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Abstract
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1 Introduction

Let us assume that, before making simultaneous strategic decisions, privately
informed players can sign binding agreements. Can we characterize the set
of all payo¤s that they can reach in this way? Myerson (1991, chapter 6)
gives an answer: the payo¤s are the ones that are achieved by means of a ran-
dommechanism satisfying �informational incentive constraints�and �general
participation constraints�. However, as recently pointed out by Kalai et al.
(2010), even in the case of two players with complete information, natural
commitments may be conditional, so that some care is needed to avoid cir-
cularities. Consider for instance the price competition between two sellers;
if every seller posts a price and commits to undercut his competitor�s price
by some amount, the outcome of the commitment strategies might not be
well-de�ned.
Kalai et al. (2010) propose a model which overcomes the di¢ culties.

They consider an arbitrary set Di of commitment devices for player i (i =
1; 2); they do not impose any conceptual restriction on the Di�s. In order
to account for conditional commitments, they assume that player i chooses,
at the same time as a device di, a response function Rdi, which describes
how he would reply to the other player�s commitment device d�i. The key
to avoid circular or endless reasoning is that Rdi takes its value in the set Ai
of actions of player i in the original underlying two person game. The pair
of response functions (Rd1 ; Rd2) then amounts to a single �grand response
function�R : D1�D2 ! A1�A2 which determines, without any ambiguity,
the pair of actions to be played as a result of the players� commitments.
The sets Di�s and a response function R transform the original game G
into a contract game G(D), where D � (D1; D2; R). It is understood that
participation in G(D) is voluntary, in the sense that, in G(D), every player
may decide not to commit and just choose an action in the original game.
Kalai et al. (2010)�s main result can be roughly stated as follows: let G be

a two-person strategic form game; the set of all Nash equilibrium payo¤s that
can be achieved in some commitment game G(D) extending G coincides with
the set of feasible and individually rational payo¤s of G. As a by-product,
Kalai et al. (2010) construct a universal commitment game extending G in
which all these Nash equilibrium payo¤s can be achieved at once. Finally,
the results go through in the case of n players if correlated strategies are
allowed.
In this note, we extend Kalai et al. (2010)�s result to n person games

2



with incomplete information, namely Bayesian games. A relevant question is
then the stage at which the players sign binding agreements: ex ante or in-
terim. We follow the well-founded tradition according to which players make
commitments after having learnt their types, namely, at the interim stage
(see, e.g., Myerson (1991)). This assumption allows us to describe the com-
mitment possibilities of the players in a Bayesian game G in the same way
as in the case of complete information, i.e., exactly as in Kalai et al. (2010).
In other words, the set of commitment devices (or, equivalently, the set of
instructions to a mediator) that are available to a player is described inde-
pendently of his private information. A natural justi�cation for this model is
that the authority implementing the contracts (namely, the mediator) does
not know to which extent the players have private information. Of course,
every player chooses his e¤ective commitment device as a function of his type.
Being modelled in the same way as in Kalai et al. (2010), our commitments
can be conditional but do not give rise to any circularity.
We show that the set NC(G) � [DN [G(D)] of all Bayesian-Nash equi-

librium payo¤s that can be achieved in some contract game G(D) extending
a given n person Bayesian game G coincides with the set F(G) of feasible,
incentive compatible and interim individually rational payo¤s of G, namely
that NC(G) = F(G). As mentionned above, this result is suggested in My-
erson (1991, section 6.6), who gives precise de�nitions of the previous three
properties1. However, Myerson (1991) does not allow for conditional commit-
ments. Furthermore, he sticks to random mechanisms (while, as seen above,
Kalai et al. (2010)�s response functions are deterministic) and does not pro-
pose any universal contract game. We propose a full extension of Kalai et
al. (2010)�s result to games with incomplete information by constructing
a universal deterministic commitment game G(D�) extending G such that
N [G(D�)] = NC(G) = F(G).
Kalai et al. (2010)�s result is related to the well-known �folk theorem�

which states that, if G is a game with complete information, the set of all
equilibrium payo¤s of the standard in�nitely repeated game associated with
G is the set of feasible and individually rational payo¤s of G. Hence, under
complete information, the in�nite repetition of the game has the same e¤ect
as binding agreements in the one-shot game. This property no longer holds
under incomplete information (see, e.g., Forges (1992)). More precisely, as

1In particular, interim individual rationality must be formulated in terms of vector
payo¤s (see also Hart (1985)).
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shown in this note, contracts at the interim stage of a Bayesian game G
enable the players to reach a large set of feasible and individually rational
payo¤s of the one-shot game G but even if G is a two person game, with
a single informed player, the equilibrium payo¤s of the in�nitely repeated
version of G cannot be described as the equilibrium payo¤s of a one-shot
game (see Hart (1985)).

2 Contracts in a Bayesian game

Let us �x a Bayesian game G �
�
N; fTi; Ai; uigi2N ; q

�
, namely,

� a set of players N

� for every player i, i 2 N , a (�nite) set of types Ti, a (�nite) set of
actions Ai and a utility function ui : T � A! R, where T =

Y
i2N

Ti

and A =
Y

i2N
Ai

� a probability distribution q over T .

A contract space for G is de�ned by a set of instructions Di for every
player i 2 N and a response function R : D ! �(A), where D =

Y
i2N

Di.

We denote such a contract space as D = (Di; i 2 N ;R). The interpretation
is that every player gives his instructions to a mediator who is entitled to
play G on his behalf. We do not impose any restriction (beyond standard
measurability assumptions, see below) on the sets of instructions Di. These
sets are neutral, i.e., independent of the private information that the players
may have, but of course, the players will typically give their instructions as
a function of their type.
The formulation of the response function implicitly implies that, given

the instructions of all the players, the mediator must be able to choose an
n�tuple of actions in G, possibly by performing a lottery. This general de-
�nition is similar to the ones previously adopted in the literature (see, e.g.,
Myerson (1991, chapter 6), Ashlagi et al. (2009)). In particular, the formula-
tion precludes the mediator to face inconsistent or circular instructions that
would make him unable to select actions in A in a well-de�ned way2.

2For instance,the instructions of the two sellers undercutting each other�s prices (see
the introduction) do not generate a response function.
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Kalai et al. (2010), who focus on games with complete information, fur-
ther require that the response function R be deterministic, namely takes the
form of a function R : D ! A. This formulation strengthens the consis-
tency requirement on R. Indeed, R can then be interpreted as the result of
individual response functions. More precisely, if R is deterministic, we can
write

R(d1; :::; dn) = (R1(d1; :::; dn); :::; Rn(d1; :::; dn))

= (Rd1(d2; :::; dn); :::; Rdn(d1; :::; dn�1))

withRdi :
Y

j 6=i
Dj ! Ai. Kalai et al. (2010) viewDi as a set of (conditional)

commitment devices for player i and Rdi as the individual response function
which is associated with player i�s device di. Player i�s commitment to di
amounts to committing to Rdi, hence di can be interpreted as a conditional
commitment. Until proposition 2, we stick to possibly random response
functions, with values in �(A). In proposition 2, we show that such random
response functions do not enable the players to achieve more outcomes than
deterministic ones and we thus recover Kalai et al. (2010)�s interpretation3.
As in previous models of games with contracts, every player will be al-

lowed to reject any commitment and to act by himself in G. In order to
capture this property, we de�ne a contract space D = (Di; i 2 N ;R) to be
voluntary if for every player i, Di � Ai and for every ai 2 Ai and d�i 2 D�i,
R(ai; d�i) = �ai 
R�i(d�i), where �ai 2 �(Ai) chooses ai with probability 1
and R�i(d�i) 2 �(A�i). In other words, player i can just give the mediator
the instruction to play (unconditionally) ai on his behalf; in this case, the
mediator plays ai for player i, independently of the instructions of the other
players, whatever these are4. Henceforth, we focus on voluntary contract
spaces.
Let D = (Di; i 2 N ;R) be a contract space. The (Bayesian) game G(D)

in which the players can sign a contract in D before playing G is described

3Except for the - temporary - possibility of randomization in R, our �contract spaces�
are formally identical to Kalai et al. (2010)�s �spaces of commitment devices�or �device
spaces�. The terminology may nevertheless re�ect more or less intended decentralization
(see section 6.5 in Kalai et al. (2010) and our concluding remarks). We follow Myerson
(1991)�s terminology.

4As Kalai et al. (2010), we conveniently model no participation in any contract as a
very special form of commitment. Our de�nition of voluntary contract space is equivalent
to Kalai et al.�s one and captures their two conditions of �unconditioned�and �private�
play at the same time.
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as follows:

- Types are chosen in T according to q and every player i privately observes
his own type ti

- Every player chooses instructions di in Di and secretely transmits them to
the mediator

- Given d = (d1; :::; dn), the mediator chooses an n�tuple of actions a 2 A
according to R(d) (and makes the decision a in G on behalf of the
players).

G(D) will be referred to as a contract game extending G. G(D) will be
said voluntary if the underlying contract space D is voluntary. G(D) will be
said deterministic if the response function R in the underlying contract space
D is deterministic, namely, R : D ! A.
Assuming an appropriate measurable structure on Di for every i 2 N , a

strategy of player i in G(D) is a mapping �i : Ti ! �(Di), which thus allows
player i to randomize. Bayesian-Nash equilibria in G(D) are de�ned in the
usual way. Let N [G(D)] be the set of all Bayesian-Nash equilibrium payo¤s
of G(D).
Our goal is to characterize the set NC(G) of all payo¤s that can be

achieved at a Bayesian-Nash equilibrium of some voluntary contract game
extending G, namely NC(G) = [D voluntaryN [G(D)]. The characterization
of NC(G) will be formulated in terms of feasible, incentive compatible and
interim individually rational payo¤s in G. We thus start by recalling the
de�nition of these properties. We closely follow Myerson (1991, sections 6.4
and 6.6).
A correlated strategy (a mechanism, in Myerson (1991)�s terminology)

for the set of all players N in G is a mapping � : T ! �(A), namely,
� = (�(:jt))t2T , with �(:jt) 2 �(A) for every t 2 T . Let C =�(A)T be the
set of all correlated strategies of N .
An n�tuple of vector payo¤s (or simply, a payo¤) x = [(xi(ti))ti2Ti ]i2N ,

is feasible in G if there exists a correlated strategy � achieving x, namely

xi(ti) =
X
t�i

q(t�ijti)
X
a

�(ajt)ui(t; a) i 2 N; ti 2 Ti (1)

We then write xi(ti) = Ui(�jti) and x = U(�).
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A feasible payo¤ x = U(�) is incentive compatible (I.C.) if

Ui(�jti) �
X
t�i

q(t�ijti)
X
a

�(ajsi; t�i)ui(t; a) for every i 2 N; ti; si 2 Ti

(2)
A payo¤ x is interim individually rational (INTIR) if, for every player i,

there exists a correlated strategy ��i of players in N n fig such that

xi(ti) � max
ai2Ai

X
t�i

q(t�ijti)
X
a�i

��i(a�ijt�i)ui(t; a) for every ti 2 Ti (3)

We denote as P�i = �(A�i)T�i the set of correlated strategies of players in
N nfig. Let P =

Q
i2N P�i. If ��i satis�es the previous inequalities, we refer

to it as a correlated punishment strategy against player i. Observe that ��i
treats all types of player i in the same way5.
We denote as F(G) the set of feasible, incentive compatible and interim

individually rational payo¤s in G.

3 Characterization of feasible contracts

We start with the easier direction: the set NC(G) of all payo¤s that can be
achieved at a Bayesian-Nash equilibrium of some voluntary contract game
extendingG is included in the set of feasible, incentive compatible and interim
individually rational payo¤s in G.

Proposition 1 Let G(D) be a voluntary contract game extending G, and
let x be a Bayesian-Nash equilibrium of G(D). Then x is feasible, incentive
compatible and interim individually rational, namely, NC(G) � F(G).

Proof: Let D = (Di; i 2 N ;R) be the contract space and let � = (�i)i2N
be the Bayesian-Nash equilibrium in G(D) associated with x. We proceed
in the same way as in standard proofs of the revelation principle. For every
t 2 T , let �(:jt) 2 �(A) be the probability distribution over A induced by
� and R. Let � = (�(:jt))t2T 2 C be the corresponding correlated strategy:
x = U(�). The payo¤ x is I.C. because � is an equilibrium and thus player

5Under complete information, in the case of two players, the correspond-
ing individual rationality level of player i is the standard minmax level, namely
min��i2�(A�i)maxai2Ai

P
a�i2A�i

��i(a�i)ui(ai; a�i).
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i of type ti cannot pro�t from using �i(si), for si 6= ti, as long as the other
players follow �.
To show that x is INTIR, let, for every player i, � ��i 2 P�i = �(A�i)T�i

be the conditional distribution induced by R and ��i when player i �does
not participate�, i.e., gives the instruction to play some given action ai. Since
D is voluntary, � ��i is well-de�ned and independent of ai (and, of course, of
player i�s type). If x is not INTIR, there exist a player i, a type ti and an
action a�i such that (3) is not satis�ed. Hence player i of type ti pro�tably
deviates by giving the instruction a�i and facing �

�
�i. �

Example: Let us illustrate the previous result on Kalai et al. (2010)�s ex-
ample 5, which shows that in Bayesian games, commitments may be used as
means of communication. Kalai et al. (2010)�s commitment devices in that
example form an interesting �indirect mechanism�. The proof of the pre-
vious revelation principle associates a correlated strategy, namely a �direct
mechanism�with the indirect one.
Kalai et al. (2010) describe the basic Bayesian game G as follows: �a

treasure is buried in one of three locations L1; L2 and L3 with equal prob-
ability. It takes two to dig for it. Player 1 lives in L1 and if the treasure
is buried there he knows it. Likewise, player 2, who lives in L2, knows if
the treasure is buried there. The players cannot communicate, but they can
move simultaneously to any location. If they happen to meet at the location
of the treasure they dig for it�. They show that, in any equilibrium of G,
the probability that a player reaches the location of the treasure cannot be
higher than 2=3.
They propose a commitment space in which each player i has two de-

vices (or possible instructions), dsi (for stubborn) and d
f
i (for �exible). The

device dsi chooses the location Li, independently of the device of the other
player. The device dfi chooses the location L�i against the device d

s
�i of the

other player, but chooses L3 against the device d
f
�i of the other player. The

response function R is thus

ds2 df2
ds1 (L1; L2) (L1; L1)

df1 (L2; L2) (L3; L3)

In the contract game in which players choose devices, Kalai et al. (2010)
consider the following strategies: every player i chooses dsi when the treasure
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is at his location and dfi otherwise. This strategy pro�le is an equilibrium,
which induces the following (pure) correlated strategy �:

L2 not L2
L1 (L1; L2) (L1; L1)

not L1 (L2; L2) (L3; L3)

This example illustrates well how a deterministic response function R
can be generated by decentralized, individual response functions of every
player to the other player�s device. Decentralization somehow disappears
in the correlated strategy � resulting from the revelation principle. This
phenomenon is of course well-known in implementation theory and more
generally in mechanism design. In any case, proposition 1 characterizes the
largest set of payo¤s F(G) that can be achieved if players can voluntarily
commit themselves.
We now investigate the converse of proposition 1. The following �rst step

is readily in Myerson (1991, sections 6.1 and 6.6).

Lemma 1 Let x be a feasible, incentive compatible and interim individually
rational payo¤ in G. There exists a voluntary contract game G(D) extend-
ing G such that x is a Bayesian-Nash equilibrium payo¤ of G(D), namely,
F(G) � NC(G).

Proof: Let � 2 C be a correlated strategy such that x = U(�). Since x is
INTIR, there exists (��i)i2N 2 P =

Q
i2N P�i such that (3) is satis�ed for

every i 2 N . With the understanding that Ti \ Ai = ;, let Di = Ti [ Ai,
i 2 N , and

R(d1; :::; dn) = �(:jt1; :::; tn) if di = ti 2 Ti for every i 2 N
= �ai 
 ��i(:jt�i) if di = ai 2 Ai for some i 2 N and dj = tj 2 Tj for j 6= i
= some arbitrary a� 2 A otherwise

Let D = (Di; i 2 N ;R) be the associated contract space. G(D) is a volun-
tary contract game, with our convention that every instruction ai in Ai is
interpreted as �non-participation�of player i. The strategy pro�le � de�ned
by �i(ti) = ti for every i 2 N , ti 2 Ti (in which every player �participates�,
whatever his type) is an equilibrium of G(D), with payo¤ x. �

In lemma 1, a di¤erent contract space, namely a di¤erent response func-
tion R, is constructed for every payo¤x in F(G), which amounts to assuming
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that the mediator implementing the contract for the players knows x. Our
next step is to construct a single contract game, which can be used for all
x 2 F(G).

Lemma 2 There exists a voluntary contract game G(D�) extending G such
that every feasible, incentive compatible and interim individually rational pay-
o¤ in G is a Bayesian-Nash equilibrium payo¤ of G(D�), namely, F(G) �
N [G(D�)].

Proof: Let us set Ci = C � Ti �
Q
j 6=iP�j for every i 2 N and D�

i =
Ci [ Ai (with the understanding that Ci \ Ai = ;). The interpretation is
that every player i decides either �to participate�by giving an instruction in
Ci, which contains a correlated strategy and possible punishments, or �not
to participate�by choosing an (unconditional) action ai. More precisely, we
describe the response function R� by distinguishing several cases:

(1) di 2 Ci for every i 2 N ; let us set di = (�i; ti; (� i�k)k 6=i).

(1.a) If �1 = ::: = �n = �, then R�(d1; :::; dn) = �(:jt1; :::; tn).
(1.b) Otherwise, if n = 2, R�(d1; d2) = � 1(:jt1) 
 � 2(:jt2); if n � 3

and for some j and every i 6= j, �i = � and � i�j = ��j, then
R�(d1; :::; dn) = �aj 
 ��j(:jt�j), where aj is chosen arbitrarily in
Aj.

(2) For some j, dj = aj 2 Aj and for every i 6= j, di = (�i; ti; (� i�k)k 6=i) 2
Ci, with � i�j = ��j. Then R

�(d1; :::; dn) = �aj 
 ��j(:jt�j), as in
(1.b), but aj is player j�s choice.

(3) In all other cases, R�(d1; :::; dn) = some arbitrary a� 2 A.

Let D� = (D�
i ; i 2 N ;R�); G(D�) is a voluntary contract game. Let

x 2 F(G); as in the proof of lemma 1, let � 2 C be such that x = U(�)
and let (��i)i2N 2 P =

Q
i2N P�i be such that (3) is satis�ed. Consider

the following strategy pro�le � in G(D�): �i(ti) = (�; ti; (��k)k 6=i) for every
i 2 N , ti 2 Ti. � forms an equilibrium in G(D�) and its payo¤ is x. �

In the previous proof, the contract game G(D�) does not depend on the
payo¤ x 2 F(G) but still formally depends on the game G, through the
sets of types and actions. To make the contract game fully universal, i.e.,
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independent of the underlying Bayesian game, it su¢ ces to ask the players to
report the parameters of G as part of their strategies in the contract game,
and to implement the contract only if they agree on these parameters6. Kalai
et al. (2010)�s device space for games with complete information is �universal�
in the sense of lemma 2, namely, independent of the payo¤ x 2 F(G).
As emphasized earlier, Kalai et al. (2010)�s device space has a further

desirable property: it involves a deterministic response function, which is
easily generated by individual response functions. If we think of the contract
as being implemented by a mediator, deterministic response functions are
useful in making it possible to check that the mediator indeed followed the
players�instructions.
The next proposition will be established by modifying the proof of lemma

2. As in Kalai et al. (2010), the jointly controlled lotteries introduced by
Aumann et al. (1968) (see also Aumann and Maschler (1985)) are a basic
tool for the construction. In the case of incomplete information, the players
perform jointly controlled lotteries in parallel, for every possible n�tuple of
types t.7

Proposition 2 There exists a voluntary, deterministic contract game G(D�)
extending G such that every feasible, incentive compatible and interim indi-
vidually rational payo¤ in G is a Bayesian-Nash equilibrium payo¤ of G(D�),
namely, F(G) � N [G(D�)].

Proof: Going back to the proof of lemma 2, recall that Ci = C � Ti �Q
j 6=iP�j. Let us �rst replace C = �(A)T with C 0 = C � [0; 1]T . Let us

assume that a partition of [0; 1] into subintervals I�(a) of length �(a) is
associated to every � 2 �(A). When player i gives the instruction �i 2 C,
he also selects a number ri(t) 2 [0; 1], for every t 2 T . Let us assume that
we are in case (1.a), namely that �1 = ::: = �n = � and that the reported
types are t = (t1; :::; tn). Instead of performing the lottery �(:jt), the mediator
chooses a 2 A if

P
i2N ri(t)mod 1 2 I�(:jt)(a). At equilibrium, every player

i chooses his numbers ri(t) uniformly in [0; 1], independently for every t.

6Note the formalism of the proof of lemma 2 does not require that the mediator inter-
prets the sets Ti in any particular way. The mediator gets an n-tuple of inputs in

Q
i2N D

�
i

from the players, which enables him to select an n-tuple of actions in A to be played on
behalf of the players.

7In the next proposition, the sets of commitment devices Di are in�nite. Kalai et al.
(2010) show that in general, this assumption is necessary to get all payo¤s in F(G) as
equilibrium payo¤s of a universal contract game. They also give an approximation result.
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This guarantees that a is chosen with probability �(ajt), even in case of a
unilateral deviation in the choice of the numbers.
One can proceed similarly for the punishment strategies, by replacing P�j

by P 0�j = P�j � [0; 1]
T�j , for every j 2 N . �

Putting propositions 1 and 2 together, we get

Corollary There exists a voluntary, deterministic contract game G(D�) ex-
tending G such that N [G(D�)] = NC(G) = F(G).

4 Concluding remarks

While deterministic voluntary contract games are designed to capture de-
centralized individual commitment devices, the equilibria constructed in the
proof of Kalai et al. (2010)�s theorem 1 and in our proposition 2 require a
great deal of coordination between the players. Selection among the many
equilibria exacerbates the problem (see Kalai et al. (2010), section 6.5). At
�rst sight, the role of the coordinating authority might appear even more
important in the case of incomplete information. However, as we pointed out
earlier, in the proof of proposition 2, the mediator does not need to know what
the sets Ti�s are. What really seems to matter in the model of commitment
is that some authority is entitled to make decisions on behalf of the players,
as a function of their instructions. So the issue of decentralized commitment
seems to be independent of the underlying information structure.
Kalai et al. (2010) point out that �when dealing with commitments in

Bayesian games, there are several modeling alternatives. For example, the
individual commitments can be done before or after the private information
is revealed�. In this note, we focus on interim commitments, with the usual
(w.o.l.g.) understanding that interim participation in a contract means that
all types of a player should participate. Myerson (e.g., 1991) provides sub-
stantial arguments in favor of this point of view. As shown in this note,
interim commitments are tractable because the players�sets of instructions
can be described in a neutral way, as in the case of complete information,
while the players give their e¤ective instructions as a function of their in-
formation. In particular, a single stage is considered at which every player
gives all his instructions at once. Ex ante commitment typically requires two
stages: a �rst one to commit on a contingent plan (i.e., instructions as a
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function of the type) and a second one to report the information necessary
to implement the contingent plan (see, e.g., Forges et al. (2002)).
In this note, we implicitly focus on commitment by the set of all players,

submitted to individual participation constraints8. As soon as there are more
than two players, information being complete or not, group participation
constraints may matter as well. These are de�nitely easier to capture at the
ex ante stage (see, e.g., Forges et al. (2002) and Biran and Forges (2011)).
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