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1 Introduction

We consider graphs with no loops but possibly with multiple edges. The vertex set and

the edge set of a graph G are denoted by V (G) and E(G) respectively. We usually take

V (G) = {1, . . . , n}. Let G be a graph with V (G) = {1, . . . , n}. The adjacency matrix A of

G is the n × n matrix with aij equal to the number of edges between i and j if i 6= j, and

aii = 0, i = 1, . . . , n. The Laplacian matrix L of G is defined as D − A, where D is the

diagonal matrix of vertex degrees. Clearly, L is symmetric with zero row and column sums.

(A row sum of a matrix is the sum of all the elements in a row. A column sum is defined

similarly.) It is well-known that G is connected if and only if the rank of L is n−1. We refer

to [1] for background concerning graphs and matrices.

The Matrix-Tree theorem asserts that any cofactor of the Laplacian equals the number

of spanning trees of the graph. A combinatorial interpretation of all minors of the Laplacian

matrix can also be given, see [2,3].

We introduce some further notation and definitions. The determinant of the square

matrix A is denoted by |A|. Let A be an m × n matrix and let 1 ≤ k ≤ min{m,n}. We

denote by Qk,n, the set of increasing sequences of k elements from {1, . . . , n}. For indices

I ⊂ {1, . . . ,m}, J ⊂ {1, . . . , n}, A[I|J ] will denote the submatrix of A formed by the rows

indexed by I and the columns indexed by J. The k-th compound of A, denoted by Ck(A), is

1The author acknowledges support from the JC Bose Fellowship, Department of Science and Technology,

Government of India.
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an
(
m
k

)
×
(
n
k

)
matrix defined as follows. The rows and the columns of Ck(A) are indexed by

Qk,m, Qk,n, respectively, where the ordering is arbitrary but fixed. If I ∈ Qk,m, J ∈ Qk,n,

then the (I, J)-entry of Ck(A) is set to be |A[I|J ]|.
If A and B are matrices of order m× n, n×m respectively and if 1 ≤ k ≤ min{m,n, p},

then it follows from the Cauchy-Binet formula that Ck(AB) = Ck(A)Ck(B).

If S, T ⊂ {1, . . . , n}, then we denote by A(S|T ), the submatrix of A obtained by deleting

the rows indexed by S and the columns indexed by T. If S = {i} and T = {j}, then we

denote A(S|T ) simply by A(i|j). Similarly, if S = {i, j} and T = {k, `}, then we denote

A(S|T ) by A(ij|k`) and so on. The notation A(S| :) will be used to denote the matrix

formed by deleting the rows corresponding to S (and keeping all the columns); A(: |T ) is

defined similarly.

Let Kn be the complete graph on the vertices {1, . . . , n}. We assume n ≥ 3. Let E(Kn) be

the set of edges of Kn, which evidently is the set of unordered pairs of elements in {1, . . . , n}.
If G is a graph with vertex set {1, . . . , n} and if vertices i and j are adjacent, then we denote

the edge joining i and j by (ij). We will be interested in Cn−2(L) for a matrix L with zero

row and column sums. (We do not impose any further conditions such as symmetry or the

off-diagonal elements being non-positive.) The elements of Cn−2(L) are indexed by subsets

of {1, . . . , n} of cardinality n − 2. We prefer to index them instead by unordered pairs of

elements from {1, . . . , n}. Thus if e = (ij) and f = (k`) are in E(Kn), then the (e, f)-entry of

Cn−2(L) is given by |L(ij|k`)|. The objective of the present paper is to provide a formula for

any minor of Cn−2(L). The motivation for our work is the paper by Burton and Pemantle[4],

where a formula for a principal minor of Cn−2(L) is given, in the special case when L is the

Laplacian matrix of a graph. This result will be stated in Section 3. In Section 2 we prove

several preliminary results and then obtain our main result.

2 Results

The following result is well-known. We include a proof for completeness.

Lemma 1 Let L = ((`ij)) be an n × n matrix with zero row and column sums. Then the

cofactors of L are all equal.

Proof: In the matrix L(1|1), add all the columns to its first column. Then since L has

zero row sums, the first column now becomes the negative of the first column of L(1|2). Thus

|L(1|1)| = −|L(1|2)| and hence the cofactors of `11 and `12 are equal. We can prove similarly

that all the cofactors of L are equal.

If L is an n×n matrix with zero row and column sums then we denote the common value

of its cofactors by τ(L). Note that Cn−1(L) has each element ±τ(L). It turns out that there

are intricate relationships among the (n− 2)× (n− 2) minors of such a matrix L. We begin
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by observing some such relationships in the next two results and these will form one of our

main tools.

Lemma 2 Let L be an n × n matrix with zero column sums. Let 1 ≤ i < j < k ≤ n and

1 ≤ u < v ≤ n. Then

|L(ij|uv)| = (−1)k−i−1|L(jk|uv)|+ (−1)k−j |L(ik|uv)|. (1)

Proof: In the matrix L(ij|uv), add all the rows to the k-th row (i.e., the row indexed

by k.) Let the resulting matrix be X. Since the column sums of L are zero, the row k of X

equals the negative of the sum of the row i and the row j of L(: |uv). Let Y be the matrix

which is the same as L(ij|uv), except that its row k is replaced by row i of L(: |uv), and let

Z be the matrix which is the same as L(ij|uv), except that its row k is replaced by row j

of L(: |uv). By multilinearity of the determinant it follows that |X| = −(|Y | + |Z|). In Y,

make a series of exchanges of a pair of consecutive rows so that row k is taken to position

i. This requires a total of k − i − 2 exchanges, since row indexed j is missing. Therefore

|Y | = (−1)k−i−2|L(jk|uv)|. Similarly in Z, make a series of exchanges of a pair of consecutive

rows so that row k is taken to position j. This requires a total of k−j−1 exchanges. Therefore

|Z| = (−1)k−j−1|L(jk|uv)|. It follows that

|L(ij|uv)| = |X|

= −(|Y |+ |Z|)

= (−1)k−i−1|L(jk|uv)|+ (−1)k−j |L(ik|uv)|,

and the proof is complete.

An analogue of Lemma 2 for a matrix with zero row sums is proved similarly and is

stated next.

Lemma 3 Let L be an n × n matrix with zero row sums. Let 1 ≤ i < j ≤ n and 1 ≤ u <

v < w ≤ n. Then

|L(ij|uv)| = (−1)w−u−1|L(ij|vw)|+ (−1)w−v|L(ij|uw)|. (2)

We continue with more notation. A tree, together with a distinguished vertex called

the root, is called a rooted tree. Let A be an n × n matrix. Let T be a rooted tree with

V (T ) ⊂ {1, . . . , n}, with root v. In A, add all the rows indexed by V (T ) \ v to the row

indexed by v. Then delete all the rows indexed by V (T )\v. We say that the resulting matrix

B is obtained from A by row condensation with respect to the rooted tree T. If T has a

single vertex, then B = A. By row condensation with respect to the edge (ij) we mean row

condensation with respect to the tree consisting of the single edge (ij). Column condensation

is defined similarly.
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An acyclic graph is a graph with no cycles and is also called a forest. Each component of

a forest is a tree. By a rooted forest we mean a forest with each component being a rooted

tree. If G is a rooted forest with V (G) ⊂ {1, . . . , n}, then the matrix obtained from A by row

(column) condensation with respect to G is defined to be the matrix obtained by successively

applying row (column) condensation with respect to the components of G. It is easy to see

that the order of components does not matter in this operation. If A has zero row sums, then

this property is preserved by row condensation as well as by column condensation. Similarly,

if A has zero column sums, then this property is preserved by row condensation as well as by

column condensation. When we talk of row or column condensation with respect to a tree or

a forest without specifying the root of the tree or the roots for the components of the forest,

it will be assumed that the condensation is carried out after choosing the roots. In such

cases the actual choice of the roots will not have any bearing on the subsequent discussion.

When we talk of row or column condensation with respect to a set of edges, it is assumed

that the set induces an acyclic graph, and we mean the row or column condensation with

respect to the induced graph.

Example Consider the trees T1 and T2, rooted at 4 and 1 respectively.

T1 :

◦2 •4 ◦5

T2 :

•1 ◦3 ◦4

Consider the matrix

A =



2 −1 0 1 −2

1 1 −1 0 −1

0 −1 0 1 0

1 2 −1 −1 −1

−4 −1 2 −1 4


.

After row condensation with respect to T1 (add rows 2, 5 to row 4, then delete rows 2, 5)

and column condensation with respect to T2 (add columns 3, 4 to column 1, then delete

columns 3, 4) we get the following matrix.

B =


3 −1 −2

1 −1 0

−4 2 2

 .
Observe that A has zero row and column sums and so does B.

Lemma 4 Let L be an n × n matrix. Let 1 ≤ i < j ≤ n, 1 ≤ u < v ≤ n. Let the matrix

X be obtained from L by row condensation with respect to (ij) with root j and by column
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condensation with respect to (uv) with root v. Then

|X| = |L(i|u)|+ (−1)j−i−1|L(j|u)|+ (−1)v−u−1|L(i|v)|+ (−1)v−u+j−i|L(j|v)|. (3)

Proof: Let X1 be obtained from X by replacing row j of X by row j of L(: |u) and by

replacing column v of X by column v of L(i| :). Let X2 be obtained from X by replacing

row j of X by row i of L(: |u) and by replacing column v of X by column v of L(i| :). Let

X3 be obtained from X by replacing row j of X by row j of L(: |u) and by replacing column

v of X by column u of L(i| :). Let X4 be obtained from X by replacing row j of X by row

i of L(: |u) and by replacing column v of X by column u of L(i| :). By the multilinearity of

the determinant we have

|X| = |X1|+ |X2|+ |X3|+ |X4|. (4)

Note that X1 = L(i|u). In X2 if we shift row j to the place of row i then X2 turns into

L(j|u) and this shift requires j − i− 1 row exchanges. Therefore |X2| = (−1)j−i−1|L(j|u)|.
Similarly, |X3| = (−1)v−u−1|L(i|v)| and |X4| = (−1)v−u+j−i|L(j|v)|. Substituting in (4) the

result is proved.

We will use the next result, see, for example, [5],p.4-5.

Lemma 5 (Sylvester’s identity) Let A be an n × n matrix and let 1 ≤ i < j ≤ n, 1 ≤
k < ` ≤ n. Then

|A(i|k)||A(j|`)| − |A(i|`)||A(j|k)| = |A||A(ij|k`)|. (5)

In the next three results (Lemmas 6-8) we consider 2×2 minors of Cn−2(L) and obtain a

formula. These results will form a basis for an induction proof of the main result, Theorem

13.

Lemma 6 Let L be an n × n matrix with zero row and column sums. Let i1, j1, i2, j2 be

distinct integers in {1, . . . , n} such that i1 < j1, i2 < j2. Let u1, v1, u2, v2 be distinct integers

in {1, . . . , n} such that u1 < v1, u2 < v2. Let X be the 2× 2 matrix[
|L(i1j1|u1v1)| |L(i1j1|u2v2)|
|L(i2j2|u1v1)| |L(i2j2|u2v2)|

]
.

Let Y be the matrix obtained from L by row condensation with respect to the graph induced by

the edges (i1j1), (i2j2) with roots j1, j2 respectively and by column condensation with respect to

the graph induced by the edges (u1v1), (u2v2) with roots v1, v2 respectively. Let Z = Y (j2|v2).

Then

|X| = (−1)j1+v1τ(L)|Z|.
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Proof: We assume that j1 < i2 and v1 < u2. The proof in the remaining cases is similar.

An application of Lemma 2 gives

|L(i1j1|u2v2)| = (−1)j2−i1−1|L(j1j2|u2v2)|+ (−1)j2−j1 |L(i1j2|u2v2)|. (6)

By Lemma 3,

|L(i2j2|u1v1)| = (−1)u2−u1−1|L(i2j2|v1u2)|+ (−1)u2−v1 |L(i2j2|u1u2)|. (7)

Similarly

|L(i1j1|u1v1)| = (−1)j2−i1−1|L(j1j2|u1v1)|+ (−1)j2−j1 |L(i1j2|u1v1)|

= (−1)j2−i1−1((−1)u2−u1−1|L(j1j2|v1u2)|+ (−1)u2−v1 |L(j1j2|u1u2)|)

+ (−1)j2−j1((−1)u2−u1−1|L(i1j2|v1u2)|+ (−1)u2−v1 |L(i1j2|u1u2)|). (8)

It follows from (6),(7),(8) that

|X| = |L(i1j1|u1v1)||L(i2j2|u2v2)| − |L(i1j1|u2v2)||L(i2j2|u1v1)| (9)

is the sum of the following four terms:

(−1)j2+i1+u1+u2(|L(j1j2|v1u2)||L(i2j2|u2v2)| − |L(j1j2|u2v2)||L(i2j2|v1u2)|) (10)

(−1)j2+i1+u2+v1+1(|L(j1j2|u1u2)||L(i2j2|u2v2)| − |L(j1j2|u2v2)||L(i2j2|u1u2)|) (11)

(−1)j1+j2+u1+u2+1(|L(i1j2|v1u2)||L(i2j2|u2v2)| − |L(i1j2|u2v2)||L(i2j2|v1u2)|) (12)

(−1)j1+j2+v1+u2(|L(i1j2|u1u2)||L(i2j2|u2v2)| − |L(i1j2|u2v2)||L(i2j2|u1u2)|) (13)

By Lemma 5 the terms in (10)-(13) are respectively equal to

(−1)j2+i1+u1+u2 |L(j2|u2)||L(j1i2j2|v1u2v2)| (14)

(−1)j2+i1+u2+v1+1L(j2|u2)||L(j1i2j2|u1u2v2)| (15)

(−1)j1+j2+u1+u2+1|L(j2|u2)||L(i1i2j2|u2v1v2)| (16)

(−1)j1+j2+u2+v1 |L(j2|u2)||L(i1i2j2|u1u2v2)| (17)

Let the matrices Y and Z be as in the statement of the present lemma. Taking the sum

of (14)-(17) and using Lemma 4 it follows that

|X| = (−1)j2+u2 |L(j2|u2)|(−1)j1+v1
{
|L(i1i2j2|u1u2v2)|+ (−1)u1+v1+1|L(i1i2j2|u2v1v2)|

+ (−1)i1+j1+1|L(j1i2j2|u1u2v2)|+ (−1)i1+j1+u1+v1 |L(j1i2j2|v1u2v2)|
}

= (−1)j1+v1τ(L)|Z|

and the proof is complete.
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Lemma 7 Let L be an n×n matrix with zero row and column sums. Let i < j < k be integers

in {1, . . . , n}. Let u1, v1, u2, v2 be distinct integers in {1, . . . , n} such that u1 < v1, u2 < v2.

Let X be the 2× 2 matrix [
|L(ik|u1v1)| |L(ik|u2v2)|
|L(jk|u1v1)| |L(jk|u2v2)|

]
.

Let Y be the matrix obtained from L by row condensation with respect to the tree formed by

the edges (ik), (jk) with root k and by column condensation with respect to the graph formed

by the edges (u1v1), (u2v2) with roots v1, v2 respectively. Let Z = Y (k|u2). Then

|X| = (−1)k+v1τ(L)|Z|.

Proof: We assume that v1 < u2. The proof in the remaining cases is similar. By Lemma

3 we have

|L(ik|u1v1)| = (−1)u2−u1−1|L(ik|v1u2)|+ (−1)u2−v1 |L(ik|u1u2)|. (18)

|L(jk|u1v1)| = (−1)u2−u1−1|L(jk|v1u2)|+ (−1)u2−v1 |L(jk|u1u2)|. (19)

It follows from (18),(19) that

|L(ik|u1v1)||L(jk|u2v2)| = (−1)u2−u1−1|L(ik|v1u2)||L(jk|u2v2)|

+ (−1)u2−v1 |L(ik|u1u2)||L(jk|u2v2)| (20)

|L(ik|u2v2)||L(jk|u1v1)| = (−1)u2−u1−1|L(ik|u2v2)||L(jk|v1u2)|

+ (−1)u2−v1 |L(ik|u2v2)||L(jk|u1u2)| (21)

Using (20),(21) and Lemma 5 we have

|X| = |L(ik|u1v1)||L(jk|u2v2)| − |L(ik|u2v2)||L(jk|u1v1)|

= (−1)u2−u1−1|L(k|u2)||L(ijk|v1u2v2)|+ (−1)u2−v1 |L(k|u2)||L(ijk|u1u2v2)|

= (−1)k+u2((−1)k+u1+1|L(ijk|v1u2v2)|+ (−1)k+v1 |L(ijk|u1u2v2)|)

= τ(L)(−1)k+v1(|L(ijk|u1u2v2) + (−1)u1+v1+1|L(ijk|v1u2v2)|). (22)

Using an argument similar to the one used in the proof of Lemma 4 it follows that the

expression in (22) equals (−1)k+v1τ(L)|Z| and the proof is complete.

Lemma 8 Let L be an n × n matrix with zero row and column sums. Let i < j < k, u <

v < w be integers in {1, . . . , n}. Let X be the 2× 2 matrix[
|L(ik|uw)| |L(ik|vw)|
|L(jk|uw)| |L(jk|vw)|

]
.
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Let Y be the matrix obtained from L by row condensation with respect to the tree formed by

the edges (ik), (jk) with root k and by column condensation with respect to the tree formed

by the edges (uw), (vw) with root w. Let Z = Y (k|w). Then

|X| = (−1)k+wτ(L)|Z|.

Proof: By Lemma 5 we have

|X| = |L(ik|uw)||L(jk|vw)| − |L(ik|vw)||L(jk|uw)|

= |L(k|w)||L(ijk|uvw)|)

= (−1)k+w(−1)k+w|L(k|w)||L(ijk|uvw)|

= (−1)k+wτ(L)|Z|

and the proof is complete.

In the next result we summarize the results in Lemmas 6-8 in a form that we will need

later.

Lemma 9 Let L be an n × n matrix with zero row and column sums. Let 1 < ip < jp ≤
n, 1 < uq < vq ≤ n. Let X be the 2× 2 matrix[

|L(1n|1n)| |L(1n|uqvq)|
|L(ipjp|1n)| |L(ipjp|uqvq)|

]
.

Let Y be the matrix obtained from L by row condensation with respect to {(1n), (ipjp)} and by

column condensation with respect to {(1n), (uqvq)}. For these row and column condensations

the roots are chosen as follows. If jp 6= n, then for row condensation with respect to (1n), the

root is n, while for row condensation with respect to (ipjp), the root is arbitrary. If jp = n,

then the root is n. Similar remarks apply to column condensation. In the process of these

row and column condensations, precisely one row out of ip, jp and one column out of uq, vq

will get deleted. From Y, delete the row and the column indexed by the remaining elements

of the two pairs (ipjp), (uqvq) and let the resulting matrix be Z. Then |A| = τ(L)|Z|.

Lemma 10 Let L be an n × n matrix with zero column sums. Let S ⊂ E(Kn) be a set of

edges of Kn. If the graph induced by S has a cycle, then the rows of Cn−2(L) indexed by S

are linearly dependent.

Proof: For convenience, we will refer to a row indexed by the edge (ij) as simply the

row (ij). Let the graph induced by S contain the edges (i1i2), (i2i3), . . . , (ik−1ik), (i1ik). We

prove the result by induction on k. After relabeling the rows of L if necessary, we assume

that i1 < i2 < · · · < ik. If k = 3, then by Lemma 2, for any edge (uv),

|L(i1i2|uv)| = (−1)i3−i1−1|L(i2i3|uv)|+ (−1)i3−i2 |L(i1i3|uv)|.
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It follows that the rows (i1i2), (i2i3), (i1i3) are linearly dependent. Assume that the result

holds if the cycle induced by S has k − 1 edges and proceed by induction.

By the induction hypothesis, the rows (i1i2), (i2i3), . . . , (ik−2ik−1), (i1ik−1) are linearly

dependent. If the rows (i1i2), (i2i3), . . . , (ik−2ik−1) are linearly dependent then the re-

sult is proved. Otherwise, the row (i1ik−1) must be a linear combination of the rows

(i1i2), (i2i3), . . . , (ik−2ik−1). Also, by Lemma 2, the row (i1ik−1) is a linear combination

of the rows (ik−1ik) and (i1ik). It follows that there is a linear combination of the rows

(i1i2), (i2i3), . . . , (ik−1ik), (i1ik) that equals zero and the proof is complete.

The following analogue of Lemma 10 is proved similarly.

Lemma 11 Let L be an n×n matrix with zero row sums. Let S ⊂ E(Kn) be a set of edges

of Kn. If the graph induced by S has a cycle, then the columns of Cn−2(L) indexed by S are

linearly dependent.

The next result is the well-know Dodgson condensation formula, see, for example, [5],p.4-4.

Lemma 12 Let A be an n× n matrix, n ≥ 2. Let B be the (n− 1)× (n− 1) matrix defined

by bij = |A[1(i+ 1)|1(j + 1)]|, i, j = 1, . . . , n− 1. Then |A|an−211 = |B|.

The following is the main result of this paper. The result provides a formula for any

minor of Cn−2(L), where L is an n× n matrix with zero row and column sums.

Theorem 13 Let L be an n×n matrix with zero row and column sums. Let S, T be subsets

of E(Kn) of cardinality k and let X be the submatrix of Cn−2(L) formed by the rows indexed

by S and the columns indexed by T. Let GS and GT be the subgraphs of Kn induced by the

edges in S and T respectively. If either GS or GT has a cycle, then |X| = 0. If both GS and

GT are acyclic, then |X| = ±(τ(L))k−1τ(M), where M is the matrix obtained from L by row

condensation with respect to GS , and by column condensation with respect to GT .

Proof: If either GS or GT has a cycle, then by Lemmas 10,11, the corresponding rows,

or columns, of Cn−2(L) are linearly dependent and hence |X| = 0. Therefore we assume that

both GS and GT are forests. Let T1 and T2 be components of GS and GT respectively. By

relabeling the rows and the columns of L we assume that 1 and n are both in V (T1) as well

as in V (T2), and that (1n) is an edge in both T1 and T2. We further assume that 1 is a

pendant vertex in both T1 and T2. We also set n as the root of T1 and T2. We choose and

fix a root for the remaining components of GS and GT .

We prove the result by induction on k. The case k = 2 is settled in Lemmas 6,7,8. Assume

the result to be true for k − 1 and proceed. Let U be the matrix obtained from L by row

condensation with respect to (1n) and by column condensation with respect to (1n). We

assume the first row and column of X to be indexed by (1n).
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Let the elements of S be (1n), (i2j2), . . . , (ikjk) and those of T be (1n), (u2v2), . . . , (ukvk).

Consider a 2× 2 submatrix of X that includes the first row and column. We may take the

matrix to be

A =

[
|L(1n|1n)| |L(1n|uqvq)|
|L(ipjp|1n)| |L(ipjp|uqvq)|

]
. (23)

Let Y be the matrix obtained from L by row condensation with respect to {(1n), (ipjp)} and

by column condensation with respect to {(1n), (uqvq)}. Note that for these row and column

condensations the roots have already been chosen. For example, if (1n) and (ipjp) belong

to the same component of GS , then the root is n. If they belong to different components,

then for row condensation with respect to (1n) the root is n, while for row condensation

with respect to (ipjp), the root is the root chosen for the corresponding component of GS .

Similar remarks apply to column condensation. In the process of these row and column

condensations, precisely one row out of ip, jp and one column out of uq, vq will get deleted.

From Y, delete the row and the column indexed by the remaining elements of the two pairs

(ipjp), (uqvq) and let the resulting matrix be Z. By Lemma 9, |A| = τ(L)|Z|. (Although the

matrices A, Y and Z depend on (ipjp) and (uqvq), we have suppressed the dependence in

the notation.)

Let W be the (k − 1)× (k − 1) matrix defined as follows. The rows and the columns of

W are indexed by (i2j2), . . . , (ikjk) and (u2v2), . . . , (ukvk) respectively. The element of W

in the position ((ipjp), (uqvq)) is |A|, where A is as in (23), p = 2, . . . , k; q = 2, . . . , k. By the

discussion in the preceding paragraph we observe that W is τ(L) times a (k − 1) × (k − 1)

submatrix of Cn−2(U), which we denote by R. It follows from this observation and by Lemma

12 that

|X| = |L(1n|1n)|−(k−2)|W | = |L(1n|1n)|−(k−2)(τ(L))k−1|R|. (24)

Note that if we apply row condensation with respect to {(i2j2), . . . , (ikjk)} and column

condensation with respect to {(u2v2), . . . , (ukvk)} to the matrix U, then we obtain the matrix

M defined in the statement of the present theorem. Hence by the induction hypothesis,

|R| = ±(τ(U))k−2τ(M). (25)

Finally, observe that τ(U) = |L(1n|1n)| and hence from (24),(25) we have

|X| = ±(τ(L))k−1τ(M),

and the proof is complete.

3 Application to graph Laplacians

In this section we interpret Theorem 13 in the special case when L is the Laplacian matrix

of a graph. The operations of row and column condensation are related to the operation of
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contracting an edge as we describe now. Let G be a graph with V (G) = {1, . . . , n} and let

e = (ij) be an edge of G. The contraction of e is executed as follows, see, for example, [6],

p.84. We replace i and j with a single vertex and corresponding to every edge incident to

either i or j, with the exception of e, we create an edge incident to the new vertex, keeping

the other end-vertex the same.

Example Consider the graph G

◦

BBBBBBBBBBBBBBBB ◦

◦ e

@@@@@@@ ◦

�������

◦

Contracting the edge e produces the following graph H.

◦=

&

&

=

◦

�������������

◦.

�

�

/
◦

The Laplacian matrices L and M of G and H respectively are as follows, where we have

taken the end-vertices of e as the first two vertices of G. Note that M is obtained by row

and column condensation of L with respect to e.

L =



3 −1 −1 0 −1

−1 4 −1 −1 −1

−1 −1 3 −1 0

0 −1 −1 2 0

−1 −1 0 0 2


, M =


5 −2 −1 −2

−2 3 −1 0

−1 −1 2 0

−2 0 0 2

 .

We now make the observation in the preceding example more precise. Let G be a graph

with V (G) = {1, . . . , n} and let e = (ij) be an edge of G. Let L be the Laplacian of G. Let

H be the graph obtained from G by contracting e. Let the matrix M be obtained from L

by row condensation with respect to (ij) and by column condensation with respect to (ij).

Then it can be seen that the Laplacian of H is PMP ′ for a suitable permutation matrix P.

(Here P ′ denotes the transpose of P.) The presence of P and P ′ is merely to take care of

11



the label that we choose to give to the vertex of H that replaces the two vertices of G (or,

the end-vertices of e). Note that τ(M) is precisely the number of spanning trees of G that

include e. This observation extends to the case of contracting with respect to several edges

and thus the following result is a consequence of Theorem 13.

Theorem 14 Let G be a graph with V (G) = {1, . . . , n} and let L be the Laplacian of G. Let

S ⊂ E(G) be of cardinality k and let X be the k×k submatrix of Cn−2(L) formed by the rows

and the columns indexed by S. If the subgraph induced by S has a cycle, then |X| = 0. If the

subgraph induced by S is a forest, then |X| equals (τ(L))k−1 times the number of spanning

trees of G that include all the edges in S.

We remark that Theorem 14 is essentially proved in [4] (see Theorems 1.1 and 4.2) in the

framework of random walks and electrical networks.
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