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Abstract

We consider a q-analogue of the distance matrix (called the q-distance matrix) of an

unweighted tree and give formulae for the inverse and the determinant, which generalize

the existing formulae for the distance matrix. We obtain the Smith normal form of the

q-distance matrix of a tree. The relationship of the q-distance matrix with the Laplacian

matrix leads to q-analogue of the Laplacian matrix of a tree, some of whose properties

are also given. We study another matrix related to the distance matrix (the exponential

distance matrix) and show its relationship with the q-Laplacian and the q-distance matrix.

A formula for the determinant of the q-distance matrix of a weighted tree is also given.
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1 Introduction

In this paper, we consider a q-analogue of the distance matrix of a tree and call it the

q-distance matrix. The inverse and the determinant of the matrix are obtained when the

tree is unweighted. We also define some related matrices and study their properties. For

a weighted tree, we obtain a formula for the determinant of the q-distance matrix.

We refer the reader to the book by Harary [6] for basic definitions and terminology

in graph theory. We start with some definitions. A tree is a simple connected graph

without any circuit. A weighted tree is a tree in which each edge is assigned a weight,

which is a positive number. So, an unweighted tree is simply a tree with each edge having

weight 1.

Let e,0 be the column vectors consisting of all ones and all zeros, respectively. Let

J = eet be the matrix of all ones. For a tree T on n vertices, let dt = (d1, d2, . . . , dn),

δ = 2e − d and z = d − e, where di is the degree of the ith vertex of T. Note that

δ + z = e.

1The paper was written when the last two authors visited the Stat-Math Unit at Indian Statistical

Institute, Delhi Centre in June 2005. The two authors take this opportunity to thank the Stat-Math

Unit at Indian Statistical Institute, Delhi Centre for the visiting assignment.
2Stat-Math Unit, Indian Statistical Institute Delhi, 7-SJSS Marg, New Delhi - 110 016, India;

e-mail: rbb@isid.ac.in
3Corresponding Author: A. K. Lal, Indian Institute of Technology Kanpur, Kanpur - 208 016, India;

e-mail: arlal@iitk.ac.in.
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Let T be a tree on n vertices. The distance matrix of a tree T is a n × n matrix D

with Dij = k, if the path from the vertex i to the vertex j is of length k; and Dii = 0.

The Laplacian matrix, L, of a tree T is defined by L = diag(d) − A, where A is the

adjacency matrix of T.

The distance matrix of a tree is extensively investigated in the literature. The first

known result concerns the determinant of the matrix D (see Graham and Pollak [5]),

which asserts that if T is any tree on n vertices then det(D) = (−1)n−1(n − 1)2n−2.

Thus, det(D) is a function dependent on only n, the number of vertices of the tree. The

formula for the inverse of the matrix D was obtained in a subsequent paper by Graham

and Lovasz [4]. Their result was extended for a weighted tree by Bapat et al [1]. In

Section 2, we extend the result of Graham and Lovasz by considering a new distance

matrix, termed the q-distance matrix, denoted D = (Dij) and defined as follows:

Let T be a tree on n vertices and D = (Dij) be its classical distance matrix. For an

indeterminate q, we define

Dij =

{
1 + q + q2 + · · · + qk−1 if Dij = k

0 if i = j
.
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Figure 1: An Unweighted Tree on 6 vertices

For example, the distance matrix D, of a tree T shown in Figure 1 is given by

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 + q 1 + q 1 + q + q2 1 + q + q2

1 0 1 1 1 + q 1 + q

1 + q 1 0 1 + q 1 + q + q2 1 + q + q2

1 + q 1 1 + q 0 1 1

1 + q + q2 1 + q 1 + q + q2 1 0 1 + q

1 + q + q2 1 + q 1 + q + q2 1 1 + q 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Each element of D is a polynomial in the indeterminate q. For convenience we denote

the matrix simply by D and suppress the dependence on q in the notation. Observe that

D is an entrywise nonnegative matrix for all q ≥ −1.

In Section 2, we obtain an expression for D−1 when q �= −1. In Section 3, we use the

expression for D−1 to define a generalization, called the q-Laplacian, corresponding to the
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Laplacian matrix L of a tree. We also define a related matrix, the exponential distance

matrix, and examine its properties in relation to the Laplacian. Section 4 deals with the

invariant factors and Smith normal form of the q-distance matrix. The determinant of

the q-distance matrix for a weighted tree is given in Section 5. The formula contains the

classical formula of [5] as a special case.

2 q-distance matrix of a tree

In this section, we extend certain results on distance matrices obtained by Graham and

Pollak [5] and Graham and Lovasz [4].

Most of the proofs in this paper are based on mathematical induction on the number

of vertices of a tree T. So, in the induction step, we start with a tree T̄ having a pendant

vertex k+1 with vertex k adjacent to it. The tree T is defined as T̄ \{k+1}. Then, using

the matrices D, L, z corresponding to the tree T, we define the corresponding matrices

D̄, L̄ and z̄ of the tree T̄ . That is, we have

D̄ =

[
D e + qDek

et + qet
kD 0

]
, L̄ =

[
L + eket

k −ek

−et
k 1

]
, z̄ =

[
z + ek

0

]
. (2.1)

We start with the main result of this section.

Theorem 2.1 Let D be the q-distance matrix of a tree on n vertices and q �= −1. Then

e =
1

n − 1
D (

e − qz
)
. (2.2)

Also, D is invertible, and

D−1 =
1

(n − 1)(1 + q)
U − 1

1 + q
L, (2.3)

where L = qL − (q − 1)I + q(q − 1)diag(z) and U = (e − qz)(e − qz)t.

Proof. We prove the result by induction on n. Let n = 2. In this case, the matrices

D, L and z are defined as follows:

D =

[
0 1

1 0

]
, L =

[
1 −1

−1 1

]
, z =

[
0

0

]
.

So, 1
n−1D

(
e − qz

)
= De = e. Thus, (2.2) is true for n = 2. Also, for n = 2 and q �= −1,

the right hand side of (2.3) reduces to

1
1 + q

(
qJ − (q − 1)J

) − 1
q + 1

(
qL − (q − 1)I

)
=

1
q + 1

(−q(I −D) + (q − 1)I + J
)

=
1

q + 1
(
qD − I + J

)
=

1
q + 1

(
qD + D)

= D = D−1.
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Hence, (2.3) holds for n = 2. We now assume that both the results are true for n = k.

Let us prove the result for n = k + 1.

We first prove (2.2). That is, we need to show that D̄(
e − qz̄

)
= ke. From now on,

we will use the expressions for D̄, L̄, z̄ from (2.1). In this case, we have,

D̄(
e − qz̄

)
=

[
D e + qDek

et + qet
kD 0

] [
e − q(z + ek)

1

]

=

[
D(

e − qz
) − qDek + e + qDek(

et + qet
kD

)(
e − q(z + ek)

)
]

. (2.4)

We calculate the two blocks separately using the induction hypothesis. The first block

is given by

D(
e − qz

) − qDek + e + qDek = (k − 1)e + e = ke. (2.5)

Note that etz = et(d − e) = 2(k − 1) − k = k − 2. So,

et(e − qz) = k − q(k − 2). (2.6)

Therefore, using (2.6), the second block reduces to

(
et + qet

kD
)(

e − q(z + ek)
)

= k − q(k − 2) − q + qet
kD

(
e − qz

) − q2et
kDek

= k − q(k − 1) + qet
k(k − 1)e − q2 · 0 = k. (2.7)

Therefore, by substituting the results from (2.5) and (2.7) in (2.4), the proof of (2.2) is

complete, as

D̄(
e − qz̄

)
=

[
ke

k

]
= ke.

Under the assumption that q �= −1, we now prove that the matrix D̄−1 is indeed

given by (2.3). By the induction hypothesis, we assume that D is an invertible matrix

and use it to show that D̄ is invertible. From (2.1), note that D̄ is a block matrix and is

given by

D̄ =

[
D e + qDek

et + qet
kD 0

]
.

Thus, if

[
A11 A12

A21 A22

]
is the inverse of D̄, then we need to show that

A11 = D−1 + D−1(e + qDek)W−1(e + qDek)tD−1 (2.8)

and A12 = −D−1(e + qDek)W−1 (2.9)

where W = 0 − (e + qDek)tD−1(e + qDek) = −(e + qDek)tD−1(e + qDek) is a 1 × 1

matrix. From the induction hypothesis and (2.2), observe that D−1e =
1

k − 1
(
e − qz

)
.
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Therefore, using (2.6), we get

−W = (et + qet
kD)D−1(e + qDek) = etD−1e + qetek + qet

ke + q2et
kDek

=
1

k − 1
(
et(e − qz)

)
+ 2q + q2 · 0 =

k

k − 1
(1 + q). (2.10)

We will prove (2.8) and (2.9) in two steps.
Step 1: Using (2.10) and the induction hypothesis,

A11 = D−1 + D−1(e + qDek)W−1(e + qDek)tD−1

= D−1 − k − 1
k(1 + q)

[
(D−1e + qek)(etD−1 + qet

k)
]

=
U

(k − 1)(1 + q)
− L

1 + q
− k − 1

k(1 + q)

[
(e − qz)(e − qz)t

(k − 1)2

+
q(e − qz)et

k

k − 1
+

qek(e − qz)t

k − 1
+ q2eket

k

]

=
U

k(1 + q)
− L

1 + q
− q

(
(e − qz)et

k + ek(e − qz)t
)

k(1 + q)
− (k − 1)q2eket

k

k(1 + q)
, (2.11)

and

A12 = −D−1(e + qDek)W−1 =
(

1
k − 1

(e − qz) + qek

)
k − 1

k(1 + q)

=
1

k(1 + q)
(
e − qz + q(k − 1)ek

)
. (2.12)

Step 2: We now determine the matrices L̄ and Ū . Using (2.1) and (2.3), we have

L̄ = qL̄ − (q − 1)Ī + q(q − 1)diag(z̄)

= q

[
L + eket

k −ek

−et
k 1

]
−

[
I 0

0t 1

]
+ q(q − 1)

[
diag(z) 0

0t 0

]

=

[
L + q2eket

k −qek

−qet
k 1

]
, (2.13)

and

Ū = (ē − qz̄)(ē − qz̄)t =

[
e − q(z + ek)

1

] [
(e − q(z + ek))

t 1
]

=

[
U − q

(
(e − qz)et

k + ek(e − qz)t
)

+ q2eket
k (e − qz) − qek

((e − qz) − qek)
t 1

]
. (2.14)

Thus, using (2.13) and (2.14), the first block of the matrix D̄−1 is given by

1
k(1 + q)

Ū − 1
1 + q

L̄ =
U

k(1 + q)
− L

1 + q

−q
(
(e − qz)et

k + ek(e − qz)t
)

k(1 + q)
− (k − 1)q2eket

k

k(1 + q)
, (2.15)
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and the second block of the matrix D̄−1is given by

1
k(1 + q)

(
(e − qz) − qek

) − 1
1 + q

(−qek) =
1

k(1 + q)
(
e − qz + q(k − 1)ek

)
. (2.16)

The expressions (2.11) and (2.12) are respectively, equal to the expressions (2.15) and

(2.16). Hence, if the two sides of (2.3) are partitioned conformally as in (2.1), then the

(1, 1) and (1, 2) blocks on both sides are equal. By symmetry, the (2, 1) block on both

sides are also equal. Since a tree has at least two pendant vertices, we can repeat the

argument using the second pendant vertex and thus conclude that the (2, 2) block on

both sides of (2.3) are equal. Thus, by the induction hypothesis, we obtain the required

result.

For q = 1, the Theorem 2.1 reduces to the inverse of the distance matrix D, obtained

by Graham and Lovasz [4].

Corollary 2.2 Let T be a tree on n vertices and let D be its distance matrix. Then

D−1 =
1

2(n − 1)
(e − z)(e − z)t − 1

2
L =

1
2(n − 1)

δδt − 1
2
L.

3 Exponential distance matrix of a tree

We now define another matrix using the distance matrix of a tree. Let T be a tree on

n vertices and let D = (Dij) be its distance matrix. We now consider an n × n matrix

F = (Fij), called the exponential distance matrix, with Fij =

{
1 if i = j

qDij if i �= j
.

Proposition 3.3 Let T be a tree on n vertices and F be the corresponding exponential

distance matrix. If q �= ±1 then

F−1 = I − q

1 − q2
A +

q2

1 − q2
diag(d).

Proof. We will prove the result by induction on n. The result can be easily verified

for n = 2. Let the result be true for n = k, and let T̄ be a tree on k + 1 vertices with

k +1 being a pendant vertex and the vertex k being adjacent to k +1. As before, let the

tree T = T̄ \ {k +1}. Suppose F̄ , F respectively, represent the matrices corresponding to

the trees T̄ and T. Then

F̄ =

[
F q

qt 1

]
,

where for any q ∈ R,

qt = (qD1,k+1 , qD2,k+1 , . . . , qDk,k+1 , qDk+1,k+1 = q0 = 1). (3.17)
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We are now ready to prove the formula for F̄−1. Note that by induction hypothesis, for

q �= ±1, F is already invertible. So, if

[
A11 A12

A21 A22

]
is the inverse of F̄ , then we need to

show that

A11 = F−1 + F−1qW−1(F−1q)t, and A12 = −F−1qW−1, (3.18)

where W = 1 − qtF−1q. As Fek =
1
q

q, W = 1 − q2. Thus,

A11 = F−1 +
1

1 − q2
(qek)(qek)t = F−1 +

q2

1 − q2
eket

k and A12 = − q

1 − q2
ek. (3.19)

Also, from the statement of the proposition and (3.19),

F̄−1
11 = I − q

1 − q2
A +

q2

1 − q2
diag(d + ek)

= I − q

1 − q2
A +

q2

1 − q2
diag(d) +

q2

1 − q2
eket

k = F−1 +
q2

1 − q2
eket

k

= A11 (3.20)

and

F̄−1
12 = 0 − q

1 − q2
ek = A12. (3.21)

Therefore, from (3.20) and (3.21), if the two sides of F−1 are partitioned conformally

as in (2.1), then the (1, 1) and (1, 2) blocks on both sides are equal. By symmetry, the

(2, 1) block on both sides are also equal. Since a tree has at least two pendant vertices,

we can repeat the argument using the second pendant vertex and thus conclude that

the (2, 2) block on both sides of (2.3) are equal. So, by the induction hypothesis, the

required result follows.

Comparing the expression for D−1 given in (2.3) with the one given by Bapat et al

(see (2.1) in [1]), we introduce the q-Laplacian matrix, L, of a tree T by

L = qL − (q − 1)I + q(q − 1)diag(z). (3.22)

That is, if vi, vj are any two vertices of the tree T, then

Lij =

⎧⎪⎪⎨
⎪⎪⎩

1 + (deg(vi) − 1)q2 if i = j

−q if i �= j, (vi, vj) ∈ E(T )

0 if i �= j, (vi, vj) �∈ E(T )

.

Remark 1 The q-Laplacian matrix L reduces to

1. L = diag(d) − A = L, the Laplacian matrix of a tree whenever q = 1.

2. L = diag(d)+A, the signless Laplacian matrix of a tree (see [7]), whenever q = −1.
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We now state a few properties of the q-Laplacian matrix L.

Proposition 3.4 Let T be a tree on n vertices and let L be the q-Laplacian matrix.

Then

1. det(L) = 1 − q2.

2. the matrix L is positive definite if and only if q ∈ (−1, 1).

Proof. We use induction to prove both parts of the proposition. The result is clearly

true for n = 2 as the corresponding matrix is given by L =

[
1 −q

−q 1

]
and

det(L) = 1 − q2 > 0 if and only if q ∈ (−1, 1).

Let us assume the result to be true for n = k. We now prove the result for n = k + 1.

As before, let T̄ be a tree on k + 1 vertices. Let k + 1 be a pendant vertex adjacent to

vertex k. Then in the block form, L̄ is given by

L̄ =

[
q2eket

k + L −qek

−qet
k 1

]
.

Thus, by the induction hypothesis

det(L̄) = 1 · det
(
q2eket

k + L − (−qek) · 1−1 · (−qet
k)

)
= det(L) = 1 − q2. (3.23)

Hence by the induction argument the proof of the first part is complete.

For the proof of the second part, observe that, by the induction hypothesis, L is a

positive definite matrix. So, the matrix q2eket
k + L is also a positive definite matrix.

We now suppose that L̄ is a positive definite matrix. Then det(L̄) = 1 − q2 must be

positive. That is, we need q ∈ (−1, 1).

If q ∈ (−1, 1), then det(L̄) = 1− q2 > 0. Also, by the induction argument, the matrix

q2eket
k + L, which corresponds to the first block of the matrix L̄, is positive definite.

Hence, the matrix L̄ is itself a positive definite matrix.

Therefore, by the induction argument the proof of the second part is also complete.

The proof of the following corollary is omitted as it is an immediate consequence of

Proposition 3.4 and Remark 1.

Corollary 3.5 Let T be a tree on n vertices. Then the q-Laplacian matrix L of T is

positive semidefinite for q = −1, 1.

The next proposition gives a bound on the smallest eigenvalue of the q-Laplacian

matrix L.
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Proposition 3.6 Let T be a tree and let L be the q-Laplacian matrix. If τ(L) denotes

the smallest eigenvalue of L, then τ(L) ≤ 1 for all q ∈ R. Also, τ(L) = 1 if and only if

q = 0.

Proof. If q = 0 then L = I and hence τ(L) = 1. For q �= 0, consider a tree T

with 1 as a pendant vertex. Suppose the vertex 2 is adjacent to 1 and has degree d.

Then the 2 × 2 matrix M =

[
1 −q

−q 1 + (d − 1)q2

]
is a submatrix of L. Note that, the

characteristic polynomial of this submatrix is p(λ) = (λ − 1)2 + q2(d − 2 − (d − 1)λ).

Note that p(d−2
d−1) > 0 and p(1) < 0 (q �= 0). As p(λ) is a continuous function of λ,

by the intermediate value theorem, there exists a real number x0 ∈ (d−2
d−1 , 1) such that

p(x0) = 0. So, by the interlacing eigenvalue theorem τ(L) < 1. Therefore, the required

result follows.

We now show that for |q| > 1, L has exactly one negative eigenvalue.

Proposition 3.7 Let T be a tree and let L be the q-Laplacian matrix. Then for |q| > 1,

L has exactly one negative eigenvalue.

Proof. The result is clearly true for n = 2, as det(L) = 1 − q2 < 0 for |q| > 1. So, let

us assume the result to be true for n = k. We now prove the result for n = k + 1. As

before, let T̄ be a tree on k+1 vertices. Let k+1 be a pendant vertex adjacent to vertex

k. Then in the block form, L̄ is given by L̄ =

[
q2eket

k + L −qek

−qet
k 1

]
. Let Q =

[
I qek

0t 1

]
.

Then it is easy to verify that QL̄Qt =

[
L 0

0t 1

]
≡ B(say). Then by Sylvester’s inertia

theorem, the matrices L̄ and B have the same inertia. Therefore, the conclusion follows

by appealing to the induction hypothesis.

We now relate the two matrices L and F. By definition,

F−1 = I − q

1 − q2
A +

q2

1 − q2
diag(d) =

1
1 − q2

(
(1 − q2)I − qA + q2diag(d)

)
. (3.24)

Also,

L = qL − (q − 1)I + q(q − 1)diag(z)

= q
(
diag(d) − A

) − (q − 1)I + q(q − 1)diag(d − e)

= (1 − q2)I − qA + q2diag(d) (3.25)

Thus, from (3.25) and (3.24), we see that (1 − q2)F−1 = L. Hence, we arrive at the

following lemma.

Lemma 3.8 Let T be a tree on n vertices and let F be the corresponding exponential

matrix. If L is the q-Laplacian matrix and q �= ±1, then

(1 − q2)F−1 = L.
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Using the above lemma, we get the following corollary to Proposition 3.4.

Corollary 3.9 Let T be a tree on n vertices and let F be the corresponding exponential

matrix. Then F is a positive definite matrix for q ∈ (−1, 1).

Proof. Note that a matrix A is positive definite if and only if A−1 is positive definite.

By Proposition 3.4, we know that L is positive definite for all q ∈ (−1, 1). Also, 1−q2 > 0

for all q ∈ (−1, 1). So, by Lemma 3.8, F−1 is a positive definite matrix and hence F itself

is a positive definite matrix.

4 Invariant factors of the q-distance matrix

We first prove a preliminary result.

Lemma 4.10 Let T be a tree on n ≥ 3 vertices. Then one of the following holds:

1. T has a pendant vertex adjacent to a vertex of degree 2.

2. T has 2 pendant vertices adjacent to the same vertex.

Proof. Let P = [u1, u2, . . . , uk−2, uk−1, uk] be a path corresponding to the diameter

of T. Note that as n ≥ 3, k ≥ 3. If degT (uk−1) = 2 then the first condition holds.

If degT (uk−1) > 2, let v be another vertex adjacent to uk−1, other than uk−2 and uk.

Since the diameter of T is the same as the length of P, it follows that degT (v) = 1. Thus

Case 2 holds.

Recall that a square matrix A with polynomial entries over R is called unimodular

if det(A) is a nonzero real number. For our purpose, we use the word “unimodular” to

describe a matrix which satisfies the stronger condition that its determinant is ±1.

Theorem 4.11 Let T be a tree on n ≥ 3 vertices and D be the q-distance matrix of T.

Also, let n be a pendant vertex. Then there exists a unimodular matrix Un such that

UnDU t
n =

[
0 1

1 0

]
n−2⊕
i=1

[
− i + 1

i
(1 + q)

]

and Unen = en.
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Proof. We will prove the result by induction on n. For n = 3, D =

⎡
⎢⎢⎣

0 1 1 + q

1 0 1

1 + q 1 0

⎤
⎥⎥⎦ .

Let Pn =

⎡
⎢⎢⎣

1 0 0

0 1 0

−1 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0

0 1 0

0 −(1 + q) 1

⎤
⎥⎥⎦ . Then

PnDP t
n =

⎡
⎢⎢⎣

0 1 0

1 0 0

0 0 −2(1 + q)

⎤
⎥⎥⎦ and Pnen = en.

So, the statement is true for n = 3. Let the statement be true for n = k and T̄ be a tree

on k + 1 vertices with k + 1 as a pendant vertex. We will prove the result by considering

two cases.

Case 1: Suppose that the vertex k+1 is adjacent to the vertex k of degree 2 (Figure

2).

k + 1kk − 1

Figure 2: Figure for Case 1

Let the vertex k be adjacent to the vertex k− 1. Then the matrix Dk+1 has the form

Dk+1 =

⎡
⎢⎢⎣

Dk−1 e + qDk−1ek−1 e + qe + q2Dk−1ek−1

(e + qDk−1ek−1)t 0 1

(e + qe + q2Dk−1ek−1)t 1 0

⎤
⎥⎥⎦ ,

where Dk−1 is the polynomial matrix corresponding to the tree T̄ \ {k, k + 1}. Let Eij =

eiet
j and define P1 = I − (1 + q)Ek+1,k. Then

P1Dk+1P
t
1 =

⎡
⎢⎢⎣

Dk−1 e + qDk−1ek−1 −qDk−1ek−1

(e + qDk−1ek−1)t 0 1

(−qDk−1ek−1)t 1 −2(1 + q)

⎤
⎥⎥⎦ .

Now taking P2 = I + qEk+1,k−1, we get

P2P1Dk+1P
t
1P

t
2 =

⎡
⎢⎢⎣

Dk−1 e + qDk−1ek−1 0

(e + qDk−1ek−1)t 0 1 + q

0 1 + q −2(1 + q)

⎤
⎥⎥⎦ .
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Note that the upper left 2 × 2 block matrix is nothing but the q-distance matrix Dk of

the tree T̄ \ {k + 1}. Observe that for this tree, the vertex k is a pendant vertex. So, by

the induction hypothesis, there exists a unimodular matrix U1 such that

U1DkU
t
1 =

[
0 1

1 0

]
k−2⊕
i=1

[
− i + 1

i
(1 + q)

]
and U1ek = ek.

Thus,[
U1 0

0 1

]
P2P1Dk+1P

t
1P t

2

[
U t

1 0

0 1

]
=

[
U1DkU t

1 (1 + q)U1ek

(1 + q)et
kU t

1 −2(1 + q)

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 0 −2(1 + q) · · · 0 0
...

...
. . .

...
0 0 0 · · · −k−1

k−2 (1 + q) 1 + q

0 0 0 · · · 1 + q −2(1 + q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

So, taking P3 = I + k−2
k−1Ek+1,k, we have

P3

[
U1 0

0 1

]
P2P1Dk+1P

t
1P

t
2

[
U t

1 0

0 1

]
P t

3 =

[
0 1

1 0

]
k−1⊕
i=1

[
− i + 1

i
(1 + q)

]
.

It can be easily verified that

det

(
P3

[
U1 0

0 1

]
P2P1

)
= 1 and P3

[
U1 0

0 1

]
P2P1ek+1 = ek+1.

Case 2: Suppose that the vertices k + 1 and k are both pendant and are adjacent

to the vertex k − 1 (see Figure 3).

kk − 1

k + 1

Figure 3: Figure for Case 2

In this case, the matrix Dk+1 has the form

Dk+1 =

⎡
⎢⎢⎣

Dk−1 e + qDk−1ek−1 e + qDk−1ek−1

(e + qDk−1ek−1)t 0 1 + q

(e + qDk−1ek−1)t 1 + q 0

⎤
⎥⎥⎦ .
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Let us take P1 = I − Ek+1,k. Then

P1Dk+1P
t
1 =

⎡
⎢⎢⎣

Dk−1 e + qDk−1ek−1 0

(e + qDk−1ek−1)t 0 1 + q

0 1 + q −2(1 + q)

⎤
⎥⎥⎦ .

Note again that the upper left 2×2 block matrix is nothing but the q-distance matrix Dk.

Observe again that for this tree, the vertex k is a pendant vertex. So, by the induction

hypothesis, there exists a unimodular matrix U1 such that

U1DkU
t
1 =

[
0 1

1 0

]
k−2⊕
i=1

[
− i + 1

i
(1 + q)

]
and U1ek = ek.

So, taking P3 = I + k−2
k−1Ek+1,k, we have

P3

[
U1 0

0 1

]
P1Dk+1P

t
1

[
U t

1 0

0 1

]
P t

3 =

[
0 1

1 0

]
k−1⊕
i=1

[
− i + 1

i
(1 + q)

]
.

It can be easily verified that

det

(
P3

[
U1 0

0 1

]
P1

)
= 1 and P3

[
U1 0

0 1

]
P1ek+1 = ek+1.

Hence, by the induction hypothesis, the statement holds for all n ≥ 3.

As a corollary to Theorem 4.11, we get the following result about the inertia of the

matrix D. Recall that inertia of a Hermitian matrix A is defined as the triplet (p, n, z),

where p, n, z are the number of positive, negative and zero eigenvalues of A, respectively.

Corollary 4.12 Let T be a tree on n vertices, n ≥ 3. Also, let D be the corresponding

q-distance matrix. Then the following hold:

1. if q > −1, then the inertia of D is (1, n − 1, 0).

2. if q < −1, then the inertia of D is (n − 1, 1, 0).

3. if q = −1, then the inertia of D is (1, 1, n − 2).

Proof. Since the matrices D and UDU t are congruent, the result follows from

Sylvester’s law of inertia.

It may be remarked that when q > −1, D is an elliptic matrix with a zero diagonal

in the sense of Fiedler [3]. Also, for q = 1, the q-distance matrix is the distance matrix,

and one gets the well known result (see Theorem 3, [5]) that the distance matrix has

exactly one positive eigenvalue and n − 1 negative eigenvalues.

As another application of Theorem 4.11, we obtain the Smith normal form of the

q-distance matrix.
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Corollary 4.13 Let T be a tree on n ≥ 3 vertices and D be the q-distance matrix of

T. Then there exist unimodular matrices U, V such that

UDV =

[
1 0

0 1

]
n−2⊕
i=1

[
− i + 1

i
(1 + q)

]
,

a diagonal matrix.

Proof. Let n be a pendant vertex of T. By Theorem 4.11 there exists a unimodular

matrix Un such that UnDU t
n =

[
0 1

1 0

]
n−2⊕
i=1

[− i+1
i (1 + q)

]
. Note that the matrix UnDtUn

is not a diagonal matrix. This matrix differs from the diagonal matrix only in the first

block. Therefore, if we take U =

([
0 1

1 0

] ⊕
I

)
Un and V = U t

n, then the new matrix

UDV =

[
1 0

0 1

]
n−2⊕
i=1

[
− i + 1

i
(1 + q)

]

is a diagonal matrix. Also, the matrices U and V are unimodular as the matrix Un was

unimodular.

Remark 2 Observe that the matrix UnDU t
n in Theorem 4.11 is not a diagonal matrix,

whereas the matrix UDV in Corollary 4.13 is a diagonal matrix.

5 q-distance matrix of a weighted tree

We now define the q-distance matrix of a weighted tree T on n vertices. Let D = (dij)

be its distance matrix. Suppose the weights on the n− 1 edges of the tree T are any real

numbers w1, w2, . . . , wn−1. Let i = i0, (i0, i1), i1, (i1, i2), i2, . . . , ik−1, (ik−1, ik), ik = j be a

path of length k from a vertex i to a vertex j of T. If the edge (it, it+1) has weight wt, then

the (i, j)th entry of the q-distance matrix D is set to be w0+qw1+q2w2+ · · ·+wk−1q
k−1.

Note that the diagonal entries of the matrix D are zero and D is not a symmetric matrix

in general. Also, let σn =
n∑

i=1
wi.

1 2

6

3

4

5

w1

w5

w2 w4

w3

Figure 4: A Weighted Tree on 6 Vertices
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For example, the distance matrix D, for the tree T shown in Figure 5 is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 w1 w1 + qw2 w1 + qw2 + w3q
2 w1 + qw2 + w4q

2 w1 + w5q

w1 0 w2 w2 + w3q w2 + w4q w5

w2 + qw1 w2 0 w3 w4 w2 + w5q

w3 + qw2 + q2w1 w3 + qw2 w3 0 w3 + w4q w3 + qw2 + w5q
2

w4 + qw2 + q2w1 w4 + qw2 w4 w4 + w3q 0 w4 + qw2 + w5q
2

w5 + qw1 w5 w5 + qw2 w5 + qw2 + w3q
2 w5 + qw2 + w4q

2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the next result we obtain a formula for the determinant of D.

Theorem 5.1 Let T be a weighted tree on n vertices with edge weights w1, w2, . . . , wn−1.

If q �= −1, then

det(D) = (−1)n−1(1 + q)n−2σn

n∏
i=1

wi.

Proof. We will prove the result by induction on n. For n = 2, we have D =

[
0 w1

w1 0

]
.

So, det(D) = −w2
1 = (−1)1σ1w1. That is, the result is true for n = 2.

Let the result be true for n = k. We now prove the result for n = k + 1. Suppose T̄

is a tree with edge weights w1, w2, . . . , wk. Suppose further that T̄ has a pendant vertex

k + 1 and is adjacent to the vertex k with edge weight wk. We assume that q �= −1 and

that
k−1∑
i=1

wi �= 0. This results in no loss of generality since the restrictions can be removed

by a continuity argument. Then

D̄ =

[
D Dek + wkq

wket + qet
kD 0

]
,

where for any q ∈ R, q is defined in (3.17).

The proof of the induction part will be done in four steps.

Step 1: (e − qz)tq = etq − qztq = 1 + q.

To prove this, suppose that there is a vertex i0 adjacent to t vertices, say, i1, i2, . . . , it.

Also suppose i0 is at a distance d from the vertex k + 1. Then in the expression etq, the

contribution due to the presence of t vertices being adjacent to i0 is qd−2+qd−1+(t−1)qd.

But in the expression qztq, the information that the degree of the vertex i0 is t, gives

q · (t−1)qd−1 = (t−1)qd. Thus, in (e−qz)tq, the contribution at vertex i0 is qd−2 +qd−1.

That is, there is no contribution from the vertices that are at a distance d + 1 from the

vertex k + 1. But then this will be true for all vertices that are at a distance 1 or more.

Hence, the only term left out in the expression (e − qz)tq, is 1 + q.

Step 2: In this step, we show that etD−1 =
1

σk−1
(et − qzt). That is, we show that

σk−1et = (et − qzt)D.

The result will also be proved by induction. The initial step in the induction argument
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can be easily verified. Let the result be true for all trees with k vertices. We now prove

the result for a tree with k + 1 vertices. From (2.1), note that

et − qz̄t =
[
et | 1

] − q
[
(z + ek)t | 0

]
=

[
et − q(z + ek)t | 1

]
.

Now, using step 1 and the induction hypothesis, we get

(et − qz̄t)D̄ = (et − q(z + ek)t)

[
D Dek + wkq

wket + qet
kD 0

]

=
[
et − q(z + ek)t | 1

] [
D Dek + wkq

wket + qet
kD 0

]

=
[
σket | σk

]
= σket. (5.1)

Thus, by the induction hypothesis, the proof of step 2 is complete.

Step 3: We now show that (wket + qet
kD)D−1(Dek + wkq) =

(1 + q)wkσk

σk−1
.

We use the results obtained in step 1 and step 2, to prove this step. We have

(wket + qet
kD)D−1(Dek + wkq)

= wketek + w2
ke

tD−1q + qekDek + qwket
kq

= wk + w2
ke

tD−1q + q · 0 + qwk = wk(1 + q) +
w2

k

σk−1
(et − qzt)q

= wk(1 + q) + (1 + q)
w2

k

σk−1
=

(1 + q)wkσk

σk−1
. (5.2)

Step 4: We now use (5.2) to complete the induction step. By the induction hypothesis

and (5.2), we have

det(D̄) = det(D) · (0 − (wket + qet
kD)D−1(Dek + wkq)

)
= −det(D)

wkσk(1 + q)
σk−1

= −(−1)k−2σk−1

k−1∏
i=1

wi(1 + q)k−2 × wkσk(1 + q)
σk−1

= (−1)k−1(1 + q)k−1σk

k∏
i=1

wi.

Thus, by induction, the proof is over.

It is tempting to obtain a formula for D−1, in the case of a weighted tree. However, it

appears that such a formula will be very complicated and we leave it as an open problem.

As a consequence of Theorem 5.1, we derive the determinant formula for an unweighted

tree.

Corollary 5.2 Let T be a tree on n vertices and let D be its q-distance matrix. Then

det(D) = (−1)n−1(n − 1)(1 + q)n−2.
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Proof. In this case, the weight of each edge is 1. So, σn−1 = 1 + 1 + · · · + 1 = n − 1.

Hence, the result follows.

For q = 1, the above result reduces to the result of Graham and Pollak [5] on det(D).

Corollary 5.3 Let T be a tree on n vertices and let D be its distance matrix. Then

det(D) = (−1)n−1(n − 1)2n−2.
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