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A difference between fancy and fact is that fancies may be as you please but
facts are as the universe pleases. Robert Kaplan, The Nothing that is – A
natural history of zero.

1 Introduction

An irksome feature in the study of the history of science, mathematics, and
society formation is encountering ‘Eurocentrism’ at practically every level.
The notion that everything ‘civilised’ originated in Europe is an enterprise
which began around two hundred years ago, at a time when the world was
divided into the ‘dark’ continents and their ‘enlightened’ colonial masters.
Besides strengthening the view that the ‘dark’ continents were indeed pitch
dark, Eurocentrism was a reflex of the colonizers quest for legitimacy as the
font of all things civilised. Many sociologists find in this Eurocentrism the
seed which later bore the bitter fruit of Hitler’s Aryan supremacy theory.
Lately, however historians cutting across the North-South and East-West
divides have come to realize the folly of Eurocentrism and the ways it has
hindered the development and a critical study of history, be it of science or
otherwise1.

Unfortunately, some of us in India have not learned from these mistakes,
and stubbornly continue to engage in an ‘Indocentric’ view of science, mathe-
matics, society, language, etc. Thus we are told that “Sanskrit is the mother
of all languages”, “Indus valley civilisation is Vedic in origin”, “India gave
the world zero”, or more ludicrously as Mukherjee [1991] writes “the math-
ematical conception of zero ... was also present in the spiritual form from

1Bernal [1991] gives a detailed account of this fabrication of Eurocentrism.
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17000 years back in India”. The immediate need for this myth making may
be political, but as with Eurocentrism, these new myths will undoubtedly
retard any serious study of our heritage.

This is not to suggest that important and path breaking developments in
science and mathematics did not take place in ancient India, but claiming
exclusive ownership rights or dismissing and trivialising work done in other
civilisations is not conducive to a proper understanding of our common hu-
man heritage.

In this article we elaborate on two topics. We first discuss the tablets
from the Babylonian civilisation which deal with the Pythagoras’ theorem
and next we discuss the origin and history of zero. We would like to place
this article in the context of Professor Amartya Datta’s article in Resonance
[April 2002] where discussing on the Pythagoras’ theorem found in the Sul-
basutra he writes “Pythagoras theorem was known in other civilizations like
the Babylonian, but the emphasis there was on the numerical and not so
much on the proper geometric aspect, ...”; also regarding zero he writes “
India gave to the world a priceless gift – the decimal system ... (it) derives
its power mainly from two key strokes of genius: the concept of place-value
and the notion of zero as a digit”.

Most mathematics, e.g. Pythagoras’ theorem and other geometric and
algorithmic calculations, stem from utilitarian reasons, be they construct-
ing religious altars, measuring lands, calculating the positions of stars and
planets for astrological and astronomical purposes or constructing calendars.
Thus it would not be a heresy to say that quite a few mathematical methods
may have developed independently in many civilisations. Indeed, all available
evidence seem to suggest against any monogenesis theory.

2 By the rivers of Babylon

The Babylonian civilization of Mesopotamia dates to around 2000 BCE and
was located in the region between the two rivers Tigris and Euphrates. Prior
to this the Sumerian civilization flourished here from around 3500 BCE.
During this civilization cities were built and administration mechanism, legal
systems, irrigation channels and even a postal service were developed. The
Babylonians invaded Mesopotamia around 2000 BCE and after defeating the
Sumerians established their capital at Babylon around 1900 BCE.

This Sumerian civilization introduced writing and also had a method of
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counting, which was subsequently further developed by the Babylonians. The
cuneiform script was used to inscribe on wet clay, which was baked in the
sun (incidentally the cuneiform fonts for LATEX are also available nowadays!).
This script was deciphered by Sir Henry Creswicke Rawlinson. The famous
Code of Hammurabi dates from the Babylonian period and lists out around
280 laws for governance.

From the excavations at the Babylonian sites, many clay tablets with
inscriptions have been found. Of these we will discuss some which are con-
nected with mathematics. The number system used by the Babylonians was
a positional system with a base of 60. There are various reasons put forth
by historians for the use of this sexagesimal system. They had also divided
the day into 24 hours, each hour having 60 minutes and each minute having
60 seconds. This sexagesimal system for measurement of time survives even
now2.

We restrict ourselves to the tablets which are related to the Pythagoras’
theorem, in particular the tablets YBC 7289 (from the Yale University col-
lection), Plimpton 322 (from the Columbia University collection), the more
recently excavated Susa tablet (discovered at Shoosh, Iran) and Tell Dhibayi
tablet (discovered near Baghdad, Iraq). All these tablets are dated between
1900 BCE and 1600 BCE. However, before we proceed further, here is a
translation of a problem and its solution inscribed on a Babylonian tablet
kept at the British Museum, London.

4 is the length and 5 the diagonal. What is the breadth?
Its size is not known.
4 times 4 is 16,
5 times 5 is 25.
You take 16 from 25 and there remains 9.
What times what shall I take in order to get 9?
3 times 3 is 9,
3 is the breadth.

Of course, it does not need any elucidation that the geometric aspect of the
Pythagorean triplet is being discussed here.

For further confirmation of the fact that the Babylonians were quite fa-
miliar with the geometry behind Pythagorean triples we look at the tablet
YBC 7289.

2For a comprehensive discussion of the mathematics found in the Babylonian tablets
see Ifrah [2000].
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Figure 1: Diagram on the tablet YBC 7289.

The diagram on this tablet is shown in Figure 1. A note of explanation is
needed for this diagram. On one side of the square is inscribed 30, while on
the horizontal diagonal are inscribed two numbers 1 24 51 10 and 42 25 35.
Recalling that the Babylonians had a sexagesimal system3 and assuming that
the space between the digits represent position values of the (sexagesimal)
digits and also assuming that the first number is 1.2̄4 5̄1 1̄0 (mod 60) and the
second number is 4̄2.2̄5 3̄5 4̄2 2̄5 3̄5 (mod 60), then translating these numbers
gives 1.2̄4 5̄1 1̄0 (mod 60) = 1.41421296 (mod 10) and 4̄2.2̄5 3̄5 4̄2 2̄5 3̄5 (mod 60) =
42.4263888 (mod 10) = 30×1.41421296 (mod 10). Note that

√
2 ≈ 1.41421356 (mod 10).

Although this confirms that the Babylonians were familiar with the ge-
ometry behind Pythagorean triplets, it raises the question as to how did they
compute

√
2 so accurately.

Two among the many possibilities postulated are (i) the Babylonians were
familiar with the Heron’s method and (ii) they used an algorithmic method
based on calculating squares. Heron’s method is as follows:- take a guess
x for

√
2 and let y = x2 − 2 denote the error. Now consider (x − y

2x
)2 =

x2− y + ( y
2x

)2 = 2 + ( y
2x

)2; for small y, ( y
2x

)2 is even smaller, thus (x− y
2x

)2 is
a better approximation of 2. By this method, staring with x = 1 in only two
steps one obtains the approximation 1.2̄4 5̄1 1̄0 (mod 10). The algorithmic
method is as follows:- take two guesses x and y, one larger and the other

3Notation:- 0.2̄4 5̄ (mod 60) denotes the number (24/60) + (5/3600) (mod 10), while
0.2̄ 4̄5 (mod 60)denotes (2/60) + (45/3600) (mod10). In the next section we discuss how
the Babylonians used 0 as a place marker.
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smaller than
√

2; if the number (x+y
2

)2 is larger (respectively, smaller) than
2 then iterate the process with x+y

2
and min{x, y} (respectively, max{x, y}

instead of the original guesses x and y – continue till the desired accuracy.
By this method, taking x = 1 and y = 2, one obtains the approximation
1.2̄4 5̄1 1̄0 for

√
2 in 19 steps4.

The Plimpton 322 tablet contains an array of numbers (sexagesimal)
divided into 15 rows and 4 columns. The last column just gives the row
numbers, while the numbers in the first three columns are very interesting.
Taking a, b and c to be the numbers in the first, second and third columns
respectively, we see that they satisfy the relation a = c2

c2−b2
and that c2 − b2

is a perfect square5. While some historians postulate a relation between the
secant function and the first column, the mathematician Zeeman observes
that taking b = m2 − n2, h = 2mn and c = m2 + n2 to construct the
Pythagorean triple (b, h, c), Plimpton 322 lists 15 of the 16 triples such that
n ≤ 60, π/6 ≤ θ ≤ π/4 and tan θ = h2/b2 has a finite sexagesimal expansion.

The geometric problem given in the Susa tablet is to obtain the radius
of the circumscribed circle on an isosceles triangle with sides 50, 50 and 60.
A simple algebraic calculation employing Pythagoras’ theorem immediately
yields that the radius is 3̄1.1̄5(mod 60).

The question on the Tell Dhibayi tablet is to obtain the sides of the
rectangle whose area is 0.4̄5 (mod 60) and diagonal is 1̄.1̄5 (mod 60). Setting
up a quadratic equation one immediately obtains that the sides have to be
of lengths 1 and 0.4̄5 (mod 60). However, the solution given on the tablet
merits a discussion. Using a hybrid of modern notation and sexagesimal
arithmetic, let x and y denote the lengths of the two sides. The steps are
(i) 2xy = 1̄.3̄0, (ii) x2 + y2 − 2xy = (1̄.1̄5)2 − 1̄.3̄0 = 0.3̄ 4̄5, (iii) x − y =√

0.3̄ 4̄5 = 0.1̄5, (iv) (x − y)/2 = 0.7̄ 3̄0, (v) ((x − y)/2)2 = 0.0̄ 5̄6 1̄5, (vi)
((x−y)/2)2 +(xy) = 0.0̄ 5̄6 1̄5+0.4̄5 = 0.4̄5 5̄6 1̄5, (vii) (x+y)/2 = 0.5̄2 3̄0,
(viii) x = ((x+y)/2)+((x−y)/2) = 1, (ix) y = ((x+y)/2)−((x−y)/2) = 0.4̄5.
Hence the dimensions of the rectangle are 1 and 0.4̄5.

This clearly demonstrates that the Babylonians were quite conversant
with both the geometric and arithmetic properties of the Pythagorean triples.
Of course, whether they had a proof of the Pythagras’ theorem or, more

4The Babylonians were not afraid of taking squares as has been attested by the fact
that many tablets have been discovered of squares. In fact their multiplication was based
on the formula xy = (x+y)2−(x−y)2

4 .
5Note that Ifrah [2000] makes a mistake in obtaining these relations.
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importantly, whether there was any notion of proof in Babylonian times is a
different question and we do not discuss it here.

3 Nada sera como antes

In this section we discuss the history of the decimal system and the notion of
zero as a place-value as well as a digit. We will see that the decimal system,
together with zero as a place value were known, not only in post-Vedic India,
but also earlier in the Babylonian system and in the contemporary Mayan
civilization. In all likelihood, there could have been independent development
of this system in all these places. However the notion of zero as an integer is
quite clearly Indian in origin and Brahmagupta appears to be the first person
to consider zero as an integer.

The importance of zero as a place marker can be understood from the
fact that if we did not have it, then there would be no way of distinguishing
between the numbers 201 and 21 (in any base). However, the Babylonians
did not have it for over 1000 years and from all available evidence, it appears
that they did not have any problems with the confusion that must have
reigned.

A hybrid of the alphabetic system and the positional number systems
appears in Babylonian tablets from around 2000 BCE – this system called
the Mari system (named after the place where the tablets were found) was
later refined to a positional system by the Babylonians by around 700 BCE.
However, the system had its limitations, e.g., 36 had to be represented by
three tens juxtaposed together followed by six 1’s juxtaposed together.

In a tablet, dating from around 700 BCE, excavated at Kish, Iraq, the
first evidence of using zero is found. The scribe Bêl-bân-aplu, who wrote the
tablet used three hooks to denote zero. It is from tablets written between the
sixth and third century BCE we find that the Babylonians used a variety of
symbols to denote zero in a number. They used a single wedge or two wedge
symbols to denote zero. Thus by around 400 BCE we find instances like 2“1
to distinguish it from 21. However, the use of zero in the units place of a
number (e.g., 21“) or as the ‘last’ digits of a number is surprisingly absent.
Probably one relied on the context to understand the missing zeros from the
‘end’ of a number6.

6Note that if someone says that she spent sarhe teen (Hindi) to buy a car, then we’d
immediately realise that she spent Rs. 3.5 lakhs for the car, on the other hand, if she
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Significantly, a tablet found in Susa reads “20 minus 20 comes to ... you
see?” [Ifrah 2000] – this allusion to zero is quite different from the use of
zero as a symbol in expressing numbers. However, this notion of zero as a
number is not developed and neither is there anything which would suggest
that this was not just a passing fancy of a scribe.

The Greek mathematicians did not have a positional number system and
as such they did not need zero as a place-value symbol. Their number system,
called the Attic system, dating to around 500 BCE had special symbols for
each of the numbers 1, 5, 10, 50, 100, 500, 1000, 5000, 10000 and 50000. Thus
the number 3202 was expressed as XXXHHII. The connection between the
Attic system and the Roman numerals is immediate.

However, the Greek astronomers, who needed large numbers and were
clearly hampered by the fact that large numbers were too cumbersome to
be expressed in the Attic system, used the Babylonian sexagesimal system.
Thus in Ptolemy’s treatise on astronomy, Almagest , written around 130 AD,
we find the use of a sexagesimal number system together with the symbol 0 to
denote the ‘empty place’ in a number. This is probably the first occurrence
of the symbol 0, although other symbols for zero were also used by the Greek
astronomers during this period.

The oldest known writing in the Indian sub-continent is from the Indus
valley civilization (2500 – 1500 BCE), however until the script is deciphered
weare in no position to determine its relationship with the Indian number
systems. It is from the Brahmi edicts during Ashoka’s reign (273 – 235 BCE)
that the earliest numerical notation is observed, that too rather fragmentary
(only the numbers 1,2,4 and 6). Some more numbers appear in the 2nd
century BCE during the Shunga and Magadha dynasties. However, by the
first and second century AD, more complete number systems have been found
in many places in India. There is some debate as to the origin of the Brahmi
numerals and whether there were any influences from outside, however Ifrah
[2000] taking into account the “universal constants of both psychology and
paleography” demonstrates that the “Brahmi numerals were autochthonous,
that is to say, their formation was not due to any outside influence”7.

Since there had been a lot of influence of Greek astronomy in Indian
astronomy and astrology (e.g., Indian names of zodiacal signs and various
astronomical terms are Greek in origin, as well as the ratio of the length

spent sarhe teen for buying samosas then she bought only Rs 3.50 worth of samosas.
7This argument being rather technical we do not reproduce it here.
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of the longest day to that of the shortest day which is given as 3:2 – a
ratio more true of Babylonia than anywhere in India) many historians have
concluded that the place-value system of the Indian numerals have their
origin in the Babylonian system (via the Greek astronomical texts). Although
this hypothesis has not been ruled out, Ifrah [2000] raises a serious objection
to it.

In the Surya Siddhanta (600 AD) we see numbers like 488,203 and 232,238
expressed, by just their digits spelt out one after the other, without taking
recourse to the magnitude of the digit in the number. Zero finds its place in
the place-value system, although not in the ‘circular’ symbol we know of it
now. In fact, Lokavibhaga (458 AD), the Jain cosmological text is the earliest
known Indian text to have used the place-value system together with zero.
Aryabhata (500 AD) constructed an ingenious method of recording numbers
based on consonants and vowels of the Devanagari alphabet. Moreover his
method of calculating square and cube roots indicate a use of the place value
system.

It is from here that the Indian mathematicians take the profound step
to consider zero as an integer and carry on mathematical operations with
it. While Varahamihira (575 AD) mentions the use of zero in mathemat-
ical operations, Brahmagupta (628 AD) elaborates on these operations in
Brahmasphutasiddhanta. Brahmagupta defines zero as that quantity which
is obtained when a number is subtracted from itself and he goes on to elab-
orate on the procedure of addition, subtraction, multiplication and division
with zero. Thus he writes

“The sum of zero and a negative number is negative, the sum of
a positive number and zero is positive, the sum of zero and zero
is zero.
A negative number subtracted from zero is positive, a positive
number subtracted from zero is negative, zero subtracted from a
negative number is negative, zero subtracted from a positive num-
ber is positive, zero subtracted from zero is zero.”

However, division by zero was problematic

“Positive or negative numbers when divided by zero is a fraction
the zero as denominator. Zero divided by negative or positive
numbers is either zero or is expressed as a fraction with zero as
numerator and the finite quantity as denominator. Zero divided
by zero is zero.”
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Mahavira (830 AD) in his work Ganitasangraha elaborates on Brahmagupta’s
work and realising the obvious inadequacy of Brahmagupta’s explanation
about division by zero states that “A number remains unchanged when di-
vided by zero”. Later Bhaskara (1150 AD) tries to correct this mistake of
Mahavira in his book Lilavati.

“A quantity divided by zero becomes a fraction the denominator
of which is zero. This fraction is termed an infinite quantity.
In this quantity consisting of that which has zero for its divisor,
there is no alteration, though many may be inserted or extracted;
as no change takes place in the infinite and immutable God when
worlds are created or destroyed, though numerous orders of beings
are absorbed or put forth.”

Here though we have a glimpse of the use of the mathematical notion on
infinity, Bhaskara still couldn’t arrive at the modern concept that division
by zero is not allowed8. This would continue to plague Arab and subse-
quently European mathematicians who learnt from various translations of
these Indian works the notion of zero as an integer9.

Finally, to complete this brief history of zero, and reinforcing our argu-
ment against monogenetic origins of ideas in the sciences of ancient times,
it should be noted that the Mayan civilization by 665 AD had a base 20
place-value number system with a symbol and use of zero. It is also recorded
that they had used zero prior to having a place-value number system. The
calendar system of the Mayans and their development of astronomy would
seem to suggest that the Mayans must have been quite capable in their math-
ematics too. Even the wildest Euro/Indo centrist would have to admit that
the Mayan civilization developed independently, without any influence from
the ‘old world’.
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9In a sense, when L’Hôpital looks at y/x with x → 0 he is visiting this old conundrum

9



[2] Casselman, B, YBC 7289 – photograph from the Yale Babylonian col-
lection, http://www.math.ubc.ca/people/faculty/cass/Euclid/ybc/ybc.html.
[3] Ifrah, G., [2000]. The Universal History of Numbers , Wiley, New York.
[4] Joyce, D.E. [1995]. Plimpton 322, http://aleph0.clarku.edu /̃djoyce
/mathhist /plimpnote.html.
[5] Kaplan, R., [1999]. The Nothing that is: A natural history of zero,
Oxford, New York.
[6] Mukherjee,R., [1991]. Discovery of zero and its impact on Indian math-
ematics (Calcutta)
[7] O’Connor, J.J. and E.F. Robertson, [2000]. Pythagoras’s theorem in
Babylonian mathematics, http://www-groups.dcs.st-and.ac.uk /̃history /Hist-
Topics /BabylonianPythagoras.html.

10


