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Abstract. We define the product distance matrix of a tree and obtain formulas for its determinant and inverse.
The results generalize known formulas for the exponential distance matrix. When we restrict the number of variables
to two, we are naturally led to define a bivariate analogue of the laplacian matrix of an arbitrary graph. We also
define a bivariate analogue of the Ihara-Selberg zeta function and show its connection with the bivariate laplacian.
Finally, for connected graphs we prove an analogue of a result of Northshield connecting a partial derivative of the
determinant of the bivariate laplacian and its number of spanning trees.
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1. Introduction. Let T be a tree with vertex set [n] = {1, 2, . . . , n}. Let di,j be the
distance between vertex i and vertex j in T, which is defined as the length (the number of
edges) in the unique path from i to j. Let q be an indeterminate with q0 = 1. The expo-
nential distance matrix of the tree T is defined to be the n × n matrix ET = (ei,j)1≤i,j≤n

where ei,j = qdi,j . In the context of investigation related to the distance matrix of a tree, the
following result was obtained by Bapat, Lal and Pati in [1].

THEOREM 1.1. Let ET be the exponential distance matrix of a tree T on n vertices.
Then, det(ET ) = (1− q2)n−1.

Thus, det(ET ) is independent of the structure of the tree and is only dependent on n, the
number of vertices of T . For a tree T , a formula for the inverse of ET has been found in [1].
Define Lq , the q-analogue of T ’s laplacian as

Lq = I − qA+ q2(D − I) (1.1)

where A is the adjacency matrix of T and D = (di,j)1≤i,j≤n is a diagonal matrix with
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2di,i = deg(i) where deg(i) is the degree of vertex i in T . The q-analogue of the laplacian
has occurred in work of other authors in different contexts as we indicate below. Note that on
setting q = 1, we get Lq = L, where L is the laplacian matrix of T . For trees, the following
(see [1, Proposition 3.3]) is known.

THEOREM 1.2. Let T be a tree and let ET and Lq be its exponential distance matrix
and the q-analogue of its laplacian respectively. Then, E−1

T = 1
1−q2Lq .

The matrix Lq is also known to have the following tree independent property (see [1, Propo-
sition 3.4]), which we generalize in Lemma 3.3.

LEMMA 1.3. Let T be a tree on n vertices. Then det(Lq) = 1− q2.

The definition of Lq can be extended to graphs that are not trees in a straightforward
manner using (1.1). When the graph G is connected, but not necessarily a tree, Lq has
connections to the number of spanning trees of G. Northshield [8] showed the following
about the derivative of the determinant of Lq .

THEOREM 1.4. Let G be a connected graph with m edges, n vertices and κ spanning
trees. Let Lq be the q-analogue of its laplacian matrix and let f(q) = det(Lq). Then
f ′(1) = 2(m− n)κ.

The polynomial det(Lq) has also occurred in connection with the Ihara-Selberg zeta
function of G, see Bass [3]. Foata and Zeilberger [5] have given combinatorial proofs of the
results of Bass. We elaborate on this result below.

Let G be a connected graph. Transform G into a directed graph Gd by replacing each
edge e = {u, v} ∈ E(G) by two directed arcs (u, v) and (v, u) (i.e. one in each direction).
If e is a loop edge around vertex v, we get two directed loops around v in Gd. Henceforth,
we will work exclusively with Gd. Duplication of edges into arcs in this manner gives for
each directed edge a, a unique reverse edge arev , which we also denote as J(a). As Gd is a
directed graph, we use directed graph terminology like “start vertex” and “end vertex” of a
directed edge.

A directed edge e is said to be a successor of a directed edge e′ if the end vertex of e′

coincides with the start vertex of e. A directed path from vertex i to vertex j is a sequence
e1, e2, . . . , e` of directed edges such that vertex i is the start-vertex of e1, vertex j is the end-
vertex of e`, and for each k = 2, 3, . . . , `, ek is a successor of ek−1. The above path is said to
be of length `. When i = j, such directed paths are termed directed cycles.

A directed cycle e1, e2, . . . , e` is said to be reduced if J(ei) 6= ei+1 for all 1 ≤ i < ` and
J(e`) 6= e1. A directed cycle C is said to be prime if C is not the power of a smaller oriented
cycle i.e. there does not exist a directed cycle C ′ and a positive integer r > 1 such that C =
(C ′)r where (C ′)r is the directed cycle obtained by repeating the directed cycle C ′, r-times.
Two directed cycles C,C ′ are said to be cyclically equivalent if one is a cyclic rearrangement



3of the other. That is if C = e1, e2, . . . , e` and C ′ = ek, ek+1, . . . , e`, e1, . . . , ek−1 for some
1 ≤ k ≤ `. Each equivalence class is called a cycle and let C be the set of prime and reduced
cycles of Gd.

For C ∈ C, let |C| be the length of C (i.e. the number of edges in C). Consider

η(q) =
∏
C∈C

(1− q|C|). (1.2)

Then η(q) is called the Ihara-Selberg zeta function of the graph G. Bass [3] showed the
following:

THEOREM 1.5. Let G be a graph with n vertices and m undirected edges. Then, η(q)
is a polynomial in q and can be expressed in two ways as follows. There exists a 2m × 2m
matrix S such that

η(q) = det(I − qS) (1.3)

η(q) = (1− q2)m−n det(Lq). (1.4)

In the first part of the present paper, we define a multivariate analogue of the exponen-
tial distance matrix of a tree, which we call the product distance matrix, and we explicitly
determine its determinant and inverse. When we restrict the number of variables to two, we
get a q, t-exponential distance matrix whose inverse, in analogy to Theorem 1.2, motivates us
to define the q, t-laplacian of T which we denote as Lq,t. To the best of our knowledge, the
matrix Lq,t does not seem to have been considered before.

In the last section of the paper we consider connected graphs which are not necessarily
trees and imitating the definition of Lq,t, we get a bivariate laplacian matrix Lq,t for such
graphs. Using this matrix, we obtain a bivariate analogue of (1.4). We also obtain a connec-
tion between κ, the number of spanning trees of G and a partial derivative of det(Lq,t) with
respect to either q or t, inspired by the result of Northshield [8] (see Theorem 1.4).

2. Product distance matrix of a tree. We begin with the definition of the product dis-
tance matrix of a tree. Let T = (V,E(T )) be a tree on the vertex set V = [n]. Replace
each edge e with two arcs, one in each direction, and label the two arcs with ‘weight’ qe and
te in an arbitrary manner. Define the arc-set A of T as the set of 2(n − 1) directed arcs. If
e = {u, v} ∈ E(T ), we denote the directed arc from u to v as (u, v) and the directed arc
from v to u as (v, u). Let Q = {qe : e ∈ E(T )} ∪ {te : e ∈ E(T )}. We think of the labels
qe, te as a weight function w : A → Q. For each pair of vertices i, j, i 6= j let pi,j be the
unique directed path between the vertices i, j in T . For i 6= j, define
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di,j =
∏

a∈pi,j

w(a). (2.1)

When i = j, define di,j = 1. Let MT = (di,j)1≤i<j≤n, be defined as the product
distance matrix of T . Here, we suppress the underlying weights w thoughMT depends on w.
The underlying weight function will be clear from the context. For example, the edge labeled
tree of Figure 2.1 has

MT =


1 t2 q1 t3
q2 1 q1q2 q2t3
t1 t1t2 1 t1t3
q3 t2q3 q1q3 1

 .
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FIG. 2.1. A bi-directed tree with labels on arcs
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FIG. 2.2. A directed graph with labels

We note that setting qe = te = q for all e ∈ E(T ) results in MT = ET . For a tree T on
n vertices, if the edges are labelled e1, e2, . . . , en−1 in some order, we denote the arc labels
as q1, q2, . . . , qn−1 and t1, t2, . . . , tn−1 respectively. The following result is a sharpening of
Theorem 1.1.

LEMMA 2.1. Let MT be the product distance matrix of a tree T on n vertices. Then,
det(MT ) =

∏n−1
i=1 (1 − qiti). Thus det(MT ) is independent of the structure of the tree and

only depends on n and the 2(n− 1) variables: the qi’s and the ti’s.

Proof. By induction on n, the number of vertices. The statement is clearly true for n = 2.
Assume that the statement is true for trees with n − 1 vertices and let T = (V,E(T )) be a
tree with n vertices. Let V = {1, 2, . . . , n} and let n be a leaf vertex adjacent to vertex



5n− 1. Let the arc e = (n, n− 1) be labeled as qn−1 (the other case, when e is labeled tn−1

is identically proved). In MT , if we denote Coli as the i-th column for 1 ≤ i ≤ n, then it
is clear that the elementary column operation Coln := Coln − qn−1Coln−1 yields a matrix
whose nth column is (0, 0, . . . , 0, 1 − qn−1tn−1)T where vT is the transpose of vector v. If
we denote as T ′ = T − {n}, the smaller tree obtained by deleting the leaf vertex n, then
we have det(MT ) = (1 − qn−1tn−1) det(MT ′). The proof is complete by induction on the
number of vertices of T .

We now give an explicit formula for the inverse of MT . To describe this, we need two
n × n matrices, B and D described below: B = (au,v)1≤u,v≤n where au,v = 0 if there is
no edge between vertices u and v. Set au,v = qi/(1 − qiti) and av,u = ti/(1 − qiti), if
ei = {u, v} with w(u, v) = qi and w(v, u) = ti respectively. Note that when qi = ti = q for
all 1 ≤ i < n, thenB =

q

1− q2
A, whereA is the adjacency matrix of T . LetD be a diagonal

matrix with du,u =
∑

i:u∈ei

qiti
1− qiti

. If F = (fi,j) is the diagonal matrix with fi,i = deg(i),

the degree of vertex i, then if qi = ti = q for all 1 ≤ i < n, we get D =
q2

1− q2
F . The

following is a generalisation of [1, Proposition 3.3].

THEOREM 2.2. For any tree T on n vertices, M−1
T = I −B +D.

Proof. We induct on n, the number of vertices of T . The base case when n = 2 can be
easily checked. Let T be a tree on n vertices with vertex n being a leaf vertex connected to
vertex n − 1. Let T ′ = T − {n}. Let M ′, B′ and D′ be the matrices analogous to MT , B
and D respectively for T ′.

Let fn−1 be the edge {n, n−1} and let (n, n−1) be assigned weight qn−1 and (n−1, n)
be assigned weight tn−1 (the case when weights are assigned otherwise is identical to prove).
Let en be the n × 1 column vector with a 1 in position n and zeroes elsewhere. Define the
n× 1 column vector v, and the 1× n row vector u, by

v = M ′ × en u = en
T ×M ′. (2.2)

It is clear that MT =

(
M ′ qn−1v
tn−1u 1

)
. By induction, M ′ is invertible and it is easy

to see that qn−1tn−1u× (M ′)−1 × v 6= 1. Thus, by the Sherman-Morrison formula (see [7,
Page 124]), M ′ − qn−1tn−1v × u is invertible and we set P = (M ′ − qn−1tn−1v × u)−1.
Similarly, set Q = qn−1P × v, R = tn−1u × P and S = 1 − tn−1u ×Q. With these, it is

easy to see that the block partitioned matrix

(
P Q

R S

)
is the inverse of MT .

Thus, we only need to show that P,Q,R and S are in the form specified in the statement
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of Theorem 2.2. For this, it suffices to show that P = (M ′)−1 +

qn−1tn−1

1− qn−1tn−1
en × en

T ,

Q =
qn−1

1− qn−1tn−1
en, R =

tn−1

1− qn−1tn−1
en

T and S =
qn−1tn−1

1− qn−1tn−1
.

First, we consider

α = 1− qn−1tn−1u× (M−1)× v = 1− qn−1tn−1u× en = 1− qn−1tn−1,

where the second equality follows from (2.2) and the last equality follows since un(= dn,n) =
1.

As P = (M ′ − qn−1tn−1v × u)−1, by the Sherman Morrison formula, we get

P = (M ′)−1 +
qn−1tn−1M

′ × v × u× (M ′)−1

1− qn−1tn−1u× (M ′)−1 × v

= (M ′)−1 +
qn−1tn−1

α
en × en

T

Q = qn−1

[
(M ′)−1 +

qn−1tn−1

α
en × en

T

]
×M ′ × en

= qn−1

[
I +

qn−1tn−1

α
en × u

]
× en = qn−1

[
en +

qn−1tn−1

α
en

]
=
qn−1

α
en

R = tn−1en
T ×M ′ ×

[
(M ′)−1 +

qn−1tn−1

α
en × en

T

]
= tn−1en

T ×
[
I +

qn−1tn−1

α
v × en

T

]
= tn−1

[
en

T +
qn−1tn−1

α
en

T

]
=
tn−1

α
en

T

S = 1− tn−1u×
[qn−1

α
en

]
= 1− tn−1qn−1

α
u× en =

1
α
.

Thus all matrices are in the same form as claimed, completing the proof.

We note that result [1, Proposition 3.3] follows from Theorem 2.2. It may be remarked
that an additive analogue of Theorem 2.2 has been considered by Bapat, Lal and Pati (see
[2]). For this, suppose we bidirect the edges of a tree and have weights w(a) for each arc
a ∈ A. Define the distance between vertices i, j of the tree by replacing the product in (2.1)
by the sum:

di,j =
∑

a∈pi,j

w(a)



7and set di,i = 0 for all i. Let us denote the resulting distance matrix with its (i, j)-element di,j

as QT . Then a formula for the inverse of QT has been provided in Theorem 3.1 of [2]. The
formula is fairly complicated, but when qe = q, te = t for all e ∈ E(T ), it gets considerably
simplified.

3. Bivariate exponential distance matrix of a tree. Let T = (V,E(T )) be a tree with
V = [n]. Form the n × n matrix Eq,t as follows. In MT , set qe = q for all e ∈ E(T )
and te = t for all e ∈ E(T ). With these specializations, the matrix MT gives the matrix
Eq,t. Further, setting q = t in Eq,t gives the exponential distance matrix ET = (xi,j) with
xi,j = qdi,j where di,j is the distance between vertices i and j in T . Hence, we call Eq,t as
the bivariate exponential distance matrix of T . The following two results are obtained from
Lemma 2.1 and Theorem 2.2.

COROLLARY 3.1. Let T be a tree on n vertices and Eq,t be its bivariate exponential
distance matrix. Then, det(Eq,t) = (1 − qt)n−1. Thus det(Eq,t) is independent of the tree
structure and the manner of labeling its arcs.

Let K be a diagonal matrix with (i, i)-th entry being (deg(i)− 1)qt. The orientation of
the edges of T into two directed arcs gives the following n×n ‘weights’ matrixW := (wi,j)
with wi,j = 0 if {i, j} 6∈ E(T ) and if {i, j} ∈ E(T ), then either wi,j = q and wj,i = t,

or vice versa according to whether the arc (i, j) is labelled q or t. It is easy to see that when
q = t, W reduces to qA, where A is the adjacency matrix. The following is a corollary of
Theorem 2.2.

THEOREM 3.2. Let Eq,t be the bivariate analog of the exponential distance matrix of a

tree T with edge orientation matrix W . Then, E−1
q,t =

1
1− qt

(I −W +K) .

We recall that for a tree T , the inverse of its exponential distance matrix is E−1
T =

1
1− q2

Lq , where Lq = I − qA + q2(D − I) is the q-analogue of the laplacian matrix.

Analogously, we define

Lq,t = I −W +K (3.1)

as the q, t-analogue of the laplacian. Thus for a tree T , we have

L−1
q,t =

1
1− qt

Eq,t. (3.2)

We next show a refinement of Lemma 1.3 for the matrix Lq,t.

LEMMA 3.3. Let T be a tree and let Lq,t be the q, t-analog of its laplacian. Then,



8det(Lq,t) = 1− qt.

Proof. We induct on n, the number of vertices of T . The base case when n = 2 is
clear. Let T be a tree with n + 1 vertices and let vertex n + 1 be a leaf vertex connected
to vertex n. Let T ′ = T − {n + 1}. Let L′q,t be the q, t-analogue of the laplacian of T ′.
Let en be the n × 1 column vector with a 1 in position n and zeroes elsewhere. Let the
arc (en, en+1) have the label q and the arc (en+1, en) have the label t (the other case is

identically proved as will be clear). It is clear that Lq,t =

(
L′q,t + qten × en

T −qen

−ten
T 1

)
.

By the multiplicative property of block determinants (see [7, Page 475]) we get det(Lq,t) =
det(1).det(L′q,t + qten × en

T − qten × en
T ) = det(L′q,t) = 1− qt, completing the proof.

4. A bivariate Ihara-Selberg zeta Function. We extend the definition of the q, t-
laplacian given in Section 3 to connected graphs using (3.1). i.e. we duplicate edges, as-
sign directions to them, assign weights q, t to each arc arbitrarily and consider the matrix
Lq,t = I −W + K, where W records the arc variable as q or t, and K is a diagonal matrix
with (v, v) entry being qt(deg(v)− 1).

Thus Lq,t is a bivariate generalization of the laplacian matrix L of a graph (i.e. on setting
q = t = 1, we get Lq,t = L) and a generalization of the q-analogue of the laplacian matrix
Lq of G (when q = t, we get Lq,t = Lq).

We define a bivariate Ihara-Selberg zeta function for a connected graph G motivated by
the q, t-laplacian Lq,t of G. This is towards proving a bivariate version of a result of Bass
[3]. Our proof is a reasonably straightforward generalisation of a combinatorial proof of the
univariate result of Bass given by Foata and Zeilberger [5].

Foata and Zeilberger [5, Theorem 1.1] give a slightly more general result on Lyndon
words from which a more general edge-weighted version of (1.3) follows. If instead of as-
signing each arc a weight q, we assign arc (i, j) a weight wi,j and for a prime and reduced
cycle C, consider its weight w(C) =

∏
a∈C w(a), then there is a 2m × 2m size matrix Sw

depending on w such that
∏

C∈C(1−w(C)) = det(I−Sw). Thus an analogue of (1.3) exists
for a modified version of η(q) for arbitrary edge weights. Analogues of (1.4) do not seem to
exist for arbitrary weights. Below, we prove a bivariate analogue of (1.4).

Let G be a connected graph and let Gd be as above. In Gd, assign each arc e = (u, v), a
weight q and its reverse arc, a weight t. Let C be a directed prime and reduced cycle. Let C
have a(C) arcs with weight q and b(C) arcs with weight t. It is clear that a(C) + b(C) = |C|
and that the numbers a(C) and b(C) are independent of the starting vertex of C. For graph
Gd, arising from a connected G, consider

η(q, t) =
∏
C∈C

(1− qa(C)tb(C)). (4.1)



9where C is the set of prime and reduced cycles of Gd. It is easy to see that if q = t, then
η(q, t) = η(q) and Lq,t = Lq . We show the following generalisation of Theorem 1.5.

THEOREM 4.1. Let Gd be obtained as above from a connected graph G with m edges
and n vertices. Then, η(q, t) = (1− qt)m−n det(Lq,t).

Our approach is very similar to that of Foata and Zeilberger [5] and we briefly go over
a few preliminaries before proving Theorem 4.1. Given a bidirected connected graph with
arcs assigned weights, label the arcs as e1, e2, . . . , e2m in an arbitrary manner and consider
the 2m× 2m matrices Succq,t, Tq,t and Jq,t whose entries are defined below. Each row and
column of all the above matrices are labelled by e1, e2, . . . , e2m. Since each arc is directed,
we use standard directed graph terms like initial vertex and terminal vertex of arcs. Jq,t is
the arc reversal map. i.e. the row corresponding to arc ei has only one non-zero entry. Recall
the for an arc e, erev is its unique “reverse arc”. This entry is in the column corresponding to
erev and if ei is labelled q (or t respectively), this entry is−q (−t respectively). In the matrix
Succq,t, the row corresponding to arc ei has non-zero entries only in those columns ej which
“succeed” ei i.e. in those arcs ej whose initial vertex coincide with the terminal vertex of ei.
In these columns, the entry is −q (respectively −t) if ei is labelled q (respectively t).

Define the 2m × 2m “common origin map” matrix Comq,t as follows. The row corre-
sponding to arc ei has non-zero entries only in columns ej which are different from ei and
yet have the same initial vertex as ei. In such columns, the entry is qt. As an example, for the
graph in Figure 2.2, the relevant matrices are given below.

Jq,t =



0 −q 0 0 0 0
−t 0 0 0 0 0
0 0 0 −q 0 0
0 0 −t 0 0 0
0 0 0 0 0 −t
0 0 0 0 −q 0


Comq,t =



0 0 qt 0 0 0
0 0 0 0 0 qt

qt 0 0 0 0 0
0 0 0 0 qt 0
0 0 0 qt 0 0
0 qt 0 0 0 0



Succq,t =



0 −q 0 0 0 −q
−t 0 −t 0 0 0
0 0 0 −q −q 0
−t 0 −t 0 0 0
0 −t 0 0 0 −t
0 0 0 −q −q 0


Lq,t =

 1 + qt −q −t
−t 1 + qt −t
−q −q 1 + qt



Define Aq,t = I + Succq,t + Comq,t and Sq,t = Succq,t − Jq,t. With these definitions,
it follows from [5, Theorem 1.1], that

η(q, t) = det(I − Sq,t) (4.2)



10 The next proposition follows immediately from [5, Proposition 8.1] which we state for
easy reference. For a graph with n vertices and m edges, let there be a set of commuting
edge variables su,v and another set of commuting vertex variables av . Bidirect the edges of
G to get two arcs and consider the 2m × 2m dimensional “common origin” matrix Com
defined as follows: the row corresponding to arc e of Com has non-zero entries only in the
columns corresponding to arcs f where f is an arc different from e, but with the same start
vertex v as e, in which case Come,f = av . Similarly, define the 2m×2mmatrix Succ whose
row corresponding to arc e is as follows. This row has non-zero entries only in columns f
such that the terminal vertex of e and the initial vertex of f coincide. In such a case, we set
Succe,f = su,v where e = (u, v). Define the 2m× 2m matrix A = I + Succ + Com. Recall
that deg(u) is the degree of vertex u in G (before bidirection) and let Adj = (bu,v)u,v∈V

be the 0/1 adjacency matrix of G. Define the n × n matrix ∆ as follows. ∆u,u = 1 +
bu,usu,u + (deg(u) − 1)av and ∆u,v = bu,vsu,v . The following proposition is due to Foata
and Zeilberger.

PROPOSITION 4.2. [5, Proposition 8.1]. With the definitions as above,

det(A) = det(∆)
∏

v∈V (G)

(1− av)deg(v)−1

Specializing to matrices in our context, we get the following.

LEMMA 4.3. With the above definitions, det(Aq,t) = det(Lq,t)
∏

v∈V (1−qt)deg(v)−1.

Proof. By setting av = qt for all v and qu,v = q (or t respectively) if the label on arc
(u, v) is q (or t respectively), we get Aq,t = A and Lq,t = ∆. The proof follows.

Proof. (Of Theorem 4.1) We recall Sq,t = Succq,t−Jq,t. It is easy to see that Comq,t =
Jq,t × Sq,t. Thus Aq,t = I − (Sq,t + Jq,t) + Jq,t × Sq,t = (I − Jq,t) × (I − Sq,t). Thus,
det(Aq,t) = det(I −Sq,t) det(I − Jq,t). It is simple to note that det(I − Jq,t) = (1− qt)m.
Hence, by Lemma 4.3 and (4.2), (1− qt)m−n det(Lq,t) = η(q, t), completing the proof.

In the remainder of this section we give a partial derivative based analogue of Theorem
1.4. There have been analogues of Theorem 1.4 using partial derivatives (see Kim, Kwon
and Lee [6]), but these results are motivated by connections to the Bartholdi zeta function as
opposed to any variant of the Ihara-Selberg zeta function of a graph. We denote the vertices
of G as 1, 2, . . . , n.

THEOREM 4.4. Let G be a connected graph with m edges, n vertices, κ spanning
trees and let Lq,t be the q, t-analogue of its laplacian. If D(q, t) = det(Lq,t), let f(q, t) =
∂D(q, t)
∂q

and let g(q, t) =
∂D(q, t)
∂t

. Then f(1, 1) = g(1, 1) = (m− n)κ.

Proof. It follows from the multilinearity of the determinant that the derivative (or partial



11derivative) of the determinant of Lq,t can be computed in the following manner. For 1 ≤ i ≤
n, let Li

q,t be the matrix Lq,t with the following change: all elements of the i-th column are
replaced by their partial derivative with respect to q. Then f(q, t) =

∑n
i=1 det(Li

q,t).

Thus f(1, 1) =
∑n

i=1 det(Li
1,1). Since we are considering the partial derivative with

respect to q, it is easy to see that Li
1,1 = Li where Li is the laplacian matrix of G with the

i-th column having all entries −q replaced by −1, entries −t replaced by 0 and the diagonal
entry being (deg(i) − 1)t where deg(i) is the degree of vertex i in G. We note that setting
q = t = 1 gives Lq,t = L, the laplacian matrix of G and by the Matrix Tree Theorem (see
[4]), that the minor of L obtained by deleting any row and column of L is κ, the number of
spanning trees of G. Thus, if we compute det(Li) by expanding along the i-th column, we
get det(Li

1,1) = (deg(i) − 1)κ − do
i .κ, where do

i is the number of arcs coming into vertex
i labeled q. Since each edge of G is bidirected and one of each of the arcs is labeled q, it is
easy to note that

∑n
i=1 d

o
i = m. Hence

f(1, 1) =
n∑

i=1

[(deg(i)− 1)− do
i ]κ = (2m− n)κ−

n∑
i=1

do
iκ = (m− n)κ

The argument for g(1, 1) is identical and is omitted. The proof is complete.
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