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Abstract

“Those who claim for themselves to judge the truth are bound to possess a criterion of truth.”

Sextus Empiricus

1 Introduction

Suppose one is asked to forecast the probability of rain on successive days. How should one assess

the accuracy of the forecast? If one forecasts a 25% chance of rain and it rains, was the forecast in

error?

A popular criteria for judging the effectiveness of a probability forecast is called calibration.

Dawid [5] offers the following intuitive definition of calibration:

“Suppose that, in a long (conceptually infinite) sequence of weather forecasts, we look

at all those days for which the forecast probability of precipitation was, say, close to

some given value ω and (assuming these form an infinite sequence) determine the long

run proportion p of such days on which the forecast event (rain) in fact occurred. The

plot of p against ω is termed the forecaster’s empirical calibration curve. If the curve is

the diagonal p = ω, the forecaster may be termed (empirically) well calibrated.”

Notice, the calibration criterion relies only on the realized forecasts and outcomes to make a

determination. It assumes the data will speak for itself.

The calibration criterion is used, for example, to assess the accuracy of prediction markets, see

Page and Clemen (2010) [30]. Philip Tetlock [37] uses it in his comprehensive analysis of pundits.

We quote from a 2006 blog entry by Tetlock [38]:

“Between 1985 and 2005, boomsters made 10-year forecasts that exaggerated the chances

of big positive changes in both financial markets (e.g., a Dow Jones Industrial Aver-

age of 36,000) and world politics (e.g., tranquility in the Middle East and dynamic

growth in sub-Saharan Africa). They assigned probabilities of 65% to rosy scenarios

that materialized only 15% of the time.
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In the same period, doomsters performed even more poorly, exaggerating the chances

of negative changes in all the same places where boomsters accentuated the positive,

plus several more (I still await the impending disintegration of Canada, Nigeria, India,

Indonesia, South Africa, Belgium, and Sudan). They assigned probabilities of 70% to

bleak scenarios that materialized only 12% of the time.”

Fans of Isaiah Berlin will be interested to know that Tetlock concludes that foxes are better cali-

brated than hedgehogs.1

2 Notation

The intuitive definition of calibration is meaningless when no forecast is ever repeated. One way

around this is to base the definition on what is known as the calibration component of the Brier

score (see [3] and [23]). To describe it we introduce notation. Let S = {0, 1} be the state space.2

We can think of ‘1’ as recording the state ‘rain’. An element of S is called an outcome. Let Sn, for

n ∈ N , be the n-Cartesian product of S and S∗ the set of all infinite 0-1 sequences. An n-sequence

of outcomes is denoted s = (s1, s2, . . . , sn) ∈ Sn where si denotes the state realized in period i. An

infinite sequence is denoted s∗. Given s ∈ Sn and r < n, let sr = (s1, s2, . . . , sr) ∈ Sr be the prefix

of length r of s.

An element of [0, 1] is called a forecast of the event ‘1.’ A forecast made in period r refers to

outcomes that will be observed in period r+ 1. Let ∆∗ be the set of probability distributions over

[0, 1]. A forecasting algorithm is a function:

F :
n−1⋃
r=0

(Sr × [0, 1]r)→ ∆∗

At the end of each period r < n, an r-history (sr, f0, f1, . . . , fr−1) ∈ Sr × [0, 1]r is observed. Here

fj ∈ [0, 1] is the forecast made by F in period j. Let f r = (f0, . . . , fr). Based on this r-history, the

forecaster must decide which forecast fr ∈ [0, 1] to make in period r. The forecaster is allowed to

randomize. So, fr ∈ [0, 1] can be selected (possibly) at random, using a probability distribution in

∆∗.

Let nt(p;F, s
∗) be the number of times F forecasts p up to (but not including) time t on the

sequence s∗. Let ρt(p;F, s
∗) be the fraction of those times that it actually rained. In other words,

nt(p;F, s
∗) ≡

t−1∑
r=0

Ifr=p,

ρt(p;F, s
∗) ≡

t−1∑
r=0

sr+1Ifr=p

nt(p;F, s∗)
,

1Berlin offered a classification of thinkers inspired by a fragment of poetry due to Archilochus. Rendered in

English, it reads: The fox knows many things, but the hedgehog knows one big thing. Foxes are thinkers who draw

on a variety of perspectives to understand the world. Hedgehogs, believe that the world can only be understood

through a single perspective.
2The results extend easily to more than two states.
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where I is the indicator function. In the definition it is convenient to assume that F is restricted

to selecting forecasts from a finite set, A, fixed a priori. The requirement that F select from a fixed

set A is not a severe restriction for practical purposes. Many weather forecasters, for example,

forecast probabilities to only one decimal place.

The calibration score of F with respect to s∗ after t periods is denoted Ct(F, s
∗) where

Ct(F, s
∗) =

∑
p∈A

(ρt(p;F, s
∗)− p)2 nt(p;F, s

∗)

t

Thus, F is well calibrated with respect to s∗ if and only if Ct(F, s
∗) goes to zero as t goes to infinity.

3 Calibrated Forecasts

While a forecast that reports the correct probabilities (conditional on the history) in each period,

will have a low calibration score, what about an ‘incorrect’ forecast? Foster and Vohra [10] exhibit

a randomized forecasting algorithm that almost surely will be calibrated on all sequences s∗. No

assumption is made about the process that generates s∗. The ‘almost surely’ in the statement refers

to the distribution induced by the randomization within the forecasting algorithm. At first blush

this result appears surprising, so we outline a proof of existence based on the mini-max theorem.3

3.1 Existence

This existence proof constructs a zero-sum game played between the forecaster and ‘Nature.’ Fix

the number of periods to be t. So that the forecaster’s strategy space is finite, we restrict him to

picking one of the following in each period as a forecast: 0, 1/k, 2/k, . . ., 1. Here k is a sufficiently

large integer to be chosen later. A pure strategy for the forecaster will consist of a t-vector of

forecasts, where each element of the vector will be of the form j/k for 0 ≤ j ≤ k.4 Thus, his

strategy space consists of (k + 1)2t−1 pure strategies. Nature’s strategy space is the set of all 2t

binary sequences.5 If Nature picks st, then the forecaster’s ‘loss’ from a particular sequence of

forecasts is the calibration score of that sequence of forecasts with respect to st.

Now suppose that Nature picks a (possibly randomized) strategy first. Assume that the fore-

caster knows the randomization strategy that Nature will follow but not the realization. To use the

minimax theorem we need to specify a strategy for the forecaster which will keep his calibration

score less than ε. If we can do this for all possible mixed strategies of Nature, then, by the mini-max

theorem, there must exist a mixed strategy for the forecaster which will guarantee him a calibration

score less than ε.

Given each mixed strategy of Nature, the forecaster can compute the conditional probability of

the next term in the sequence being a ‘1’. The forecast of the corresponding term will be obtained

3There are a host of other proofs. See, for example, [13], [15], [11], [4] and [21].
4For economy of exposition only, we assume that a forecast in each period cannot depend on what happened in

the past.
5This assumes that Nature’s strategy in each period cannot depend on what she saw in the previous period. The

argument is the same if we drop this restriction.
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by rounding this probability to the nearest i/k value. Assuming that k is much less than n1/3 his

calibration score will be less than 1/k. Here is an outline of why this must be so. The forecasters

calibration score is

Ct(F, s
t) =

k∑
j=0

(
ρt(j/k;F, st)− j/k

)2 nt(j/k;F, st)

t
.

Now look at all the times the forecaster forecast j/k. He did so because the probability that Nature

would pick a 1 on that round was some number q with the property that |q − i/k| was minimized

for i = j. This implies that |q− j/k| ≤ 1/k. By a law of large numbers6 argument we would expect

that |ρt(j/k;F, st)− j/k| ≤ 1/k. Hence

Ct(F, s
t) ≤

k∑
j=0

(1/k)2nt(j/k;F, st)

t
= 1/k.

Thus, there exists a randomized strategy which will guarantee him a calibration score of at most

1/k. Randomization is essential. While a malevolent nature may be able to make one forecaster

look bad according to the calibration criterion, it is harder for it to make many forecasters look

bad at the same time. To quote Schervish [34]:

“The more different forecasts that nature is trying to make look bad, the more flexibility

all forecasters have to try to look good.”

3.2 Extensions

Under the calibration criterion, a forecaster with no meteorological knowledge would be indistin-

guishable from one who knew the distribution that governs the change in weather. Is this surprising?

In a sense no, since calibration by itself is not a sufficient condition for a forecast to be deemed

good. To see this, consider the sequence of outcomes and forecasts below.

outcome 0 1 0 1 0

forecast 0.5 0.5 0.5 0.5 0.5

Assuming the sequence of outcomes and forecasts repeats indefinitely, the forecast will be cali-

brated with respect to this sequence. However, the forecast displayed is not the only forecast that

will be calibrated with respect to this sequence. For example, the forecast 0, 1, 0, 1 . . ., is calibrated

with respect to the sequence of outcomes displayed. Thus, calibration isn’t sufficient to distinguish

good from excellent forecasters. Neverthless, one can agree that if someone forecasted “.7” in each

period on the above sequence, their poor calibration would be one way to describe it as a bad

forecast.

We can demand more by breaking the sequence into two subsequences; one corresponding to

even periods and the other to odd periods, and require the forecast to match the frequency on each

subsequence. Consider the table below.

outcome 0 0 1 1 0 0 1 1 0 0

forecast 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

6In fact one needs to use martingales to get things to work out correctly.
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Assuming the pattern of 00 followed by 11 repeats indefinitely, the long run frequency of 0 is 0.5 as

anticipated by the forecast. In the odd periods, the long run frequency of 0 is also, as anticipated,

0.5. In the even periods, it is also 0.5. However, if the probability of 0 in every period were, in

fact, 0.5 then we would expect that the frequency of 0, after 00 was observed, to be 0.5. In the

data, this frequency is zero. Analogously, the frequency of 0 in period 4n+ 1, n a natural number,

should be 0.5 when it is one.

Thus, dividing the sequence into just two subsequences is not enough. How many subsequences

would suffice? To answer this question, we formalize the notion of dividing up the entire sequence

of observations into subsequences.7

Imagine a rule that, at the end of each period, decides whether or not to mark the period (as

a function of the past). The marked periods define a subsequence on which the forecasts (made in

those periods) could be compared to the outcomes realized next period. One rule might be to mark

every even numbered period. The forecasts made in the even periods will be compared with the

outcomes realized next period. Another rule would be to mark the period if the current outcome is

0. The forecasts made in the periods that 0 occurred will be compared with the outcomes realized

next period.

A rule that decides which periods to mark (as a function of past and current outcomes) is called

an outcome-based checking rule. Formally, an outcome-based checking rule is a function from finite

sequences of outcomes to {0, 1}. We say that the rule is active when it assumes the value 1 for that

period. The marked periods are those in which the rule is active. An outcome-based checking rule

could be active when the last three observation were 010, when the period is a prime-number, etc.

Outcome-based checking rules mark a period based on past and current outcomes only. However,

if forecasts change then we may want a checking rule that marks a period as a function of the

forecasts as well. Fix an outcome-based checking rule and an interval D of possible forecasts.

An associated forecast-based checking rule will mark those periods marked by the outcome-based

checking rule and when the forecast lies in D . That is, a forecast-based checking rule is active when

the outcome-based checking rule is active and the forecast is within some interval (these intervals

form a partition of [0, 1]). For example, consider the outcome-based checking rule that is active

in the even periods. Consider the partition [0, 0.5) and [0.5, 1]. A forecast-based checking rule

(associated with this outcome-based checking rule) is active in the even periods when the forecast

for 1 is less than 0.5. Another forecast-based checking rule is active in the even periods when the

forecasts for 0 is greater than 0.5. For each forecast-based checking rule, there is an associated

subsequence of active periods. The forecasts will be compared to the data separately in each of

these subsequences.

Given a collection C of outcome-based checking rules and a partition of [0, 1], we say that a

sequence of forecasts is calibrated with respect to the observed data if the average forecasts match

empirical frequencies, in the subsequence specified by the forecast-based checking rule associated

with the outcome-based checking rules in C. Informally, a sequence of forecasts is calibrated if, in

the subsequences specified by C, the frequency of 0 is p in the sub-subquences in which the forecast

is p.

7This is an idea due to Dawid [6]. See also [18].
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The examples above show that forecasts matching empirical frequencies for finitely many check-

ing rules may fail to capture relatively simple patterns. However, consider a countable collection

of outcome-based checking rules that include all functions (mapping finite sequences of outcomes

to {0, 1}) implementable by a recursive algorithmic. Consider a countable partition of [0, 1]. This

collection of forecast-based checking rules is also countable. Notice that the countable collection

of checking rules we focus on are all rules that can be implemented by a Turing machine. If the

forecasts match the empirical frequencies for all these forecast-based checking rules then no com-

parison between frequencies and the forecasts, that is implementable by a Turing Machine, would

reject the hypothesis that the forecasts are correct.

The main result of Sandroni, Smorodinsky and Vohra [32] shows that, given any countable

collection of outcome-based checking rules and countable partition of the entire interval, there is a

forecasting scheme that generates sequences of calibrated forecasts on every possible infinite string

of data. So, if a forecaster uses this forecasting scheme then after some point in the future, when he

looks backwards, he will always see that the time average of the forecasts are close to the empirical

frequencies. In this sense, he will not see a contradiction between the forecasts and the data.8

A forecast that would be calibrated with respect to all checking rules (not just countably many)

would satisfy the stronger property of merging (see [18]). The distinction between the countable

and the uncountable case highlights the weakness of the calibration criterion. Calibration is a

guarantee that at some distant point in the future, looking back, the forecast will be consistent

with past outcomes. Merging is a guarantee that at some distant point in the future, looking

forward, the forecast will be consistent with future outcomes.

4 Testing

Are there tests, other than calibration, that can distinguish between a forecaster who knows the

underlying distribution of the process being forecast from one who ‘games’ the test? Rather than

run through a long collection of criteria, we follow Sandroni [32] and focus on properties that such

tests should have.

Formally, a test takes as input a forecasting algorithm, a sequence of outcomes and after some

period accepts the forecast (PASS) or rejects it (FAIL). Two properties that such a test should

possess appear compelling. First, the test should declare PASS/FAIL after a finite number of

periods. This seems unavoidable for a practical test. Second, suppose the forecast is indeed correct

i.e., accurately gives the probability of a state being realized in each round. Then, the test should

declare PASS with high probability. Call this second condition “passing the truth.” In other words,

the probability of a type I error should be small.9

Call a test that satisfies these two conditions a good test. A test based on calibration is an

example of a good test. A forecaster with no knowledge of the underlying distribution that can

8Lehrer [20] establishes this for the special case of outcome based checking rules only. See also Vovk and Shafer

[36].
9A type I error occurs when the true hypothesis is rejected. Acceptance of a false hypothesis is a type II error.

Not knowing which is which is a type III error.
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pass a good test with high probability on all sequences is said to ignorantly pass the test. Implicit

in the notions defined is that the forecaster knows the test.

To define these notions precisely we require some notation. A sequence s ∈ Sn and a forecasting

algorithm F determine a probability measure F̄ s on [0, 1]n, where conditional on (sr, f r−1), the

probabilities of forecasts next period are given by F (sr, f r−1). The vector of realized forecasts

associated with F on a sequence s will be denoted f(s).

Denote the unknown data generating process by P . Given P and sr ∈ [0, 1]r let Psr ∈ [0, 1]

be the probability that sr+1 = 1 conditional on sr. Given P let FP (s) ∈ [0, 1]n be the forecast

sequence such that fPr (s) = Psr .

A finite test is a function T : Sn× [0, 1]n → {0, 1}. After a history of n forecasts and outcomes

are observed, a test must either accept (PASS) or reject (FAIL) the forecast. When the test returns

a 0 the test is said to fail the forecast based on the outcome sequence. When the test returns a 1

the test is said to PASS the forecast based on the outcome sequence.

One can think of a finite test as a subset of Sn × [0, 1]n. If the history of n forecasts and

outcomes lies in this subset, the forecast is failed, otherwise it is passed. A non-finite test would

be a subset of S∗t × [0, 1]∗, where [0, 1]∗ is the set of infinite sequences of numbers in [0, 1]. Call

the set of outcomes on which a forecast would be rejected by a test T , T ’s rejection set.

A test is said to pass the truth with probability 1− ε if

Pr
P

({s : T (s, FP (s)) = 1}) ≥ 1− ε

for all P .

A test T can be ignorantly passed by a forecasting algorithm F with probability 1 − ε if for

every s ∈ Sn,

Pr
F̄ s

({f : T (s, f(s)) = 1}) ≥ 1− ε.

Hence, F can ignorantly pass T if on any sequence of outcomes, the realized forecast sequence will

be passed with probability at least 1−ε (under the distribution induced by the forecasting scheme).

A test T is said to fail the forecasting algorithm F on the distribution Q with probability 1− ε if

Pr
Q

({s : Pr
F̄ s

({T (s, f(s)) = 1}) ≥ 1− ε}) ≤ ε.

For every good test, Sandroni [32] shows there exists a randomized forecasting algorithm that

will ignorantly pass the test.

Theorem 1 Suppose a finite test T passes the truth with probability 1 − ε. Then, there is a

forecasting algorithm F that can ignorantly pass T with probability 1− ε.

Therefore, no good test can distinguish between a forecaster who knows the underlying distribution

of the process being forecast from one who ‘games’ the test. In this sense, Sandroni’s Theorem

is an impossibility result. The argument is similar to the one that established the existence of a

calibrated forecast except it requires a stronger minimax theorem. One could imagine ‘secret’ tests
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that are not revealed to the forecaster. A forecaster faced with a secret test can always treat this

as going up against a mixture of known tests. A mixture over good tests is also a good test.10

One way to see why Sandroni’s impossibility result holds is to consider a good test that must

decide after one period. Given it must pass the truth, it has little choice but to pass all forecasters.

Now, what about n periods? The decision to pass or fail the forecast is based on some n-period

sequence, sn. Unfortunately, there are uncountably many infinite sequences, s∗, which contain sn

as a prefix. Thus, two forecasts that agree on the first n observations need not agree subsequently.

This makes it difficult for a good test to distinguish between a correct forecast and one that ‘games’

the test.11

The deeper reason lies in the logic of the minimax theorem. Suppose, nature had a mixed

strategy that the forecaster could not ‘beat’. Then, nature could just announce this strategy, i.e.,

announce the distribution itself. But, the forecaster could just use this distribution to forecast!

It is natural to ask if a test, using a proper scoring rule like log-loss, can circumvent the difficulties

identified by Sandroni’s result. Here one penalizes the forecaster log p if the forecaster predicts a

probability p of rain and it rains and a penalty of log(1− p) if it doesn’t rain. The lowest possible

score that can be obtained is the long-run average entropy of the actual distribution governing

the frequency of rain. One could imagine a test passing the forecaster if its log loss matches the

entropy. However, such a test would need to know the entropy of the distribution. As noted in

the introduction, we are concerned with tests which operate without any prior knowledge of the

distribution. Proper scoring rules are good methods to compare two forecasters but are not useful

for testing the validity of a forecaster against an unknown distribution of nature.

If one replaces the proletarian term forecast by the more aristocratic, theory, Sandroni’s impos-

sibility result is a strike against the idea that a theory can be verified on purely empirical grounds.

More generally it is a criticism of the classical notion of induction: the ability to reason about the

future from the past.12

4.1 Surmounting The Impossibility

Any impossibility theorem can be breached by relaxing at least one of its assumptions. Such is the

case here. Technically it amounts to identifying conditions under which the minimax theorem fails.

Dekel and Feinberg [7] surmount the impossibility by dropping the requirement that the test be

finite. The test in [7] takes as input the forecasting algorithm itself rather than just the realizations.

Because a forecasting algorithm specifies a conditional probability given any history, it essentially

specifies a distribution, µ over S∗. Interpret S∗ to be the set of binary expansions of numbers in

10Mixtures over tests that are not good can also be accommodated as long as the probability assigned to ‘not good’

tests is not to large.
11This echoes Sextus Empiricus’ objection to generalizing from a finite collection of the particulars because all of

the particulars are infinite in number.
12There is also a connection to the modern formulation of the problem of induction due to Goodman [14] which

we recount. First, call a thing grue if and only if it has been observed to be green before a finite time t or blue after

that time. Recall now that all emeralds ever seen are both green and grue. Why is it, Goodman asks, that we believe

that after after time t we will find green but not grue emeralds? Goodman argues that an appeal to Occam’s razor

does not apply here.
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[0, 1]. Thus, the forecaster specifies a measure µ over [0, 1] and nature picks an element in [0, 1].

Using only µ and the lone element in [0, 1] the test must decide whether to pass or fail the forecast.

Framed this way, the testing question appears unnatural since one must decide based on a ‘single

draw’ whether to pass or fail the forecaster. It seems very likely that any test that passes the truth

with high probability can be ignorantly passed. 13

Dekel and Feinberg [7] show that associated with every distribution µ over S∗ is a ‘small’ set

Kµ ⊂ S∗ with two properties.

1. µ(Kµ) = 1.

2. The set of distributions that assign Kµ positive probability is also ‘small’.

The intuitive idea is that to every distribution one can assign an essentially unique signature that

is hard to duplicate by another distribution. The notion of ‘small’ used here is that of category.

The set Kµ is category 1 (countable union of nowhere dense sets) and the set of distributions that

assign positive probability to Kµ is also category 1. The test fails the forecast if the outcome falls

outside of Kµ and passes the forecast otherwise.

The topological notion of ‘small’ differs from the measure theoretic notion of small.14 That

difference is exploited in Olszewski and Sandroni [26] to show that the test in [7] can be ignorantly

passed by a suitable randomized forecasting scheme. However, as shown in [7], assuming the

continuum hypothesis, the test in [7] can be modified so that it cannot be ignorantly passed.

Furthermore, the set of outcomes on which an ignorant forecaster would fail is uncountable.

Reliance on the continuum hypothesis is problematic. Olszewski and Sandroni [25] describe a

test that cannot be ignorantly passed that does not rely on the continuum hypothesis. Instead, it

invokes the axiom of choice (AC).

Olszewski and Sandroni [26] bypass the continuum hypothesis by requiring the test to declare

FAIL in a finite number of periods but PASS ‘at infinity’. This is consistent with Popper’s notion

of falsifiability. They show the existence of a test that passes the truth with high probability that

cannot be ignorantly passed. However, the number of periods before an ignorant forecaster is failed

can be extremely large and depends on the forecaster.

Olszewski and Sandroni [27] observe that the tests considered in [7] and [25] rely on the fore-

casting algorithm itself. Specifically, the test can use the predictions the forecast would have made

along sequences that did not materialize. As noted in [27] this is not the case for many natural tests.

For this reason they restrict attention to tests that are not permitted to make use of counterfactual

predictions. Essentially, two different forecasting algorithms that produce the same forecast on a

realization must be treated in the same way. The test must declare FAIL in a finite number of

periods but can PASS ‘at infinity’. Under these conditions they recover the impossibility result.

Specifically, if such tests pass the truth with high probability they show that for each such test,

there is a forecasting algorithm that can ignorantly pass the test. Shmaya (2008) [35] shows that

13In fact, even if we allow for k > 1, independent draws from [0, 1], the challenge is the same. One can interleave

the k independent binary expansions into a single sequence.
14See problem 55(d) in [31].
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one can relax the condition that the test must declare FAIL in finite time and recovers the same

impossibility result. Crucial to his proof is that Blackwell games are determined (see [22]).

The result in [35] suggests attention be directed to the axiom of determinacy (see Mycielski

and Steinhaus [24]). The axiom presumes a certain class of extensive form two person games of

perfect information with a countable number of moves on each path is determined. The game has

players who take turns choosing the next term in the decimal expansion of a number in [0, 1]. If

the number thus chosen lies in some given A ⊆ [0, 1], player 1 wins, otherwise player 2 wins.

The axiom of determinacy (AD) is incompatible with the axiom of choice (AC). However, (AD)

like (AC), is consistent with Zermelo-Fraenkel set theory.15 We conjecture that the existence (or

not) of tests that cannot be ignorantly passed hinges on which of (AC) or (AD) one accepts.

This results of [27] and [35] appear to dash any hopes of a purely empirical approach to validating

a forecast. The papers, summarized next, suggest that it is too early to muffle the drums and call out

the mourners. These papers take one of two approaches. The first impose complexity constraints

on the test as well as the forecaster.

Most practical tests, for example, have a complexity that is polynomial in the length of the

history, so it seems reasonable to restrict attention to good tests that have a complexity that is

polynomial in the length of the history. Restricting the test in this way should, make it ‘easier’ to

be ignorantly passed. It seems natural to conjecture that for every polynomial time test that

passes the truth with high probability, there exists a polynomial time randomized forecasting

algorithm that will ignorantly pass the test. This is not the case. Fortnow and Vohra (2009) [9]

describe a linear time test that can be ignorantly passed only if the the forecaster were able factor

numbers under a specific distribution. The existence of an efficient (i.e. probabilistic polynomial

time) algorithm for factoring composite numbers is considered unlikely. Indeed, many commercial

available cryptographic schemes are based on just this premise. This result suggests that the

‘ignorant’ forecaster of Sandroni [32] must have a complexity at least exponential in n. Hence, the

‘ignorant’ forecaster must be significantly more complex than the test. In particular its complexity

may depend on the complexity of nature’s distribution.

The idea behind this result is to interpret the observed sequence of 0-1’s as encoding a number

followed by a list of its possible factors. Call a sequence correct, if its suffix is a correct factorization

of its prefix. The test fails any forecaster that does not assign high probability to these correct

sequences when they are realized. Consider now the distribution that puts most of its weight on a

correct sequence. If the forecaster can ignorantly pass the test, it must be able to identify correct

sequences.16

The second approach (related to the above) relaxes the condition that the Type I error must

be small. One way to do this is to restrict ‘nature’ to picking it’s distribution from a restricted

set known to the test. In doing so we step away from a test that is pure empiricism, since the

test incorporates prior knowledge. This prior knowledge amounts to a restriction on the class of

forecasts considered. The test can simply fail any forecast that not in this class. Observe that

doing so raises the probability of a type I error.

15Many games can be shown to be determined without an appeal to (AD). Blackwell games are an example[22].
16Huh and Shmaya [16], in the same vein, suppose that forecaster and test must be Turing computable.

10



Clearly, how one restricts the forecaster (or nature) matters. [26] show that when nature is

restricted to picking distributions from a certain non-convex set, there exists a test that cannot be

ignorantly passed. The restriction is no more than a counter-example to a possible generalization

of their main result. Al-Najjar, Sandroni, Smorodinsky and Weinstein [2], propose two criteria for

identifying a ‘natural’ restriction.

1. Learnable: Nature’s distributions should permit the forecaster to learn from data.

2. Predictive: The forecaster should not need to keep learning forever; eventually, she will have

learned enough so that new evidence will have a small effect on predictions about the distant

future.

The notions are formalized in Jackson, Kalai, and Smorodinsky [17]. Restricting nature to distri-

butions that are learnable and predictive, [2] design a test in which the forecaster is required to

submit a date, d, by which she will have learned enough to deliver sharp predictions about future

frequencies. They show this test passes a forecaster who knows the data-generating process and

cannot be passed by an uninformed forecaster (restricted to forecasts in this class).

The difficulty that [2] overcome with this restriction is that a distribution can be represented

as a convex combination of ‘component’ distributions in many ways. As an example, nature first

draws a number, θ, uniformly at random from [0, 1]. Next, nature generates a 0-1 sequence by

flipping a coin that will come up heads (= 1) with probability θ. Here is a second representation.

Imagine two coins, called high and low. The high coin comes heads with probability θh, where θh

is a draw from the uniform distribution over [0.5, 1]. The low coin comes heads with probability

θl, where θl is a draw from the uniform distribution over [0, 0.5]. This observation suggests an

alternative restriction on Nature’s distribution: that the set of distributions Nature may employ is

suitably non-convex. Lambert [19] takes such an approach as well as providing examples of natural

instances that satisfy his notion of non-convexity.17

5 Multiple Forecasters

Rarely is it the case that a single theory or forecast is subject to an up or down decision. Rather,

theories and forecasts are compared and the best of the lot is picked. At first blush, this makes the

work just summarized irrelevant. Not so. Imagine one is being compared against another forecaster,

call them C. Now suppose, your forecasts will be compared with C’s forecast in some way and,

eventually, one of you will be selected. Suppose also, you know both C’s forecasting algorithm as

well as the metric by which you will be compared with C. Then, C’s forecasts and the metric

constitute a test and the previous results apply. They apply because you knew both the metric

and C’s forecasts and therefore knew the test. In some contexts, it is unreasonable to expect that

you would know the forecasting algorithm of the competing forecaster. In this case, one is faced

with a ‘secret’ test in the sense that you cannot tell ahead of time what you will be ‘tested’ on. As

there is a possibility a ‘secret’ test may fail the truth, one may wonder if amongst the alternative

forecasts being evaluated, if there is one that is ‘correct’, could a ‘secret’ test determine it? Yes.

17The main result is a good test that can be passed if and only if the forecasts merge with the true distribution.
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Feinberg and Stewart [8], for example, propose a cross-calibration test of predictions by multiple

potential forecasters. The test checks whether each forecaster is calibrated conditional on the

predictions made by other forecasters. They show this test is a good test that cannot be ignorantly

passed.

Al-Najjar and Weinstein [1] show that a simple ‘reputation-style’ test can distinguish between

two experts one of whom is informed about the true distribution.18 The test presumes no prior

knowledge of the true distribution, achieves any desired degree of precision in some fixed finite time,

and does not use ‘counterfactual’ predictions. It exploits a rate of convergence of supermartingales

result.

Olszewski and Sandroni [28] also consider the case of multiple forecasters but do not assume

that amongst them is one that ‘knows’ the truth. Assume a test that will compare the forecasters

and select one if it knows the truth. Suppose none of the forecasters knows the truth. Then, they

can still independently produce false forecasts that will pass the test, independently of how the

data evolve.

6 Conclusion

Looking into the future, we see three lines of inquiry as worth pursuing. The first is to see how

far the calibration criterion can be used in place of the Bayesian assumption. One example of just

such a substitution is in the connection between calibration and correlated equilibrium (see [12]).

One can imagine others, for example, no trade theorems. The second, is how to choose amongst

different forecasters when what one cares about is not the forecast itself but its payoff implications

(see [29]). The third, is understanding the relationship between the work described and the problem

of generating pseudo-random sequences. Checking whether a sequence is random is in a sense ‘dual’

to the problem of verifying a probability forecast. Instead of being given a sequence and coming

up with a distribution, we are given a distribution and must come up with a sequence that appears

as if it could be generated by the given distribution.
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