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Abstract

Nonconvex optimization is becoming the fashion to solve constrained
optimization problems in economics. Classical Lagrangian does not
necessarily represent a nonconvex optimization problem. In this pa-
per, we give conditions under which the Classical Lagrangian serves as
an exact penalization of a nonconvex programming. This has a simple
interpretation and is easy to solve. We use this Classical Lagrangian to
provide su¢ cient conditions under which value function is Clarke dif-
ferentiable with di¤erential bounds. The existence of Clarke envelopes
has numerous potential examples in lattice programming, nonclassical
growth theory and macroeconomics, Negishi methods, nonstationary
dynamic lattice programming, and duopoly problems. Most impor-
tantly, the nonlinear duality theorem of this paper is used to provide
generalized envelopes discussed in our companion paper.

1 Introduction

Nonconvex optimization problems arise naturally in many economic models.
For example, starting in the 1950s with the work of Farrell [19], Rothenberg
[58], Koopmans [36], Reiter [51] and others, emphasized the potential impor-
tance of nonconvexities in general equilibrium theory. More recently, non-
convexities have been used in many models in macroeconomics and growth
theory to develop interesting new results. For example, in theoretical work,
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for the case of one-sector growth, Dechert and Nishimura [15], Amir, Mir-
man, and Perkins [2], Hopenhayn and Prescott [27], Nishimura, and Rud-
nicki, and Stachurski [48], and Kamihigashi and Roy[30] [31] have studied
the structure of "nonclassical" optimal growth models. In such models, op-
timal dynamics can be very di¤erent than their "classical" counterparts. In
Amir [3], these ideas generalizes the nonclassical multisector models. For
nonclassical stochastic growth models, Nishimura and Stachurski [47] de-
velops a Foster-Lyapunov method to characterize conditions under which
optimal dynamics in growth models with nonconvexities are stochastically
stable. Recently, Mirman, Morand, and Re¤ett [43] study issues associated
with recursive equilibrium in economics with nonconvexities, and argue the
Lipschitzian structure of dynamic programs plays a critical role in devel-
oping nonsmooth characterizations of dynamic complementarities. In all of
this work, to avoid issues associated with Lagrangian methods, arti�cially
strong interiority conditions are imposed on optimal solutions. Similarly,
in applied work in macroeconomics, nonconvexities in labor services have
been proposed as a key ingredient in resolving important labor market puz-
zles in macroeconomic models (e.g., see Prescott, Rogerson, and Wallenius
([49]) and Rogerson and Wallenius ([55])). When studying the structure
of asymptotic growth, Romer [56][57] emphasizes the importance of non-
convexities in production in growth models with endogenous technological
innovations. Khan and Thomas [33] emphasize the importance of lumpy
investment and nonconvexities in adjustment costs when explaining various
investment puzzles at the plant and aggregate level in (s; S) models of dy-
namic equilibrium. Finally, in microeconomics and industrial organization
models, there is a large literature on two-part marginal pricing equilibria
emphasizing the role of nonconvexities and increasing returns in the theory
of the �rm and optimal pricing equilibrium (e.g., see Brown, Heller, and
Starr [10]).

Despite this recent emphasis on nonconvexities in the economic liter-
ature, general results for optimization methods used to characterize the
structure of optimal solutions to agent optimization problems in models
with nonconvexities has been woefully neglected. What is typically done in
the existing literature when Langrangian methods (or even unconstrained
methods) are used is that the methods of convex programming are assumed
to be, in some sense, applicable, and researchers proceed under this assump-
tion that careful variations of the existing methods can be used to charac-
terize optimal solutions. Unfortunately, it is well-known that for program-
ming problems with nonconvexities, such an approach can be inappropriate.
For example, unlike convex optimization problems, the mathematical foun-
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dations of the Kuhn-Tucker theory and duality for classical Lagrangians
does not apply.1 In convex problems, under suitable constraint quali�ca-
tions (e.g., Slater conditions), constrained optimizations problems can be
restated as unconstrained linear (or Classical) Lagrangian problems. Under
standard di¤erentiability conditions, it is straight forward to develop sharp
necessary and su¢ cient �rst order conditions that can be used to charac-
terize the set of optimal solutions. Furthermore, the classical Lagrangian
satis�es zero duality gap. If the primitive data is smooth, and regularity
conditions for boundary solutions are imposed (e.g., Rincón-Zapatero and
Santos [52]), then classical (once-continuous di¤erentiable or C1) envelope
theorems for the value function exist. In this case the Classical Lagrangian
serves as an exact penalization representation of the original problem. In
general, none of these statements are the case in optimization problems with
nonconvexities.

More speci�cally, Classical Lagrangian methods do not necessarily achieve
zero duality. First order conditions are necessary (not su¢ cient), even in
smooth problems. In multistage nonconvex programs (i.e., nonconcave dy-
namic programming), objective functions are not even di¤erentiable (rather,
at best, locally Lipschitz). Conditions for classical C1 envelope theorems
cannot be easily produced. In textbook treatments of nonlinear program-
ming that are not convex, to develop Lagrangian methods, authors typically
impose very strong constraint quali�cations on the problem. Further, and
most importantly, they impose global smoothness of primitive data. This
latter condition fails in many very simple examples of optimization problems
with nonconvexities (e.g., dynamic programming problems and/or consumer
choice problems). To deal with this situation in the mathematical program-
ming literature, various other types of "augmented" Lagrangian methods
have been developed in the literature, such as the quadratic penalty, or the
absolute value penalty functions. (See Rockafellar and Wets ([54]) for a dis-
cussion). Unfortunately, the augmented Lagragians are di¢ cult to solve in
even very simple problems.

In this paper, we take a direct approach to the problem of characterizing
optimal solutions in constrained optimization problems with nonconvexities.
In particular, we develop su¢ cient conditions under which the classical La-
grangian can be applied, and serves as exact penalization of the constrained
problem with nonconvexities. Further, we give conditions under which gen-

1By a "classical Lagrangian", we mean a Lagrangian that is linear in the Lagrange
multipliers (as opposed, to "augment" Lagrangians as discussed in Rockafellar and Wets
[54] or "Lagrangian-type" functions as discussed in Rubinov and Yang [59]).
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eralized �rst order conditions can be delivered for the classical Lagrangian
(i.e., generalized Kuhn-Tucker conditions), as well as provide simple for-
mulas for generalized envelope theorems for the value function that can
be constructed by min-max operation on the di¤erential structure of the
Lagrangian. These results allow the application of Classical Lagrangian
methods to a broad class of optimization problems in models with noncon-
vexities, and, therefore, greatly simpli�es the characterization of all optimal
solutions for nonconvex problems. To achieve our strongest results (e.g.,
exact penalization, zero duality gap, and useful generalized Kuhn-Tucker
conditions), our su¢ cient conditions involve Mangasarian-Fromowitz con-
straint quali�cation (MFCQ), which are very mild regularity conditions for
most interesting economic models. In addition, under this very relaxed
regularity condition, MFCQ, we provide conditions under which the value
function has di¤erential bounds. We apply the results of this paper to pro-
vide the most relaxed su¢ cient conditions in our companion paper Morand,
Re¤ett and Tarafdar [45] under which (i) Clarke envelopes, (ii) direction-
ally di¤erentiable envelopes and �nally (iii) once continuously di¤erentiable
envelopes exists. To get directional di¤erntiable and continuosly di¤eren-
tiable envelopes we impose stronger conditions such as strict Mangasarian-
Fromowitz constraint quali�cation (SMFCQ).

Our approach to nonlinear programming is very closely related to the
work of Gauvin and Tolle [24], Auslender [5], and Gauvin and Dubeau [22].
These papers give conditions under which nonsmooth envelopes exist. Fol-
lowing the work of Fontanie [21], we improve upon this literature in two
ways; (1) we relax the assumption of C1 (i.e., smooth) objective functions,
and (2) we apply a weaker constraint quali�cations to obtain many of our re-
sults. Relaxing the assumption of continuous di¤erentiability opens up many
applications in dynamic programming, where the value function is not neces-
sarily smooth even with all smooth primitive data, especially in the presence
of nonconvexities. Relative to existing methods in the economics literature
(e.g., Milgrom and Segal [41] and Rincon-Zapatero and Santos [52]), we not
only weaken the constraint quali�cation needed for classical smooth enve-
lope theorems, but we also unify many results within a broader approach
of generalized envelope theorems for nonconvex Lipschitzian programming
problems.

The paper is laid out as follows. In the next section, we introduce much
of the mathematical terminology we need in the paper. Section 3 develops
a nonlinear duality theory and gives the appropriate �rst order conditions.
In Section 4, we provides numerous economic applications of our results.
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2 Mathematical Preliminaries

We begin with a number of mathematical de�nitions that we shall use in
this paper. See Rockafellar [53], Clarke [12], and Rockafellar and Wets [54]
for further discussion.

2.1 Structural Properties of Functions

Let (X; �X), (Y; �Y ); and (T; �T ) be metric spaces, and f : X ! Y be a
continuous function. The function f is Lipschitz with module ( or modulus)
k; 0 � k <1; if for all x; x0 2 X,

�Y (f(x); f(x
0) � k�X(x; x0)

The function f is locally Lipschitz near x 2 X of modulus k(x) if f is
Lipschitz of module k(x) on a neighborhood N(x; e); e > 0. A function
f : X � T ! Y is uniformly Lipschitz in t of modulus k if

sup
x2X

�Y (f(x; t); f(x; t
0)) � k�T (t; t0)

for all t; t0 2 T . Finally, f is uniformly locally Lipschitz near t 2 T of
modulus k(t) if on a neighborhood N(t; e),

sup
x2X

jf(x; t0)� f(x; t00) � k(t)�T (t0; t00); t0; t00 2 N(t; e)

A particular type of locally Lipschitz function often used in economic
optimization is a proper convex function. Let X be a convex set. A real
valued function f : X ! R is (strictly) convex if for all x; y 2 X, and all
� 2 (0; 1)

f(�x+ (1� �)y) � (<)�f(x) + (1� �)f(y)

The function f(x) is strongly convex if 9 a constant � > 0 for all x; y 2 X,
and for all � 2 (0; 1) such that

�f(x) + (1� �)f(y) � f(�x+ (1� �)y) + 1
2
��(1� �) kx� yk2

The function f is essentially strongly concave (resp, strongly concave, strictly
concave, concave) if �f is essentially strongly convex, (resp, strongly con-
vex, strictly convex, convex). A proper convex function is a convex function
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f : X ! Y , where Y is the extended reals. A proper convex function is
locally Lipschitz for any open set in X.

In this paper, we will consider many di¤erent notions of di¤erentiability
for Lipschitz functions. Consider a Lipschitz continuous function f : I �
Rn ! Rm of modulus k. At a point x0 2 I, we �rst consider a number of
di¤erent types of generalized smoothness of f in direction x 2 Rn that will
be used in some of our proofs:

Upper radical right Dini derivative is de�ned as:

D+f(x0; d) = lim sup
t!0+

f(x0 + td)� f(x0)
t

Lower radical right dini derivative is de�ned as:

D+f(x0; d) = lim inf
t!0+

f(x0 + td)� f(x0)
t

The upper radical left dini derivative and lower right radical dini deriv-
ative are de�ned similarly simply changing t! 0+ to t! 0�.

The directional derivative at x0 2 X in the direction d 2 Rn is de�ned
to be,

f 0(x0; d) = lim
t!0+

f(x0 + td)� f(x0)
t

and Clarke�s upper and lower generalized directional derivative at x0 in the
direction d 2 Rn is,

fo(x0; d) = lim sup
y!x0
t!0+

f(y + td)� f(y)
t

f�o(x0; d) = lim inf
y!x0
t!0+

f(y + td)� f(y)
t

It is important to remember that Clarke generalized derivatives of Lipschitz
functions always exist, while directional derivatives of such functions need
not. We say a function f is Clarke regular if its Clarke generalized direc-
tional derivative equals its directional derivative in all directions d.

A function f is di¤erentiable at x0 2 X if the directional derivative exist
in all direction and f 0(x0; d) = rxf(x0) � d. In this case, the derivative of
is given by
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rxf(x0) = lim
h!0�

f(x0 + h)� f(x0)
h

= lim
h!0+

f(x0 + h)� f(x0)
h

The function f has a strict derivative at x0, denoted by Dsf(x0); when for
all d 2 Rn.

hDsf(x0); di = lim
x!x0
t#0�

f(x+ td)� f(x)
t

Finally, we say that f is continuously di¤erentiable if Dsf(x) : Rn ! Rn�m

is continuous at x0. On a �nite dimension domain, a strictly di¤erentiable
function is continuous di¤erentiable.

Finally, recall that the subgradient of a convex function f; is the set of
p 2Mm�n satisfying:

p � d � f(x0 + d)� f(x0)

for direction d 2 Rn. The set of subgradients of a convex function is
subdi¤erential. Dually we can de�ne a subdi¤erential for any function, but
for a non convex function this set may or may not exist.

Since Lipschitz functions may not necessarily have subgradients, we de-
�ne Clarke�s generalized gradient as

@f(x0) = co flimrf(xi) : xi ! x0; xi =2 S; xi =2 
fg

where co denotes the convex hull, S is any set of Lebesgue measure zero in
the domain, and 
f is a set of points at which f fails to be di¤erentiable.

2.2 Structural Properties of Correspondences

As we study the value functions and optimal solutions of collections of
parameterized optimization problems for economic decision makers, it turns
out that the topological properties of feasible correspondences prove very
important in our work. Let X and Y be topological spaces, and F : X �
Y a correspondence. A correspondence F (x) is upper semicontinuous (or
u.s.c.) at x0 2 X if for any two sequences fxng and fyng such that xn !
x0, yn ! y0 with yn 2 F (xn) and implies y0 2 F (x0). If F is upper
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semicontinuous at x for all x 2 X , then it is upper semicontinuous. F (x)
is lower semicontinuous (or l.s.c) at x0 2 X if for any two sequences fxng
and fyng such that xn ! x0, with yn 2 F (xn) and y0 2 F (x0) implies
yn ! y . If F is lower semicontinuous at x for all x 2 X , then it is lower
semicontinuous. 2 F (x) is continuous at x0 2 X if it is both u.s.c and l.s.c.
at x0 2 X, and a continuous correspondence if it is continuous for all x 2 X.

As with functions, we can characterize the metric properties of corre-
spondences. Let (X; �X) and (Y; �Y ) be metric spaces,the correspondence
F : X � Y; and 2X the powersets of X. A useful metric for correspondences
is the Hausdor¤metric. De�ne Hausdor¤ distance between F (x00) and F (x0)
for all x00; x0 2 X by

�Hy
�
F (x0); F (x00)

�
=Max

"
sup

y02F (x0)
�y(y

0; F (x00)); sup
y002F (x00)

�y(y
00; F (x0))

#

where �y(y
0; F (x00)) = inf

y002F (x00)
�y(y

0; y00) and �y(y
00; F (x0)) = inf

y02F (x0)
�y(y

0; y00)

We say a correspondence F (x) is Lipschitz continuous of modulus k on X if
8 x0, x00 2 X ,

�Hy
�
F (x0); F (x00)

�
� k�x

�
x00; x0

�
F (x) is locally Lipschitz continuous near x 2 X of modulus k(x) on a
neighborhood N(x; e) if it is Lipschitz continuous of modulus k on N(x; e).
In other words, for all x0, x00 2 N(x; e),

�Hy
�
F (x0); F (x00)

�
� k(x)�x

�
x00; x0

�
Finally, we say F (x) is uniformly compact near x if there is a neigh-

borhood N(x) of x such that the closure of [x02N(x)�(x0) is compact for all
x0.

2See Berge ([9], p108) for discussion. Note also that to de�ne u.s.c. and l.s.c. of a
correspondence, we only need topological spaces (i.e., the topological spaces need not be
metrizable).
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3 Classical Lagrangian and the Non Linear Dual-
ity

We focus in this paper is on parameterized Lipschitzian optimization prob-
lems. Consider a collection of parameterized optimization problems describe
as follows: let a 2 A be the space for the choice variables; s 2 S be the pa-
rameter space, f : A � S ! R be an objective function, and D : S � A a
correspondence that describes the feasible set of actions in each state s 2 S.
We consider a family of Parameterized Lipschitzian Optimization Problem:

V (s) = max
a2D(s)

f(a; s) (3.0.1)

where D(s) is given by:

D(s) = fajgi(a; s) � 0; i = 1; ::::::::; p; hj(a; s) = 0; j = 1; ::::::::; qg

with the function gi(a; s) being inequality constraints, and hi(a; s) the equal-
ity constraints. The optimal solution correspondence in problem (3.0.1) is
denoted by A� : S � A, and de�ned follows:

A�(s) = arg max
a2D(s)

f(a; s)

We make four assumptions that we maintain throughout the paper:
Assumption 1: The primitive data in (3.0.1) satis�es the following con-

ditions:
(a) A is a sequentially compact topological space;
(b) (S; �S) a metric space;
(c) the objective function f : A� S ! R is continuous in (a; s);
(d) the feasible correspondence D : S � A is a non empty-valued con-

tinuous, compact-valued correspondence.
Assumption 2: (A; �A) is a metric space.
Assumption 3: (i) The spaces (A; �A) and (S; �S) are each convex in

Rn and Rm, respectively, and (ii) the constraints gi, i = 1; ::; p and hj = 0,
j = 1; ::; q are jointly C1.

Assumption 4: The objective functions and the constraints are de�ned
on a set A0 where A � A0.

The fourth assumption enables us to treat the noninterior solutions at
par with the interior ones.

The value function V (s), and the set of optimal solutions A�(s); are well-
de�ned by Berge�s Maximum Theorem under assumption 1. For the sake
of completeness, we state the maximum theorem that is appropriate in our
setting.
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Proposition 1 (Berge, [9], Maximum Theorem, p 116). Under Assump-
tion 1, in Problem (3.0.1), (i) V is continuous on S; and (ii) A� is upper
hemicontinuous on S.

In this section, we �rst develop a nonlinear duality theory for prob-
lems with inequality constraints.3 Speci�cally, we prove a key theorem that
characterizes the nature of this nonlinear duality present in particular para-
meterized Lipschitzian versions of the problem in (3.0.1). We show that the
gradient of the standard Lagrangian obtains a zero-duality gap, and satis�es
a local saddlepoint property under a weak constraint quali�cation. Then we
built our main nonlinear duality result: the classical Lagrangian serves as
an exact penalization function for a nonconvex optimization problem un-
der some conditions. Before we get to the main theorem we introduce the
min-max Lagrangian and the constraint quali�cations used in the paper.

3.1 Min-Max Lagrangian

The Classical Lagrangian corresponding to (3.0.1) is de�ned as

L(a; �; �; s) = f(a; s)� �T g(a; s)� �Th(a; s) if a 2 D(s) (3.1.1)

= �1 otherwise

where D(s) is the feasible set given by the inequality and equality con-
straints. Further:

g(a; s) = [g1(a; s); :::; gp(a; s)]
T ; h(a; s) = [h1(a; s); :::; hq(a; s)]

T

For any s 2 S, (�; �) 2 K(s), where K(s) is nonempty and convex .From
Rockafellar ([53], Lemma 36.1)

sup
a2D(s)

inf
(�;�)2K

L(a; �; �; s) � inf
(�;�)2K

sup
a2D(s)

L(a; �; �; s)

If the reverse inequality hold, then the Lagrangian has a min-max value or
a saddle value and achieves a zero duality gap. In such a case there exist
(a�(s); ��(s); ��(s)) such that The Lagrangian satis�es the following,

L(a; ��(s); ��(s); s) � L(a�(s); ��(s); ��(s); s) � L(a�(s); �; �; s)

for all a 2 D(s) and for all (�; �) 2 K(s). Unlike in nonconvex optimiza-
tion programming case, in convex optimization programming the classical

3Morand, Re¤ett and Tarafdar [45] extend the results in this paper by introducing
smooth equality constraints.
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Lagrangian has a saddle value and achieves a zero duality gap. Since this
is not true for nonconvex programming problems, we do not know if the
classical Lagrangian is the right penalization function. There are various
other penalization functions discussed in the literature (Rubinov and Yang
[59]). In this paper we show under a not so strong constraint quali�er the
classical Lagrangian achieves zero duality gap. This merits the discussion of
constraint quali�cation, and de�ning the various forms of constraint quali-
�cations that we shall use in this paper.

3.2 Constraint Quali�cations

To obtain Lagrange multiplier rules and to characterize the local saddlepoint
properties of L(a; s;�; �); we need to make restrictions on the functions g
and h that de�ne the feasible correspondence D(s). In particular, we need
constraint quali�cations. Under Assumption 3, in (3.0.1), we will consider
three types of constraint quali�cations:4.

(i) the Mangasarian-Fromowitz constraint quali�cation (MFCQ),
(ii) the strict Mangasarian-Fromowitz constraint quali�cation (SMFCQ),

and
(iii) the linear independence constraint quali�cation (LICQ).
Among the three, the weakest form of constraint quali�cation is the

MFCQ.We say a feasible point a 2 D(s) satis�es theMangasarian-Fromovitz
Constraint Quali�er (MFCQ) if:

(i) the following vectors are linearly independent

rahi(a; s), j = 1; :::; q

(ii) there exists a ey 2 Rn such that,
ragi(a; s)ey < 0, i 2 I; rahj(a; s)ey = 0, j = 1; :::; q

where I = fi : gi(a; s) = 0g.
We also consider two other constraint quali�cations that are stronger

than MFCQ. The �rst (and weaker) constraint quali�cation is the SMFCQ.
We say a feasible point a 2 D(s) satis�es the Strict Mangasarian-Fromovitz
Constraint Quali�er (SMFCQ) if:

(i) the following vectors are linearly independent

ragi(a; s), i 2 Ib; rahi(a; s), j = 1; :::; q
4For the sake of comparison with Milgrom and Segal [41], for convex problems, for

s 2 S; we say a constraint system satis�es a Slater condition if there exists a point
a2 D(s) such that h(a; s) = 0 and gi(a; s) < 0 for all constraints i that are active.
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(ii) there exist y 2 Rn such that,

ragi(a; s)y < 0, i 2 Is; ragi(a; s)y = 0, i 2 Ib
rahj(a; s)y = 0, j = 1; :::; q

where Ib = fi 2 I : �i > 0g, Is = fi 2 I : �i = 0g and I = fi : gi(a; s) = 0g.
A third constraint quali�cation is the strongest we consider, and is the

focus of the recent work of Rincon-Zapatero and Santos [52]. We say a fea-
sible point a 2 D(s) satis�es the Linear Independence Constraint Quali�er
(LICQ) if, the following vectors are linearly independent,

ragi(a; s), i 2 I, rahi(a; s), j = 1; :::; q

where I = fi : gi(a; s) = 0g.

3.3 Lagrange Multiplier Rule

Now we discuss various �rst order conditions for nonconvex optimization
problems with nonsmooth objectives. If the objective is not continuously
di¤erentiable the standard �rst order conditions do not apply. In this paper
we will always assume the objective to be at least jointly locally Lipschitz.
Thus, we provide usable �rst order conditions for locally Lipschitz and/or
directionally di¤erentiable objectives. Note, the �rst order conditions can
be easily adapted for locally Lipschitz and/or directionally di¤erentiable
inequality constraints.

Proposition 2 Under Assumptions 1-4, f(a�(s); s) attains a local maxima
for a given s and a�(s) satis�es MFCQ, (i) if f(a; s) is directional di¤eren-
tiable then for each s and each direction xa 2 Rn

f 0a(a
�(s); s;xa)�

�
�Trga(a�(s); s)� �Trha(a�(s); s)

�
� xa � 0 (3.3.1)

(ii) if f(a; s) locally Lipschitz then there exist &a�(s)(a�(s); s) 2 @af(a�(s); s)
such that

&a�(s)(a
�(s); s) = �Trga(a�(s); s) + �Trha(a�(s); s) (3.3.2)

also (iii) if f(a; s) locally Lipschitz then for each s and each direction xa 2
Rn

f�oa (a�(s); s;xa)�
�
�Trga(a�(s); s)� �Trha(a�(s); s)

�
� xa � 0 (3.3.3)
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Proof. Appendix
The relevant �rst order conditions can be similarly stated for minimiza-

tion problems. These �rst order conditions will be useful for economic ap-
plications in section 4 where the objective of an optimization problem is not
smooth (or C1). This will be specially important for dynamic programming
problems with some nonconvexities. Here, the Bellman equation will not
necessarily be smooth due to presence of nonconvexities even if all primitive
data is smooth. Consequently the importance of the �rst order conditions
of proposition (2) are signi�cant.

3.4 Non-Linear Duality

We will now state a result on Nonlinear Duality for problem (3.0.1) with the
constraint set comprising of only inequalities. Morand, Re¤ett and Tarafdar
[45] show that smooth equality constraints and easily be added to this re-
sult by standard implicit function theorem. From Auslander ([5]) we know
under MFCQ a standard Lagrangian exist. The �rst order conditions of this
Lagrangian is discussed above. Our next theorem show, Clarke�s general-
ized directional derivative of the Lagrangian satis�es saddle point property
in the direction of perturbation in the choice variable and the Kuhn-Tucker
multipliers. This saddle function satis�es zero duality and can be used to
study the structure of the value function in (3.0.1). Further the saddle value
of this function is independent of any perturbation in the choice variable
a. In other words, under the conditions of Theorem (3) for any direction
of perturbation of the parameter s, the e¤ect of the choice variable a is
enveloped out. This observation is crucial in obtaining nonsmooth envelope
theorems which is the focus of Morand, Re¤ett and Tarafdar [45].

Theorem 3 At s 2 S; suppose MFCQ holds at an optimal solution a�(s) 2
A�(s). Then, under Assumptions 1-4, for any direction of perturbation x 2
Rm; and for all (&a; &s) 2 @af(a�(s); s)� @sf(a�(s); s) :

�S(y; �) = min
&a2@af(a�(s);s)

(&a � �Trag(a�(s); s)) � y

+ min
&s2@sf(a�(s);s)

(&s � �Trsg(a�(s); s)) � x

is a saddle function with saddle value

L�os (a
�(s); s; �; �;x) = min

&s2@sf(a�(s);s)

��
&s � �Trsg(a�(s); s)

�
� x
�

Here g denotes the active inequality constraints.
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Proof. Consider for any x 2 Rm:

�S(y; �) = min
&a2@af(a�(s);s)

(&a � �Trag(a�(s); s)) � y

+ min
&s2@sf(a�(s);s)

(&s � �Trsg(a�(s); s)) � x

To simplify notation, it shall be understood that that minimizations with
respect to & i are taken over the elements of the generalized gradients @if
for i = a; s which is a nonempty-compact-valued correspondence for each
s 2 S.

Given any direction x of perturbation, de�neD0(a�(s); s) andD00(a�(s); s),
as:

D0(a�(s); s) = fy 2 Rn : rag(a�(s); s) � y +rsg(a�(s); s) � x < 0g
D00(a�(s); s) = fy 2 Rn : rag(a�(s); s) � y +rsg(a�(s); s) � x = 0

Let K(a�(s); s) be the set of Kuhn-Tucker multipliers for state s at the
optima a�(s) 2 A�(s). By MFCQ, D0 [ D00 is non-empty. Further, clearly
D0 [D00 and K are closed convex sets. Note, that if � 2 K, it must be:

8y 2 Rn; min (&a � �rag(a�(s); s)) � y � 0;

so,

sup
y�0

�S(y; �) =

�
min

�
&s � �Trsg(a�(s); s)

�
� x if � 2 K

+1 otherwise

�
(3.4.1)

Also, if y =2 D0 [D00; then rag(a�(s); s) � y+rsg(a�(s); s) � x � 0; therefore,

inf
��0

� [rag(a�(s); s) � y +rsg(a�(s); s) � x]

= �1 or 0

so

inf
��0

�S(y; �) =

�
min(&a � y + &s � x) (if y 2 D0 [D00)
�1 otherwise

�
(3.4.2)

Now, we can show that:

�1 < sup
y
inf
��0

�S(y; �) � inf
��0

sup
y

�S(y; �) < +1 (3.4.3)
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Next, we have the following sequences of inequalities:

min
(&a;&s)

sup
y
inf
��0

� �
&a � �Trag(a�(s); s)

�
� y

+
�
&s � �Trsg(a�(s); s)

�
� x

�
� inf

��0
sup
y

� �
&a � �Trag(a�(s); s)

�
� y

+
�
&s � �Trsg(a�(s); s)

�
� x

�
(3.4.4)

Denoting (&a; &s) as one of the particular subgradients for which (3.4.4) is
attained, we can summarize the above sequence of inequalities as follows:

sup
y
inf
��0

� �
&a � �Trag(a�(s); s)

�
� y

+
�
&s � �Trsg(a�(s); s)

�
� x

�
� inf

��0
sup
y

� �
&a � �Trag(a�(s); s)

�
� y

+
�
&s � �Trsg(a�(s); s)

�
� x

�
(3.4.5)

Now, consider the following dual pair of linear programs: the primal is given
as:

&s � x�max
�
�Trsg(a�(s); s)� �Trsh(a�(s); s)

�
� x

subject to

� � 0
&a � �Trag(a�(s); s) = 0

while, the dual is given as:

&s � x+min &a � y

subject to:

rag(a�(s); s) � y +rsg(a�(s); s) � x � 0
y unrestricted

Note, for any y 2 D0 [D00 feasible in the dual, by (3.4.3), the dual objective
is bounded below since:

�1 < sup
y2x
(min
&a;&s

(&a � y + &s � x)) < +1

Therefore, there is also no duality gap; hence, (3.4.5) is an equality, so �S
has a saddle value.
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So we have:

sup
y
[min
&a;&s

(&a � y + &s � x)]

= sup
y
inf
��0

�S(y; �)

= inf
��0

sup
y

�S(y; �)

= inf
��0

min
&s

��
&s � �Trsg(a�(s); s)

�
� x
�

= inf
��0

L�os (a
�(s); s; �;x)

Summarizing:

sup
y
[min
&a;&s

(&a � y + &s � x)] = inf
��0

L�os (a
�(s); s; �;x)

Thus �S(y; �), is a saddle function with saddle value

L�os (a
�(s); s; �; �;x) = min

&s2@sf(a�(s);s)

��
&s � �Trsg(a�(s); s)

�
� x
�

Our main contribution is to show that the classical Lagrangian satis�es
zero duality gap and achieves saddle value. To do this, �rst we need to show
the value functions is locally Lipschitz, albeit under some conditions. Before
we proceed we state the following corollary to Theorem (3). The corollary
provides bounds on the Clarke gradient of the objective function and the
gradient of the inequality constraints, which is critical for our result.

Corollary 4 At s 2 S; suppose MFCQ holds at an optimal solution a�(s) 2
A�(s). Then, under Assumptions 1-4 and no equality constraints, for any
direction of perturbation x 2 Rm; and any � > 0; there exists a vector y(�; x)
such that for all (&a; &s) 2 @af(a�(s); s)�@sf(a�(s); s) the saddle value satisfy

(&a; &s) � (y; x) > inf
�2K

L�os (a
�(s); s;�;x)� �

and the active inequality constraints satisfy

rag(a�(s); s) � y +rsg(a�(s); s) � x < 0

Proof. From Theorem (3) �S(y; �) is a saddle function with saddle value

inf
��0

sup
y

�S(y; �) = inf
�2K

L�os (a
�(s); s;�;x)
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Further by (3.4.2) of the previous theorem, we have

sup
y
inf
��0

�S(y; �) = sup
y2x

min
(&a;&s)

(&a � y + &s � x)

Therefore, appealing to the fact that �S has a saddle value, we have:

inf
�2K

L�os (a
�(s); s;�;x) = sup

y2D0
min
(&a;&s)

(&a � y + &s � x);

Here, in the last expression, the supremum may not be attained since D0

(de�ned in the previous theorem) is not necessarily bounded. Thus, 8� > 0,
choose y(x; �) in D0 such that:

min
(&a;&s)

[&a � y(x; �) + &s � x] � inf
�2K

L�os (a
�(s); s;�;x)� �=2

Consider y = y(x; �) + �ey where � is arbitrarily small and ey satis�es MFCQ
(that is, rag(a�(s); s) � ey < 0 ). We have:

rag(a�(s); s) � y +rsg(a�(s); s) � x
= (rag(a�(s); s) � y +rsg(a�(s); s) � x) + �rag(a�(s); s) � ey
< 0

Further:

min
(&a;&s)

[&a � y + &s � x] � inf
�2K

L�os (a
�(s); s;�;x)� �=2 + �min(&a � ey)

Choose � small enough such that �min(&a � ey) > ��=2. Then, we obtain for
all (&a; &s) 2 @af(a�(s); s)� @sf(a�(s); s) :

rag � y(a�(s); s) +rsg(a�(s); s) � x < 0

and:

(&a; &s) � (y; x) > inf
�2K(a�(s);s)

L�os (a
�(s); s;�;x)� �

Now we proceed to show the Dini derivatives of the value function are
bounded in the next subsection.
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3.4.1 Di¤erential Bounds

For di¤erential bounds, we assume MFCQ (the weakest constraint quali-
�cation we consider). Under this constraint quali�cation, assuming a lo-
cally Lipschitz objective, the calculation of the di¤erential bounds of the
value function can be obtained. We do this by �rst providing method to
compute both the lower and upper bounds for V (s) using the Lagrangian
Los(a

�(s); s;�;x); and then we immediately have a global bound, and our
main result on di¤erential bounds follows immediately.

Theorem 5 Under Assumptions 1-4, for problem (3.0.1), if, (i) f locally
Lipschitz, (ii) D(s) is nonempty and uniformly compact near s, and (iii)
MFCQ hold for every optimal solution a�(s) 2 A�(s); then for any direction
x 2 Rm of perturbation we have the following:

(i) lim inf
t�!0+

V (s+ tx)� V (s)
t

� inf
�2K(a�(s);s)

L�os (a
�(s); s;�;x)

(ii) lim sup
t�!0+

V (s+ tx)� V (s)
t

� inf
�2K(a�(s);s)

Los(a
�(s); s;�;x)

(iii) sup
a�(s)2A�(s)

min
�2K(a�(s);s)

fL�os (a�(s); s;�) � xg

� D+V (s;x) � D+V (s;x)
� sup

a�(s)2A�(s)
max

�2K(a�(s);s)
fLos(a�(s); s;�) � xg

where

L�os (a
�(s); s;�;x) = min

&s2@sf(a�(s);s)

��
&s � �Trsg(a�(s); s)

�
� x
�

Los(a
�(s); s;�;x) = max

&s2@sf(a�(s);s)

��
&s � �Trsg(a�(s); s)

�
� x
�

Proof. Appendix.
The Dini derivatives are bounded above and below, so the value function

is locally Lipschitz in s. It is well known that a locally Lipschitz function
is calm. Theorem (5) is an very important intermediary step to show the
Classical Lagrangian serves as an exact penalization function for a nonconvex
optimization problem under very mild conditions. However, it is pertinent to
point out that Theorem (5) is interesting in by it�s own, as in basically shows
that the Clarke envelopes exist. The Clarke gradient of the value function for
problem (3.0.1) is strictly included in the Clarke gradient of the Lagrangian.
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Also the Clarke upper and lower generalized directional derivatives of the
value function are bounded above and below respectively by the upper and
lower generalized directional derivatives of the Lagrangian. Thus, a lot of
interesting economic problems with nonconvexities can be solved by the
Clarke envelope. Further, by strengthening the hypothesis of Theorem (5),
directional di¤erentiable and continuously di¤erentiable envelopes can be
obtained. This is discussed in length in Morand Re¤ett and Tarafdar ([45]).

For a s 2 S, the problem (3.0.1) is calm at s of module kc(s) if 8 s0 in
the neighborhood of s, N(s; e)

V (s)� V (s0)

 � kc(s)

s� s0


Thus, under the hypothesis of Theorem (5) the value function is locally
Lipschitz and consequently calm.

Now we state the most important contribution of the paper. The follow-
ing theorem gives condition under which the classical Lagrange is a saddle
function and satis�es zero duality gap. Thus the classical Lagrange proce-
dure can be applied to solve economic optimization problems with noncon-
vexities.

Theorem 6 Under Assumptions 1-4, if (i) f locally Lipschitz, (ii) D(s)
is nonempty and uniformly compact near s, and (iii) MFCQ holds at all
optimal solution a�(s) 2 A�(s), then, for any direction of perturbation x 2
Rm; at s 2 S and any y 2 Rn, a zero duality gap is obtained for a Classical
Lagrangian L, and V (s) = min�;�maxa L(a; �; �; s) is a saddle-value.

Proof. Under assumption 1-4, f locally Lipschitz and Clarke regular, D(s)
is nonempty and uniformly compact near s, and MFCQ holds at all opti-
mal solution a�(s) 2 A�(s) from Theorem (5), the value function is locally
Lipschitz, hence calm. Appealing to Bonnans and Shapiro (Theorem 3.4(i))
calmness implies the Classical Lagrangian (3.1.1) of problem (3.0.1), has is
a saddle-value and zero duality gap.

This theorem lays down the mathematical groundwork necessary to solve
a optimization problem for economies with nonconvexities via the classical
Lagrangian procedure. Thus we unify the approach to solving convex and
nonconvex optimization problems.
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4 Applications

4.1 Nonsmooth Envelope Theorems

Morand Re¤ett and Tarafdar [45] develop a nonsmooth approach to envelope
theorems that uni�es the result across nonconvex and convex parameterized
nonlinear optimization problems important in economics as an application
of our theory in the last section. In the literature by envelope theorem, one
means the once continuously di¤erentiable envelope (or smooth envelopes).
However, there are many instances in economics where nonconvexities very
naturally arise. For example quantity discounts make the budget set non-
convex for the consumer utility maximization problem. Secondly, the pro-
duction function might be nonconvex due to indivisibility of some inputs,
increasing returns, or existence of externalities. In a �nite or in�nite period
dynamic programming problem, the Bellman equation can be guaranteed
to be continuously di¤erentiable for convex optimization problems under
some conditions. But in the presence of nonconvexities the value function of
an optimization problems looses smoothness very easily, thus the Bellman
equation need not be smooth, rendering the classical envelope theorem in-
applicable. Thus the nonsmooth envelopes discussed in length in Morand
Re¤ett and Tarafdar [45] is very useful in solving nonconvex dynamic op-
timization problems among others. Theorem (5) gives su¢ cient conditions
for the existence of Clarke envelopes. By imposing stronger conditions the
next corollary provides su¢ cient conditions for the existence of directionally
di¤erentiable envelops:

Corollary 7 Under Assumption 1-4, in Problem (3.0.1), if, (i) f is C1, (ii)
D(s) is nonempty and uniformly compact near s, and (iii) SMFCQ hold for
every optimal solution a�(s) 2 A�(s); then for any direction x 2 Rm

V 0(s; x) = max
a�(s)2A�(s)

frsL(a�(s); s;�; �) � xg

Proof. Morand Re¤ett and Tarafdar ([45], Theorem 17)

4.2 Two Sector Growth with Nonconvexities in Labor Ser-
vices

We consider and example of a two sector Uzawa growth model with noncon-
vexities in labor services (e.g., Prescott, Rogerson, and Wallenius [49]). The
representative household has period preferences u(c) = ln c; and discounts
the future at the rate �. The economy has two sectors, one for consumption
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goods, the other for investment goods. More speci�cally, in each period,
sector 1 produces consumption goods ct 2 K � R+, and sector 2 produces
(next period) capital goods kt+1 2 K � R+. The production functions of
the two sectors are given by fi : R2+ ! R; where fi(ki; Li) is assumed to
be Cobb-Douglas in capital ki and labor services Li. The initial capital
stock for the economy is k0 > 0 and total labor endowment each period is
normalized to unity. Capital at the beginning of each period can be allo-
cated costlessly in amounts x1t and x2t, and let l1t and l2t be labor supply
allocated to sectors 1 and 2 respectively.

We allow labor services in each period be given by gi : [0; 1] ! R. We
shall assume, for simplicity, g1(l1) = L1 is convex-concave, but g2(l2) = L2
is linear. In particular, we assume g(l) is given by:

g1(l1t) = l21t, if l1t � 0:25

=
l
1=2
1t

8
, if l1t � 0:25

g2(l2t) = l2t

Following Benhabib and Nishimura [8], we study the optimal decisions of
this problem with a two-stage procedure. First, in any period t, the planner
solves the following for kt given,

Vt(kt) = max
0�kt+1�f2(

fU(kt; kt+1) + �Vt+1(kt+1)g (4.2.1)

where,

U(kt; kt+1) = max
x;l
fu(f1(x1t; g1(l1t)))g

subject to

x1t + x2t � kt

l1t + l2t � 1

kt+1 � f2(x2t; g2(l2t))

By backward induction the planners problem �rst solves,

U(kt; kt+1) = max

� �
1
2 ln k1t + ln l1t

	
, if l1t � 0:25�

1
2 ln k1t +

1
4 ln l1t �

3
2 ln 2

	
, if l1t � 0:25

�
subject to

kt+1 � (kt � k1t)1=2(1� l1t)1=2
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Let � be the multiplier. Here the constraint is continuously di¤erentiable
and the objective is Clarke regular. The value function of the second stage
is directionally di¤erentiable. To illustrate that U(kt; kt+1) is not C1 we
solve the above problem at kt = 1. The optimal solution is given by, for
1 > kt+1 � 3

141=2

l�1t =
4� k2t+1 � kt+1(8 + k2t+1)1=2

4

k�1t =
l�1t

2� l�1t

� =
(1� l�1t)1=2

l�1t(1� k�1t)1=2

For 0:67082 � kt+1 � 3
141=2

l�1t = 0:25

k�1t = 0:80

� =
1:25

151=2

As is clear from the optimal solutions, U(1; kt+1) is not continuously dif-
ferentiable but directional derivatives exist. The directional derivative of
U(1; kt+1) with respect to kt+1 is given by,

U 0kt+1(kt+1; d) = �1:25d
151=2

, if d � 0

= �2(21)1=2d, if d � 0

Thus to solve Problem (1), we need the envelope theorem for directional
di¤erentiability.

4.3 Stackelberg Models

This is a simple duopoly game where the leader�s marginal cost is lower
than the followers. In this game the second period best response function is
kinked and therefore we cannot apply the standard �rst order condition to
solve the leader�s problem.

Example: the leader, �rm 1 chooses quantity q1 in period 1 and the
follower, �rm 2 chooses quantity q2 in period 2. Both �rms face a constant
marginal cost c1 = 2 and c2 = 3. The inverse demand function is given by,

p = 5� q1 � q2
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We solve the game by backward induction. In the second period �rm 2
maximizes:

�2(q2; q1) = (5� q1 � q2)q2 � 3q2
The �rst order condition is,

5� q1 � 2q�2 � 3 = 0 if q2 > 0

� 0 if q2 = 0

Solving,

q�2 =
2� q1
2

if q1 � 2
= 0 if q1 > 2

Second period value function is given by,

��2(q1) =
(2� q1)2

4
if q1 � 2

= 0 if q1 > 2

The best response function and the value function of period 2 are not C1

but Lipschitz continuous, Clarke regular. This leads to just a directionally
di¤erentiable objective function in the �rst period,

�1(q1) = (5� q1 � q�2)q1 � 2q1
= (3� q1 � q�2)q1

Substituting q�2 from above,

�1(q1) =
(4� q1)q1

2
if q1 � 2

= (3� q1)q1 if q1 > 2

Since the objective function is just directionally di¤erentiable the �rst order
necessary condition is �

01(q1; d) � 0 for d � 0 and d � 0.
Here �1(2) = 2. Now at q1 = 2 for d � 0
�01(q1 = 2; d) = 0

For for d � 0

�01(q1 = 2; d) = lim
t!0

�1(2 + td)��1(2)
t

= lim
t!0

(3� (2 + td))(2 + td)� 2
t

lim
t!0

6 + 3td� 4� 4td� t2d2 � 2
t

= �d � 0
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Thus the optimal solutions are,

q�1 = 2

q�2 = 0

4.4 Entry Deterrence Model

We consider a two stage duopoly game with an incumbent and a potential
entrant. In the �rst stage the incumbent chooses an investment level that
reduces cost (increases demand). In the second stage the potential entrant
either enters and the two �rms compete in quantity or does not enter and
the incumbent is the only active �rm in the market. A higher investment
by the incumbent in the �rst stage in cost reduction (increasing demand)
makes the incumbent aggressive (passive) in the second stage, which re-
sults in softer (tougher) action or reduction in (increasing) quantity by the
entrant. In quantity competition game a lower output by a rival is bene�-
cial. Thus, for strategic reason the incumbent over-invests (under-invests)
in stage 1. According to Fudenberg and Tirole (1984, AER) this strategy is
called Top dog (Lean and Hungry look). Whether the incumbent wants to
accommodate or deter entry it will always over-invest (under-invest) to sig-
nal tough (soft) competition to the rival when investment is in reducing cost
(increasing demand). In the following two examples the incumbent (or �rm
1) �nds deterring entry to be it�s best strategy. In these simple examples the
best response function of the potential entrant (�rm 2) is kinked shape at
quantity zero. Thus the �rst period objective function is not continuously
di¤erentiable and we apply the directional di¤erentiable envelope theorem
to calculate the optimal investment level.

Example: (Cost reduction). Let the inverse demand function faced by
�rm 1 (incumbent) and 2 (potential entrant) in the second period be given
by, p = 10 � q1 � q2, where p is the market price, q1 is the quantity of the
incumbent and q2 is the quantity produced by the potential entrant. The
constant marginal cost of the potential entrant is c2 = 6. The incumbent
can reduce it�s marginal cost by investing in stage 1. The investment reduces
the marginal cost by,

c1(k) = 3� k3=16 if 0 � k � 100
= 3� 1003=16 if k > 100
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We solve the game by backward induction. In second period both �rms
maximize their pro�t by choosing optimal quantities with marginal cost c1
and c2 = 6. Thus the �rms solve the following:

max
q1
(10� q1 � q2) q1 � c1q1

max
q1
(10� q1 � q2) q2 � 6q2

The best response functions are given by

q1 =
10� c1
2

� q2
2
if q2 � 10� c1

= 0 otherwise

q2 = 2� q1
2
if q1 � 4

= 0 otherwise

The equilibrium outcomes are,

q�1 =
16� 2c1

3
if q2 � 10� c1

= 0 otherwise

q�2 =
c1 � 2
3

if q1 � 4
= 0 otherwise

The �rst period pro�t function of the incumbent �rm is given by, (we restrict
the problem to k � 100, this constraint is not binding so does not change
the optimal solution)

�1I(q
�
1(k); q

�
2(k); k) = (10� q�1(k)� q�2(k)) q�1(k)�

�
3� k3=16

�
q�1(k)� k

Here �1I mapsR3+ ! R+ and is C1. q�1, q
�
2 are locally Lipschitz and Clarke

regular function inR+ ! R+. Therefore from (Theorem 2.3.9, Clarke 1983)
�1I is Clarke regular and the generalized gradient of �1I is given by,

@�1I = CO

�
@�1I
@q�1(k)

�q�1(k) +
@�1I
@q�2(k)

�q�2(k) +
@�1I
@c1(k)

@c1(k)

@k
d+

@�1I
@k

d

�
where �q�1(k), �q�2(k) are elements of the Clarke gradient of q

�
1, q

�
2. Therefore

the directional derivative of �1I and generalized directional derivative of �1I
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in direction d are equal and is given by,

�01I(q
�
1(k); q

�
2(k); k; d) =

@�1I
@q�1(k)

q�1(k; d) +
@�1I
@q�2(k)

q�2(k; d) +
@�1I
@c1(k)

@c1(k)

@k
d

+
@�1I
@k

d

= 0� q�1(k)q�2(k; d) +
3k�13=16

16
q�1(k)d� d (4.4.1)

The �rst term is zero from the second period �rst order condition. To
evaluate above �rst we substitute c1 in the equilibrium quantities q�1(k) and
q�2(k) we get for k 2 [0; 100],

q�1(k) =
16� 2

�
3� k3=16

�
3

if q2 � 10� c1
= 0 otherwise

q�2(k) =

�
3� k3=16

�
� 2

3
if q1 � 4

= 0 otherwise

Simplifying,

q�1(k) =
10 + 2k3=16

3
if q2 � 10� c1

= 0 otherwise

q�2(k) =
1� k3=16

3
if q1 � 4

= 0 otherwise

Now we calculate the directional derivative of �rm 2 equilibrium quantity of
the �rst stage for all directions at k = 1. For d > 0

q0�2 (1; d) = 0 (4.4.2)

For d < 0

q0�2 (1; d) = �
d

16
� 0 (4.4.3)

Evaluating the directional derivative (4.4.1) for k = 1,

�01I(q
�
1(1); q

�
2(1); 1; d) =

�
0� q�1(1)q�2(1; d) +

3d

16
q�1(1)� d

�
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Substituting q�1(1) = 4, q
�
2(1) = 0 we get

�01I(q
�
1(1); q

�
2(1); 1; d) =

�
�4q�2(1; d) +

3d

4
� d

�
For d > 0, from expression (4.4.2)

�01I(q
�
1(1); q

�
2(1); 1; d) = �4(0) + 3d

4
� d

= �d
4
< 0

For d < 0, from expression (4.4.3)

�01I(q
�
1(1); q

�
2(1); 1; d) = �4(� d

16
) +

3d

4
� d

= 0

Therefore k = 1 satis�es the �rst order condition Thus optimal solutions are
given by,

k = 1

q�1 = 4

q�2 = 0

Example: (Advertisements). Let the inverse demand function faced by
�rm 1 and 2 in the second period be given by, p = a(k)� q1� q2, where p is
the market price, q1 is the quantity of the incumbent and q2 is the quantity
produced by the potential entrant. The constant marginal costs are c1 = 1
and c2 = 3. The incumbent can increase the demand of stage 2 by investing
in stage 1. The investment increases the intercept of the demand curve by,

a(k) = 3 + 2k3=8

For any investment in stage 1, the stage 2 best responses are,

q1 =
a(k)� 1

2
� q2
2
if q2 � a(k)� 1

= 0 otherwise

q2 =
a(k)� 3

2
� q1
2
if q1 � a(k)� 3

= 0 otherwise

27



The best response functions are Lipschitz continuous and Clarke regular.
The equilibrium outcomes are,

q�1 =
a(k) + 1

3
if q2 � a(k)� 1

= 0 otherwise

q�2 =
a(k)� 5

3
if q1 � a(k)� 3

= 0 otherwise

The �rst period pro�t function of the incumbent �rm is given by,

�1I(q
�
1(k); q

�
2(k); k) =

�
3 + 2k3=8 � q�1(k)� q�2(k)

�
q�1(k)� c1q�1(k)� k

As in the last example the �rst stage incumbent pro�t function is Clarke
regular. Thus the directional derivative is given by,

�01I(q
�
1(k); q

�
2(k); k; d) =

�
@�1I
@q�1(k)

q�1(k; d) +
@�1I
@q�2(k)

q�2(k; d) +
@�1I
@a(k)

@a(k)

@k
d+

@�1I
@k

d

�
=

(
0� q�1(k)q�2(k; d) +

3dk�5=8

4
q�1(k)� d

)
(4.4.4)

The �rst term is zero from the �rst order condition of stage 2. At k = 1,
q�1(1) = 2 and

q�2(1; d) =
1

4
d if d > 0 (4.4.5)

= 0 � 0 if d < 0 (4.4.6)

Evaluating the directional derivative of the incumbent�s �rst stage pro�t for
k = 1;

�01I(q
�
1(1); q

�
2(1); 1; d) = �2(d

4
) +

3d

4
(2)� d

= 0 if d > 0

from expression (4.4.5)

�01I(q
�
1(1); q

�
2(1); 1; d) = �2(0) + 3d

4
(2)� d

=
d

2
< 0 if d < 0
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by expression (4.4.6). Hence the optimal solution is given by,

k = 1

q�1 = 2

q�2 = 0

5 Appendix

Proof of Lemma 2:

Proof. (i) The Lagrangian, L(a; s; �; �) corresponding to the optimization
problem (3.0.1) is given by equation (3:1:1):

L(a; s;�) = f(a; s)� �T g(a; s)� �Th(a; s)

From ([34], Theorem 3.1) the �rst order condition with directional di¤er-
entiable objective and constraints is given as, 8 xa 2 Rn

f 0a(a
�(s); s;xa)� �T g0aa�(s); s;xa)� �Th0aa�(s); s;xa) � 0

If the constraint is C1, we can sharpen the �rst order condition to 8 xa 2 Rn,

f 0a(a
�(s); s;xa)�

�
�Trga(a�(s); s) + �Trha(a�(s); s)

�
� xa � 0

=) f 0a(a
�(s); s;xa) �

�
�Trga(a�(s); s) + �Trha(a�(s); s)

�
� xa(5.0.7)

(ii) If the objective function f(a; s) and the inequality constraints are
locally Lipschitz, the Clarke generalized directional derivative of the La-
grangian exists. Thus, the �rst order necessary condition for each s satis�es,

0 2 @La(a�(s); s; �)

From ([5], Theorem 2.2),

0 2 @af(a�(s); s; �)� �T@ga(a�(s); s)� �T@ha(a�(s); s)

When the constraints are C1 in a the �rst order necessary condition reduces
to,

0 2 @af(a�(s); s)� �Trga(a�(s); s)� �Trha(a�(s); s)

Thus there exist &a�(s)(a�(s); s) 2 @af(a�(s); s) such that

&a�(s)(a
�(s); s) = �Trga(a�(s); s) + �Trha(a�(s); s) (5.0.8)
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(iii) Note by de�nition, f 0a(a
�(s); s;xa) � f�oa (a�(s); s;xa) 8 xa 2 Rn,

hence the result follows.

Proof of Theorem 5:

Proof. (i) Given any � and a direction x of perturbation, consider y satis-

fying the fundamental lemma. By the mean value theorem:

f(a�(s) + ty; s+ tx)� f(a�(s); s) = t(&a(t); &s(t)) � (y; x); (5.0.9)

where (&a(t); &s(t)) 2 cof[x2T@f(x)g with T = [(a�(s); s); (a�(s)+ty; s+tx],
and:

g(a�(s)+ ty; s+ tx)�g(a�(s); s) = t(rag(z(t));rsg(z(t))) �(y; x) (5.0.10)

where z(t) 2 T . By upper hemicontinuity of the generalized gradient, as
t # 0, (rag(z(t));rsg(z(t))) converges to (rag(a�(s); s);rsg(a�(s); s)) and
(&a(t); &s(t)) converges to cluster points in @f(a�(s); s). Let (&a; &s) be any
one of them; by our choice of y we have:

rag(a�(s); s):y +rsg(a�(s); s) � x < 0

and

(&a; &s):(y; x) > inf
�2K(a�(s);s)

L�os (a
�(s); s;�;x)

Therefore for t small enough, by substituting above in (5.0.9) and (5.0.10)
we have

rag(z(t)):y +rsg(z(t)) � x < 0

(&a(t); &s(t)):(y; x) > inf
�2K(a�(s);s)

L�os (a
�(s); s;�;x)

This implies that g(a�(s)+ty; s+tx) = g(a�(s); s)+t(rag(z(t));rsg(z(t))):(y; x) <
0 : Therefore, a�(s) + ty 2 D(s+ tx); and also that

f(a�(s)+ ty; s+ tx)�f(a�(s); s) � t
�

inf
�2K(a�(s);s)

L�os (a
�(s); s;�;x)� �

�
Since a�(s) + ty 2 D(s + tx), then it must be the case that V (s + tx) �
f(a�(s) + ty; s+ tx); and we get that:

V (s+ tx)� V (s)
t

� f(a�(s) + ty; s+ tx)� f(a�(s); s)
t

� inf
�2K(a�(s);s)

L�os (a
�(s); s;�;x)� �
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Therefore:

lim inf
t�!0

V (s+ tx)� V (s)
t

� inf
�2K(a�(s);s)

L�os (a
�(s); s;�;x)

(ii) Here

inf
�2K

L�os (a
�(s); s;x) = inf

�2K(a�(s);s)

�
min
&s
&s � x� [�Trsg(a�(s); s) � x]

�
And note by de�nition of a max and min,

Los(a
�(s); s;x) = �L�os (a�(s); s;�x)

Choose a sequence ftng converging to 0 such that:

lim sup
t!0

V (s+ tx)� V (s)
t

= lim
n!1

V (s+ tnx)� V (s)
tn

:

Since D(s) is uniformly compact near s, for n large, there always exists
a�n(s) 2 D(s + tnx) such that V (s + tnx) = f(a�n(s); s + tnx). Since the
sequence fa�n(s)g is in a compact domain, there exists a convergent sub-
sequence. So without loss of generality, assume that a�n(s) ! a�(s), and
necessarily a�(s) 2 D(s): By continuity of V , V (s) = f(a�(s); s):Next, let
y = y(�x; �) satisfy the fundamental lemma above at a�(s) for a direction
�x of perturbation, and let an(s) = a�n(s)+tny. By the mean value theorem
we have:

f(an(s); s)� f(a�n(s); s+ tnx) = tn(&a(tn); &s(tn)) � (y;�x) (5.0.11)

where (&a(tn); &s(tn)) 2 co f[x2T@f(x)g and T = [(an(s); s); (a�n(s); s+tny)],
and also:

g(an(s); s)�g(a�n(s); s+tnx) = tn(rag(z(tn));rsg(z(tn)))�(y;�x) (5.0.12)

where z(tn) 2 T . As n ! 1; tn ! 0 and a�n(s) ! a�(s), by continu-
ity of the gradient (smooth constraints), (rag(z(tn));rsg(z(tn)) converges
to (rag(a�(s); s);rsg(a�(s); s)). Also, (&a(tn); &s(tn)) converges to cluster
points in @f(a�(s); s): Let (&a; &s) be any one of them; by our choice of y
satisfying the fundamental lemma for direction �x, and where y = y(�;�x),
we have:

rag(a�(s); s) � y �rsg(a�(s); s) � x < 0
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and:

(&a; &s):(y;�x) > inf
�
L�os (a

�(s); s;�x)� �

Hence, for n large enough, we have:

rag(a�n(s); s) � y �rsg(a�n(s); s) � x < 0 (5.0.13)

and:

(&a(tn); &s(tn)) � (y;�x) > inf
�2K

L�os (a
�(s); s;�x)� �: (5.0.14)

Inequalities (5.0.12) and (5.0.13) implies that g(an(s); s)�g(a�n(s); s+tnx) <
0 implies that an(s) 2 D(s), and inequalities (5.0.11) and (5.0.14) imply:

f(an(s); s)� f(a�n(s); s+ tnx) > inf
�2K

L�os (a
�(s); s;�x)� �:

Since an(s) 2 D(s) it must be that V (s) � f(an(s); s) so we have that:

lim sup
t!0

V (s+ tx)� V (s)
t

� lim
n!1

f(a�n(s); s+ tnx)� f(an(s); s)
tn

� �
�
inf
�2K

L�os (a
�(s); s;�x)� �

�
(5.0.15)

= �

24 min&s &s:(�x)�
inf

�2K(a�(s);s)
[�Trsg(a�(s); s) � (�x)]� �

35
= max

&s
&s:(x)� sup

�2K(a�(s);s)
[�Trsg(a�(s); s)):x] + �(5.0.16)

Since � is arbitrary small, we have:

D+V (s;x) = lim sup
t!0

V (s+ tx)� V (s)
t

� sup
�2K(a�(s);s)

Los(a
�(s); s;�;x)

(iii) Since MFCQ holds for all a�(s) 2 D(s); from Theorem (5), we have:

sup
a�(s)2A�(s)

min
(�)2K(a�(s);s)

�
L�os (a

�(s); s;�)x
	

� D+V (s;x) � D+V (s;x)
� sup

a�(s)2A�(s)
max

(�)2K(a�(s);s)
fLos(a�(s); s;�)xg
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