 

ratio 

p-value 

4  

(240) 

Inexperienced and 

Experienced 

(Human) 

exp expin

l lk k  

exp expin
 

exp exp exp exp|in in

l lk k  

0.2073 

 

2.0052 

 

1.9244 

0.9015 

 

0.1568 

 

0.1654 

5 

(300) 

Inexperienced and 

Experienced 

(Human) 

exp expin

l lk k  

exp expin
 

exp exp exp exp|in in

l lk k  

1.6639 

 

0.1457 

 

0.0328 

0.4352 

 

0.7026 

 

0.8542 

Harrison (1989) 

4  

(708) 

Inexperienced and 

Experienced 

(Human) 

exp expin

l lk k  

exp expin
 

exp exp exp exp|in in

l lk k  

0.0465 

 

16.2169** 

 

14.5204** 

0.9770 

 

0.0010 

 

0.0010 

4  

(584) 

Inexperienced against 

Human bidders 

and  

Experienced 

against Nash bidders 

exp expin

l lk k  

exp expin
 

15.9527** 

 

30.7884** 

 

0.0030 

 

0.0000 

4  

(660) 

Experienced against 

Human bidders 

and  

Experienced 

against  Nash bidders 

exp expin

l lk k  

exp expin
 

 

 

23.1346** 

 

9.2458** 

0.0000 

 

0.0024 

Note: (1) ** denotes significance at 1% level. 
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Appendix C: Figures 

Figure 2: General PT Bid and Probability Function; CRS(1982); n=4 (Inexperienced and 

experienced bidders) 

 

Note: (1) The right column is a plot of the probability weighting function with (W1 (P)) and 

without (W2 (P)) loss aversion. 
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Figure 3: General PT Bid and Probability Function; CRS(1982); n=5 (Inexperienced and 

experienced bidders) 

 

Note: (1) The right column is a plot of the probability weighting function with (W1 (P)) and 

without (W2 (P)) loss aversion. 
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Figure 4: General PT Bid and Probability Function; CRS(1982); n=6 (Inexperienced bidders) 

 

Note: (1) The right column is a plot of the probability weighting function with (W1 (P)) and 

without (W2 (P)) loss aversion. 
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Figure 5: General PT Bid and Probability Function; CRS(1982); n=9 (Inexperienced bidders) 

 

Note: (1) The right column is a plot of the probability weighting function with (W1 (P)) and 

without (W2 (P)) loss aversion. 
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Figure 6: General PT Bid and Probability Function; Harrison(1989); n=4 

(Inexperienced and experienced bidders); against Human and Risk-neutral Nash bidders 

 

Note: (1) The right column is a plot of the probability weighting function with (W1 (P)) and 

without (W2 (P)) loss aversion. 
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