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1 Introduction

If A is an n × n complex matrix, then the permanent of A, denoted perA, is

defined as

perA =
∑

σ∈Sn

n∏
i=1

aiσ(i)

where Sn is the symmetric group of degree n. As an example,

per


1 5 2

3 2 4

2 1 5

 = 10 + 40 + 6 + 8 + 4 + 75 = 143.

Thus the definition of the permanent is similar to that of the determinant

except for the sign associated with each term in the summation. This minor

difference in the definition makes the two functions quite unlike each other.

Perhaps the permanent cannot compete with its cousin, the determinant, in

terms of the depth of theory and the breadth of applications, but it is safe

to say that the permanent also exhibits both these characteristics in ample

measure, a fact that has not received enough attention.

The permanent has a rich structure when restricted to certain classes of

matrices, particularly, matrices of zeros and ones, (entrywise) nonnegative ma-

trices and positive semidefinite matrices. Furthermore, there is a certain sim-

ilarity of its properties over the class of nonnegative matrices and the class of

positive semidefinite matrices, which is not yet fully understood. In this arti-

cle we describe some properties of permanents over these three classes, putting

1Presidential Address (Technical), Indian Mathematical Society Annual Conference, Uni-
versity of Pune, December 2007.
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emphasis on recent developments and open problems. The article is by no

means an extensive survey of permanents, rather it is biased towards topics in

which I have been interested over the years. The interested reader can how-

ever follow the references at the end that point to several sources dealing with

various aspects of the theory of permanents.

2 Matrices of zeros and ones

Let A be an n× n matrix. If σ ∈ Sn, then the set {a1σ(1), . . . , anσ(n)} is called

a diagonal of A corresponding to the permutation σ. The product πn
i=1aiσ(i) is

called a diagonal product. A diagonal is positive if the corresponding diagonal

product is positive. Note that the permanent of a 0 − 1 matrix equals the

number of positive diagonals of A.

The concept of a positive diagonal is clearly related to that of a system of

distinct representatives in a family of sets, as well as to perfect matching in a

bipartite graph. This is explained as follows.

If A is a 0− 1 n×n matrix then let Ai = {j : aij = 1}, i = 1, . . . , n. We say

that the set {x1, . . . , xn} is a system of distinct representatives of the family

{A1, . . . , An} if xi ∈ Ai, i = 1, . . . , n. The well-known theorem due to P.Hall

asserts that the family {A1, . . . , An} admits a system of distinct representatives

if and only if the union of any k members of the family contain at least k

elements, k = 1, . . . , n.

Given a 0 − 1 n × n matrix we may naturally associate a bipartite graph

G with A. The partite sets X and Y are the index sets of rows and columns

respectively. There is an edge from the i-th vertex of X to the j-th vertex of

Y if and only if aij = 1. Then by the König-Egervary Theorem G has a perfect

matching if and only if for any S ⊂ X, the neighbour set of S has at least |S|
elements. This statement as well as Hall’s Theorem are equivalent to the next

result.

Theorem 1 [Frobenius-König Theorem] Let A be a 0− 1 n× n matrix. Then

perA is zero if and only if A has a zero submatrix of order r × s such that

r + s = n + 1.

Another result equivalent to Theorem 1 is the Marriage Theorem of Halmos

and Vaughan. As these equivalences show, the permanent function on the set
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of 0 − 1 matrices is intimately connected with several classical combinatorial

problems. However, Theorem 1 also admits extensions of a different type,

making it evident that the result is important in classical matrix theory as

well. If A is a 0 − 1 matrix then the term rank of A is the maximum k such

that A has a k×k submatrix with positive permanent. Although the term rank

appears to be a purely combinatorial concept, related to the matching number

of a bipartite graph, it is also related to the classical rank as we indicate next.

We say that a matrix over a field is of zero type if each of its rows is a

linear combination of the remaining rows and each of its columns is a linear

combination of the remaining columns. The following result is obtained in [5].

Theorem 2 Let A be an n × n matrix over a field F. Then A is singular if

and only if A has a zero type submatrix B of order r × s such that r + s ≥
n + rank(B).

A matrix is said to be generic if its nonzero elements are algebraically

independent indeterminates. The term rank of a generic matrix coincides with

its rank (over the field generated by its nonzero elements). If Theorem 2 is

applied to a generic matrix then we recover Theorem 1. For related results and

extensions to bimatroids, see [23].

It was conjectured by Minc in 1963 that if A is a 0 − 1 matrix with row

sums r1, . . . , rn, then

perA ≤
n∏

i=1

(ri!)
1
ri .

The conjecture was proved by Brègman in 1973 and Schrijver gave an easier

proof in 1978. Recently, Soules[31,32] has obtained extensions of the bound to

nonnegative matrices, using a different proof technique.

3 Nonnegative matrices

The class of entrywise nonnegative matrices, which properly includes the class

of 0−1 matrices, is another class on which the permanent is well-behaved. We

will write A ≥ 0 to indicate that each element of A is nonnegative. Note that

when A ≥ 0, there are no cancelations in the expression for the permanent and

it provides the sum of all the diagonal products of the matrix. In the context
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of graph theory it can be interpreted as the sum of the weights of all perfect

matchings in the associated bipartite graph.

The n× n matrix A is said to be doubly stochastic if A ≥ 0 and each row

and column sum of A is 1. The set of n × n doubly stochastic matrices is a

compact, convex set, and we denote it by Ωn.

A permutation matrix is a matrix obtained from the identity matrix by

permuting its rows and columns. Clearly a permutation matrix is doubly

stochastic. A celebrated theorem of Birkhoff and von Neumann asserts that

the extreme points of Ωn are precisely the n! permutation matrices of order

n. Thus a matrix is doubly stochastic if and only if it can be expressed as

a convex combination of permutation matrices. As a simple consequence of

the Birkhoff-von Neumann Theorem we can conclude that the permanent of a

doubly stochastic matrix must be positive. Therefore it is natural to enquire

about the minimum of the permanent over Ωn. Van der Waerden conjectured

in 1928 that the minimum of the permanent over Ωn equals n!
nn and is attained

uniquely at the matrix Jn, which is the n× n matrix with each entry equal to
1
n
.

Marcus and Newman[21] obtained some important partial results towards

the solution of the van der Waerden conjecture. In particular they showed

that if A ∈ Ωn is a permanent minimizer, then all permanental cofactors of A

must exceed or equal perA. From this result it can be seen that if A ∈ Ωn is a

permanent minimizer such that each entry of A is positive, then A = Jn.

After the Marcus and Newman paper, attempts towards the solution of the

van der Waerden conjecture again picked up in the mid sixties and seventies

and it gave a significant impetus to work in the area of combinatorial matrix

theory.

The breakthrough came around 1981 when Egorychev and Falikman in-

dependently proved the van der Waerden conjecture. The main tools in the

proof due to Egorychev were the Marcus-Newman result and the Alexandroff

inequality which we now describe.

If A is an n × n matrix, then let ai denote the i-th column of A, i =

1, 2, . . . , n. Let A be an n× n positive matrix and consider the bilnear form

per(a1, . . . , an−2, x, y), x, y ∈ Rn. (1)

It turns out that the bilnear form (1) is indefinite with exactly one positive
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eigenvalue. As a consequence one obtains the Alexandroff inequality which

asserts that if A is a nonnegative n × n matrix and if x, y ∈ Rn where x has

positive coordinates, then

(perA)2 ≥ per(a1, . . . , an−2, x, x)per(a1, . . . , an−2, y, y). (2)

The Alexandroff inequality was in fact proved for the mixed discriminant,

which we will discuss in the next section.

The Birkhoff-von Neumann Theorem has been extensively studied and gen-

eralized. For a recent extension in the area of quantum probability, see [24].

Let A be an n× n 0− 1 matrix with k ones in each row and column. The

permanent of such a matrix is of special interest since it counts the number of

perfect matchings in a regular bipartite graph. Note that 1
k
A ∈ Ωn and hence

we do get a bound for perA by the Egorychev-Falikman proof of the van der

Waerden bound. Let Ωk,n be the set of matrices in Ωn with each entry 0 or
1
k
. The following bound was conjectured by Schrijver and Valiant in 1980, and

proved by Schrijver [27]. If A is an n× n matrix in Ωk,n with each entry 0 or

1/k, then

min{perA : A ∈ Ωk,n} ≥ (
k − 1

k
)(k−1)n.

For any k and n, let p(k, n) be the number of perfect matchings in any k-

regular bipartite graph with 2n vertices. The van der Waerden bound implies

that

infk∈N
p(k, n)

kn
=

n!

nn
.

Note that the Schrijver-Valiant bound implies that

p(k, n) ≥ (k − 1)(k−1)

k(k−2)
.

Moreover, Schrijver[27] has shown that

infn∈Np(k, n)1/n =
(k − 1)(k−1)

k(k−2)
.

Thus both bounds are best possible in different asymptotic directions.

Recently, Gurvits[14] has given a unified proof of the van der Waerden

conjecture and the Schrijver-Valiant conjecture using hyperbolic polynomials.

According to the van der Waerden bound the permanent achieves its mini-

mum over Ωn at the matrix with each entry 1
n
. However finding the minimum
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of the permanent on certain subsets has also been considered. In this context

the following folklore conjecture appears to be very notorious.

Conjecture 1 The permanent achieves its minimum over the set of n× n

doubly stochastic matrices with zeros on the diagonal uniquely at the n × n

matrix with each diagonal entry zero and each off-diagonal entry 1
n−1

.

4 Mixed discriminants

If Ak = (ak
ij) are n×n matrices, k = 1, 2, . . . , n, then their mixed discriminant,

denoted by D(A1, . . . , An), is defined as

D(A1, . . . , An) =
1

n!

∑
σ∈Sn

∣∣∣∣∣∣∣∣∣
a

σ(1)
11 · · · a

σ(n)
1n

...
. . .

...

a
σ(1)
n1 · · · aσ(n)

nn

∣∣∣∣∣∣∣∣∣ , (3)

where Sn denotes, as usual, the set of permutations of 1, 2, . . . , n. (Throughout

this section, Ak should not be confused with the k-th power of A.) Thus, if

A = (aij), B = (bij) are 2× 2 matrices, then

D(A, B) =
1

2
(a11b22 − a21b12 − a12b21 + a22b11).

We now indicate that the mixed descriminant provides a generalization of

both the determinant and the permanent. If Ak = A, k = 1, 2, . . . , n, then

clearly, D(A1, . . . , An) = detA. Also, if each Ak is a diagonal matrix,

Ak =


ak

11

. . .

ak
nn

 ,

then D(A1, . . . , An) equals 1
n!

perB where B = (bij) = (aj
ii).

We now consider some properties of mixed discriminants of positive semidef-

inite matrices.

Let Ak, k = 1, 2, . . . , n, be positive semidefinite n×n matrices and suppose

Ak = XkXk
T for each k. Then it can be proved that

D(A1, . . . , An) =
1

n!

∑
(det(x1, . . . , xn))2,
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where the sum is over all choices {x1, . . . , xn} such that xk is a column of

Xk, k = 1, 2 . . . , n. As an immediate consequence we conclude that the mixed

discriminant of positive semidefinite matrices is nonnegative. When each Ak is

a diagonal positive semidefinite matrix then the statement merely reduces to

the fact that the permanent of a nonnegative matrix is nonnegative.

It is natural to enquire about the positivity of D (A1, . . . , An) when each

Ak is positive semidefinite. Here one can prove the following, using Rado’s

generalization of Hall’s theorem. Let Ak, k = 1, 2, . . . , n, be n × n positive

semidefinite matrices. Then D(A1, . . . , An) > 0 if and only if for any T ⊂

{1, 2, . . . , n}, the rank of

(∑
i∈T

Ai

)
is at least |T |.

Let Dn denote the set of all n−tuples A = (A1, A2, . . . , An) of n×n positive

semidefinite matrices satisfying trace Ai = 1, i = 1, 2, . . . , n;
n∑

i=1

Ai = I. Then

by the process of identifying a nonnegative n × n matrix with an n−tuple of

diagonal matrices described in the preceding discussion, Dn can be viewed as

a generalization of the class of n × n doubly stochastic matrices. The per-

manent function on Ωn, the polytope of n × n doubly stochastic matrices, is

generalized to the mixed discriminant over Dn. It can be shown [2] that if

A = (A1, . . . , An) ∈ Dn, then D(A1, A2, . . . , An) > 0.

It was conjectured in [2] that the mixed discriminant achieves its minimum

over Dn precisely at (A1, . . . , An) where each Ai is the diagonal matrix
1
n

. . .
1
n

 .

The conjecture has been recently proved by Gurvits[13].

Another open problem posed in [2] is to characterize the extreme points of

Dn.

5 Positive definite matrices

When one deals with the concept of positivity in the context of matrices then

one must keep in mind the two notions of positivity, the notion of a positive

operator, which corresponds to a positive semidefinite matrix and the notion
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of an entrywise positive matrix. There are curious similarities regarding the

properties of the two classes. Olga Taussy Todd proposed the problem of

explaining this similarity and it is commonly known as the Taussy unification

problem, see [26].

If A is an n × n complex hermitian matrix, then A is said to be positive

definite if x∗Ax > 0 for any nonzero x, and positive semidefinite if x∗Ax ≥ 0

for any x.

The permanent exhibits interesting properties on the class of positive defi-

nite matrices as well. As an example, if A is a nonnegative matrix then perA

is clearly nonnegative. It turns out that if A is positive semidefinite, then

perA ≥ 0. This fact is not obvious from the definition of permanent, since the

sum in the definition may contain both positive as well as negative terms.

If A and B are both positive semidefinite such that A − B is also posi-

tive semidefinite, then it is known that perA ≥ perB. Now if A is a positive

semidefinite matrix which is also doubly stochastic, then it is not difficult to

show that A − Jn is positive semidefinite. Then perA ≥ perJn and thus the

van der Waerden conjecture is verified for positive semidefinite matrices. Later

we will give an example of an open problem which appears difficult when the

matrix is positive semidefinite but is easy for nonnegative matrices.

We now introduce some notation. If A, B are matrices of order m× n and

p × q respectively, then the Kronecker product of A, B is denoted by A ⊗ B.

Thus A⊗B is the mp× nq matrix given by

A⊗B =


a11B a12B · · · a1nB

...
...

. . .
...

am1B am2B · · · amnB

 .

The main property of Kronecker product is that if A, B, C,D are matrices such

that AC and BD are defined, then

(A⊗B)(C ⊗D) = AC ⊗BD.

It can be proved using the preceding property that if A, B are positive semidef-

inite, then A⊗B is positive semidefinite.

Let us assume that the elements of Sn, the permutation group of degree

n, have been ordered in some way. This ordering will be assumed fixed in
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the subsequent discussion. Let A be an n × n matrix. The Schur power of

A, denoted by π(A), is the n! × n! matrix whose rows as well as columns are

indexed by Sn and whose (σ, τ)−entry is
∏n

i=1 aσ(i)τ(i) if σ, τ ∈ Sn.

As an illustration, suppose the elements of S3 are ordered as 123, 132, 213,

231, 312, 321, and let

A =


a b c

d e f

g h k

 .

Then

π(A) =



aek afh bdk bfg cdh ceg

afh aek bfg bdk ceg cdh

bdk cdh aek ceg afh bfg

cdh bdk ceg aek bfg afh

bfg ceg afh cdh aek bdk

ceg bfg cdh afh bdk aek


.

We make some simple observations about π(A). The diagonal entries of π(A)

are all equal to a11 · · · ann where A is n×n. The sum of the entries in any row

or column of π(A) equals perA. In particular, perA is an eigenvalue of π(A).

If A is n × n, then after a permutation of the rows and an identical per-

mutation of the columns, π(A) can be viewed as a principal submatrix of

⊗nA = A⊗A⊗· · ·⊗A, taken n times. If A is positive semidefinite, then ⊗nA

is positive semidefinite and hence so is π(A). Since perA is an eigenvalue of

π(A), we immediately have a proof of the fact that if A is positive semidefinite,

then perA ≥ 0.

It is true that detA is also an eigenvalue of π(A). To see this, define a

vector ε of order n! as follows. Index the elements of ε by Sn. If τ ∈ Sn, then

set ε(τ) = 1 if τ is even and −1 if τ is odd. Then for any σ ∈ Sn,

∑
τ∈Sn

ε(τ)
n∏

i=1

aσ(i)τ(i) =
∑

τ∈Sn

ε(τ)
n∏

i=1

aiτoσ−1(i)

=
∑

ρ∈Sn

ε(ρσ)
n∏

i=1

aiρ(i)

= ε(σ)
∑

ρ∈Sn

ε(ρ)
n∏

i=1

aiρ(i)

= ε(σ)detA.
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Thus π(A)ε = (detA)ε and hence detA is an eigenvalue of π(A) with ε as the

corresponding eigenvector.

Thus perA and detA are both eigenvalues of π(A) and this explains the sim-

ilarity of certain properties of the permanent and the determinant, restricted

to the class of positive semidefinite matrices.

A remarkable result due to Schur asserts that if A is positive semidefinite,

then detA is in fact the smallest eigenvalue of π(A). Recall the extremal char-

acterization of the eigenvalues of a hermitian matrix. If B is hermitian with

the least eigenvalue λn, then λn is the minimum of x∗Bx taken over unit vec-

tors x. Therefore Schur’s result provides a rich source of inequalities for the

determinant of a positive definite matrix since we can make a judicious choice

of x and get an inequality. For example, if x has all coordinates zero except

one, then Schur’s Theorem reduces to the well-known Hadamard Inequality,

that the determinant of a positive semidefinite matrix is bounded above by the

product of the main diagonal elements. Another example is the following.

Let A be an n× n positive semidefinite matrix and let G be a subgroup of

Sn. Then

detA ≤
∑
σ∈G

n∏
i=1

aiσ(i). (4)

The expression appearing on the right hand side of (4) is an example of an

immanant of A. Note that in (4), if G is the subgroup consisting of the identity

permutation only, then we get the Hadamard Inequality.

One of the most important outstanding open problems at present is to

decide whether an anlogue of Schur’s result holds for the permanent. More

precisely, the problem is formulated as a conjecture due to Soules as follows:

Conjecture 2 If A is positive semidefinite, then perA is the largest eigen-

value of π(A).

The conjecture has been proved for matrices of order at most 3 , see [1].

For some further ideas, see [29,30]. We remark in passing that Conjecture 2 is

easily verified if A is assumed to be entrywise nonnegative as well. For in this

case π(A) is a nonnegative matrix and the vector of all ones is an eigenvector of

π(A) corresponding to perA. It follows by the Perron-Frobenius theorem that

perA must be the spectral radius, and hence the maximal eigenvalue, of π(A).

10



There are several conjectures weaker that Conjecture 2 which have also

received considerable attention. We discuss some of these below. The next is

the so called “permanent- on-top conjecture” or the “permanental dominance

conjecture” which asserts that any immanant of a positive semidefinite matrix

is dominated by the permanent, see [17,22]. More precisely, the conjecture is

the following.

Conjecture 3 Let G be a subgroup of Sn and let χ be a complex character

on G. If A is an n× n positive semidefinite matrix, then

perA ≥
∑
σ∈G

χ(σ)
n∏

i=1

aiσ(i).

The Schur product of two n×n matrices A and B, denoted A◦B, is simply

their entrywise product. If A and B are n×n positive semidefinite matrices then

A◦B is also positive semidefinite. Oppenheim’s inequality asserts that if A and

B are n× n positive semidefinite matrices then det(A ◦B) ≥ (detA)b11 · · · bnn.

Note that the inequality reduces to the Hadamard inequality when B is the

identity matrix. The next conjecture, which can be shown to be weaker than

Conjecture 2, has been proposed in [1].

Conjecture 4 If A and B are n× n positive semidefinite matrices then

per(A ◦B) ≤ (perA)b11 · · · bnn.

In this context it may be mentioned that the Hadamard inequality for

the permanent (which is a special case of Conjecture 4) has been proved by

Marcus[20]. For the relevance of Conjecture 4 in some topics in mathematical

physics, see [9].

If A is an n×n matrix, then let A(i, j) denote the submatrix of A obtained

by deleting its i-th row and j-th column. The next conjecture, which is also

weaker than Conjecture 2, was proposed in [1].

Conjecture 5 Let A be an n × n positive semidefinite matrix. Then

perA is the largest eigenvalue of the n× n matrix with its (i, j)-entry equal to

aijperA(i, j), i, j, = 1, . . . , n.
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If k ≤ n, then let Gk,n denote the set of all strictly increasing functions

from {1, . . . , k} to {1, . . . , n}, ordered lexicographically. If A is an n × n ma-

trix and α, β ∈ Gk,n, then A[α, β] will denote the k × k submatrix of A whose

rows and columns are indexed by α, β respectively, while the (n− k)× (n− k)

submatrix of A whose rows and columns are indexed by αc, βc will be denoted

A(α, β). Let Ck(A) be
(

n
k

)
×
(

n
k

)
matrix indexed by Gk,n with (Ck(A))α,β =

per(A(α, β))per(A[α, β]). The following generalization of Conjecture 5 has re-

cently been proposed by Pate[25] who has also obtained some partial results.

Conjecture 6 If A is an n × n positive semidefinite matrix, then perA is

the largest eigenvalue of Ck(A), k = 1, . . . , n− 1.

We remark that Conjecture 6 reduces to Conjecture 5 when k = n− 1.

6 A q-analogue of the permanent

If σ ∈ Sn, then an inversion of σ is a pair (i, j) such that 1 ≤ i < j ≤ n and

σ(i) > σ(j). As an example, the permutation 1 2 3 4 5 6

3 6 4 2 1 5


in S6 has 9 inversions. If σ ∈ Sn then let `(σ) denote the number of inversions

of σ. The identity permutation has zero inversions. The maximum number of

inversions in Sn is n(n−1)
2

, attained at the permutation n, n − 1, . . . , 2, 1. Note

that `(σ) is even (odd) if σ is an even (odd) permutation.

If A is an n×n matrix and q a real number, then we define the q−permanent

of A, denoted by perq(A) as

perq(A) =
∑

σ∈Sn

q`(σ)
n∏

i=1

aiσ(i).

Observe that per−1(A) = detA, per0(A) =
∏n

i=1 aii and per1(A) = per A. Here

we have made the usual convention that 00 = 1. The q−permanent thus pro-

vides a parametric generalization of both the determinant and the permanent.

The q−permanent appears to be a function with a very rich structure but at

the same time it does not lend itself to manipulations very easily.

12



If A is a positive semidefinite matrix and −1 ≤ q ≤ 1, then perq(A) ≥ 0.

This result has been proved by Bożejko and Speicher [8] in connection with

a problem in Mathematical Physics dealing with parametric generalizations of

Brownian motion. A proof based on conditionally negative definite matrices

has been given in [6, Chapter 4].

The following monotonicity property of the q−permanent has been conjec-

tured in [3].

Conjecture 7 If A is positive semidefinite, then perq(A) as a function of

q is monotonically increasing in [−1, 1].

Note that Conjecture 7 can be motivated by the known fact that

perA ≥
n∏

i=1

aii ≥ detA

for a positive semidefinite matrix A. Conjecture 7 has been verified for n ≤ 3

and their is overwhelming numerical evidence in its favour.

A different generalization of the permanent and the determinant has been

considered by Vere-Jones [33], which is as follows. If A is an n× n matrix and

if α is a real number then let

detαA =
∑

σ∈Sn

αn−ν(σ)
n∏

i=1

aiσ(i),

where ν(σ) is the number of cycles in σ. Note that when α = −1, then detαA =

detA, while if α = 1, then detαA = perA. This function arises in connection

with some random point processes; see [28], where the following conjecture is

posed.

Conjecture 8 If A is positive semidefinite n× n matrix and if 0 ≤ α ≤ 2,

then detαA ≥ 0.

For some related stochastic processes involving the permanent, see [12,15].
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7 Computation of the permanent

The determinant can be evaluated efficiently using Gaussian elimination. The

computation of the permanent is however much more complicated. In the last

two decades many contributions in the area of computational complexity have

been made towards exact or approximate computation of the permanent. A

classical result of Valiant asserts that the problem of computing the permanent

is ]P -complete, which basically means that there is almost no possibility of

finding a polynomial time algorithm for computing the permanent. At the

same time the possibility of computing the permanent within arbitrarily small

relative error in polynomial time is not ruled out.

Given a 0 − 1 matrix A, form a random matrix B by assigning ± signs

independently at random to the elements of A. Then (detB)2 is an unbiased

estimator of perA. In general the variance of the estimator may be very large.

Karmarkar et al [18] replaced the ±1 entries of B by randomly choosing com-

plex roots of unity and later Barvinok[7] used random quaternions with the

aim of reducing the variance. This idea was naturally extended by employing

Clifford algebras, see [11]. A polynomial-time approximation algorithm for the

permanent of a nonnegative matrix is given in [16].

8 Symmetric function means and permanents

We conclude by recalling a conjecture posed in [4]. First we introduce some

notation. Let x = (x1, . . . , xn) be a positive vector. We denote by er,n(x) the

r-th elementary symmetric function in x1, . . . , xn. Thus

er,n(x) =
∑

i,<...<ir

xi1 . . . xir .

We set e0,n(x) = 1.

Several inequalities are available in the literature for ratios of elementary

symmetric functions, also known as symmetric function means. Let

Mr,n(x) =
er,n(x)

er−1,n(x)
, r = 1, 2, . . . , n.

A well-known result of Marcus and Lopes [19] asserts that for any two positive

14



vectors x, y;

Mr,n(x + y) ≥ Mr,n(x) + Mr,n(y). (5)

Let c, b1, b2, . . . be positive vectors in Rn which will be held fixed. For any

positive vector x in Rn and for 1 ≤ r ≤ n, define

Sr,n(x) =

per[x, . . . , x︸ ︷︷ ︸
r

, b1, . . . , bn−r]

per[x, . . . , x︸ ︷︷ ︸
r−1

, b1, . . . , bn−r, c]
(6)

If c = bi = 1, the vector of all ones, for all i, then

Sr,n(x) =
r

n− r + 1
Mr,n(x)

and thus the function in (6) is more general than a symmetric function mean. It

is thus natural to conjecture that a generalization of (5) holds; more precisely,

the following was posed in [4].

Conjecture 9 For any positive vectors x, y;

Sr,n(x + y) ≥ Sr,n(x) + Sr,n(y). (7)

The case r = 1 of (7) is trivial. The case r = 2 which is closely related to

the Alexandroff inequality, is proved in [4].

For a recent survey concerning permanents we refer to [10] where further

references can be found.
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