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Abstract

Given a set of possible vector outcomes and the set of lotteries over
it, we define sets of (a) von Neumann-Morgenstern representations
of preferences over the lotteries, (b) mappings that yield the certainty
equivalent outcomes corresponding to a lottery, (c) mappings that yield
the risk premia corresponding to a lottery, (d) mappings that yield
the acceptance set of lotteries corresponding to an outcome, and (e)
vector-valued functions that yield generalized Arrow-Pratt coefficients
corresponding to an outcome. Our main results establish bijections be-
tween these sets of mappings for very general specifications of outcome
spaces, lotteries and preferences. As corollaries of these results, we
derive analogous dual representations of risk averse preferences. Some
applications to financial theory illustrate the potential uses of our re-
sults. Finally, we provide criteria for comparing the risk aversion of
preferences in terms of the dual representations.

JEL classification: C02, D01, D81
Key words: von Neumann-Morgenstern utility, risk aversion, vector

outcomes, certainty equivalence, risk premia, acceptance set, Arrow-
Pratt coefficient, eikonal equation, Dirichlet problem, viscosity solution

1 Introduction

The classical theory of risk aversion (Arrow [1], Pratt [24], Yaari [28]) fea-
tures real-valued outcomes and characterizes risk aversion and comparative
risk aversion in terms of von Neumann-Morgenstern (henceforth, vN-M)
utilities, certainty equivalents, risk premia, acceptance sets and Arrow-Pratt
coefficients. Given these constructs, two natural questions arise. (1) Can a
decision-maker’s preference, usually represented by a vN-M utility, be repre-
sented equivalently in terms of the other constructs? (2) Can these dualities
be established, not only in the real outcomes setting, but very generally in
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the vector outcomes setting after modifying the dual notions to account for
vector outcomes in an economically meaningful way?

A positive answer to (1) would enable greater flexibility and precision
in the specification of cardinal preferences, just as dual constructs such as
expenditure functions and indirect utility functions have done in the case of
ordinal preferences. This is because, in applications of vN-M utility theory,
one is usually interested in objects such as risk premia, certainty equivalents,
acceptance sets and Arrow-Pratt functions, while the vN-M utility is merely
the means for systematically generating these objects. Duality results, such
as the ones we report below, allow one to directly specify and work with the
objects of interest, safe in the knowledge that, if these objects satisfy the
properties we postulate, then they are indeed generated by a vN-M utility,
and therefore are well-grounded in expected utility theory.

A positive answer to (2) would enable applications of the theory to situ-
ations where outcomes are properly modeled as vectors rather than scalars.
For instance, consider the problem of choosing among financial assets whose
returns are random processes. As random processes can be represented by
lotteries over a set of sample paths, the decision problem is essentially one of
choosing among lotteries over sample paths. These sample paths are the rel-
evant vector outcomes that cannot be reduced to a scalar “wealth” outcome
without some degree of ad hoc aggregation. Such problems, exemplified by
Application 7.4, also motivate the generality of our formalism. As sample
paths in financial economics are typically continuous functions of time or
belong to an even more general vector space, a useful theory should strive
to specify outcome spaces as generally as tractable and necessary.1

In this paper, we identify general classes of vector outcome spaces and
preferences for which (1) and (2) can simultaneously be answered in the
affirmative in the case of certainty equivalents, risk premia and acceptance
sets. We also identify a class of vector outcome spaces and preferences for
which analogous results hold in the case of generalized Arrow-Pratt func-
tions, which are mappings that yield the appropriate generalized Arrow-
Pratt coefficient at each outcome. Our results are general in two senses.
First, they hold very generally in the vector outcomes case and not merely
in the real outcomes case. Secondly, although the derivation of dual rep-
resentations of risk averse preferences is a prime motivation for our work,
our main results will characterize a larger set of preferences in terms of the
above-mentioned constructs and the dual characterizations of risk averse
preferences will be derived as corollaries of the main results.

The first novelty in this paper, namely the setting-up and analysis of the
1For instance, the Wiener measure on the space of continuous sample paths results in

the coordinate process being the Wiener process, which generates Brownian motion and
geometric Brownian motion via elementary transformations. Itô and McKean [14] is the
classic reference for the mathematics of diffusions and Duffie [6] is a useful introduction
to the financial theory applications.
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duality problem with respect to cardinal preferences, seems to have received
no attention in the literature.2 The second novelty, namely the study of
risk aversion in the vector outcomes setting, has received some attention.
There are two distinct strands in this literature. One strand (Duncan [7],
Karni [15], Kihlstrom and Mirman [16], [17], Levy and Levy [19], Shah [26])
studies risk aversion directly in the context of vector-valued risks that are
given as primitive objects, as we do in this paper. The emphasis in these
papers is to develop measures of risk aversion and notions of comparative
risk aversion that are appropriate in the vector outcomes context. The other
strand (Grant et al. [10], [11], Hanoch [12], Martinez-Legaz and Quah [20],
Stiglitz [27]) studies the relationship between lotteries on commodity bun-
dles and lotteries on wealth when they are linked by a consumer’s budget
constraint. It is natural in this setting to interpret the vN-M utility function
on a real domain as the indirect utility function for a fixed price vector. For
each price vector, this enables the application of the classical theory of risk
aversion couched in terms of real outcomes. This context also permits a
restricted indirect theory of choice among vector-valued risks since lotteries
over wealth levels amount to lotteries over commodity bundles on the En-
gel curve corresponding to a given price vector. While Stiglitz [27] explores
the implications of the purely indirect approach, Grant et al. ([10], [11])
and Martinez-Legaz and Quah [20] study the nature and extent of duality
between the direct and indirect approaches.

The results

Consider an outcome set O that is a subset of an ordered vector space X
and let ∆(O) be the set of lotteries on O; see Section 2 for the specification
of X, O and ∆(O). Let U be the set of vN-M utility functions u : O → <
that are continuous and increasing with respect to the given partial order
on X. Let F be a set of mappings F : ∆(O)⇒O, where F (µ) is interpreted
as the set of certainty equivalent outcomes corresponding to a lottery µ.3

Let P be a set of mappings P : ∆(O)⇒X, where P (µ) is interpreted as the
set of risk premia corresponding to a lottery µ. Unlike in the real outcomes
setting, the notions of certainty equivalent outcomes and risk premia are
necessarily set-valued in the vector outcomes setting. Finally, let A be a set
of mappings A : O⇒∆(O), where A(x) is interpreted as the acceptance set
of lotteries corresponding to an outcome x. We specify U , F , P and A in
Sections 3, 4 and 5 by imposing appropriate requirements on their elements.
We also specify the sets Ua, Fa, Pa and Aa as subsets of U , F , P and A
respectively, where Ua consists of risk averse utilities.

2There is, of course, a considerable literature on the ordinal version of the problem;
see Diewert [5] for a survey and Section 9 for a comparison of the two problems.

3We use ⇒ to denote set-valued mappings as well as logical implication. The intended
meaning should be clear from the context.
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The first contribution of this paper is to show the existence of bijections
φ : U → F , ψ : F → P and ξ : U → A (Theorems 3.6, 4.1 and 5.5);
clearly, these bijections generate other bijections ψ ◦ φ : U → P, ξ ◦ φ−1 :
F → A and ξ ◦ φ−1 ◦ ψ−1 : P → A. We use these results to show that
analogous results hold (Corollaries 3.7, 4.2 and 5.6) with Ua, Fa, Pa and
Aa replacing U , F , P and A respectively. We should mention here a minor
conceptual complication in the interpretation of the injectiveness of φ, ξ and
ψ ◦ φ. In all three cases, equivalent vN-M utilities in the domain U have
identical images. However, these mappings are injective when we identify
each function u ∈ U with the equivalence class of vN-M functions equivalent
to it. This identification is sensible and legitimate as we are seeking dual
representations of preferences, not of vN-M utilities; see Section 3 for a more
formal statement of this point.

Our method for deriving these dualities may be illustrated by describing
how the duality φ between U and F is established. Given u ∈ U and a lottery
µ ∈ ∆(O), the set of certainty equivalents φ(u)(µ) is defined in the natural
way by (1) and it is straightforward to confirm that the resulting mapping
φ(u) : ∆(O)⇒O satisfies the properties that define the elements of F , i.e.,
φ(u) ∈ F . Next, we show that φ is injective. The final step is to show that φ
is surjective. Given F ∈ F , we define a complete preordering ºF on ∆(O);
let ÂF be the asymmetric factor of ºF . The vN-M utility representation
problem with respect to ÂF is to find uF : O → < such that, for all µ, λ ∈
∆(O), µ ÂF λ if and only if

∫
O µ(dz) uF (z) >

∫
O λ(dz)uF (z). We show that

φ is surjective by showing that the expected utility representation problem
with respect to ÂF has a solution uF : O → < such that uF ∈ U and
φ(uF ) = F .

When we study the duality between vN-M utilities and Arrow-Pratt
functions, we start with the classical setting X = <. In this case, we define
a set U1d (resp. U1d

a ) of vN-M (resp. risk averse vN-M) utilities u : O → <
and a set R1 (resp. R1

+) of Arrow-Pratt functions a : O → <. In the
Euclidean setting X = <n, we define a set Und of vN-M utilities u : O → <,
a set Rn of generalized Arrow-Pratt functions a : O → <n and a set G of
functions g : ∂O → < that specify the boundary values of utility functions.
The sets U1d and Und are more restrictive than the set U as utilities that
are dual to Arrow-Pratt functions necessarily have to be sufficiently smooth
for Arrow-Pratt functions to be derived from them.

The second contribution of this paper is to show the existence of bijec-
tions between vN-M utility functions and Arrow-Pratt functions. In the case
X = <, we show the existence of bijections χ : U1d →R1 and χ : U1d

a →R1
+

(Theorem 6.3 and Corollary 6.5). In the Euclidean case X = <n, we show
the existence of a bijection Γ : Und →Rn × G (Theorem 6.13).

In addition to the two sets of duality results, we also illustrate their
potential for applications by deriving some of their implications in a financial
theory setting. For instance, we show in Theorem 7.1 that F ∈ F and A ∈ A
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are continuous mappings. We use these facts to characterize the value of
financial assets to a risk averse investor when the assets are characterized
by a known or random stream of dividends. This is done in a discrete time
setting as well as in the continuous time setting.

An important aspect of preferences is their degree of risk aversion. So,
can we compare the risk aversion of preferences in terms of the dual repre-
sentations derived in this paper? We show in Section 8 that the results of
Shah [26] facilitate this comparison in the case of acceptance set mappings
in Aa and risk premia mappings in Pa.

Before turning to the formalism, it is useful to foreshadow the salient
implications of X being a general vector space, instead of X = <.

(1) If X = <, then the usual order > on < is complete. For a general
vector space X, there is no natural complete analogue of >.

(2) If X = < and the vN-M utility u : O → < is strictly increasing, then
the risk premia and certainty equivalents are singletons ordered by >. If X
is a general vector space, then these constructs cease to be singleton-valued.
A conceptual problem created by this fact is the question: what meaning is
to be ascribed to the relation “the risk premia generated by a lottery µ are
larger than the risk premia generated by lottery λ”?

(3) The vector outcome setting forces one to define the mean of a lottery
over quite general vector outcomes, which entails integrating vector-valued
functions. In this regard, it is important to confirm that a unique mean
exists for every lottery.

(4) We need to define an economically meaningful generalized Arrow-
Pratt function for the vector outcomes setting.

(5) When dealing with Arrow-Pratt functions, the cases X = < and
X = <n are treated separately as they entail distinct technical problems. If
X = <, then the key problem is to derive the unique utility u ∈ U1d that
solves an initial value problem for an ordinary differential equation (hence-
forth, ODE) generated by an Arrow-Pratt function a ∈ R1. If X = <n,
then the key problem is to derive the unique utility u ∈ Und that solves
a Dirichlet problem for a system of second order partial differential equa-
tions (henceforth, PDEs) generated by a generalized Arrow-Pratt function
a ∈ Rn, which can be reduced to a Dirichlet problem for an eikonal PDE.
Solutions of these two problems involve entirely different concepts, methods
and levels of difficulty.

The rest of this paper is organized as follows. Section 2 contains defini-
tions and technical preliminaries. In Sections 3, 4 and 5, we establish the
dualities between the sets U , F , P and A (resp. Ua, Fa, Pa and Aa). Sec-
tion 6 contains the dualities between U1d (resp. U1d

a , Und) and R1 (resp. R1
+,

Rn). Section 7 is devoted to some applications. Section 8 shows how the
risk aversion of different preferences can be compared in terms of the dual
representations. In Section 9, we compare the ordinal and cardinal utility
representation problems. We conclude in Section 10. The proofs of Theo-
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rems 2.1, 7.1, 7.2 and 7.3 are relegated to the Appendix.

2 Formal setting

Let X be a real locally convex topological vector space ordered by a reflexive,
transitive and antisymmetric binary relation ≥ such that (a) if x, y, z ∈ X
and x ≥ y, then x+ z ≥ y + z, and (b) if x, y ∈ X, t ∈ <++ and x ≥ y, then
tx ≥ ty. Define the relation > on X by: for x, y ∈ X, x > y if and only if
x ≥ y and x 6= y. Given nonempty sets E, F ⊂ X, we say that E ≥∗ F if
¬y > x for all x ∈ E and y ∈ F . Let X+ = {x ∈ X | x ≥ 0}.

Let O be a convex compact subset of X+ such that 0 ∈ O and ≥ is
latticial on O, i.e., for all x, y ∈ O, there exists z ∈ O such that z ≥ x and
z ≥ y. O is given the subspace topology, which we require to be metrizable.
Moreover, O is given the Borel σ-algebra B(O). As O is metrizable, every
singleton subset of O is closed in O and so {x} ∈ B(O) for every x ∈ O.

For every positive integer n, the space <n will be given the Euclidean
metric topology, with ‖x‖ denoting the Euclidean norm of x ∈ <n.

Let ∆(O) be the set of countably-additive probability measures (hence-
forth, lotteries) on (O,B(O)). Let C(O,<) denote the set of continuous
functions g : O → <. As O is compact, every g ∈ C(O,<) is bounded.
For every g ∈ C(O,<), the formula L(µ, g) =

∫
O µ(dz) g(z) defines the func-

tional L(., g) : ∆(O) → <. ∆(O) is given the weak∗ topology, which is the
projective topology generated on ∆(O) by the family {L(., g) | g ∈ C(O,<)}.

We note some consequences of our assumptions. ∆(O) is compact and
metrizable (Parthasarathy [22], Theorem II.6.4). As O is compact metric,
it is separable, i.e., there is a countable set E ⊂ O that is dense in O.
Given x ∈ O, δx denotes the Dirac measure at x, i.e., for every B ∈ B(O),
δx(B) = 1 if x ∈ B and δx(B) = 0 otherwise. As {x} ∈ B(O) for every x ∈ O,
δx ∈ ∆(O) for every x ∈ O. Let ∆0(E) denote the set of µ ∈ ∆(O) with
finite support in E, i.e., µ is a finite convex combination of Dirac measures
in E. Then, ∆0(E) is dense in ∆(O) (Parthasarathy [22], Theorem II.6.3).
Given µ ∈ ∆(O), mµ =

∫
O µ(dz) z denotes the mean of µ, where the integral

on the right-hand side is the Pettis integral; see Pettis [23] for details.

Theorem 2.1 If O is nonempty, convex, compact and metrizable, and µ ∈
∆(O), then mµ exists, is unique and mµ ∈ O.

We say that u : O → < is risk averse if u(mµ) ≥ ∫
O µ(dz) u(z) for every

µ ∈ ∆(O). For every vN-M utility function u : O → <, the set of functions
[u] = {a + bu | a ∈ < ∧ b ∈ <++} is an equivalence class of functions that
are vN-M representations of the same preference as u. Therefore, we denote
by [u] the preference over lotteries represented by the vN-M utility u.
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3 Utilities and certainty equivalents

The preferences over ∆(O) that are admissible for our duality theory are
those with a vN-M representation in the following set.

Definition 3.1 U is the set of functions u : O → < such that
(a) u is continuous,
(b) u is increasing with respect to >, and
(c) u(0) = 0.

Ua is the subset of U consisting of risk averse utility functions.

(a) is a regularity condition. (b) is a natural requirement in most eco-
nomic contexts. As O ⊂ X+, (b) and (c) imply that u(x) ∈ <+ for every
x ∈ O. Given (a) and (b), (c) does not further restrict the set of preferences
on ∆(O) that have a vN-M representation in U (resp. Ua) because, if u sat-
isfies (a) and (b), then u− u(0) ∈ [u]∩U ; moreover, if u is risk averse, then
so is u− u(0). We now define a set of multi-valued mappings F : ∆(O)⇒O
with the interpretation that F (µ) is the set of certainty equivalent outcomes
corresponding to the lottery µ.

Definition 3.2 F is the set of mappings F : ∆(O)⇒O such that
(A) F has nonempty values,
(B) ≥∗ is a complete and antisymmetric preordering on {F (µ) | µ ∈

∆(O)},
(C) for all µ, λ, γ ∈ ∆(O), F (µ) = F (λ) implies F (µ/2+γ/2) = F (λ/2+

γ/2),
(D) for every λ ∈ ∆(O), {µ ∈ ∆(O) | F (µ) ≥∗ F (λ)} and {µ ∈ ∆(O) |

F (λ) ≥∗ F (µ)} are closed in ∆(O),
(E) x ∈ F (δx) for every x ∈ O,
(F) if x, y ∈ O and x > y, then F (δx) ≥∗ F (δy) and ¬F (δy) ≥∗ F (δx),

and
(G) x ∈ F (µ) implies F (µ) = F (δx).

Fa ⊂ F consists of mappings F : ∆(O)⇒O such that F (δmµ) ≥∗ F (µ) for
every µ ∈ ∆(O).

For u ∈ U , define φ(u) : ∆(O)⇒O by

φ(u)(µ) =
{

x ∈ O
∣∣∣ u(x) =

∫

O
µ(dz) u(z)

}
(1)

Given a utility function u and a lottery µ, φ(u)(µ) is the set of outcomes
that yield the same utility as the expected utility derived from u and µ.
In the case of scalar outcomes and an increasing utility function, the set of
certainty equivalent outcomes is a singleton set; this is no longer the case
when outcomes are vectors.
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Note that, (a) if u ∈ U , then bu ∈ [u] ∩ U for every b ∈ <++, i.e., if
U contains a representation of some preference on ∆(O), then it contains
multiple representations of that preference, and (b) if u ∈ U and v ∈ [u]∩U ,
then φ(u) = φ(v). These observations mean that φ is not injective on U in
the usual sense of the term. However, the appropriate notion of injectiveness
for the dual representation of preferences is that, if u, v ∈ U are such that
φ(u) = φ(v), then u and v must represent the same preference on ∆(O), i.e.,
[u] = [v]. In other words, a function u ∈ U should be identified with the
equivalence class [u]. This preference-based interpretation of the elements
of U and associated notion of injectiveness will apply throughout this paper.

The main result of this section, Theorem 3.6, shows that φ is a bijection
between U and F . A corollary of this result is the fact that φ is also a
bijection between Ua and Fa. The proof is divided into three lemmas. In
Lemma 3.3, we show that φ(u) ∈ F for every u ∈ U . In Lemma 3.4, we
show that φ is injective. Finally, in Lemma 3.5, we show that φ is surjective
by showing that φ−1({F}) 6= ∅ for every F ∈ F .

Lemma 3.3 If u ∈ U , then φ(u) ∈ F .

Proof. Fix u ∈ U and denote φ(u) by F . (a) implies that u is measurable,
and as O is compact, u is bounded. Therefore, the generalized Lebesgue
integral

∫
O µ(dz) u(z) exists for every µ ∈ ∆(O). So, the function U :

∆(O) → <, given by U(µ) =
∫
O µ(dz) u(z), is well-defined. Thus,

F (µ) = {x ∈ O | u(x) = U(µ)} = {x ∈ O | U(δx) = U(µ)} (2)

As ∆(O) is given the weak∗ topology, (a) implies that U is continuous.
(A) As O is convex, it is connected. As O is nonempty and connected, (a)

implies u(O) ⊂ < is nonempty and connected. (b), (c) and the facts that O
is compact and connected imply that U(µ) ∈ [0, sup{u(x) | x ∈ O}] ⊂ u(O).
Consequently, there exists x ∈ O such that u(x) = U(µ), i.e., x ∈ F (µ).

Before demonstrating the other properties of F , we confirm that

F (µ) ≥∗ F (λ) ⇔ U(µ) ≥ U(λ) (3)

for all µ, λ ∈ ∆(O).
Suppose U(µ) < U(λ). By (A), F (µ) 6= ∅ and F (λ) 6= ∅. Let x ∈ F (µ)

and y ∈ F (λ). As 0 ∈ O and O ⊂ X+, (b) and (c) imply 0 ≤ u(x) =
U(µ) < U(λ) = u(y). By (c), y > 0. As O is convex and 0 ∈ O, ty ∈ O for
every t ∈ [0, 1). As [0, 1) is connected and X is a topological vector space,
{ty | t ∈ [0, 1)} is connected. Then, (a) implies that {u(ty) | t ∈ [0, 1)} is
connected. (b) implies {u(ty) | t ∈ [0, 1)} = [0, u(y)). As u(x) ∈ [0, u(y)),
there exists t ∈ [0, 1) such that u(ty) = u(x), i.e., ty ∈ F (µ). As ty < y, we
have ¬F (µ) ≥∗ F (λ).
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Conversely, suppose µ, λ ∈ ∆(O) and ¬F (µ) ≥∗ F (λ). Then, there
exists x ∈ F (µ) and y ∈ F (λ) such that y > x. By (b), u(y) > u(x). Thus,
U(λ) = u(y) > u(x) = U(µ).

We now check that F satisfies (B) to (G).
(B) (3) implies that ≥∗ is a complete preordering on {F (µ) | µ ∈ ∆(O)}.

To see that ≥∗ is antisymmetric on {F (µ) | µ ∈ ∆(O)}, suppose µ, λ ∈ ∆(O)
are such that F (µ) ≥∗ F (λ) and F (λ) ≥∗ F (µ). (3) implies that U(µ) =
U(λ). It follows from (2) that F (µ) = F (λ).

(C) Suppose µ, λ, γ ∈ ∆(O) and F (µ) = F (λ). As ≥∗ is reflexive on
{F (µ) | µ ∈ ∆(O)}, we have F (µ) ≥∗ F (λ) and F (λ) ≥∗ F (µ). By (3),
U(µ) = U(λ). The linearity of U implies U(µ/2+γ/2) = U(µ)/2+U(γ)/2 =
U(λ)/2 + U(γ)/2 = U(λ/2 + γ/2). By (3) and the antisymmetry of ≥∗ on
{F (µ) | µ ∈ ∆(O)}, we have F (µ/2 + γ/2) = F (λ/2 + γ/2).

(D) Consider λ ∈ ∆(O). By (3) and the continuity of U , {µ ∈ ∆(O) |
F (µ) ≥∗ F (λ)} = {µ ∈ ∆(O) | U(µ) ≥ U(λ)} is closed in ∆(O). Similarly,
{µ ∈ ∆(O) | F (λ) ≥∗ F (µ)} is closed in ∆(O).

(E) For every x ∈ O, u(x) = U(δx), and so x ∈ F (δx).
(F) Consider x, y ∈ O such that x > y. Let x′ ∈ F (δx) and y′ ∈ F (δy).

If y′ > x′, then (b) implies u(y) = u(y′) > u(x′) = u(x), a contradiction.
So, F (δx) ≥∗ F (δy). As x ∈ F (δx), y ∈ F (δy) and x > y, it follows that
¬F (δy) ≥∗ F (δx).

(G) Let x ∈ F (µ). If y ∈ F (δx), then u(y) = U(δx) = u(x) = U(µ). So,
y ∈ F (µ). Thus, F (δx) ⊂ F (µ). If y ∈ F (µ), then u(y) = U(µ) = u(x) =
U(δx). So, y ∈ F (δx). Thus, F (µ) ⊂ F (δx).

We now execute the second step in the proof of Theorem 3.6.

Lemma 3.4 φ is injective.

Proof. Consider u, v ∈ U such that φ(u) = φ(v). We show that [u] = [v].
(1) We first show that u and v are comonotonic, i.e., induce the same

ordering on O. Suppose there exist x, y ∈ O such that u(x) ≥ u(y) and
v(x) < v(y). Then there exists t ∈ [0, 1) such that ty ∈ O and v(ty) = v(x).
It follows that ty ∈ φ(v)(δx). However, as (b) implies that u(x) ≥ u(y) >
u(ty), we have ty 6∈ φ(u)(δx), a contradiction.

(2) By Lemma 3.3 and (A), φ(u) and φ(v) have nonempty values. For
ν ∈ ∆(O), let xν ∈ φ(u)(ν). Given µ, λ ∈ ∆(O), step (1) implies

U(µ) ≥ U(λ) ⇔ u(xµ) ≥ u(xλ) ⇔ v(xµ) ≥ v(xλ) ⇔ V (µ) ≥ V (λ)

Thus, U and V are comonotonic linear mappings on ∆(O).
(3) As ∆(O) is compact and U is continuous, there exist α, β ∈ ∆(O)

such that U(α) ≤ U(µ) ≤ U(β) for every µ ∈ ∆(O). If U(α) = U(β), then U
is constant over ∆(O), say U(µ) = kU for every µ ∈ ∆(O). If U is constant
over ∆(O), then by step (2) so is V . Let V (µ) = kV for every µ ∈ ∆(O).
Setting a = kV − kU and b = 1 implies V = a + bU .
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Suppose U(β) > U(α). By step (2), V (β) > V (α). Define

a = V (α)− U(α)
[
V (β)− V (α)
U(β)− U(α)

]
and b =

V (β)− V (α)
U(β)− U(α)

Clearly, b > 0. Now consider µ ∈ ∆(O). We show that V (µ) = a + bU(µ).
As U(µ) ∈ [U(α), U(β)], there is a unique t ∈ [0, 1] such that U(µ) =

tU(β)+(1−t)U(α). As U is linear, U(µ) = U(tβ+(1−t)α). By step (2) and
the linearity of V , we have V (µ) = V (tβ + (1− t)α) = tV (β) + (1− t)V (α).
Then, using the definitions of a and b, we have a+bU(µ) = V (α)+b[U(µ)−
U(α)]. As b[U(µ)− U(α)] = bt[U(β)− U(α)] = t[V (β)− V (α)], we have

a + bU(µ) = V (α) + t[V (β)− V (α)] = tV (β) + (1− t)V (α) = V (µ)

It follows that v(x) = V (δx) = a + bU(δx) = a + bu(x) for every x ∈ O.
Thus, [u] = [v].

The last step of the argument is the following.

Lemma 3.5 If F ∈ F , then φ−1({F}) 6= ∅.

Proof. Consider F ∈ F . By (A), F (µ) 6= ∅ for every µ ∈ ∆(O). Define
the relation º∗ on ∆(O) by: µ º∗ λ if and only if F (µ) ≥∗ F (λ). (B)
implies that º∗ is a complete preordering. Define the relation ∼∗ on ∆(O)
by: µ ∼∗ λ if and only if µ º∗ λ and λ º∗ µ.

If µ, λ ∈ ∆(O) are such that µ ∼∗ λ, then µ º∗ λ and λ º∗ µ. Therefore,
F (µ) ≥∗ F (λ) and F (λ) ≥∗ F (µ). So, the antisymmetry property in (B)
implies F (µ) = F (λ). Conversely, if F (µ) = F (λ), then the reflexivity
property in (B) implies F (µ) ≥∗ F (λ) and F (λ) ≥∗ F (µ). Thus, µ º∗ λ and
λ º∗ µ, and consequently, µ ∼∗ λ. Thus, µ ∼∗ λ if and only if F (µ) = F (λ).

Consider µ, λ, γ ∈ ∆(O) such that µ ∼∗ λ. Then, F (µ) = F (λ) and (C)
implies that F (µ/2 + γ/2) = F (λ/2 + γ/2). Thus, µ/2 + γ/2 ∼∗ λ/2 + γ/2.

Given γ ∈ ∆(O), (D) implies that S = {µ ∈ ∆(O) | µ º∗ γ} = {µ ∈
∆(O) | F (µ) ≥∗ F (γ)} is closed in ∆(O). Consider µ, λ, γ ∈ ∆(O) and
the function f : [0, 1] → ∆(O) defined by f(t) = tµ + (1 − t)λ. Consider
g ∈ C(O,<) and a sequence (tn) in [0, 1] converging to t ∈ [0, 1]. Then,∫
O f(tn)(dx) g(x) = tn

∫
O µ(dx) g(x) + (1− tn)

∫
O λ(dx) g(x). Taking limits,

we have limn↑∞
∫
O f(tn)(dx) g(x) = t

∫
O µ(dx) g(x) + (1− t)

∫
O λ(dx) g(x) =∫

O f(t)(dx) g(x). Thus, f is continuous, and as S is closed in ∆(O),

{t ∈ [0, 1] | tµ + (1− t)λ º∗ γ} = {t ∈ [0, 1] | f(t) º∗ γ} = f−1(S)

is closed in [0, 1]. By an analogous argument, {t ∈ [0, 1] | γ º∗ tµ+(1− t)λ}
is closed in [0, 1].

It follows (Herstein and Milnor [13], Theorem 8) that there exists a linear
representation V : ∆(O) → < of º∗. Clearly, U : ∆(O) → <, defined by
U(µ) = V (µ)−V (δ0), is a linear representation of º∗ and U(δ0) = 0. As for
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every λ ∈ ∆(O), the sets {µ ∈ ∆(O) | U(µ) ≥ U(λ)} = {µ ∈ ∆(O) | µ º∗ λ}
and {µ ∈ ∆(O) | U(µ) ≤ U(λ)} = {µ ∈ ∆(O) | λ º∗ µ} are closed in ∆(O),
U is continuous. Define u : O → < by u(z) = U(δz). It is straightforward
to check that z 7→ δz is continuous. As U is continuous, so is u. Also,
u(0) = U(δ0) = 0.

Given µ ∈ ∆(O), as ∆0(E) is dense in ∆(O), there exists a sequence
(µn) ⊂ ∆0(E) that converges to µ in the weak∗ topology. As each µn has
finite support and U is linear, we have

U(µn) = U


 ∑

z∈supp µn

µn({z})δz


 =

∑
z∈supp µn

µn({z})U(δz)

The definition of u implies

U(µn) =
∑

z∈supp µn

µn({z})u(z) =
∫

O
µn(dz)u(z)

The continuity of U and u imply

U(µ) = lim
n↑∞

U(µn) = lim
n↑∞

∫

O
µn(dz)u(z) =

∫

O
µ(dz) u(z)

We now verify that u ∈ U . By construction, u satisfies (a) and (c). To
check that (b) is satisfied, consider x, y ∈ O such that x > y. Then, (F)
implies F (δx) ≥∗ F (δy) and ¬F (δy) ≥∗ F (δx). Consequently, δx º∗ δy and
¬δy º∗ δx. Therefore, u(x) = U(δx) > U(δy) = u(y).

Finally, we show that φ(u) = F . We need to show that

F (µ) = {x ∈ O | u(x) = U(µ)} = {x ∈ O | U(δx) = U(µ)}

for every µ ∈ ∆(O). Observe that, for all µ, λ ∈ ∆(O),

F (µ) = F (λ) ⇔ F (µ) ≥∗ F (λ) ∧ F (λ) ≥∗ F (µ)
⇔ µ º∗ λ ∧ λ º∗ µ

⇔ U(µ) ≥ U(λ) ∧ U(λ) ≥ U(µ)
⇔ U(µ) = U(λ)

The first equivalence follows from (B) as ≥∗ is reflexive and antisymmetric,
while the second and third equivalences follow from the definitions of º∗
and U .

Consider x ∈ O such that U(δx) = U(µ). It follows that F (δx) = F (µ).
By (E), x ∈ F (δx) = F (µ). Conversely, consider x ∈ F (µ). By (G), F (µ) =
F (δx). Therefore, U(µ) = U(δx). Thus, {x ∈ O | U(δx) = U(µ)} = F (µ).

As is evident from Theorem 8 in Herstein and Milnor [13] and the above
proof, (D) is stronger than the “continuity” condition that is sufficient for

11



the existence of a linear representation of º∗. However, the extra power of
(D) is useful for showing that the derived linear representation is continuous
and admits an expected utility representation.

Lemmas 3.3, 3.4 and 3.5 yield

Theorem 3.6 φ is a bijection from U to F .

The following result is a straightforward corollary.

Corollary 3.7 φ is a bijection from Ua to Fa.

Proof. It follows from Theorem 3.6 that φ(Ua) ⊂ φ(U) = F . Consider u ∈
Ua. We check that F ≡ φ(u) ∈ Fa. Suppose there exists µ ∈ ∆(O) such that
¬F (δmµ) ≥∗ F (µ); note that mµ ∈ O by Theorem 2.1. Then, there exists
x ∈ F (µ) and y ∈ F (δmµ) such that x > y. By definition, u(x) = U(µ) and
u(y) = U(δmµ) = u(mµ). As x > y, we have u(mµ) = u(y) < u(x) = U(µ),
which contradicts the fact that u ∈ Ua. Thus, φ(Ua) ⊂ Fa.

Injectiveness of φ : Ua → Fa follows from Theorem 3.6 as Ua ⊂ U .
To check that φ : Ua → Fa is surjective, consider F ∈ Fa. As Fa ⊂ F ,

we have F ∈ F . By Theorem 3.6, there exists u ∈ U such that φ(u) = F .
We need to confirm that u ∈ Ua. Consider µ ∈ ∆(O). As F ∈ Fa, we have
F (δmµ) ≥∗ F (µ). So, δmµ º∗ µ. This implies u(mµ) = U(δmµ) ≥ U(µ) =∫
O µ(dz) u(z), as required.

4 Certainty equivalents and risk premia

Another object of interest is the set of risk premia associated with a lottery.
Given F ∈ F , define ψ(F ) : ∆(O)⇒X by ψ(F )(µ) = {mµ − x ∈ X | x ∈
F (µ)}. Setting u = φ−1(F ), it follows that,

ψ(F )(µ) = {y ∈ X | mµ − y ∈ F (µ)}
=

{
y ∈ X

∣∣∣ mµ − y ∈ O ∧ u(mµ − y) =
∫

O
µ(dz) u(z)

}

As in the case of certainty equivalents, while the set of risk premia is a
singleton set when outcomes are scalars and u is increasing, this is not the
case when outcomes are vectors.

Define T : ∆(O)×X → X by T (µ, x) = mµ−x. Clearly, given µ ∈ ∆(O),
T (µ, .) is a bijection. Define

P = {T (., F (.)) : ∆(O)⇒X | F ∈ F}
and let Pa be the subset of P consisting of mappings P : ∆(O)⇒X such
that P (µ) ≥∗ P (δmµ). The following duality result follows.

Theorem 4.1 ψ is a bijection from F to P.
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Proof. Clearly, ψ(F )(.) = {T (., x) | x ∈ F (.)} = T (., F (.)) ∈ P. By
definition, ψ is surjective. To check injectiveness, suppose F, G ∈ F are
such that F 6= G. Then, there exists µ ∈ ∆(O) such that F (µ) 6= G(µ).
Without loss of generality, there exists x ∈ F (µ) − G(µ). Thus, mµ − x ∈
ψ(F )(µ)− ψ(G)(µ). Consequently, ψ(F ) 6= ψ(G).

Corollary 4.2 ψ is a bijection from Fa to Pa.

Proof. Theorem 4.1 implies that ψ(Fa) ⊂ ψ(F) = P. Consider F ∈ Fa.
We check that P ≡ ψ(F ) ∈ Pa. Suppose there exists µ ∈ ∆(O) such that
¬P (µ) ≥∗ P (δmµ); note that mµ ∈ O by Theorem 2.1. Then, there exists
x ∈ P (µ) and y ∈ P (δmµ) such that y > x. It follows that mµ−x > mµ−y.
As mµ− x ∈ F (µ) and mµ− y ∈ F (δmµ), we have ¬F (δmµ) ≥∗ F (µ), which
contradicts the fact that F ∈ Fa. Thus, ψ(Fa) ⊂ Pa.

Injectiveness of ψ : Fa → Pa follows from Theorem 4.1 as Fa ⊂ F .
To check that ψ : Fa → Pa is surjective, consider P ∈ Pa. As Pa ⊂ P,

we have P ∈ P. By Theorem 4.1, there exists F ∈ F such that ψ(F ) = P .
We only need to confirm that F (δmµ) ≥∗ F (µ) for every µ ∈ ∆(O). Suppose
¬F (δmµ) ≥∗ F (µ) for some µ ∈ ∆(O). Then, there exists x ∈ F (µ) and
y ∈ F (δmµ) such that x > y. It follows that mµ − y > mµ − x. As
mµ − x ∈ P (µ) and mµ − y ∈ P (δmµ), we have ¬P (µ) ≥∗ P (δmµ), which
contradicts the fact that P ∈ Pa.

5 Utilities and acceptance sets

We now establish the duality between U and the set of mappings A :
O⇒∆(O) that yield the acceptance set A(x) ⊂ ∆(O) for every outcome
x ∈ O. Given A : O⇒∆(O), define the lower inverse mapping A− : ∆(O)⇒O
by A−(µ) = {x ∈ O | µ ∈ A(x)}.

Definition 5.1 A is the set of mappings A : O⇒∆(O) such that
(A) A− has nonempty values,
(B) ⊂ is complete on {A−(µ) | µ ∈ ∆(O)},4
(C) for every λ ∈ ∆(O), {µ ∈ ∆(O) | A−(µ) ⊂ A−(λ)} and {µ ∈ ∆(O) |

A−(µ) ⊃ A−(λ)} are closed in ∆(O),
(D) for all µ, λ, γ ∈ ∆(O), if A−(λ) = A−(µ), then A−(λ/2 + γ/2) =

A−(µ/2 + γ/2),
(E) for all x, y ∈ O, x > y implies A−(δx) ⊃ A−(δy) and A−(δx) 6⊂

A−(δy), and
(F) for µ ∈ ∆(O) and x ∈ O, x ∈ A−(µ) if and only if A−(δx) ⊂ A−(µ).

Aa is the subset of A consisting of mappings A : O⇒∆(O) such that, for
every x ∈ O, µ ∈ A(x) implies ¬x > mµ.

4That ⊂ is an antisymmetric preordering comes for free.
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Given u ∈ U , define ξ(u) : O⇒∆(O) by ξ(u)(x) = {µ ∈ ∆(O) | u(x) ≤∫
O µ(dz) u(z)}. The main result of this section, Theorem 5.5, shows that ξ

is a bijection between U and A. The proof is divided into three lemmas.
In Lemma 5.2, we show that ξ(u) ∈ A for every u ∈ U . In Lemma 5.3, we
show that ξ is injective. Finally, in Lemma 5.4, we show that ξ is surjective
by showing that ξ−1({A}) 6= ∅ for every A ∈ A.

Lemma 5.2 If u ∈ U , then ξ(u) ∈ A.

Proof. Fix u ∈ U , denote ξ(u) by A and define U : ∆(O) → < by U(µ) =∫
O µ(dz) u(z). By definition, for every z ∈ O and µ ∈ ∆(O),

z ∈ A−(µ) ⇔ µ ∈ A(z) ⇔ U(µ) ≥ u(z) (4)

Consider µ, λ ∈ ∆(O). (4) implies that A−(µ) ⊂ A−(λ) is equivalent to
[U(µ) ≥ u(z) ⇒ U(λ) ≥ u(z)]. Also, U(λ) ≥ U(µ) implies [U(µ) ≥
u(z) ⇒ U(λ) ≥ u(z)]. Conversely, suppose U(λ) < U(µ). As O is con-
nected and compact, (a) implies that u(O) ⊂ < is a closed interval. Thus,
U(λ), U(µ) ∈ u(O), and there exists z ∈ O such that U(λ) < u(z) < U(µ).
Thus, U(λ) ≥ U(µ) is equivalent to [U(µ) ≥ u(z) ⇒ U(λ) ≥ u(z)]. Conse-
quently, for all µ, λ ∈ ∆(O),

A−(µ) ⊂ A−(λ) ⇔ U(λ) ≥ U(µ) (5)

(A) (b) and (c) imply that u(x) ≥ 0 for every x ∈ O. Therefore, for
every µ ∈ ∆(O), we have U(µ) ≥ 0 = u(0). (4) implies that 0 ∈ A−(µ).

(B) Given µ, λ ∈ ∆(O), we have either U(µ) ≥ U(λ) or U(µ) ≤ U(λ).
Thus, (5) implies that either A−(µ) ⊃ A−(λ) or A−(µ) ⊂ A−(λ).

(C) (a) implies that U is continuous. Therefore, given λ ∈ ∆(O), (5)
implies that {µ ∈ ∆(O) | A−(µ) ⊂ A−(λ)} = {µ ∈ ∆(O) | U(µ) ≤ U(λ)} is
closed in ∆(O). Similarly, {µ ∈ ∆(O) | A−(µ) ⊃ A−(λ)} is closed in ∆(O).

(D) Consider µ, λ, γ ∈ ∆(O) such that A−(λ) = A−(µ). (5) implies
U(µ) = U(λ). It follows that U(µ/2 + γ/2) = U(µ)/2 + U(γ)/2 = U(λ)/2 +
U(γ)/2 = U(λ/2 + γ/2). (5) implies A−(λ/2 + γ/2) = A−(µ/2 + γ/2).

(E) Suppose x > y. Let z ∈ A−(δy). (4) implies that u(y) = U(δy) ≥
u(z). (b) implies u(x) > u(y). Therefore, U(δx) = u(x) > u(z). By (4),
z ∈ A−(δx). Thus, A−(δy) ⊂ A−(δx).

Suppose A−(δx) ⊂ A−(δy). By (4), u(x) = U(δx) ≥ u(z) implies u(y) =
U(δy) ≥ u(z). This means u(y) ≥ u(x), a contradiction of (b).

(F) Combining (4) and (5) yields

x ∈ A−(µ) ⇔ U(µ) ≥ U(δx) ⇔ A−(δx) ⊂ A−(µ)

as required.
We now show that ξ : U → A is an injection.
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Lemma 5.3 ξ : U → A is an injection.

Proof. Consider u, v ∈ U such that ξ(u) = ξ(v). Define the binary relations
º∗u and º∗v on ∆(O) as follows: for all µ, λ ∈ ∆(O), µ º∗u λ if and only if
U(µ) ≥ U(λ), and µ º∗v λ if and only if V (µ) ≥ V (λ). Combining this with
(5), we have

µ º∗u λ ⇔ U(µ) ≥ U(λ) ⇔ ξ(u)−(λ) ⊂ ξ(u)−(µ)

and

µ º∗v λ ⇔ V (µ) ≥ V (λ) ⇔ ξ(v)−(λ) ⊂ ξ(v)−(µ)

As ξ(u) = ξ(v), µ º∗u λ if and only if µ º∗v λ. It follows that

U(µ) ≥ U(λ) ⇔ µ º∗u λ ⇔ µ º∗v λ ⇔ V (µ) ≥ V (λ)

Copying the argument of Lemma 3.4, there exists a ∈ < and b ∈ <++ such
that V = a + bU , i.e., v = a + bu. Thus, [u] = [v].

Finally, we show that ξ is surjective.

Lemma 5.4 If A ∈ A, then ξ−1({A}) 6= ∅.

Proof. Fix A ∈ A. Define the relation º∗ on ∆(O) by: µ º∗ λ if and only if
A−(µ) ⊃ A−(λ). (B) implies that º∗ is a complete preordering. Define the
relation ∼∗ on ∆(O) by: µ ∼∗ λ if and only if µ º∗ λ and λ º∗ µ.

If µ, λ ∈ ∆(O) are such that µ ∼∗ λ, then µ º∗ λ and λ º∗ µ. Therefore,
A−(µ) ⊃ A−(λ) and A−(µ) ⊂ A−(λ). It follows that A−(µ) = A−(λ).
Conversely, if A−(µ) = A−(λ), then A−(µ) ⊃ A−(λ) and A−(µ) ⊂ A−(λ).
Thus, µ º∗ λ and λ º∗ µ, and consequently, µ ∼∗ λ. Thus, µ ∼∗ λ if and
only if A−(µ) = A−(λ).

Consider µ, λ, γ ∈ ∆(O) such that µ ∼∗ λ. Then, A−(µ) = A−(λ), and
(D) implies that A−(µ/2 + γ/2) = A−(λ/2 + γ/2). Thus, µ/2 + γ/2 ∼∗
λ/2 + γ/2.

Given γ ∈ ∆(O), (C) implies that S = {µ ∈ ∆(O) | µ º∗ γ} = {µ ∈
∆(O) | A−(µ) ⊃ A−(γ)} is closed in ∆(O). Consider µ, λ, γ ∈ ∆(O) and
the function f : [0, 1] → ∆(O) defined by f(t) = tµ + (1− t)λ. Copying the
argument of Lemma 3.5, f is continuous. So, as S is closed in ∆(O),

{t ∈ [0, 1] | tµ + (1− t)λ º∗ γ} = {t ∈ [0, 1] | f(t) º∗ γ} = f−1(S)

is closed in [0, 1]. Analogously, {t ∈ [0, 1] | γ º∗ tµ + (1 − t)λ} is closed in
[0, 1].

It follows (Herstein and Milnor [13], Theorem 8) that º∗ has a linear
representation V : ∆(O) → <. Define U : ∆(O) → < by U(µ) = V (µ) −
V (δ0). Clearly, U is a linear representation of º∗ and U(δ0) = 0. Define
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u : O → < by u(x) = U(δx). Copying the argument of Lemma 3.5, U and u
are continuous, and for every µ ∈ ∆(O), U(µ) =

∫
O µ(dz) u(z).

By definition, u satisfies (a) and (c). To check (b), let x, y ∈ O such that
x > y. By (E), A−(δx) ⊃ A−(δy) and A−(δx) 6⊂ A−(δy). Then, δx º∗ δy

and ¬δy º∗ δx. It follows that u(x) = U(δx) > U(δy) = u(y).
Finally, we show that ξ(u) = A. We need to show that, for every x ∈ O,

A(x) = {µ ∈ ∆(O) | u(x) ≤ U(µ)} = {µ ∈ ∆(O) | U(δx) ≤ U(µ)}

Fix x ∈ O. As, for all µ, λ ∈ ∆(O),

U(µ) ≥ U(λ) ⇔ µ º∗ λ ⇔ A−(λ) ⊂ A−(µ)

the problem reduces to showing that A(x) = {µ ∈ ∆(O) | A−(δx) ⊂ A−(µ)}.
Using the definition of A− and (F), we have

µ ∈ A(x) ⇔ x ∈ A−(µ) ⇔ A−(δx) ⊂ A−(µ)

as required.
Combining Lemmas 5.2, 5.3 and 5.4, we have

Theorem 5.5 ξ is a bijection from U to A.

The following result characterizes risk averse preferences.

Corollary 5.6 ξ is a bijection from Ua to Aa.

Proof. Consider u ∈ Ua. As Theorem 5.5 implies ξ(Ua) ⊂ ξ(U) = A, we
have A ≡ ξ(u) ∈ A. If µ ∈ A(x) and x > mµ, then mµ ∈ O by Theorem 2.1
and U(µ) ≥ u(x) > u(mµ), which contradicts u ∈ Ua. So, A ∈ Aa and
ξ(Ua) ⊂ Aa.

Injectiveness of ξ : Ua → Aa follows from Theorem 5.5 as Ua ⊂ U .
To check that ξ : Ua → Aa is surjective, consider A ∈ Aa. As Aa ⊂ A,

we have A ∈ A. By Theorem 5.5, there exists u ∈ U such that ξ(u) = A.
It suffices to confirm that u ∈ Ua. Suppose there exists µ ∈ ∆(O) such that
U(µ) > u(mµ). As O is convex, it is connected. As u is continuous and O is
compact and connected, u(O) is a closed interval in <. Thus, U(µ) ∈ u(O),
i.e., there exists x ∈ O such that u(mµ) < U(µ) = u(x). As u is continuous,
there exists an open neighborhood V of mµ such that u(y) < u(x) for every
y ∈ V ∩ O. As ≥ is latticial on O, there exists z ∈ O such that z ≥ mµ

and z ≥ x. If z = mµ, then u(mµ) = u(z) ≥ u(x), a contradiction. So,
z > mµ. As O is convex, mµ + t(z − mµ) ∈ O for every t ∈ (0, 1). So,
for some t0 ∈ (0, 1), y ≡ mµ + t0(z −mµ) ∈ V ∩ O. As z > mµ, we have
y > mµ. As y ∈ V ∩O, we have u(y) < u(x) = U(µ), i.e., U(δy) < U(µ). As
U represents º∗, this means A−(δy) ⊂ A−(µ). By (F), we have y ∈ A−(µ),
i.e., µ ∈ A(y). As y > mµ we have a contradiction of A ∈ Aa. So, u ∈ Ua.
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6 Utilities and Arrow-Pratt functions

An Arrow-Pratt function refers to the mapping that yields at each outcome
the Arrow-Pratt coefficient at that outcome. In this section we study the
duality between vN-M utility functions and Arrow-Pratt functions in the
setting of Euclidean outcome spaces. We start with elementary duality
results in the setting X = < and then go to the setting X = <n.

The real outcomes case

We start by defining a set of vN-M utility functions in this setting.

Definition 6.1 U1d is the set of functions u : < → < that are twice differ-
entiable, with Du > 0, u(0) = 0 and Du(0) = 1.

Consider the preference [v] represented by the twice differentiable vN-
M utility v : < → < with Dv > 0. Then, u ∈ U1d ∩ [v] where u(x) =
[v(x) − v(0)]/Dv(0). Thus, the auxiliary conditions u(0) = 0 and Du(0) =
1 do not restrict the class of preferences represented by elements of U1d.
Moreover, if u ∈ U1d, then [u] ∩ U1d = {u}, i.e., U1d contains only one vN-
M representation of an admissible preference [u]. Next, we define a set of
Arrow-Pratt functions.

Definition 6.2 R1 is the set of functions a : < → < such that a = Df for
some differentiable function f : < → < with f(0) = 0.

Clearly, for every a ∈ R1, the appropriate f is unique. For u ∈ U1d, de-
fine the Arrow-Pratt function χ(u) : < → < by χ(u)(x) = −D2u(x)/Du(x).
As χ(u)(x) = −D ln Du(x), we have the function χ : U1d →R1.

In order to confirm that χ is a bijection, it suffices to show that, for every
a ∈ R1, the ODE D2u = −aDu has a unique solution u ∈ U1d. Existence
of a solution shows that χ is surjective, while its uniqueness shows that χ is
injective. It is straightforward to confirm that, given a ∈ R1 with a = Df ,
x 7→ ∫ x

0 dy e−f(y) is the unique element of U1d that solves the given equation.
Therefore, we have the following duality result.

Theorem 6.3 χ : U1d →R1 is a bijection.

More specific dualities can also be derived. For instance, let U1cd be the
subset of U1d consisting of functions with a continuous second derivative.
Also, C(<,<) ⊂ R1 because D

∫ x
0 dy a(y) = a(x) for every a ∈ C(<,<).

Corollary 6.4 χ : U1cd → C(<,<) is a bijection; given a ∈ C(<,<), we
have χ−1(a)(x) =

∫ x
0 dz exp[− ∫ z

0 dy a(y)].
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Another duality characterizes risk averse utilities. Let U1d
a be the subset

of U1d consisting of functions u such that D2u ≤ 0. Let R1
+ be the set of

nonnegative-valued functions in R1.

Corollary 6.5 χ : U1d
a →R1

+ is a bijection.

In the above results, we have implicitly set O = X = <. Clearly, analo-
gous results can be derived for proper subsets of X = <, e.g., O = <+.

The vector outcomes case

We now consider the above duality problem in the setting of general Eu-
clidean outcome spaces. While the generalized theory preserves many as-
pects of the elementary theory, technical considerations force significant de-
viations that we explain as we develop our formulation of the theory.

A version of Theorem 6.3 when X = <n requires the definition of an eco-
nomically useful generalized Arrow-Pratt function in this setting. Towards
this end, fix a compact and convex outcome space O ⊂ <n with boundary
∂O, interior IntO and 0 ∈ O. For u : O → <, we define the (generalized)
Arrow-Pratt function Γ1(u) : O → <n by

Γ1(u)(x) =
−D2u(x)Du(x)
‖Du(x)‖2

if u is twice differentiable at x and ‖Du(x)‖ > 0, and Γ1(u)(x) = 0 elsewhere.
The restriction of u : O → < to ∂O is denoted by

Γ2(u) = u∂O

We interpret Γ1(u)(x) as the Arrow-Pratt coefficient of u at x because (a)
Γ1(u)(x) ∈ <n reduces to the scalar Arrow-Pratt coefficient χ(u)(x) when
n = 1, and (b) this definition has a compelling economic interpretation as it
yields the same partial ordering of risk averse utility functions in the vector
outcomes case as other definitions in terms of acceptance sets, risk premia
and concave transformations (Shah [26], Theorems 4.5 and 5.5).

Our objective is to specify a set Und of utility functions u : O → <,
a set Rn of Arrow-Pratt functions a : O → <n and a set G of functions
g : ∂O → < such that (a) for every u ∈ Und, Γ(u) = (Γ1(u), Γ2(u)) ∈ Rn×G,
(b) Γ : Und → Rn × G is injective, and (c) for every (a, g) ∈ Rn × G, there
exists u ∈ Und such that Γ1(u) = a and Γ2(u) ∈ [g]. Some observations
about this set-up are in order.

Given a ∈ Rn, the system of PDEs a = Γ1(u) cannot have a unique
solution u ∈ Und. An obvious problem is that Γ1(u) = Γ1(v) for every
v ∈ [u]. We overcome this technical problem by defining Und such that it
contains no more than one vN-M representation of a given preference. A less
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obvious problem noted in Corollary 6.14 is that representations in Und of
distinct preferences can generate the same Arrow-Pratt function. As shown
in Theorem 6.13, this problem is overcome by formulating the duality result
in terms of Γ instead of Γ1.

The key element of our problem is to show that, given an appropriate
Arrow-Pratt function a : O → <n and appropriate boundary data g : ∂O →
<, there exists a unique utility u : O → < such that

Γ1(u) = a and Γ2(u) = g (6)

Γ1(u) = a is equivalent to the system of PDEs a(.) = −D ln ‖Du(.)‖. There-
fore, if a = Df for some f : O → <, then a solution of the Dirichlet problem

‖Du(.)‖ = e−f(.) and u∂O = g (7)

is a solution of (6) and a solution of (6) is unique only if (7) does not have
multiple solutions.

The fortunate aspect of (7) is that the PDE belongs to the widely studied
class of eikonal PDEs.5 The unfortunate aspect of (7) is that it is ill-posed in
the classical setting; as simple examples bear out, it does not generally admit
differentiable solutions. So, our problem requires a weaker solution concept
in two respects. First, we need a larger class of solutions than the class of
differentiable functions. Secondly, we need a weaker notion of “solving the
PDE” than the classical one of satisfying the PDE everywhere on IntO.

Of the many weaker solution concepts, we shall consider the notion of a
“generalized solution” proposed in Krŭzkov [18] and the notion of a “viscos-
ity solution” proposed in Crandall and Lions [4]. While the former notion is
considered directly because of the ease of exposition, the latter is considered
only indirectly via well-known connections between the two solution con-
cepts. We will note in Theorem 6.12 that the two concepts yield identical
solutions of (7) in the context of our problem.

We start our analysis of problems (6) and (7) with some definitions. Let
L (resp. Lloc) be the set of Lipschitz (resp. locally Lipschitz) continuous
real-valued functions on O. Let C2,α denote the set of real-valued functions
on O whose derivatives up to second order are α-Hölder continuous for some
α ∈ (0, 1).

u : O → < is said to be semiconcave if there exists C ≥ 0 such that the
function x 7→ u(x)−C‖x‖2/2 is concave on O; u is called semiconvex if −u
is semiconcave. Clearly, a concave u is semiconcave. We note the following
facts for future reference.

5Apart from pure mathematics, Hamilton-Jacobi PDEs generally and eikonal PDEs
specifically are studied as model problems in computation theory, as characterizations of
value functions in control theory (Bardi and Capuzzo-Dolcetta [2], Fleming and Soner [9]),
and are widely studied in physics, especially in the area of geometric optics (Luneburg [21]).
To the best of our knowledge, this is their first sighting in economics.
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Remark 6.6 Consider a semiconcave function u : O → <.
(A) As O is convex, a generalization of the classical Alexandrov’s the-

orem (Fleming and Soner [9]) implies that u is twice differentiable a.e.6

Thus, u determines Γ1(u) a.e.
(B) By Proposition 4.6 in Chap. II of Bardi and Capuzzo-Dolcetta [2]

(henceforth, B-C [2]), u ∈ Lloc.
(C) There exists a risk averse preference [v] such that, for every ε > 0,

there exist u′ ∈ [u] and v′ ∈ [v] such that sup{|u′(x) − v′(x)| | x ∈ O} < ε.
Thus, given appropriate representations, a preference with semiconcave rep-
resentations is arbitrarily and uniformly close to a risk averse preference.

By definition, there is some C ≥ 0 such that v(.) ≡ u(.) − C‖.‖2/2 is
concave, i.e., [v] is risk averse. If C = 0, the result is obvious. Suppose
C > 0. For every b > 0, bv ∈ [v] and bu ∈ [u]. Picking b > 0 such that
bC sup{‖x‖2/2 | x ∈ O} < ε, we have sup{|bu(x)− bv(x)| | x ∈ O} < ε.

A generalized solution of (7) is a function u ∈ Lloc such that

‖Du(.)‖ = e−f(.) a.e. and u∂O = g (8)

Lloc is an appropriate class of potential solutions of (8) as Rademacher’s
theorem (Ziemer [29]) implies that u ∈ Lloc is differentiable a.e. With this
weaker solution concept, (6) is weakened to

Γ1(u) = a a.e. and Γ2(u) = g (9)

We now specify the set of vN-M utility functions.

Definition 6.7 Und consists of semiconcave functions u ∈ L such that
(a) u(0) = 0, and
(b) ‖Du(.)‖ > 0 a.e. and ‖Du(.)‖ has an extension e−f(.) ∈ C2,α for

some f : O → < with f(0) = 0.

Conditions (a) and (b) echo analogous restrictions in the scalar case
considered in Definition 6.1. Consider the preference [v] represented by the
vN-M utility v : O → < that satisfies all the properties listed in Definition 6.7
other than the auxiliary conditions v(0) = 0 and f(0) = 0. It is easy to
check that u ∈ Und∩ [v] where u(x) = [v(x)−v(0)]ef(0). Thus, the auxiliary
conditions u(0) = 0 and f(0) = 0 do not restrict the set of preferences
represented by elements of Und. Also, if u ∈ Und, then [u]∩ Und = {u}, i.e.,
Und contains only one vN-M representation of an admissible preference [u].
Next, we specify the set of admissible generalized Arrow-Pratt functions.

Definition 6.8 Rn consists of functions a : O → <n with the representation
a = Df a.e. for some f : O → < such that e−f ∈ C2,α and f(0) = 0.

6“P holds a.e.” means that property P holds everywhere on O with the exception of a
subset of Lebesgue measure zero.
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Finally, we have the functions that determine Γ2(u) = u∂O in (6) to (9).

Definition 6.9 G consists of functions g : ∂O → < where g = G∂O for
some G ∈ L.

We note the following facts about G.

Remark 6.10 (A) As Und ⊂ L, we have {u∂O | u ∈ Und} ⊂ G.
(B) G is identical to the set of functions g : ∂O → < that are Lipschitz

continuous on ∂O. Clearly, every g ∈ G is Lipschitz continuous on ∂O.
Conversely, by Kirszbraun’s theorem (Schwartz [25]), if g : ∂O → < is
Lipschitz continuous on ∂O, then it has an extension G ∈ L, and so g ∈ G.

(C) If G ∈ L, then Rademacher’s theorem (Ziemer [29]) implies that it
is differentiable a.e.

(D) Suppose G ∈ L has Lipschitz constant k ≥ 0 and is differentiable
at x ∈ O. If ‖DG(x)‖ = 0, then ‖DG(x)‖ ≤ k. If ‖DG(x)‖ > 0, then for
every c > 0 such that x + cDG(x) ∈ O, we have

‖DG(x)‖ ≤ |G(x + cDG(x))−G(x)|
‖cDG(x)‖ + |R(x, cDG(x))|

≤ k + |R(x, cDG(x))|

where limh→0 R(x, h) = 0. Letting c ↓ 0, we have ‖DG(x)‖ ≤ k.

(A) means that the condition Γ2(u) ∈ G does not constitute an additional
restriction on Und. The following lemma is the key to our duality result.

Lemma 6.11 Consider f : O → < such that f(0) = 0 and e−f ∈ C2,α and
let g = G∂O for some G ∈ L.

(A) If u : O → < and v : O → < are semiconcave and solve (8), then
u = v.

(B) If G has Lipschitz constant k ≤ inf{e−f(y) | y ∈ O}, then (8) has a
semiconcave solution u : O → <.

Proof. (A) Suppose u and v are semiconcave and solve (8). Remark 6.6(B)
implies that u, v ∈ Lloc. Therefore, −u,−v ∈ Lloc are semiconvex and satisfy
the conditions −u∂O = −g = −v∂O and ‖ − Du(.)‖ = e−f(.) = ‖ − Dv(.)‖
a.e. Theorem 2.1 in Krŭzkov [18] implies that −u = −v, and so, u = v.

(B) Clearly, −G ∈ L with Lipschitz constant k and −g = −G∂O. By
Remark 6.10(C), −G is differentiable a.e. Therefore, using Remark 6.10(D),
‖ − DG(.)‖ ≤ k ≤ inf{e−f(y) | y ∈ O} ≤ e−f(.) a.e. Given this estimate,
Theorem 3.1 in Krŭzkov [18] implies the existence of a semiconvex function
v ∈ Lloc such that v∂O = −g and ‖Dv(.)‖ = e−f(.) a.e. Then, u = −v ∈ Lloc

is semiconcave and solves (8).
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Before proving the main duality result, we note some useful connections
between generalized solutions and viscosity solutions; as the relevant def-
initions and motivation require considerable space, we refer the reader to
B-C [2] for a lucid account of viscosity theory.7

Theorem 6.12 Let f : O → < be continuous and u : O → < semiconcave.
(A) If u is a generalized solution of (7), then u ∈ L and u is the unique

viscosity solution of (7).
(B) If u is a viscosity solution of (7), then u ∈ L and u is the unique

generalized solution of (7).

Proof. Define H : O × <n → < by H(x, p) = ‖p‖2 − e−2f(x). The PDE in
(7) is equivalent to H(., Du(.)) = 0.

(A) Suppose u is a generalized solution of (7). By Corollary 5.2 in
Chap. II of B-C [2], u is a viscosity solution of H(., Du(.)) = 0 in O.
By assumption, u∂O = g. Thus, u is a viscosity solution of (7). As f
is continuous and O is compact, sup{e−2f(y) | y ∈ O} ∈ < and H(x, p) ≥
‖p‖2−sup{e−2f(y) | y ∈ O} for every x ∈ O. Then, H(x, p) → +∞ uniformly
in x ∈ O as ‖p‖ → +∞. Given this coercivity property of H, Proposition
4.1 in Chap. II of B-C [2] implies that u ∈ L. Using the facts that O is
compact and H is convex in p, a comparison principle (B-C [2], Theorem
5.9 in Chap. II) implies that u is the only viscosity solution of (7).

(B) Suppose u is a viscosity solution of (7). By the arguments made
above, u ∈ L and u is the unique viscosity solution of (7). By Proposition
1.9 in Chap. II of B-C [2], H(., Du(.)) = 0 a.e. Thus, u is a generalized
solution of (7). Uniqueness follows from (A).

We finally use Lemma 6.11 and Theorem 6.12 to prove the following
duality theorem.

Theorem 6.13 If u ∈ Und, then Γ(u) ∈ Rn × G.
(A) Γ : Und →Rn × G is injective.
(B) For every (a, g) ∈ Rn × G, there exists u ∈ Und such that Γ1(u) = a

and Γ2(u) ∈ [g].

Proof. Consider u ∈ Und. Then ‖Du(.)‖ has an extension e−f(.) ∈ C2,α for
some f : O → < such that f(0) = 0. Therefore, Γ1(u)(.) = −D ln ‖Du(.)‖ =
Df(.) a.e. Thus, Γ1(u) ∈ Rn, and as u ∈ L, we have Γ2(u) = u∂O ∈ G.

(A) Suppose u, v ∈ Und are such that Γ1(u) = a = Γ1(v) a.e. and
Γ2(u) = g = Γ2(v) for some (a, g) ∈ Rn × G. So, ‖Du(.)‖ and ‖Dv(.)‖
have C2,α extensions e−f1(.) and e−f2(.) respectively, where f1 : O → < and
f2 : O → < are such that f1(0) = 0 = f2(0) and

Df1(.) = −D ln ‖Du(.)‖ = Γ1(u) = Γ1(v) = −D ln ‖Dv(.)‖ = Df2(.)
7The wide scope of applicability of viscosity solutions in the context of Hamilton-Jacobi

PDEs can be gauged from the fact that this solution concept expands the class of potential
solutions of such equations to all continuous functions.
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a.e. It follows that f1 = f2 + c for some c ∈ <. As f1(0) = 0 = f2(0), we
have c = 0. Thus, f1 = f2. This means u and v solve (8) with f = f1 = f2.
Lemma 6.11(A) implies that u = v.

(B) Consider (a, g) ∈ Rn × G. As a ∈ Rn, there exists f : O → < such
that e−f ∈ C2,α, f(0) = 0 and a = Df a.e. As g ∈ G, there exists G ∈ L with
Lipschitz constant k ≥ 0 such that g = G∂O. Since inf{e−f(y) | y ∈ O} > 0,
there exists b > 0 such that k/b ≤ inf{e−f(y) | y ∈ O}.

Note that G/b ∈ L with Lipschitz constant k/b and g/b = (G/b)∂O.
Lemma 6.11(B) implies that there is a semiconcave function v ∈ Lloc such
that v∂O = g/b and ‖Dv(.)‖ = e−f(.) > 0 a.e. By Theorem 6.12(A), v ∈ L.
Clearly, e−f(.) is a C2,α extension of ‖Dv(.)‖. Thus, Γ2(v) = g/b ∈ [g] and
Γ1(v)(.) = −D ln ‖Dv(.)‖ = Df(.) = a(.) a.e. Set u = v − v(0). Then,
u ∈ Und, Γ1(u) = Γ1(v) = a and Γ2(u) = Γ2(v)− v(0) ∈ [g].

An obvious implication of this result is that two distinct preferences can
generate the same Arrow-Pratt function.

Corollary 6.14 Γ1 : Und → Rn is not injective.

Proof. Consider a ∈ Rn and g, g′ ∈ G such that g′ 6∈ [g]. By Theo-
rem 6.13(B), there exist u, v ∈ Und such that Γ1(u) = a = Γ1(v) a.e.,
Γ2(u) ∈ [g] and Γ2(v) ∈ [g′]. If v ∈ [u], then v∂O ∈ [u∂O]. So, g′ ∈ [g], a
contradiction.

7 Applications

Duality theory has two competing aspects. On the one hand, when choos-
ing a dual representation such as A ∈ A to specify a preference, we want
the definition of A to be minimal and easily verifiable. On the other hand,
when using a dual representation A, we are free to use not only the prop-
erties defining the elements of A, but also other properties implied by the
definition of A. So, an important aspect of duality theory is to derive various
non-definitional properties possessed by dual representations. Our first ap-
plication of the above duality results will derive such non-definitional prop-
erties of the elements of A and Fa.

Theorem 7.1 If u ∈ U , then
(A) ξ(u) is continuous, and
(B) if u ∈ Ua, then φ(u) is continuous.

Moreover, every A ∈ A and F ∈ Fa is continuous.

Combining this result with Berge’s Maximum theorem yields the follow-
ing facts that will be used below.

Theorem 7.2 If P : O → < is continuous and F ∈ Fa, then the mapping
V : ∆(O) → < defined by V (µ) = min{P (x) | x ∈ F (µ)} is continuous and

23



the mapping M : ∆(O)⇒O defined by M(µ) = {x ∈ F (µ) | P (x) = V (µ)}
is upper hemicontinuous with nonempty and compact values.

A dual result is the following.

Theorem 7.3 If p : O → < is continuous and A ∈ A, then v : O → <
defined by v(x) = min {∫O µ(dz) p(z) | µ ∈ A(x)} is continuous; moreover,
B : O⇒∆(O) defined by B(x) = {µ ∈ A(x) | ∫

O µ(dz) p(z) = v(x)} is upper
hemicontinuous with nonempty and compact values.

As an application of these results, consider the following problem.

Application 7.4 Let {1, . . . , n} be the set of future dates. Let X = <n and
let O satisfy the requirements stated in Section 2. x ∈ O is interpreted as an
asset dividend path, with xt being the dividend paid at date t ∈ {1, . . . , n}.
An asset is denoted by µ ∈ ∆(O). Asset µ is said to be riskless if µ = δx

for some x ∈ O, and risky otherwise. Let asset prices be given by P :
∆(O) → <, where P (µ) is the price of asset µ and P is continuous when
∆(O) is given the weak∗ topology. A portfolio of assets is a function θ :
∆(O) → < with finite support, i.e., supp θ ≡ θ−1(<− {0}) is finite. Suppose
P is arbitrage-free, meaning that there is no portfolio θ of assets such that∑

µ∈supp θ θ(µ)P (µ) < 0 and
∑

µ∈supp θ θ(µ)
∫
O µ(dz) z ≥ 0, i.e., a portfolio

with a negative acquisition cost and non-negative expected dividends. Given
this set-up, what is the value to a risk averse investor of asset µ ∈ ∆(O)?
How does this value vary with µ?

If P permits an arbitrage in the above sense, then a risk neutral in-
vestor would like to acquire an unboundedly large portfolio. Assuming the
existence of a risk neutral investor, the above notion of “arbitrage-free”
asset prices is a necessary property of equilibrium prices. The functional
π : O → <, defined by π(x) = P (δx), yields the prices of riskless assets.
As O is separable, ∆0(O) is dense in ∆(O) (Parthasarathy [22], Theorem
II.6.3). We note some elementary facts about P and π.

Lemma 7.5 Consider Application 7.4.
(A) π is linear on O, π(0) = 0 and π(x) ≥ 0 for every x ∈ O.
(B) π is continuous.
(C) If every unit vector et ∈ O, then there exists (π1, . . . , πn) ∈ <n

+ such
that π(x) =

∑n
t=1 πtxt.

(D) For every µ ∈ ∆(O), P (µ) = π(mµ).

Proof. (A) If π is not linear on O, then there exist x, y ∈ O and α, β ∈ <
such that αx + βy ∈ O and π(αx + βy) < απ(x) + βπ(y); an analogous
argument holds if π(αx + βy) > απ(x) + βπ(y). Consider the portfolio
θ = 1δαx+βy

−α1δx−β1δy . Then,
∑

µ∈supp θ θ(µ)P (µ) = P (δαx+βy)−αP (δx)−
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βP (δy) = π(αx + βy)− απ(x)− βπ(y) < 0 and
∑

µ∈supp θ θ(µ)
∫
O µ(dz) z =

αx + βy − αx− βy = 0, which violates the no-arbitrage condition.
π(0) = 0 follows from the linearity of π.
Suppose π(x) < 0 for some x ∈ O. Consider the portfolio θ = 1δx . Then,∑

µ∈supp θ θ(µ)P (µ) = P (δx) = π(x) < 0 and
∑

µ∈supp θ θ(µ)
∫
X µ(dz) z =

x ≥ 0, which violates the no-arbitrage condition.
(B) follows as π is linear.
(C) follows by setting πt = π(et).
(D) Consider µ ∈ ∆0(O). If P (µ) >

∑
z∈supp µ µ({z})π(z), then con-

sider the portfolio θ =
∑

z∈supp µ µ({z})1δz − 1µ. Given portfolio θ, we have∑
µ∈supp θ θ(µ)P (µ) < 0 and

∑
µ∈supp θ θ(µ)

∫
O µ(dz) z = 0, which contra-

dicts the arbitrage-free property. An analogous argument holds if P (µ) <∑
z∈supp µ µ({z})π(z). Thus, P (µ) =

∑
z∈supp µ µ({z})π(z) =

∫
O µ(dz) π(z)

for every µ ∈ ∆0(O).
Consider µ ∈ ∆(O). As ∆0(O) is dense in ∆(O), there exists a net

(µn) ⊂ ∆0(O) converging to µ. As P and π are continuous, we have P (µ) =
limn P (µn) = limn

∫
O µn(dz) π(z) =

∫
O µ(dz) π(z). As π is linear, we have∫

O µ(dz) π(z) = π(
∫
O µ(dz) z) = π(mµ). Thus, P (µ) = π(mµ).

In this result, πt is the price of an asset that delivers $1 with certainty
at date t and delivers nothing at other dates.

We define an asset’s value to an investor as the maximum amount that
the investor would be willing to pay for it. By Corollaries 3.7 and 5.6,
a risk averse investor’s preference on ∆(O) can be specified equivalently
by u ∈ Ua, F ≡ φ(u) ∈ Fa, or A ≡ ξ(u) ∈ Aa. If the preference is
represented by u ∈ Ua, then the value of asset µ ∈ ∆(O) to the given
investor is V (µ) = min{P (λ) | λ ∈ ∆(O) ∧ U(λ) ≥ U(µ)}. The next result
provides dual characterizations of V and notes some properties.

Theorem 7.6 Consider Application 7.4. Let u ∈ Ua, F ≡ φ(u) ∈ Fa and
A ≡ ξ(u) ∈ Aa.

(A) If µ ∈ ∆(O), then V (µ) = minπ ◦ F (µ).
(B) If x ∈ O, then V (δx) = minπ ◦ F (δx) = minP ◦A(x).
(C) P (µ) ≥ V (µ) for every µ ∈ ∆(O).
(D) V is continuous, and the mappings µ7⇒{x ∈ O | π(x) = V (µ)} and

x7⇒{λ ∈ ∆(O) | P (λ) = V (δx)} are upper hemicontinuous with nonempty
and compact values.

Proof. (A) If x ∈ F (µ), then δx ∈ ∆(O) and U(δx) = u(x) = U(µ). By
definition, V (µ) ≤ P (δx) = π(x). It follows that V (µ) ≤ minπ ◦ F (µ). Let
V (µ) = P (λ) for some λ ∈ ∆(O) such that U(λ) ≥ U(µ). As u is risk
averse, u(mλ) ≥ U(λ) ≥ U(µ) ≥ 0. Consequently, there exists t ∈ [0, 1] such
that tmλ ∈ F (µ). As mλ ∈ O, Lemma 7.5(A) implies that π(mλ) ≥ 0 and
π(tmλ) = tπ(mλ) ≤ π(mλ). Using Lemma 7.5(D), we have minπ ◦ F (µ) ≤
π(tmλ) ≤ π(mλ) = P (λ) = V (µ). Thus, V (µ) = minπ ◦ F (µ).

25



(B) Specializing (A), we have minπ ◦ F (δx) = V (δx) = min{P (λ) | λ ∈
∆(O) ∧ U(λ) ≥ U(δx)} = min P ◦A(x).

(C) Consider µ ∈ ∆(O). As u is risk averse, u(mµ) ≥ U(µ). So, there
exists t ∈ [0, 1] such that u(tmµ) = U(µ), i.e., tmµ ∈ F (µ). If P (µ) < V (µ),
then using Lemma 7.5 and (A), we have π(mµ) = P (µ) < V (µ) = minπ ◦
F (µ) ≤ π(tmµ) = tπ(mµ) ≤ π(mµ), a contradiction.

(D) follows from (A), (B) and Theorems 7.2 and 7.3.
Now consider the following continuous-time analogue of Application 7.4.

Let [0, 1] be the set of dates and let X = C([0, 1],<) be the set of continuous
real-valued functions with domain [0, 1]. Let P and π be as in Applica-
tion 7.4. Parts (A) and (D) of Lemma 7.5 hold in this setting via unchanged
arguments.

Lemma 7.5(B) is now proved as follows. Consider a sequence (xn) ⊂
O converging to x. If f : O → < is continuous, then

∫
O δxn(dz) f(z) =

f(xn) → f(x) =
∫
O δx(dz) f(z). So, (δxn) ⊂ ∆(O) converges to δx. As P is

continuous, π(xn) = P (δxn) → P (δx) = π(x). Thus, π is continuous.
The analogue of Lemma 7.5(C) is established as follows. Suppose π has

a continuous linear extension to X. By the Riesz representation theorem
(Dunford and Schwartz [8], Theorem IV.6.3), there exists a unique, non-
negative, regular countably-additive measure Q on [0, 1] such that π(x) =∫
[0,1] Q(dt) x(t) for every x ∈ X. As π is real-valued, Q is finite. If Q is

absolutely continuous with respect to the Lebesgue measure on [0, 1], then by
the Radon-Nikodym theorem (Dunford and Schwartz [8], Theorem III.10.2),
there exists a unique (upto equivalence) Lebesgue integrable function q :
[0, 1] → < such that Q(E) =

∫
E dt q(t) for every E ∈ B([0, 1]). Therefore,

π(x) =
∫
[0,1] dt q(t)x(t) for every x ∈ X. As Q is non-negative, q is non-

negative on [0, 1], except possibly over a set of Lebesgue measure 0. Just
like πt in Lemma 7.5, q(t) is interpreted as the price of an asset that delivers
$1 at time t and nothing at all other times.

8 Extensions

The results of Shah [26] complement the results in this paper by provid-
ing criteria for comparing the risk aversion of preferences directly in terms
of the dual representations derived above. For example, consider the risk
averse preferences represented by A1, A2 ∈ Aa. A natural definition of the
relation “the preference represented by A1 is more risk averse than that
represented by A2” is that A1(x) ⊂ A2(x) for every x ∈ O. This, however,
raises the question: is this definition consistent with various familiar vN-M
utility-based notions of comparative risk aversion (e.g., Arrow [1], Pratt [24],
Yaari [28])? As we show below, this is indeed so once the classical criteria
for real outcomes are modified to account for vector outcomes in Shah [26].

Corollary 5.6 implies that A1 and A2 represent the same risk averse
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preferences as utilities ξ−1(A1) ∈ Ua and ξ−1(A2) ∈ Ua respectively. Suppose
ξ ◦ ξ−1(A1)(x) = A1(x) ⊂ A2(x) = ξ ◦ ξ−1(A2)(x) for every x ∈ O. Then,

(a) ξ−1(A1) and ξ−1(A2) are comonotonic (Shah [26], Theorem 4.2);
(b) ψ◦φ◦ξ−1(A1)(µ) ≥∗ ψ◦φ◦ξ−1(A2)(µ) for every µ ∈ ∆(O) (Shah [26],

Theorem 4.5), i.e., the set of risk premia dual to A1 is always larger in terms
of ≥∗ than the set of risk premia dual to A2;

(c) ξ−1(A1) = f ◦ ξ−1(A2) for an increasing and concave function f :
ξ−1(A2)(O) → < (Shah [26], Theorem 4.5), i.e., the vN-M utility dual to A1

is an increasing concave transformation of the vN-M utility dual to A2; and
(d) if (X,≥) is an ordered real Hilbert space, and ξ−1(A1) and ξ−1(A2)

are twice differentiable on IntO, then Γ1 ◦ ξ−1(A1)(x) ≥ Γ1 ◦ ξ−1(A2)(x)
for every x ∈ IntO (Shah [26], Theorem 5.5), i.e., the Arrow-Pratt function
generated by ξ−1(A1) is always larger than the Arrow-Pratt function gen-
erated by ξ−1(A2). We should clarify that, although Theorem 6.13 restricts
attention to generalized Arrow-Pratt functions with Euclidean domains for
the purpose of deriving a duality result, the definition in Shah [26] of a
generalized Arrow-Pratt function associated with a utility u, stated here as
Γ1(u), applies generally to domains in ordered Hilbert spaces; for an exact
description of (X,≥), we refer the reader to Assumption 5.1 in Shah [26].

Analogous results hold if we start with P1, P2 ∈ Pa such that P1(µ) ≥∗
P2(µ) for every µ ∈ ∆(O).

9 Ordinal and cardinal representation problems

Our dual characterizations of vN-M utilities and the more familiar dual
characterizations of ordinal utilities are entirely different in aims, techniques
and the objects being studied. However, the set U remains a seemingly
common element since a function u ∈ U can be interpreted as an ordinal
utility as well as a vN-M utility. We clarify the distinction between the
theories with two observations.

The first observation relates to the quotient sets of U generated by the
ordinal and the vN-M interpretations of the elements of U .8 If the elements
of U are interpreted as ordinal utility functions, then elements u, v ∈ U
are considered to be equivalent, denoted by u ≡1 v, if they are increasing
transforms of each other. This notion of equivalence generates the quotient
set U/ ≡1. On the other hand, if the elements of U are interpreted as vN-M
utility functions, then elements u, v ∈ U are considered to be equivalent,
denoted by u ≡2 v, if they are increasing affine transforms of each other.
This notion of equivalence generates the quotient set U/ ≡2. It is easy
to see that U/ ≡2 is a sub-partition of U/ ≡1, i.e., if [u]1 ∈ U/ ≡1 and

8The quotient set of a set S with respect to an equivalence relation ≡ on S, denoted
by S/ ≡, refers to the partition of S generated by ≡.
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[u]2 ∈ U/ ≡2 are the equivalence classes to which u ∈ U belongs, then
[u]2 ⊂ [u]1 and [u]2 6= [u]1.

The second observation relates to the representation problems underlying
the two theories. Let º∗ be a complete preordering on ∆(O) and let º be
induced on O via the definition: x º y if and only if δx º∗ δy; let ∼ be
the symmetric factor (indifference) of º and Â the asymmetric factor (strict
preference). Define the function o : O → O/ ∼ by the formula: given x ∈ O,
z ∈ o(x) if and only if z ∼ x; o(x) ∈ O/ ∼ is the indifference curve containing
x. If o1, o2 ∈ O/ ∼ and o1 6= o2, then either x Â y for all x ∈ o1 and y ∈ o2,
or y Â x for all x ∈ o1 and y ∈ o2. Therefore, by identifying equivalent
elements of O with the equivalence class to which they belong, we may say
that Â orders the elements of O/ ∼. The ordinal representation problem is
to find u : O/ ∼→ < such that, for all o1, o2 ∈ O/ ∼, o1 Â o2 if and only
if u(o1) > u(o2), i.e., real numbers are assigned to the indifference curves in
O/ ∼ in a manner consistent with Â. Subject to this ordinal requirement on
the chosen real numbers, each indifference curve may be assigned a number
in isolation from the numbers assigned to the other indifference curves. The
vN-M representation problem is to find u : O/ ∼→ < such that, for all
µ, λ ∈ ∆(O), µ Â∗ λ if and only if

∫
O µ(dz) u ◦ o(z) >

∫
O λ(dz) u ◦ o(z).

A solution u of this problem also solves the ordinal representation problem
since x Â y is equivalent to δx Â∗ δy, which is equivalent to u ◦ o(x) =∫
O δx(dz) u ◦ o(z) >

∫
O δy(dz) u ◦ o(z) = u ◦ o(y). Unlike in the ordinal

representation problem, the indifference curves in O/ ∼ cannot be assigned
values in isolation as the expected utility function aggregates these numbers
via integration. Thus, the assigned values have cardinal (up to increasing
affine transformations), and not merely ordinal, significance. While the
ordinal representation problem can be solved locally with respect to O/ ∼,
the vN-M representation problem has to be solved globally.

10 Conclusions

Our duality results are derived in two different environments. The first
set of results concern an outcome space O that is a convex, compact and
metrizable subset of the positive cone of an ordered, real locally convex
topological vector space X with 0 ∈ O. Given this setting, we defined a set
U of vN-M utility functions, a set F of multi-valued mappings that yield the
certainty equivalent outcomes in O corresponding to a lottery in ∆(O), a set
P of multi-valued mappings that yield the risk premia in X corresponding
to a lottery in ∆(O), and a set A of multi-valued mappings that yield the
acceptance set of lotteries in ∆(O) corresponding to an outcome in O. We
also define subsets Ua ⊂ U , Fa ⊂ F , Pa ⊂ P and Aa ⊂ A, where Ua consists
of all risk averse preferences in U . We show that the usual definitions of
the set of certainty equivalents, the set of risk premia and the acceptance
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set generate mappings φ : U → F , ψ : F → P and ξ : U → A respectively.
Our main results (Theorems 3.6, 4.1 and 5.5) are that these mappings are
bijective. As corollaries of these results, we show that φ : Ua → Fa, ψ :
Fa → Pa and ξ : Ua → Aa are bijections too. These results provide very
general dual representations of risk averse preferences.

The second environment that we are concerned with is more restrictive
as we set X equal to the Euclidean space <n. For n = 1, we define a set of
utilities U1d and a set of Arrow-Pratt functions R1; we also define a subset
U1d

a of risk averse utilities and a subset of Arrow-Pratt functions R1
+. We

show in Theorem 6.3 that the usual definition of Arrow-Pratt coefficients
yields a bijection χ : U1d → R1, and as a corollary, we have a bijection
χ : U1d

a → R1
+. For n > 1, we define a set of utilities Und, a set of gener-

alized Arrow-Pratt functions Rn and a set G of boundary data. We show
in Theorem 6.13 a bijection between Und and Rn × G. There remain two
potential areas for future work here. One is to extend this duality result be-
yond Euclidean spaces; as shown in Shah [26], our definition of a generalized
Arrow-Pratt coefficient is meaningful even in the setting of Hilbert spaces.
Unfortunately, the duality result requires the unique solvability of Dirichlet
problems for eikonal PDEs and we are unaware whether such problems can
be handled in settings more general than Euclidean spaces. A second po-
tentially fruitful area of work is to derive a more special duality result than
ours by characterizing the subset of risk averse, i.e., concave, functions in
Und; note that, functions in Und are required to be semiconcave, but not
necessarily concave.

In Section 7, we present some illustrative applications of our results. We
show in Theorem 7.1 that φ(u) and ξ(u) are continuous mappings for every
u ∈ U . Consequently, every F ∈ F and every A ∈ A is continuous. We use
these facts to derive a risk averse investor’s valuation of financial assets that
are characterized by known or randomly determined dividend paths. The
first application derives such an investor’s valuation of a risky asset and the
second application derives the investor’s valuation of a riskless asset. We
reduce these problems to optimization problems and use our results to show
that the value functions generated by these problems are continuous and the
underlying optimal choice mappings are upper hemicontinuous.

In Section 8, we have shown that the risk aversion of cardinal prefer-
ences can be compared in terms of vN-M representations as well as dual
representations such as the risk premia mappings and the acceptance set
mappings.

Appendix

Proof of Theorem 2.1. Let X∗ be the topological dual of X, i.e., the
set of all continuous linear functionals h : X → <. Local convexity of X
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ensures that, if x ∈ X is such that h(x) = 0 for every h ∈ X∗, then x = 0
(Dunford and Schwartz [8], Corollary V.2.13). Define H : X → <X∗

by
H(x) = (h(x))h∈X∗ . Give <X∗

the product topology. Consequently, H is
continuous as every component function Hh = h is continuous. Moreover, H
is injective; if H(x) = H(y) for some x, y ∈ X, then h(x−y) = h(x)−h(y) =
0 for every h ∈ X∗, which implies x − y = 0. As O is compact and <X∗

is
Hausdorff, H imbeds O in <X∗

. This implies H(O) is closed in <X∗
and

metrizable.
First, consider µ ∈ ∆(O) with |suppµ| < ∞. For every h ∈ H, the

linearity of h implies

∫

O
µ(dz) h(z) =

∑
z∈supp µ

µ({z})h(z) = h


 ∑

z∈supp µ

µ({z})z

 (A.1)

Setting mµ =
∑

z∈supp µ µ({z})z, we have mµ ∈ O as O is convex and
suppµ ⊂ O. Thus, H(mµ) ∈ H(O) for every µ ∈ ∆(O) with |suppµ| < ∞.

Consider µ ∈ ∆(O). As O is compact and metric, it is separable. Con-
sequently, there exists a sequence (µn) ⊂ ∆(O) converging to µ such that
|suppµn| < ∞ for every n ∈ N (Parthasarathy [22], Theorem II.6.3). By
the above argument, mµn exists, mµn ∈ O and H(mµn) ∈ H(O) for every
n ∈ N . Using (A.1) and the definition of weak∗ convergence, we have

lim
n↑∞

h(mµn) = lim
n↑∞

∫

O
µn(dz) h(z) =

∫

O
µ(dz) h(z)

for every h ∈ X∗. Thus, limn↑∞H(mµn) = (
∫
O µ(dz) h(z))h∈X∗ . As the

sequence (H(mµn)) ⊂ H(O) and H(O) is closed in <X∗
and metrizable, we

have (
∫
O µ(dz) h(z))h∈X∗ ∈ H(O). As H imbeds O in <X∗

, there exists a
unique x ∈ O such that H(x) = (

∫
O µ(dz) h(z))h∈X∗ . By the definition of

H, we have h(x) =
∫
O µ(dz) h(z) for every h ∈ X∗. Set mµ = x.

Proof of Theorem 7.1. Suppose (A) and (B) hold. Consider A ∈ A and
F ∈ Fa. By Theorem 5.5, ξ−1(A) ∈ U and A = ξ ◦ ξ−1(A). Therefore (A)
implies that A is continuous. Similarly, by Corollary 3.7, φ−1(F ) ∈ Ua and
F = φ ◦ φ−1(F ). Thus, (B) implies that F is continuous. We now show (A)
and (B).

Given u ∈ U , denote the mapping µ 7→ ∫
O µ(dz)u(z) by U . As u is con-

tinuous and ∆(O) is given the weak∗ topology, U is continuous. Therefore,
G : ∆(O)×O → <, defined by G(µ, x) = U(µ)− u(x), is continuous.

(A) Consider u ∈ U and set A ≡ ξ(u). As projections are continuous,
the mapping π : O × ∆(O) → ∆(O) × O, given by π(x, µ) = (µ, x), is
continuous. Then, GrA = {(x, µ) ∈ O × ∆(O) | µ ∈ A(x)} = {(x, µ) ∈
O × ∆(O) | G ◦ π(x, µ) ≥ 0} = π−1 ◦ G−1(<+) is closed in O × ∆(O).
Therefore, as ∆(O) is compact metric, A is upper hemicontinuous.
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We now show that A is lower hemicontinuous at x ∈ O. As O and
∆(O) are metrizable, it is sufficient to show that, for every sequence (xn) ⊂
O converging to x and µ ∈ A(x), there exists a sequence (µn) ⊂ ∆(O)
converging to µ such that µn ∈ A(xn) for every n ∈ N . So, consider a
sequence (xn) ⊂ O converging to x ∈ O and let µ ∈ A(x). It follows that,
if (xm) is a subsequence of (xn), then (xm) converges to x, and as u is
continuous, the subsequence (u(xm)) converges to u(x). As U is continuous
and ∆(O) is compact, there exists ν ∈ ∆(O) such that U(ν) ≥ U(µ) for
every µ ∈ ∆(O).

Suppose U(µ) = U(ν). Then, u(xn) = U(δxn) ≤ U(µ) for every n ∈ N .
Set µn = µ for every n ∈ N . Then, µn ∈ A(xn) for every n ∈ N and (µn)
converges to µ.

Now suppose U(µ) < U(ν). If n ∈ N is such that u(xn) ≤ U(µ), then
set tn = 1 and µn = tnµ. Clearly, µn ∈ A(xn). Now consider n ∈ N such
that u(xn) > U(µ). Then, U(ν) ≥ U(δxn) = u(xn) > U(µ). Set tn ∈ [0, 1]
such that tnU(µ) + (1− tn)U(ν) = u(xn). Setting µn = tnµ + (1− tn)ν, we
have µn ∈ A(xn). In both cases, U(µn)− U(µ) ≤ |u(xn)− u(x)|.

It suffices to show that (tn) goes to 1. Suppose not. Then, there exists
r ∈ [0, 1) and a subsequence of (tn) in [0, r]. As this subsequence has a
convergent subsequence, there exists a subsequence (tm) of (tn) such that
(tm) ⊂ [0, r] and (tm) → t ∈ [0, r]. As tm < 1 for every m, we have
µm = tmµ + (1 − tm)ν. As U is continuous, we have U(tµ + (1 − t)ν) =
U(limm↑∞ µm) = limm↑∞ U(µm). As t ≤ r < 1 and U(ν) > U(µ), we
have 0 < rU(µ) + (1 − r)U(ν) − U(µ) ≤ tU(µ) + (1 − t)U(ν) − U(µ) =
U(tµ+(1−t)ν)−U(µ) = limm↑∞ U(µm)−U(µ) ≤ limm↑∞ |u(xm)−u(x)| = 0,
a contradiction.

(B) Consider u ∈ Ua and set F ≡ φ(u). As u is risk averse, u is concave.
As G is continuous, GrF = {(µ, x) ∈ ∆(O) × O | x ∈ F (µ)} = {(µ, x) ∈
∆(O)×O | G(µ, x) = 0} = G−1({0}) is closed in ∆(O)×O. As O is compact
metric, F is upper hemicontinuous.

We now show that F is lower hemicontinuous at µ ∈ ∆(O). Consider
a sequence (µn) ⊂ ∆(O) converging to µ and x ∈ F (µ). It follows that,
if (µm) is a subsequence of (µn), then (µm) converges to µ, and as U is
continuous, the subsequence (U(µm)) converges to U(µ).

As u is continuous and O is compact, there exists y ∈ O such that
u(y) ≥ u(z) for every z ∈ O. As u is increasing and ≥ is latticial on O, we
may assume without loss of generality that y ≥ x. If u(y) = 0, then O = {0}
and lower hemicontinuity is trivial. Suppose u(y) > 0. Then, y > 0. We
consider three cases: (1) u(x) ∈ (0, u(y)), (2) u(x) = u(y), and (3) u(x) = 0.

(1) Let u(x) ∈ (0, u(y)) and n ∈ N .
Suppose U(µn) ≥ U(µ). Let A = {t ∈ [0, 1] | u(tx + (1− t)y) ≥ U(µn)}

and B = {t ∈ [0, 1] | u(tx + (1 − t)y) ≤ U(µn)}. Clearly, 0 ∈ A and
A∪B = [0, 1]. As u(x) = U(µ) ≤ U(µn), we have 1 ∈ B. As u is continuous,
both A and B are closed in [0, 1]. As [0, 1] is connected, A ∩ B 6= ∅. Let
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tn ∈ A ∩ B and set xn = tnx + (1 − tn)y. Note that, if r ∈ [tn, 1), then
y ≥ x implies that tnx + (1 − tn)y ≥ rx + (1 − r)y and U(µn) = u(xn) =
u(tnx + (1− tn)y) ≥ u(rx + (1− r)y) ≥ ru(x) + (1− r)u(y) > u(x) = U(µ)
because u is increasing and concave, u(y) > u(x) and r < 1.

Suppose U(µn) < U(µ). Let A = {t ∈ [0, 1] | u(tx) ≥ U(µn)} and
B = {t ∈ [0, 1] | u(tx) ≤ U(µn)}. Clearly, 0 ∈ B and A ∪ B = [0, 1]. As
u(x) = U(µ) > U(µn), we have 1 ∈ A. As u is continuous, both A and B
are closed in [0, 1]. As [0, 1] is connected, A ∩ B 6= ∅. Let tn ∈ A ∩ B and
set xn = tnx. Note that, if r ∈ [tn, 1), then x ≥ 0 implies tnx ≤ rx and
U(µn) = u(xn) = u(tnx) ≤ u(rx) < u(x) = U(µ) because u is increasing,
u(x) > 0 and r < 1.

By construction, xn ∈ F (µn) for every n ∈ N . It suffices to show
that (tn) converges to 1. Suppose not. Then, there exists r ∈ [0, 1) and
a subsequence (tm) of (tn) such that (tm) ⊂ [0, r]. For every m, either
U(µm) ≥ u(rx + (1 − r)y) > U(µ) or U(µm) ≤ u(rx) < U(µ). Therefore,
the subsequence (U(µm)) does not converge to U(µ), a contradiction.

(2) As u(x) = u(y) > 0, we have x > 0 and U(µn) ≤ u(x) for every
n ∈ N . Given n ∈ N , let A = {t ∈ [0, 1] | u(tx) ≥ U(µn)} and B = {t ∈
[0, 1] | u(tx) ≤ U(µn)}. Clearly, 1 ∈ A, 0 ∈ B and A ∪ B = [0, 1]. As
u is continuous, both A and B are closed in [0, 1]. As [0, 1] is connected,
A ∩ B 6= ∅. Let tn ∈ A ∩ B and set xn = tnx. Clearly, xn ∈ F (µn). It
suffices to show that (tn) converges to 1. Suppose not. Then, there exists
r ∈ [0, 1) and a subsequence (tm) of (tn) such that (tm) ⊂ [0, r]. Therefore,
U(µm) = u(xm) = u(tmx) ≤ u(rx) < u(x) = U(µ) for every m. Thus, the
subsequence (U(µm)) does not converge to U(µ), a contradiction.

(3) As u(x) = 0, we have x = 0 and U(µn) ≥ 0 = u(x) for every
n ∈ N . Given n ∈ N , let A = {t ∈ [0, 1] | u((1 − t)y) ≥ U(µn)} and
B = {t ∈ [0, 1] | u((1 − t)y) ≤ U(µn)}. Clearly, 0 ∈ A, 1 ∈ B and
A ∪ B = [0, 1]. As u is continuous, both A and B are closed in [0, 1]. As
[0, 1] is connected, A∩B 6= ∅. Let tn ∈ A∩B and set xn = (1−tn)y. Clearly,
xn ∈ F (µn). It suffices to show that (tn) converges to 1. Suppose not. Then,
there exists r ∈ [0, 1) and a subsequence (tm) of (tn) such that (tm) ⊂ [0, r].
Therefore, U(µm) = u(xm) = u((1−tm)y) ≥ u((1−r)y) > 0 = u(x) = U(µ).
Thus, (U(µm)) does not converge to U(µ), a contradiction.

Proof of Theorem 7.2. Consider F ∈ Fa. By assumption, F has
nonempty values. By Theorem 7.1, F is continuous. By Theorem 3.6,
there exists u ∈ U such that F = φ(u). As u is continuous, F (µ) = φ(u)(µ)
is closed in O for every µ ∈ ∆(O). As O is compact, F has compact values.
The result follows from the Maximum theorem (Berge [3], Section VI.3).

Proof of Theorem 7.3. Consider A ∈ A. By Theorem 5.5, A = ξ(u)
for some u ∈ U . As δx ∈ ξ(u)(x) for every x ∈ O, we have A(x) 6= ∅ for
every x ∈ O. By Theorem 7.1, A is continuous. As u is continuous, so is
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U . It follows that A(x) = ξ(u)(x) is closed in ∆(O) for every x ∈ O. As
∆(O) is compact, this means A has compact values. As p is continuous,
the mapping µ 7→ ∫

O µ(dz) p(z) is continuous. The result follows from the
Maximum theorem (Berge [3], Section VI.3).
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