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Abstract

Under a k-approval scoring rule each agent attaches a score of one to his
k most preferred alternatives and zero to the other alternatives. The rule
assigns the set of alternatives with maximal score. Agents may extend
preferences to sets in several ways: they may compare the worst alterna-
tives, or the best alternatives, or use a stochastic dominance criterion. In
this paper we characterize the non-manipulable profiles for each of these
set comparisons. For two-agent profiles we also determine the value(s) of
k for which the number of non-manipulable profiles is maximal.
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1 Introduction

In most voting situations agents have the possibility to manipulate the outcome
of the vote by not voting according to their true preferences. The classical
theorem of Gibbard (1973) and Satterthwaite (1975) formalizes this fact for
social choice functions with unique outcomes. The present paper belongs to
the strand of literature, initiated by Kelly (1988, 1989), which accepts this
phenomenon as a matter of fact and looks for social choice rules which are
second best in this respect, i.e., least manipulable.1 Specifically, we consider
a variation on a well-known and often used voting procedure, approval voting
(Brams and Fishburn, 1983). In approval voting each agent can approve of
as many alternatives as he wants. It is well known that approval voting is
strategy-proof (non-manipulable) if preferences are dichotomous that is, each
agent distinguishes between a set of good and a set of bad alternatives. To
avoid this restriction and allow for strict preferences (linear orders) we consider
k-approval voting, where each agent approves of exactly k alternatives. In a
companion paper (Peters et al. 2009) we consider non-manipulability of approval
voting (without fixed k) under several assumptions on preferences, intermediate
between strict preferences and dichotomous preferences.

We assume that agents have strict preferences over alternatives. Since k-
approval voting may result in a set of outcomes rather than a single outcome,
we consider several preference extensions to sets: comparing sets by their worst
alternatives; by their best alternatives; and by stochastic dominance, assuming
each alternative in a set to be equally likely. We then characterize the preference
profiles at which the k-approval scoring rule is non-manipulable.

An important goal of this effort is to find the value of k for which the number
of non-manipulable preference profiles is maximal, i.e., for which k-approval
voting is least manipulable. So far we have managed to obtain theoretical results
only for the case of two agents. For k = 1, k-approval voting is just plurality
voting and this is non-manipulable (strategy-proof) for two agents under all
three preference extensions. Plurality voting, however, has a serious drawback.
If (the) two agents agree on a good second-ranked alternative but disagree on
the first, then under plurality voting this compromise is not chosen; it would
be chosen, however, under any other k-approval scoring rule. Therefore, for
each of the three mentioned preference comparisons and for k 6= 1 we have
established the overall optimal value of k, and the optimal value under the
restriction k ≤ m/2, where m is the total the number of alternatives. The
latter restriction is justified by the desirable property of ‘citizen sovereignty’:
for each alternative there is a preference profile resulting in that alternative as
the unique outcome. For 2 ≤ k ≤ m/2 we find k = 2 as the optimal value in
case of best or stochastic dominance set comparison, and k ≈ √

m in case of
worst set comparison. For more than two agents it is computationally complex
to find the optimal value of k, but we conjecture that the optimal k is equal to
m
2 for a (relatively) large number of agents (see the concluding section).

1Maus et al. (2007) contains a brief overview of this literature.
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Of course, counting the non-manipulable profiles is just one way of measur-
ing the degree of (non-)manipulability of voting rules. Many other approaches
are possible, see e.g. Campbell and Kelly (2008). Also, our measure of non-
manipulability reflects ‘impartial culture’: each preference profile is implicitly
regarded as equally likely. On the more positive side, approval voting is a well
accepted procedure, and our results provide some indication on how to optimize
this procedure from the view point of non-manipulability.

The organization of the paper is as follows. Section 2 introduces k-approval
scoring rules. In Sections 3–5 we determine the non-manipulable preference pro-
files under the three mentioned preference extensions: worst, best, and stochas-
tic dominance comparison, respectively. Section 6 establishes the optimal (least
manipulable) value of k for two agents. Section 7 briefly discusses a variation
on worst and best set comparison, namely lexicographic worst and best set
comparison. Section 8 concludes.

2 Approval scoring rules

The set of agents is N = {1, . . . , n} with n ≥ 2, and the set of alternatives is A
with |A| = m ≥ 3. (We denote the cardinality of a set D by |D|.) A preference
is a linear ordering on A, i.e., a complete, reflexive, antisymmetric and transitive
binary relation on A. By P we denote the set of all preferences. A (preference)
profile p is a function from N to P , i.e., an element of PN . For a profile p,
p(i) is the preference of agent i ∈ N . A social choice correspondence is a map
ϕ : PN → 2A \ {∅}. Thus, to every profile p the social choice correspondence ϕ
assigns a non-empty subset of alternatives ϕ(p).

We next introduce some convenient notation. Let p ∈ PN and i ∈ N .
For a non-empty subset B of A, p(i)|B denotes the restriction of p(i) to B,
hence p(i)|B = {(x, y) ∈ B2 | (x, y) ∈ p(i)}. For 1 ≤ k ≤ m we denote by
βk(p(i)) the set of the k first ranked alternatives according to p(i), that is,
βk(p(i)) = {x ∈ A | |{y ∈ A | (y, x) ∈ p(i)}| ≤ k}. We write β(p(i)) for the best
element of A according to p(i), hence, β1(p(i)) = {β(p(i))}. Similarly, β(p(i)|B)
denotes the best element of B according to p(i), that is, β(p(i)|B) = x ∈ B such
that (x, y) ∈ p(i) for all y ∈ B. Also, ω(p(i)|B) denotes the worst element of
B according to p(i), that is, ω(p(i)|B) = x ∈ B such that (y, x) ∈ p(i) for all
y ∈ B. The lower contour set of a ∈ A at p(i) is the set L(a, p(i)) = {x ∈ A |
(a, x) ∈ p(i)}. Observe that a ∈ L(a, p(i)) by reflexivity.

In order to define k-approval scoring rules, we denote by the k-score

scorek(x, p) = |{i ∈ N | x ∈ βk(p(i))}|, x ∈ A, 1 ≤ k ≤ m, p ∈ PN

the total number of agents for who alternative x is among the k first ranked
alternatives at a profile p. The k-approval scoring rule ϕk, defined by

ϕk(p) = {x ∈ A | scorek(x, p) ≥ scorek(y, p) for all y ∈ A}, p ∈ PN

assigns to each profile p the subset of alternatives with maximal k-score.
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We need a few more notations. For p ∈ PN and i ∈ N , ϕk(p−i) denotes
the set of alternatives assigned by the k-approval scoring rule to the restricted
profile p−i = (p1, . . . , pi−1, pi+1, . . . , pn), that is,

ϕk(p−i) = {x ∈ A | scorek(x, p−i) ≥ scorek(y, p−i) for all y ∈ A}

where scorek(x, p−i) = |{i ∈ N \ {i} | x ∈ βk(p(i))}|. Finally, for (any) a ∈
ϕk(p−i),

ϕ−k (p−i) = {x ∈ A | scorek(x, p−i) = scorek(a, p−i)− 1}

is the (possibly empty) set of those alternatives that have k-score one less than
the elements of ϕk(p−i). These notations are convenient in view of the following
observation, which will be used throughout the paper:

ϕk(p) =

{
ϕk(p−i) ∩ βk(p(i)) if ϕk(p−i) ∩ βk(p(i)) 6= ∅

ϕk(p−i) ∪
[
ϕ−k (p−i) ∩ βk(p(i))

]
if ϕk(p−i) ∩ βk(p(i)) = ∅ ,

(1)

for all p ∈ PN , i ∈ N , and 1 ≤ k ≤ m.
In order to define (non-)manipulability of a social choice correspondence at

particular preference profiles we need to be able to extend individual preferences
to preferences over non-empty subsets of alternatives. For an agent i in N and
a preference p(i) ∈ P , we say that a binary relation ºp(i) on 2A \ {∅} extends
p(i) if {x} ºp(i) {y} ⇔ (x, y) ∈ p(i) holds for all x, y ∈ A.2

In this paper we will consider several ways to extend a preference p(i) over
alternatives to a binary relation (also called preference) over non-empty sets
of alternatives. Suppose that ºp(i) extends p(i) for all i ∈ N . For i ∈ N
and p, q ∈ PN , we say that p and q are i-deviations if p−i = q−i. A choice
correspondence ϕ is manipulable by agent i at p towards q if p and q are i-
deviations and ϕ(q) Âp(i) ϕ(p), where Âp(i) is the asymmetric part of ºp(i). A
social choice correspondence ϕ is not manipulable at p if for all agents i there
is no i-deviation q such that ϕ is manipulable by i at p towards q.

In the following sections we will characterize the profiles at which the k-
approval scoring rule is not manipulable by any agent, for several different pref-
erence extensions.

3 Non-manipulability under worst comparison

In this section we extend preferences to sets by considering the worst alternatives
of those sets. Let i ∈ N and p(i) ∈ P , then we define the extension3 ºp(i) by

B ºp(i) C ⇔ (
ω(p(i)|B), ω(p(i)|C)

) ∈ p(i)

2We write B ºp(i) C instead of (B, C) ∈ ºp(i).
3In order to avoid cumbersome notation we will use the same symbols for different prefer-

ence extensions in this paper.
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for all non-empty sets B,C ∈ 2A. Thus, B is preferred to C whenever the worst
element of B is preferred, according to p(i), to the worst element of C.

The following theorem characterizes all profiles at which the k-approval scor-
ing rule is not manipulable.

Theorem 3.1 Let p ∈ PN be a profile. The k-approval scoring rule ϕk is not
manipulable at p if and only if for each agent i at least one of the following three
statements holds:

(a) |ϕk(p−i) ∩ βk(p(i))| = 1.

(b) |ϕk(p−i)| = 1.

(c) A \ βk(p(i)) ( ϕk(p−i).

In words, this theorem says the following. The k-approval scoring rule is non-
manipulable at some preference profile if and only if for each agent at least one
of the following holds: (a) exactly one of that agent’s k first ranked alternatives
is among the winners without that agent’s vote; (b) without that agent’s vote
there is a unique winner; (c) all alternatives not ranked among that agent’s first
k alternatives are winners without that agent’s vote, but there are other such
winners as well.

Proof of Theorem 3.1. For the if-part, let i ∈ N and let q be an i-deviation
of p. Note that ϕk(p−i) = ϕk(q−i) and ϕ−k (p−i) = ϕ−k (q−i). Assume that at
least one of the cases (a), (b), and (c) holds. We show that agent i cannot
manipulate from p to q.

In case (a), let {x} = ϕk(p−i) ∩ βk(p(i)). By (1), ϕk(p) = {x}. Again by
(1), either ϕk(q) ⊆ ϕk(p−i) or ϕk(p−i) ⊆ ϕk(q). In the first case, if x ∈ ϕk(q),
then ϕk(p) = {x} ºp(i) ϕk(q); if x /∈ ϕk(q) then ϕk(q) ⊆ A \ βk(p(i)) so that
again ϕk(p) = {x} ºp(i) ϕk(q). In the second case, ϕk(p) = {x} ⊆ ϕk(q), hence
ϕk(p) ºp(i) ϕk(q).

In case (b), let ϕk(p−i) = {x} for some alternative x. If x ∈ βk(p(i)) we are
done by case (a). If x /∈ βk(p(i)) then by (1), ϕk(p) = {x}∪[

ϕ−k (p−i) ∩ βk(p(i))
]

and, thus, ω(ϕk(p)) = x. Further, also by (1), ϕk(q) = {x} or ϕk(q) = {x} ∪[
ϕ−k (p−i) ∩ βk(q(i))

]
; in both cases, (x, ω(ϕk(q)) ∈ p(i) and, thus, ϕk(p) ºp(i)

ϕk(q).
In case (c), by (1) we have ϕk(p) = ϕk(p−i)∩βk(p(i)) and ϕk(q) = ϕk(q−i)∩

βk(q(i)) = ϕk(p−i) ∩ βk(q(i)). If βk(q(i)) = βk(p(i)) then ϕk(p) = ϕk(q).
Otherwise, since A \ βk(p(i)) ( ϕk(p−i), there is a y ∈ [A \ βk(p(i))] ∩ ϕk(q).
Hence, ϕk(p) ºp(i) ϕk(q).

For the only-if part, suppose that there is an agent i ∈ N such that none
of the three cases (a), (b), and (c) holds. It is sufficient to prove that ϕk is
manipulable at profile p by agent i. For this, in turn, it is sufficient to prove
that i can manipulate at profile p for the following two cases.

Case (i): ϕk(p−i) ∩ βk(p(i)) = ∅ and |ϕk(p−i)| ≥ 2.
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Let b = β
(
p(i)|ϕk(p−i)

)
. Take q(i) such that the positions in p(i) of b and one

of the alternatives in βk(p(i)) are swapped. Then ϕk(q) = {b} and ϕk(q) Âp(i)

ϕk(p), hence agent i can manipulate at profile p towards q.
Case (ii): |ϕk(p−i) ∩ βk(p(i))| ≥ 2 and [A \ βk(p(i))] * ϕk(p−i).
Let w = ω

(
p(i)|ϕk(p−i)∩βk(p(i))

)
and y ∈ A \ [βk(p(i))∪ϕk(p−i)]. Let q(i) be

obtained from p(i) by swapping the positions of the alternatives w and y. By
(1), ϕk(p) = ϕk(p−i) ∩ βk(p(i)) and ϕk(q) = ϕk(p−i) ∩ βk(p(i)) \ {w} it follows
that ϕk(q) Âp(i) ϕk(p), proving that ϕk is manipulable by agent i at profile p
towards q. ¤

4 Non-manipulability under best comparison

In this section we extend preferences to sets by considering the best alternatives
of those sets. Let i ∈ N and p(i) ∈ P , then we define the extension ºp(i) by

B ºp(i) C ⇔ (
β(p(i)|B), β(p(i)|C)

) ∈ p(i)

for all non-empty sets B, C ∈ 2A. Thus, B is preferred to C whenever the best
element of B is preferred, according to p(i), to the best element of C.

The following theorem characterizes all profiles at which the k-approval scor-
ing rule is not manipulable under ‘best comparison’ of sets.

Theorem 4.1 Let p ∈ PN be a profile. The k-approval scoring rule ϕk is not
manipulable at p if and only if for each agent i at least one of the following three
statements holds:

(a)
(
β(p(i)|ϕk(p−i)), x

) ∈ p(i) for all x ∈ ϕ−k (p−i).

(b) ϕk(p−i) ∩ βk(p(i)) = ∅ and ϕ−k (p−i) ∩ βk(p(i)) 6= ∅.
(c) |ϕk(p−i) ∩ βk(p(i))| > |A \ [βk(p(i)) ∪ ϕk(p−i)]|.

In words, this theorem says the following. The k-approval scoring rule is non-
manipulable at some preference profile if and only if for each agent at least one
of the following holds: (a) the best element of the winners without that agent’s
vote is preferred by him over all ‘almost’ winners without his vote; (b) none of
the winners without that agent’s vote is among his k first ranked alternatives,
but some of the ‘almost’ winners are; (c) the number of the agent’s k first ranked
alternatives among the winners without his vote is larger than the number of
alternatives that are neither among his k first ranked nor among the winners
without his vote.

Proof of Theorem 4.1. For the if-part, let q be an i-deviation of p. Note that
ϕk(p−i) = ϕk(q−i) and ϕ−k (p−i) = ϕ−k (q−i). Assume that at least one of the
cases (a), (b), and (c) holds. We show that agent i cannot manipulate from p
to q.

6



In case (a), for both cases occurring in (1), we obtain β
(
p(i)|ϕk(p)

)
=

β
(
p(i)|ϕk(p−i)

)
. Since β

(
p(i)|ϕk(q)

) ∈ ϕk(p−i)∪ϕ−k (p−i) and by the assumption
for case (a), we conclude that ϕk(p) ºp(i) ϕk(q).

In case (b), again using (1), we have ϕk(p) = ϕk(p−i)∪ [ϕ−k (p−i)∩βk(p(i))],

hence β
(
p(i)|ϕk(p)

)
= β

(
p(i)|ϕ−k (p−i)∩βk(p(i))

)
; and ϕk(q) ∈ ϕk(p−i)∪[ϕ−k (p−i)∩

βk(q(i))]. By the assumptions for this case, ϕk(p) ºp(i) ϕk(q).
In case (c), it is easy to see that |A \ ϕk(p−i)| < |βk(p(i))| = k = |βk(q(i))|,

hence βk(q(i)) ∩ ϕk(p−i) 6= ∅. Therefore, by (1) we have ϕk(p) = ϕk(p−i) ∩
βk(p(i)) and ϕk(q) = ϕk(p−i) ∩ βk(q(i)) ⊆ ϕk(p−i). Thus, also in this case
ϕk(p) ºp(i) ϕk(q).

For the only-if part, suppose that there is an agent i ∈ N such that none
of the three cases (a), (b), and (c) holds. It is sufficient to prove that ϕk is
manipulable at profile p by agent i. For this, in turn, it is sufficient to prove
that i can manipulate at profile p for the following two cases.

Case (i): There is an x ∈ ϕ−k (p−i) such that (x, b) ∈ p(i), where b =
β

(
ϕk(p−i), p(i)|ϕk(p−i)

)
; ϕk(p−i) ∩ βk(p(i)) 6= ∅; and |ϕk(p−i) ∩ βk(p(i))| ≤

|A \ [βk(p(i)) ∪ ϕk(p−i)]|.
For this case, note that x ∈ βk(p(i)). By the assumptions for this case we

can take a q(i) ∈ P with x ∈ βk(q(i)) and ϕk(p−i) ∩ βk(q(i)) = ∅. Hence,
x ∈ ϕk(q) \ϕk(p) and, thus, ϕk(q) Âp(i) ϕk(p). So i can manipulate at profile p
towards q.

Case (ii): There is an x ∈ ϕ−k (p−i) such that (x, b) ∈ p(i), where b =
β

(
p(i)|ϕk(p−i)

)
; and ϕ−k (p−i) ∩ βk(p(i)) = ∅.

In this case, ϕk(p) = ϕk(p−i). Note that the sets βk(p(i)), ϕk(p−i), and
ϕ−k (p−i) are pairwise disjoint. So we can take q(i) ∈ P such that x ∈ βk(q(i))
and ϕk(p−i) ∩ βk(q(i)) = ∅. Then ϕk(q) ⊇ ϕk(p−i) ∪ {x}, so x ∈ ϕk(q) \ ϕk(p),
thus ϕk(q) Âp(i) ϕk(p) and i can manipulate at profile p towards q. ¤

5 Non-manipulability under stochastic domin-
ance comparison

In this section comparisons of sets of alternatives are based on stochastic dom-
inance. To formalize this we need some further notions. Let u be a function
from A to R. Then u is said to be a utility function representing preference p(i)
of agent i, if for all alternatives x and y in A

(x, y) ∈ p(i) if and only if u(x) ≥ u(y) .

Let B and C be two nonempty subsets of alternatives. Agent i is said to prefer B
to C according to stochastic dominance at preference p(i), denoted as B ºp(i) C,
if

∑

a∈B

1
|B|u (a) ≥

∑

a∈C

1
|C|u (a) for every utility function u representing p (i) .
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This preference extension4 is based on the idea that, if we attach equal proba-
bilities to the alternatives in each set, then the expected utility of the resulting
lottery over B should be at least as high as the expected utility of the result-
ing lottery over C, for each utility function representing p(i). Clearly, and in
contrast to worst and best comparison in the preceding sections, this preference
extension is not complete: many sets are incomparable. Observe that our notion
of manipulability implies that an agent manages to obtain a preferred and thus
comparable set.

In the following theorem we characterize the non-manipulable profiles under
the stochastic dominance preference extension. To understand the proof, it is
sometimes convenient to keep in mind the familiar characterization (or defini-
tion) of stochastic dominance involving only probabilities. This characterization
says that a lottery ` is preferred over another lottery `′ if it can be obtained by
shifting probability in `′ to preferred alternatives.

Theorem 5.1 Let p ∈ PN be a profile. The k-approval scoring rule ϕk is not
manipulable at p if and only if for all agents i at least one of the following five
statements holds:

(a) A \ βk(p(i)) ( ϕk(p−i).

(b) ϕk(p−i) ⊆ [A \ βk(p(i))] and ϕ−k (p−i) ∩ βk(p(i)) 6= ∅.
(c) ϕk(p−i)∩βk(p(i)) = {w} for some w ∈ A and [A\βk(p(i))]∩ϕk(p−i) 6= ∅.
(d) ϕk(p−i) = {w} for some w ∈ A and ϕ−k (p−i) ⊆ L(w, p(i)).

(e) ϕk(p−i) = {w} for some w ∈ A and |ϕ−k (p−i) ∩ L(w, p(i))| > m− k.

In words, these five cases can be described as follows. In case (a), all of agent i’s
lower ranked alternatives and at least one of his k first ranked alternatives are
among the winners without i’s vote. In case (b), all winners without i’s vote are
lower ranked by i but there is an ‘almost winner’ without i’s vote that is among
i’s k first ranked alternatives. In case (c) there is a unique alternative among
the winners without i’s vote that is also among his k first ranked alternatives,
but there are also alternatives among those winners that are lower ranked by i.
In case (d) there is a unique winner without i’s vote, and all ‘almost’ winners
without i’s vote are worse for i than this unique alternative. In case (e) there
is again a unique winner without i’s vote, and among the ‘almost’ winners
without i’s vote there are more than m− k alternatives worse than this unique
alternative.

Proof of Theorem 5.1. For the if-part, let q be an i-deviation of p. Note that
ϕk(p−i) = ϕk(q−i) and ϕ−k (p−i) = ϕ−k (q−i). Assume that at least one of the
cases (a)–(e) holds. We show that agent i cannot manipulate from p to q.

4The stochastic dominance criterion to compare sets has been used before, see e.g. Barberà
et al. (2001).
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In case (a), we have ϕk(p) = ϕk(p−i) ∩ βk(p(i)) and ϕk(q) = ϕk(p) or
ϕk(q)∩ [A\βk(p(i))] 6= ∅. In both cases, it is easy to see that ϕk(p) ºp(i) ϕk(q).

In case (b), ϕk(p) = ϕk(p−i)∪ [ϕ−k (p−i)∩βk(p(i))]. If βk(q(i))∩ϕk(p−i) = ∅
then ϕk(q) = ϕk(p−i)∪ [ϕ−k (p−i)∩ βk(q(i))] but this is never preferred to ϕk(p)
according to ºp(i). If βk(q(i)) ∩ ϕk(p−i) 6= ∅ then ϕk(q) = βk(q(i)) ∩ ϕk(p−i),
which again is never preferred to ϕk(p) according to ºp(i).

In case (c), (d), and (e), ϕk(p) = {w}. If ϕk(q) 6= {w} then x ∈ ϕk(q)
for some x ∈ L(w, p(i)) \ {w}. In that case ϕk(q) is never preferred to ϕk(p)
according to ºp(i).

For the only-if part, suppose that there is an agent i ∈ N such that none of
the five cases (a)–(e) holds. It is sufficient to prove that ϕk is manipulable at
profile p by agent i.

By taking negations it follows that none of (a)–(e) holding is equivalent to
all of the following four statements holding for p and i.

I (i) A \ βk(p(i)) 6⊆ ϕk(p−i) or (ii) A \ βk(p(i)) = ϕk(p−i).

II (i) ϕk(p−i) 6⊆ [A \ βk(p(i))] or (ii) ϕ−k (p−i) ∩ βk(p(i)) = ∅.
III (i) |ϕk(p−i)∩βk(p(i))| ≥ 2 or (ii) ϕk(p−i)∩βk(p(i)) = ∅ or (iii) ϕk(p−i) ⊆

βk(p(i)).

IV (i) |ϕk(p−i)| > 1 or (ii) [ ϕk(p−i) = {w} for some w ∈ A and ϕ−k (p−i) 6⊆
L(w, p(i)) and |ϕ−k (p−i) ∩ L(w, p(i))| ≤ m− k ].

Requiring (I)–(IV) to hold implies 24 cases to consider. However, the following
combinations are contradictory: I(ii) and III(i); I(ii) and III(iii); II(i) and III(ii);
and III(i) and IV(ii). Moreover, III(iii) and IV(i) together imply III(i), so that
we do not have the case with IV(i) and III(iii) separately. This leaves eight
cases, which we will consider two at a time.

A. Cases I(i) & II(i) & III(i) & IV(i) and I(i) & II(ii) & III(i) & IV(i). These
two cases are covered by the following assumptions: |ϕk(p−i) ∩ βk(p(i))| ≥ 2
and A \ βk(p(i)) 6⊆ ϕk(p−i).

In this case we have ϕk(p) = ϕk(p−i) ∩ βk(p(i)). Let
w = ω

(
p(i)|ϕk(p−i)∩βk(p(i))

)
. Then we can construct an i-deviation q of p

such that ϕk(p−i) ∩ βk(q(i)) = [ϕk(p−i) ∩ βk(p(i))] \ {w}. Then ϕk(q) =
[ϕk(p−i) ∩ βk(p(i))] \ {w} and, thus, ϕk(q) ºp(i) ϕk(p).

B. Cases I(i) & II(ii) & III(ii) & IV(i) and I(ii) & II(ii) & III(ii) & IV(i).
These two cases are covered by the following assumptions: |ϕk(p−i)| > 1 and
ϕk(p−i) ∩ βk(p(i)) = ∅ and ϕ−k (p−i) ∩ βk(p(i)) = ∅.

In this case we have ϕk(p) = ϕk(p−i). Let b = β
(
p(i)|ϕk(p−i)

)
. We can

construct an i-deviation q of p such that ϕk(p−i)∩βk(q(i)) = {b}. Then ϕk(q) =
{b} Âp(i) ϕk(p−i) = ϕk(p).

C. Cases I(i) & II(ii) & III(ii) & IV(ii) and I(ii) & II(ii) & III(ii) & IV(ii).
These two cases are covered by the following assumptions: [ϕk(p−i) = {w} for
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some w ∈ A and ϕ−k (p−i) 6⊆ L(w, p(i)) and |ϕ−k (p−i)∩L(w, p(i))| ≤ m− k ] and
ϕk(p−i) ∩ βk(p(i)) = ∅ and ϕ−k (p−i) ∩ βk(p(i)) = ∅.

In this case ϕk(p) = {w}. Let b = β
(
p(i)|ϕ−k (p−i)

)
. Then (b, w) ∈ p(i)

since ϕ−k (p−i) 6⊆ L(w, p(i)). Construct an i-deviation q of p such that ϕ−k (p−i)∩
βk(q(i)) = {b}. Then ϕk(q) = {b, w} Âp(i) {b} = ϕk(p).

D. Cases I(i) & II(i) & III(iii) & IV(ii) and I(i) & II(ii) & III(iii) & IV(ii).
These cases are covered by the assumptions: [ ϕk(p−i) = {w} for some w ∈ A
and ϕ−k (p−i) 6⊆ L(w, p(i)) and |ϕ−k (p−i) ∩ L(w, p(i))| ≤ m − k ] and ϕk(p−i) ⊆
βk(p(i)).

In this case, ϕk(p) = {w}. We can construct an i-deviation q of p such that
ϕ−k (p−i) ∩ L(w, p(i)) ⊆ A \ βk(q(i)). Then ϕk(q) = {w} ∪ [

ϕ−k (p−i) ∩ βk(q(i))
]
.

The set ϕ−k (p−i)∩βk(q(i)) is non-empty and contains only points x with (x,w) ∈
p(i). Hence, ϕk(q) Âp(i) ϕk(p). ¤

6 Minimal manipulability in the two-agent case

In this section we concentrate on the two-agent case and consider the following
question: which k-approval scoring rule is the least manipulable, under various
assumptions on preference extensions as studied in the preceding sections?

We start with a simple theorem, which will be derived from Theorems 3.1,
4.1, and 5.1, but also easily follows directly. Call a social choice correspondence
strategy-proof if it is not manipulable at any profile p.

Theorem 6.1 Let n = 2. Then the 1-approval scoring rule ϕ1 is strategy-proof
under worst, best, and stochastic dominance comparison.

Proof. Let p = (p(1), p(2)) be a preference profile and let k = 1. Note that
(b) in Theorem 3.1 is always satisfied: this shows strategy-proofness under
worst comparison. In Theorem 4.1, (a) reduces to β(p(1)) = β(p(2)) and
(b) to β(p(1)) 6= β(p(2)): this shows strategy-proofness under best compar-
ison. Finally, in Theorem 5.1, (b) reduces to β(p(1)) 6= β(p(2)) and (d) to
β(p(1)) = β(p(2)): this shows strategy-proofness under stochastic dominance
comparison. ¤

This observation might make our quest for minimally manipulable rules fu-
tile, were it not the case that the 1-approval scoring rule (i.e., plurality rule) is
not unambiguously attractive. As an example, consider the case where agent 1
has preference p(1) : xz . . . y and agent 2 has preference p(2) : yz . . . x (notations
obvious). Then ϕ1(p) = {x, y} but ϕ2(p) = {z}. So it seems that ϕ2 offers a
better compromise in this case than ϕ1.

Moreover, for more than two agents and apart from a few particular cases,
Theorem 6.1 no longer holds.

We will now consider the three cases (worst, best, and stochastic dominance
comparison separately).
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6.1 Worst comparison for two agents

The non-manipulable profiles for two agents under worst comparison are easily
described using Theorem 3.1.

Corollary 6.2 Let n = 2 and 2 ≤ k < m. Let p ∈ P be a profile. Consider
worst comparison.

(a) If k ≤ (m+1)/2, then ϕk is not manipulable at p if and only if |ϕk(p)| = 1,
or equivalently,

|βk(p(i)) ∩ βk(p(2))| = 1 .

(b) If k > (m + 1)/2, then ϕk is not manipulable at p if and only if |ϕk(p)| =
2k −m, or equivalently,

|βk(p(i)) ∩ βk(p(2))| = 2k −m .

Proof. Case (b) in Theorem 3.1 does not apply. If case (a) in Theorem 3.1
applies then we have |βk(p(1))∩βk(p(2))| = 1 (or, equivalently, |ϕk(p)| = 1), but
this is possible if and only if k ≤ (m + 1)/2. If case (c) in Theorem 3.1 applies
then we have |βk(p(1))∩βk(p(2))| = 2k−m (or, equivalently, |ϕk(p)| = 2k−m),
but this is possible if and only if k ≥ (m + 1)/2; but for k = (m + 1)/2 we have
2k −m = 1, so that we are back in case (a). ¤

Denote by η(m, k) the number of profiles (for two agents) at which ϕk is not
manipulable. By straightforward counting we obtain the following result for the
number of manipulable profiles for two agents under worst comparison.

Theorem 6.3 Let n = 2 and 2 ≤ k < m. Consider worst comparison. Then

η(m, k) =





m! k
(

m− k
k − 1

)
k! (m− k)! if k ≤ (m + 1)/2

m!
(

k
2k −m

)
k! (m− k)! if k > (m + 1)/2 .

Based on this theorem we now show the following facts about the optimal k
as far as non-manipulability is concerned:

(i) η(m, k) increases in k between 2 and an integer k∗, which is close to
√

m,
and decreases between k∗ and 1

2 (m− 1).

(ii) η(m, k) increases between 1
2 (m− 1) and (m− 1).

(iii) The (m − 1)-approval scoring rule is second best since η(m, (m − 1)) >
η(m, k) for all m− 1 > k ≥ 2.

The first-best value of k is k = 1 (Theorem 6.1), but ϕ1 has the drawback
that it does not give much opportunity for compromises. Among other values of
k, the value k = m−1 is best. We might, however, prefer to have k ≤ (m+1)/2,
for the following reason. Call a social choice correspondence citizen-sovereign
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if for every alternative x ∈ A there is a profile p ∈ P with ϕ(p) = {x}. It is
not difficult to see that ϕk is citizen-sovereign for any number of agents n ≥ 2
if k ≤ (m + 1)/2. For n = 2 and k > (m + 1)/2, however, ϕk is not citizen-
sovereign. Hence, if we restrict ourselves to citizen-sovereign rules with k ≥ 2,
then the best rule is ϕk∗ , where k∗ is close to

√
m.

We now derive the statements (i), (ii) and (iii) above. For 2 ≤ k ≤ (m+1)/2
we have

η(m, k) =
m! k2 [(m− k)!]2

(m− 2k + 1)!

by Theorem 6.3. By a few elementary computations we obtain for 2 ≤ k ≤
(m + 1)/2− 1:

η(m, k) < [>] η(m, k+1) ⇔ (m−k)2k2 < [>] (k+1)2(m−2k+1)(m−2k) . (∗)

Denote A := (k +1)2(m−2k +1)(m−2k), then A > (k +1)2(m−2k)2 and this
latter expression at least as large as (m− k)2k2 if and only if k2 + 2k −m ≤ 0,
which, in turn, holds if and only if k ≤ √

m + 1− 1. Thus, by (∗),

k ≤ k :=
√

m + 1− 1 ⇒ η(m, k) < η(m, k + 1) .

Similarly, A < (k+1)2(m−2k+1)2 and this latter expression is not larger than
(m− k)2k2 if and only if k2 + k− (m + 1) ≥ 0, which, in turn, holds if and only
if k ≥ 1

2

√
1 + 4(m + 1)− 1

2 . Thus, by (∗),

k ≥ k :=
1
2

√
1 + 4(m + 1)− 1

2
⇒ η(m, k) > η(m, k + 1) .

It is straightforward to derive that k < k < (m + 1)/2 and k − k < 1. Now
statement (i) follows by taking k∗ = b k c + 1 or k∗ ∈ {b k c + 1, b k c + 2},
depending on the exact values of k and k.

For m− 1 ≥ k > (m + 1)/2 we have

η(m, k) =
m! k! k!

(2k −m)!

by Theorem 6.3. To go from η(m, k) to η(m, k + 1) we multiply by a factor
(k+1)2/(2k−m+2)(2k−m+1), which is larger than 1 since k+1 ≥ 2k−m+2.
This proves statement (ii) above.

To show statement (iii) we have to show α(m, k) < 1 for all 2 ≤ k ≤
(m + 1)/2, where α(m, k) = η(m, k)/η(m,m− 1). By a simple computation we
derive

α(m + 1, k) = α(m, k) · (m + 1− k)2

m2 (m− 2k + 2)
.

Since (m+1−k)2 < m2 and m−2k+2 ≥ 1, this implies α(m+1, k) < α(m, k).
Hence, to show α(m, k) < 1 for all 2 ≤ k ≤ (m + 1)/2, it is sufficient to show
α(2k + 1, k) < 1 for all k ≥ 2. We show this by induction on k. For k = 2 we
have α(5, 2) = 3/4 < 1. Now assume α(2k + 1, k) < 1 then it is sufficient to
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show α(2k + 3, k + 1) < 1. To show this, by straightforward computation we
have

α(2k + 3, k + 1) = α(2k + 1, k) · (k + 2)2

2k · (2k + 1)
.

By the induction hypothesis and since (k + 2)2 < 2k · (2k + 1) for k ≥ 2, we
obtain α(2k + 3, k + 1) < 1.

6.2 Best comparison for two agents

The non-manipulable profiles for two agents under best comparison can be de-
rived from Theorem 4.1.

Corollary 6.4 Let n = 2 and 2 ≤ k < m. Let p ∈ P be a profile. Consider
best comparison.

(a) If k ≤ m/2 then ϕk is not manipulable at p ∈ P if and only if either

β(p(1)) ∈ βk(p(2)) and β(p(2)) ∈ βk(p(1))

or
βk(p(1)) ∩ βk(p(2)) = ∅ .

(b) If k > m/2 then ϕk is not manipulable at any p ∈ P .

Proof. If k > m/2 then case (c) in Theorem 4.1 applies to all p ∈ P , and
if k ≤ m/2 then case (c) applies to no p ∈ P . This implies part (b) of the
corollary, and it also implies that for k ≤ m/2 we only have to consider cases
(a) and (b) in Theorem 4.1. It is easily seen that these cases result in the two
cases in part (a) of the corollary. ¤

The number of non-manipulable profiles η(m, k) if k ≤ m/2 is computed in
the following theorem.

Theorem 6.5 Let n = 2 and 2 ≤ k ≤ m/2. Consider best comparison. Then

η(m, k) = m! (m− 2)! (k − 1)2 + m! (m− 1)! + m! [(m− k)!]2/(m− 2k)! .

Proof. The first case in (a) in Corollary 6.4 with β(p(1)) 6= β(p(2)) results in

m! (k − 1)
(

m− 2
k − 2

)
(k − 1)! (m− k)!

different non-manipulable profiles. This yields the first term of η(m, k) in the
theorem. If β(p(1)) = β(p(2)) then this number is simply equal to m! (m− 1)!,
which yields the second term. The second case in (a) in Corollary 6.4 results in

m!
(

m− k
k

)
k! (m− k)!
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different non-manipulable profiles, which simplifies to the third term for η(m, k)
in the theorem. ¤

If we require k 6= 1 and citizen-sovereignty, i.e., k ≤ m/2, then the optimal
value of k with respect to non-manipulability, i.e., the value of k that maximizes
η(m, k), is equal to 2.

To see this, note that by Theorem 6.5 and some elementary calculations we
have for 2 < k ≤ m

2 :

η(m, 2) > η(m, k)

⇔ (m− 2)(m− 3) > k(k − 2) +

k factors︷ ︸︸ ︷
(m− k)(m− k − 1) · . . . · (m− 2k + 1)

(m− 2)(m− 3) · . . . · (m− k + 1)︸ ︷︷ ︸
k − 2 factors

.

Since k > 2 it is therefore sufficient to prove that

(m− 2)(m− 3) > k(k − 2) + (m− 2k + 2)(m− 2k + 1) .

This simplifies to (4k − 8)m > 5k2 − 8k − 4. Since m ≥ 2k, it is sufficient to
show that 3k2 − 8k + 4 > 0, which indeed holds for k > 2.

6.3 Stochastic dominance comparison for two agents

The non-manipulable profiles for two agents under stochastic dominance com-
parison can be derived from Theorem 5.1.

Corollary 6.6 Let n = 2 and 2 ≤ k < m. Let p ∈ P be a profile. Consider
stochastic dominance comparison. Then ϕk is not manipulable at p if and only
if at least one of the following holds.

(a) βk(p(1)) ∩ βk(p(2)) = ∅.
(b) |βk(p(1)) ∩ βk(p(2))| = 1.

(c) βk(p(1)) ∩ βk(p(2)) 6= ∅ and [A \ βk(p(1))] ∩ [A \ βk(p(2))] = ∅.
Proof. For n = 2 and k ≥ 2 cases (d) and (e) in Theorem 5.1 are not possible.
Case (c) in Theorem 5.1 reduces to case (b) above, and case (a) in Theorem 5.1
reduces to case (c) above. Finally, case (b) in the theorem reduces to case (a)
above. ¤

From this description we can again derive the number of manipulable profiles
η(m, k).

Theorem 6.7 Let n = 2, k ≥ 2, and consider stochastic dominance compari-
son.

(a) If k ≤ m/2 then

η(m, k) = m! [(m− k)!]2/(m− 2k)! + m! k2 [(m− k)!]2/(m− 2k + 1)! .
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(b) If k > m/2 then
η(m, k) = m! [k!]2/(2k −m)! .

Proof. If k ≤ m/2 then (c) in Corollary 6.6 is not possible, and cases (a) and
(b) in the corollary are mutually exclusive. In case (a) of Corollary 6.6 there
are

m!
(

m− k
k

)
k! (m− k)!

non-manipulable profiles, resulting in the first term for η(m, k), and in case (b)
of the corollary there are

m! k
(

m− k
k − 1

)
k! (m− k)!

non-manipulable profiles, resulting in the second term for η(m, k).
If k > m/2 then case (a) of Corollary 6.6 is not possible, and (b) is a special

case of (c). For the latter case, we just have to count the number of profiles
for which [A \ βk(p(1))]∩ [A \ βk(p(2))] = ∅, since the other condition is always
fulfilled. This number is equal to

m!
(

k
m− k

)
k! (m− k)!

which is equal to m! [k!]2/(2k −m)! . ¤
About the value of k that maximizes η(m, k), so the value of k that is optimal

with respect to non-manipulability, we can say the following.

1. For 2 ≤ k ≤ m
2 , the number of non-manipulable profiles decreases with k,

and thus k = 2 is optimal.

2. For m
2 < k ≤ m − 1, the number of non-manipulable profiles increases

with k, and thus k = m− 1 is optimal.

3. η(m, 2) > η(m,m − 1) for m ≥ 4, so k = 2 is the overall optimal value
between 2 and m− 1.

To prove these statements, first assume k ≤ m
2 . Then, using Theorem 6.7(a)

and simplifying, we derive

η(m, k + 1) < η(m, k) ⇔ 3k2 − 2km− 1 < 0 ,

and it is easily seen that the right hand side holds for all 2 ≤ k ≤ m
2 . Next,

assume m
2 < k ≤ m−1. Then, using Theorem 6.7(b) and simplifying, we derive

η(m, k + 1) > η(m, k) ⇔ 3k2 + k(4− 4m) + m2 − 3m + 1 < 0 .

The roots of the quadratic expression in k at the right hand side are 2
3 (m −

1)± 1
3

√
m2 + m + 1; the smaller root is smaller than m

2 , whereas the larger root
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is larger than m − 1. Thus, the right hand side holds for all m
2 < k ≤ m − 1.

Finally, by Theorem 6.7 again,

η(m, 2) > η(m,m− 1) ⇔ m > 3 ,

so that k = 2 is the overall optimal value of k for 2 ≤ k ≤ m− 1.

7 Lexicographic worst and best comparison

In this section we briefly consider a natural extension of worst and best com-
parison, namely lexicographic worst and best comparison. These preference
extensions to sets are given by the following recursive definition. For two sub-
sets B and C of alternatives, we say that B is (weakly) preferred to C under
lexicographic worst comparison by agent i with preference p(i) if

1. C = ∅, or

2. B and C are non-empty and
(
ω(p(i)|B), ω(p(i)|C)

) ∈ p(i), or

3. ω(p(i)|B) = ω(p(i)|C) =: w and B \ {w} is preferred to C \ {w} under
lexicographic worst comparison by agent i with preference p(i).

The definition for lexicographic best comparison is obtained simply by re-
placing the worst alternative by the best alternative, i.e., by replacing ω(·) by
β(·). Thus, under lexicographic worst comparison an agent first considers the
worst elements of B and C. If these are different, then he prefers the set with
the better worst element. Otherwise, the agent considers the second worst el-
ements. If these are different, then he prefers the set with the better second
worst element. Otherwise, he considers the third worst elements, etc. Similarly,
of course, for lexicographic best comparison.

Complete characterizations of the non-manipulable profiles for both lexico-
graphic worst and lexicographic best comparison can be given but are rather
technical (even more so than for stochastic dominance comparison) and there-
fore not included in this version.

Note that any profile that is manipulable under worst [best] comparison is
also manipulable under lexicographic worst [best] comparison. Hence, the set of
non-manipulable profiles under lexicographic worst [best] comparison is always
a subset of the set of non-manipulable profiles under worst [best] comparison.
It is not very difficult to check (we omit the proof for the sake of briefness)
that all the profiles listed in Corollary 6.2, that is, all two-agent profiles that
are non-manipulable under worst comparison, are also non-manipulable under
lexicographic worst comparison, so that in this case considering lexicographic
worst comparison instead of just worst comparison does not make any difference.
The non-manipulable profiles coincide, and the optimal value of k as far as non-
manipulability is concerned, is the same as in Section 6.1.

For two agents and lexicographic best comparison the situation is different
and the set of non-manipulable profiles is a strict subset of the set of non-
manipulable profiles under best comparison, that is, the set of profiles described
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in Corollary 6.4. To be precise, we have the following result which can be derived
from Corollary 6.4 (the proof is again left to the reader).

Corollary 7.1 Let n = 2 and 2 ≤ k < m. Let p ∈ P be a profile. Consider
lexicographic best comparison.

(a) If k ≤ m/2 then ϕk is not manipulable at p ∈ P if and only if either

{β(p(1))} = {β(p(2))} = βk(p(1)) ∩ βk(p(1))

or
βk(p(1)) ∩ βk(p(2)) = ∅ .

(b) If k > m/2 then ϕk is not manipulable at any p ∈ P .

In this case, the total number of non-manipulable profiles for 2 ≤ k ≤ m/2
is equal to

η(m, k) =
m! [(m− k)!]2 (m− 2k + 2)

(m− 2k + 1)!

and this number is decreasing in k, so that k = 2 is the value of k that minimizes
manipulability subject to 2 ≤ k ≤ m/2, just as in the best comparison case.
The proofs of these facts are somewhat simpler than for the best comparison
case. For the sake of briefness we omit them.

8 Concluding remarks

In this paper we have characterized the number of non-manipulable preference
profiles under k-approval voting for several ways of comparing sets, i.e., by con-
sidering worst or best alternatives, or by applying a stochastic dominance crite-
rion. We have found the optimal k – the maximal number of non-manipulable
profiles – for the case of two agents.

If there is a very large number of agents (for instance, elections for national
Parliaments), then it is very unlikely that a single agent will have any influence
at all, whatever voting procedure is used. In that case the non-manipulability
issue becomes irrelevant, at least as manipulation by single agents is concerned.

It is interesting to consider situations where the number of agents is relatively
large compared to the number of alternatives, but not so large that individual
influences are nihil (for instance, elections of officers or council members of
scientific communities). We conjecture that in such a case choosing k equal to
m/2 is optimal from the point of view of non-manipulability, not only within
the class of k-approval rules but even within the class of all scoring rules. The
intuition is that, statistically, the variance in scores is maximal for this value of
k, so that any single agent’s probability of being able to change the outcome is
minimal.
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