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Abstract

The mixed discriminant of an n-tuple of n×n matrices A1, . . . , An
is defined as

D(A1, A2, . . . , An) =
1

n!

∑
σ∈S(n)

det(A
(1)

σ(1), A
(2)

σ(2), . . . , A
(n)

σ(n)),

where A(i) denotes the ith column of the matrix A and S(n) denotes
the group of permutations of 1, 2, . . . , n. For n matrices A1, ..., An
and indeterminates λ1, . . . , λn, set

Φλ1,...,λn(A1, ..., An) = D(λ1I −A1, ..., λnI −An).

It is shown that ΦA1,...,An(A1, ..., An) = 0.

Key words. Mixed discriminant, Cayley-Hamilton Theorem, Directed
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1 Introduction

We consider complex matrices. If A is an n × n matrix, then we denote
its determinant by det(A). The identity matrix of the appropriate order
is denoted by I. The characteristic polynomial of the n × n matrix A is
given by fA(λ) = det(λI −A). The Cayley-Hamilton Theorem asserts that
for any n × n matrix A, fA(A) = 0. The purpose of this note is to prove
an analogue of the Cayley-Hamilton Theorem for mixed discriminants (see
Theorem 1.1).

To put our result in context, we begin by a brief account of the Cayley-
Hamilton Theorem. Cayley proved the theorem for 2× 2 matrices in 1858,
where he also asserted that he had verified it for 3 × 3 matrices. In 1853,
Hamilton [5] proved a result for matrices over quaternions, equivalent to the
Cayley-Hamilton Theorem for 3×3 matrices. The result has been extended
to n× n matrices by Zhang [12] using q-determinants.

A complete proof of the Cayley-Hamilton Theorem was given by Frobe-
nius in 1878, using minimal polynomials.

The Cayley-Hamilton Theorem is usually stated for complex matrices
but it holds for matrices over any field. In fact, the result is true for matrices
over a commutative ring, as shown by A. Buchheim in 1884. For an outline
of the proof, references to the original works of Cayley and Frobenius, and
for additional remarks we refer to Horn and Johnson [6].

Straubing [10] gave a particularly instructive combinatorial proof of the
Cayley-Hamilton Theorem. The main contribution of Straubing was to
consider matrix A over a noncommutative ring, with the assumption that
entries in distinct rows of A commute. For such a matrix, definition of the
determinant does not pose a problem and Straubing showed that fA(A) = 0.
Moreover, the proof of Straubing is purely combinatorial, essentially show-
ing that the Cayley-Hamilton Theorem can be regarded as a result about
directed graphs. A readable exposition of the proof is given by Zeilberger
[11].

For some other extensions of Cayley-Hamilton Theorem to more general
algebraic structures, we refer to [4,8].

We now turn to the mixed discriminant. The mixed discriminant is an
important matrix function that generalizes both the determinant and the
permanent. Let A1, A2, . . . , An be an n-tuple of n×n matrices. The mixed
discriminant of A1, A2, . . . , An is defined as

D(A1, A2, . . . , An) =
1

n!

∑
σ∈S(n)

det(A
(1)
σ(1), A

(2)
σ(2), . . . , A

(n)
σ(n)),

where A(i) denotes the ith column of the matrix A and S(n) denotes the
group of permutations of 1, 2, . . . , n.
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Example Consider the matrices

A1 =

(
1 2
3 1

)
, A2 =

(
1 4
3 2

)
.

Then

D(A1, A2) =
1

2
×
[
det

(
1 4
3 2

)
+ det

(
1 2
3 1

)]
= −15

2
.

Note that if A1 = A2 = · · · = An = A, then

D(A1, A2, . . . , An) = det(A). (1)

Let B be an n×n matrix. Recall that the permanent of B, denoted per
(B) is defined as

per(B) =
∑

σ∈S(n)

n∏
i=1

biσ(i).

Let Ai be the n×n diagonal matrix with diagonal elements b1i, . . . , bni, i =
1, . . . , n. Then it can be seen that

D(A1, A2, . . . , An) = per(B).

Thus the mixed discriminant generalizes the permanent.
We refer to [1] for basic properties of the mixed discriminant. The mixed

discriminant is closely related to the mixed volume of convex bodies, see,
for example Schneider [9]. In combinatorics, mixed discriminant can be
used to refine some formulae which involve the determinant. An example
is a formula for the number of spanning trees with color restrictions, see
[2,3]. The present paper is in the same spirit.

For n×n matrices A1, ..., An and noncommuting indeterminates λ1, . . . ,
λn, we define Φλ1,...,λn(A1, ..., An) as

Φλ1,...,λn(A1, ..., An) = D(λ1I −A1, ..., λnI −An),

and it may be viewed as a generalized characteristic polynomial. It may
be remarked that setting λ1 = λ2 = · · · = λn = λ, the polynomial
Φλ,...,λ(A1, ..., An) that we obtain has been called the mixed characteris-
tic polynomial and is one of the tools in the recent celebrated proof of the
Kadison-Singer problem [7].

The purpose of this paper is to prove the following.

Theorem 1.1 (Cayley-Hamilton Theorem for mixed discriminants)
Let A1, ..., An be n× n matrices. Then

ΦA1,...,An(A1, ..., An) = 0.
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We illustrate the validity of Theorem 1.1 by an example.

Example Consider the matrices

A1 =

(
1 2
3 1

)
, A2 =

(
1 4
3 2

)
.

Then we have

2!× Φλ1,λ2(A1, A2) = D(λ1I −A1, λ2I −A2)

= D

((
λ1 − 1 −2
−3 λ1 − 1

)
,

(
λ2 − 1 −4
−3 λ2 − 2

))
= λ1λ2 + λ2λ1 − 3λ1 − 2λ2 − 15.

Hence,

2!× ΦA1,A2
(A1, A2) =

(
1 2
3 1

)(
1 4
3 2

)
+

(
1 4
3 2

)(
1 2
3 1

)
−3

(
1 2
3 1

)
− 2

(
1 4
3 2

)
− 15

(
1 0
0 1

)
=

(
0 0
0 0

)
.

2 Proof of the main result

We first prove a preliminary result.

Lemma 2.1 For n× n matrices A1, . . . , An,

Φλ1,...,λn(A1, ..., An) =
1

n!

n∑
k=0

∑
(i̇1,...,ik)

ci1,...,ikλi1 ...λik

where ci1,...,ik = (−1)n−k(n − k)!
∑
W D(AWj1 , ..., A

W
jn−k

), {j1, ..., jn−k} =

N\ {i1, ..., ik}, and AWj is a W ×W principal sub-matrix of Aj where W
is a size n− k subset of N .

Proof. Fix i1, . . . , ik. Take a size n− k subset W = {w1, . . . , wn−k} of N,
where w1 < w2 < · · · < wn−k. Note that

Φλ1,...,λn(A1, ..., An) = D(λ1I −A1, . . . , λnI −An)

=
1

n!

∑
σ∈S(n)

det(λ
(1)
σ(1)I −A

(1)
σ(1), . . . , λ

(n)
σ(n)I −A

(n)
σ(n)),
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where λ(j) denotes the column vector whose jth element is λ and all other
elements are zero. Suppose N \W = {wn−k+1, . . . , wn} where wn−k+1 <
· · · < wn. Consider the set of permutations S̄(n) ⊂ S(n) such that for all
σ ∈ S̄(n) we have σ(wm) = im−n+k for m = n − k + 1, . . . , n. Clearly
there are (n − k)! many such permutations. It follows from elementary

linear algebra that for σ ∈ S̄(n), the coefficient of λi1 · · ·λik in det(λ
(1)
σ(1)I−

A
(1)
σ(1), . . . , λ

(n)
σ(n)I −A

(n)
σ(n)) is (−1)n−k det(A

(w1)
σ(w1), . . . , A

(wn−k)
σ(wn−k)).

The coefficient of λi1 · · ·λik in Φλ1,...,λn(A1, ..., An) is given by

1

n!

∑
(−1)n−k

∑
σ∈S̄(n)

det(A
(w1)
σ(w1), . . . , A

(wn−k)
σ(wn−k)), (2)

where the first sum is taken over subsets W = {w1, . . . , wn−k} of N. It
follows from the definition of the mixed discriminant that (2) equals

1

n!
(−1)n−k(n− k)!

∑
W

D(AWj1 , ..., A
W
jn−k

),

and the proof is complete. �

We introduce some terminology needed for the proof of the main result.
Consider an n× n matrix Ak = (akij)n×n labeled by k. The graph of Ak is

a k-colored directed weighted graph Gk = (V,Ek, µ) where V = {1, . . . , n},
Ek = V × V × {k}, and µ((i, j, k)) = akij for all i, j ∈ V . The graph of a
tuple of n× n matrices is the union of the graphs of the individual matri-
ces. More formally, the graph of A1 = (a1

ij)n×n, A2 = (a2
ij)n×n, . . . , An =

(anij)n×n is the multi-edged directed weighted graph G = (V,E, µ) where

V = {1, . . . , n}, E = ∪nk=1E
k, µ((i, j, k)) = akij for all i, j, k ∈ {1, . . . , n}.

A path P of length m from a vertex i1 to another vertex im+1 in a graph
G is a sequence of edges ((i1, i2, ·), (i2, i3, ·), . . . , (im, im+1, ·)). If i1 = im+1

then the path is called a cycle of length m. Moreover, an empty sequence
is called an empty path.

We follow the technique of Straubing[10], as explained in Zeilberger[11],
with some modifications to prove the main result.

Proof of Theorem 1.1. Let G be the graph of A1, . . . , An. Fix i, j and
let A (i, j) be the set of pairs (P,C) such that
(i) P is a path from i to j where P is possibly empty when i = j,
(ii) C is a disjoint (possibly empty) union of cycles, and
(iii) for each Ak, k ∈ {1, . . . , n}, there is a unique edge (·, ·, k) in P ∪ C.

Define the weight of (P,C), denoted by µ((P,C)), to be (−1)
#C

[ product
of the weights of the edges in (P,C) ] where #C is the number of cycles in
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C, and weight of A (i, j), denoted by µ(A(i, j)), is the total weight of all
(P,C) in A (i, j).

Claim. The (i, j)-th entry in the left side of Theorem 1.1 is 1
n! (µ(A (i, j)).

Proof of the Claim. By using Lemma 2.1 it is enough to show that
µ(P,C, L) is equal to the (i, j)-th entry of

n∑
k=0

∑
(i1,...,ik)

(−1)n−k(n− k)!
∑
W

D(AWj1 , ..., A
W
jn−k

)Ai1 ...Aik (3)

where {j1, ..., jn−k} = N\ {i1, ..., ik}, and AWj is a W ×W principal sub-
matrix of Aj where W is a size n− k subset of N .

Fix k,(i1, i2, . . . , ik), and W = {w1, w2, . . . , wn−k} where w1 < w2 <
. . . < wn−k. The corresponding term in the expression (3) is

(−1)n−k(n− k)!D(AWj1 , . . . , A
W
jn−k

)Ai1 . . . Aik

= (−1)n−k
∑

σ∈S̄(n−k)

det
(
A

(w1)
σ(1) , . . . , A

(wn−k)
σ(n−k)

)
Ai1 . . . Aik

where S̄(n − k) is the set of bijections from the set {1, . . . , n − k} to the
set {j1, . . . , jn−k}. Now fix σ ∈ S̄(n− k) and suppose σ(i) = j′i. Then the
corresponding term is

(−1)n−k det
(
A

(w1)
j′1

, . . . , A
(wn−k)
j′n−k

)
Ai1 . . . Aik

= (−1)n−k
∑

π∈S(n−k)

|π|
n−k∏
l=1

a
j′π(l)
wl,wπ(l)

Ai1 . . . Aik

where S(n − k) is the group of permutations of the numbers 1, . . . , n − k.
Fix π ∈ S(n− k) then the corresponding term is

(−1)n−k|π|
n−k∏
l=1

a
j′π(l)
wl,wπ(l)

Ai1 . . . Aik

= (−1)#C
n−k∏
l=1

a
j′π(l)
wl,wπ(l)

Ai1 . . . Aik .

Here the equality follows from the observation that

(−1)#C
n−k∏
l=1

a
j′π(l)
wl,wπ(l)

= |π|
n−k∏
l=1

(−aj
′
π(l)
wl,wπ(l)

)
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where C is the disjoint union of cycles with n − k edges of all colors
j1, ..., jn−k constituted by the sequence of edges ((wl, wπ(l), j

′
π(l)); l = 1, . . . n−

k). Moreover, the (i, j)-th element in Ai1 . . . Aik is the sum of the weights
of all paths P that start at i and ends at j and that has k many edges of

all colors i1, ..., ik (ordered). Note that if k = 0 then the term (a
j′π(l)
wl,wπ(l)

; l =
1, . . . n) appears at the (i, j)-th entry of the expression (3) only if i = j.
This term is represented as the sum of the weights of a pair (P,C) where
P is empty. This shows that the (i, j)-th entry of the expression (3) is a
sum of the weights of pairs (P,C) satisfying the conditions (i)-(iii) stated
at the beginning of the proof. It is also clear from the construction of the
pair (P,C) that every pair (P,C) comes exactly once in the expression (3).
This completes the proof of the claim.

We return to proof of the theorem. We show that the weight of A (i, j)
is zero. We consider an involution from A (i, j) into itself so that every
pair (P,C) is mapped to some (P ′, C ′) such that µ(P,C) = −µ(P ′, C ′).
Consider a pair (P,C) such that P is non-empty. Note that as there are n
many edges in P ∪ C and P is a non-empty path
(a) either there is a cycle in P that is disjoint from the cycles in C, if so
then call the first (starting from i in P ) such cycle c(P ), or
(b) P intersects some cycle in C, if so then call the first (starting from i in
P ) such cycle c(C). Suppose P intersects c(C) at vertex v.
In case of (a) we define P ′ = P \ c(P ) and C ′ = C ∪ c(P ), and in case of
(b) define P ′ = P with c(C) inserted at v, and C ′ = C \ c(C).

Now consider a pair (P,C) where P is empty. As discussed before such
a pair will occur for the (i, j)-th entry only if i = j. Let C be composed
of disjoint cycles C1, . . . , Cs. Then i must be in exactly one of these cycles
and suppose i ∈ Ct. Then we set P ′ = Ct and C ′ = C \ Ct.

Note that (P ′, C ′) satisfies the conditions stated at the beginning of the
proof. Moreover, µ(P,C) = −µ(P ′, C ′) as they have the same set of edges
and number of cycles in C and C ′ differ by exactly 1. The fact that the
association of (P,C) with (P ′, C ′) is an involution is also clear from the
construction. This proves that the weight of A(i, j) is zero. �

Example This example illustrates the construction of the involution em-
ployed in the proof of Theorem 1.1. Suppose n = 6, i = 1, j = 2. Consider
a pair (P,C) where P = ((1, 2, 1), (2, 3, 2), (3, 4, 3), (4, 3, 4), (3, 2, 5)) and
C = ((6, 6, 6)). Note that this is an example of case (a) where the path
P contains a cycle ((3, 4, 3), (4, 3, 4)). So c(P ) = ((3, 4, 3), (4, 3, 4)). Hence
we have P ′ = ((1, 2, 1), (2, 3, 2), (3, 2, 5)), and C ′ = ((3, 4, 3), (4, 3, 4)) ∪
((6, 6, 6)).
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Now consider a pair (P,C) where P = ((1, 2, 1), (2, 3, 2), (3, 4, 3), (4, 2, 4))
and C = ((3, 5, 5), (5, 3, 6)). Note that this is case (b) where the path P
intersects the cycle ((3, 5, 5), (5, 3, 6)) in C at the vertex 3. So c(C) =
((3, 5, 5), (5, 3, 6)). Hence we have P ′ = ((1, 2, 1), (2, 3, 2), (3, 5, 5), (5, 3, 6),
(3, 4, 3), (4, 2, 4)), and C ′ = ∅.

Finally suppose n = 6 and i = j = 4. Consider the pair (P,C) where P
is empty and C = ((1, 2, 1), (2, 3, 2), (3, 1, 3))∪((4, 5, 4), (5, 4, 5))∪((6, 6, 6)).
Then P ′ = ((4, 5, 4), (5, 4, 5)) and C ′ = ((1, 2, 1), (2, 3, 2), (3, 1, 3))∪((6, 6, 6)).

Observe that the image of (P ′, C ′) under the mapping we consider is
(P,C) for all the above examples. This shows that the mapping is indeed
an involution.

Note that by setting A1 = A2 = · · · = An = A in Theorem 1.1 we obtain
the classical Cayley-Hamilton Theorem, in view of (1). We also note that
although we considered complex matrices, the results are valid for matrices
over a commutative ring with unity. Several proofs of the Cayley-Hamilton
Theorem rely on first using a similarity transformation to change the matrix
to a triangular, or a diagonal matrix. If A1, . . . , An can be simultaneously
changed to a triangular, or a diagonal form, then the proof of Theorem
1.1 can easily be given by first proving it for the special case. In general,
however none of the proof techniques used for proving the Cayley-Hamilton
Theorem seem to work for proving Theorem 1.1, except the combinatorial
approach that we have used.

Acknowledgment. We sincerely thank the referee for several construc-
tive comments. The first author acknowledges support from the JC Bose
Fellowship, Department of Science and Technology, Government of India.
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