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Abstract: We define the determinantal divisor rank of an integral matrix

to be the number of invariant factors which equal 1. Some properties of the

determinantal divisor rank are proved, which are analogous to known properties

of the usual rank. These include the Frobenious inequality for the rank of a

product and a relation between the rank of a submatrix of a matrix and that

of its complementary submatrix in the inverse or a generalized inverse of the

matrix.

1 Introduction and Preliminaries

We work with matrices over the integers Z but all the results have obvious

generalizations to matrices over a principal ideal ring. Let Mm,n(Z) be the set

of m× n matrices over Z.

We assume familiarity with basic facts concerning integral matrices, see,

for example, [6]. For A ∈ Mm,n(Z) we denote the jth determinantal divisor

(which by definition is the g.c.d. of the j × j minors) of A by dj(A), j =

1, . . . , min{m, n}, and the jth invariant factor by sj(A), j = 1, . . . , rank A.

Recall that sj(A) = dj(A)

dj−1(A)
, j = 1, . . . , rank A, where we set d0(A) = 1.

If A ∈ Mm,n(Z) then we define the determinantal divisor rank of A, denoted

by δ(A), as the maximum integer k such that dk(A) = 1 if such an integer exists

and zero otherwise. Equivalently, δ(A) is the number of invariant factors of

A which equal 1. This definition is partly motivated by the following result
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obtained recently by Zhan [11]. We have modified the notation for consistency.

Theorem 1 Let r, s, n be positive integers with r, s ≤ n. The matrix B ∈
Mr,s(Z) is a submatrix of some unimodular matrix of order n if and only if

δ(B) ≥ r + s− n.

Theorem 1 has an uncanny similarity to the following well-known result:

An r × s matrix B over a field is a submatrix of a nonsingular matrix of

order n if and only if the rank of B is at least r + s − n. We show that this

similarity extends to some other results such as the Frobenius inequality for

matrix product and a result of Fiedler and Markham [4] and Gustafson [5],

and its extension to generalized inverses obtained in [1].

We now introduce some more definitions. If A and G are matrices of order

m × n and n × m respectively, then G is called a generalized inverse of A if

AGA = A. We say that G is a reflexive generalized inverse of A if AGA = A

and GAG = G. For background material on generalized inverses see [2,3].

Generalized inverses of integral matrices have been extensively studied. We

say that an integral matrix is regular if it admits an integral generalized inverse.

It is well-known (see, for example, [9]) that an integral matrix is regular if and

only if all its invariant factors are equal to 1. Thus an integral matrix is regular

if and only if its rank coincides with the determinantal divisor rank.

Let A ∈ Mm,n(Z) and suppose rank A = r > 0. We say that A admits a

rank factorization if there exist matrices P ∈ Mm,r(Z) and Q ∈ Mr,n(Z) such

that P has a left-inverse in Mr,m(Z), Q has a right-inverse in Mn,r(Z) and

A = PQ.

Then we have the following result. As remarked earlier, the equivalence of

(i) and (iii) is known. The other implications are easy to prove.

Lemma 2 Let A ∈ Mm,n(Z). Then the following conditions are equivalent:

(i) A is regular.
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(ii) A admits a rank factorizarion.

(iii) Each invariant factor of A is 1.

(iv) The determinantal divisor rank of A equals the rank of A.

We now prove the following:

Theorem 3 Let A ∈ Mm,n(Z) and let B ∈ Mr,s(Z) be a submatrix of A. Then

(i) δ(B) ≤ δ(A).

(ii) r + s− δ(B) ≤ m + n− δ(A).

Proof: First suppose that m = r + 1, n = s, and without loss of generality

assume that B is constituted by the first r rows of A. Let p = min{r, s}. Let

UBV = diag(s1, . . . , sp)r×s = D be the Smith normal form where U, V are

unimodular matrices, s1, . . . , sk are the invariant factors and sk+1 = · · · = sp =

0, k = rank B. Let

Ã = diag(U, 1)AV =

 D

xT

 .

In Ã, subtract xi times the i-th row from the last row, i = 1, . . . , δ(B).

Then Ã is reduced to a matrix where the first δ(B) elements of the last row

equal zero. Clearly, if in the reduced matrix the last row has an entry equal

to 1, then δ(Ã) = δ(A) = δ(B) + 1. Otherwise, δ(A) = δ(B). Therefore (i) is

proved in this case.

Let t = δ(A). If ãi1j1 , . . . , ãitjt is a partial diagonal of Ã of length t then it

contains at least t− 1 entries of D. Thus any partial diagonal product of Ã of

length t is either 0 or is divisible by st−1(B). Thus st−1(B)|dt(A) = 1. It follows

that s1(B) = · · · = st−1(B) = 1 and hence δ(B) ≥ t − 1. Therefore (ii) is also

proved in this case.

When A is obtained by appending a column to B, the proof is similar. The

general case is proved by proceeding by appending a row or column at a time.
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It is clear that the following assertion contained in Theorem 1 is a conse-

quence of Theorem 3, (ii). Let A ∈ Mn,n(Z) be a unimodular matrix and let

B ∈ Mr,s(Z) be a submatrix of A. Then δ(B) ≥ r + s− n.

2 Rank of product and sum

If A and B are matrices such that AB is defined then rank AB ≤ min{ rank

A, rank B}. The corresponding result for δ is given next.

Lemma 4 Let A ∈ Mm,n(Z), B ∈ Mn,p(Z). Then δ(AB) ≤ min{δ(A), δ(B)}.

Proof: By the Cauchy-Binet formula any t × t minor of AB is either zero

or is an integral linear combination of t× t minors of A, t = 1, . . . , min{m, p}.
Thus, if dt(AB) is nonzero, then dt(A)|dt(AB). Putting t = δ(AB) we see

that dδ(AB)(A) = 1 and hence δ(AB) ≤ δ(A). It can be similarly shown that

δ(AB) ≤ δ(B).

If A and B are matrices of order m × n and n × p respectively, then it is

well-known that

rank AB ≥ rank A + rank B − n.

We now prove the corresponding result for δ.

Theorem 5 Let A ∈ Mm,n(Z), B ∈ Mn,p(Z). Then

δ(AB) ≥ δ(A) + δ(B)− n (1)

Proof: Let δ(A) = r, δ(B) = s. Let w = min{m, n}, z = min{n, p}. Let

A = Udiag(h1, . . . , hr, hr+1, . . . , hw)m×nV

and

B = U1diag(k1, . . . , ks, ks+1, . . . , kz)n×pV1

be Smith normal forms, where h1 = · · · = hr = k1 = · · · = ks = 1.

4



Then

U−1ABV −1
1 = diag(h1, . . . , hw)V U1diag(k1, . . . , kz).

It follows from the preceding equation that the submatrix of V U1 formed

by the first r rows and the first s columns is a submatrix of U−1ABV −1
1 . Since

V U1 is unimodular, it follows from Theorem 1 that this submatrix must have

at least r + s− n invariant factors equal to 1. Thus by Theorem 3, (i),

δ(AB) = δ(U−1ABV −1
1 ) ≥ r + s− n = δ(A) + δ(B)− n

and the proof is complete.

If A, X,B are matrices such that AXB is defined, then the well-known

Frobenius inequality asserts that

rank AXB ≥ rank AX + rank XB − rank X.

The analogous result for δ is false as seen from the following example.

Let

A = diag(1, 0, 1), X = diag(2, 2, 3), B = diag(0, 1, 1).

Then δ(X) = 1, δ(AX) = 1, δ(XB) = 1 and δ(AXB) = 0. Thus δ(AXB)

is less than δ(AX) + δ(XB)− δ(X).

We now show that an analogue of the Frobenius inequality is true when X

is regular.

Theorem 6 Let A ∈ Mm,n(Z), X ∈ Mn,p(Z) and B ∈ Mp,q(Z) and suppose

X is regular. Then

δ(AXB) ≥ δ(AX) + δ(XB)− δ(X). (2)

Proof: Let rank X = r. Since X is regular, by Lemma 2, each of the r

invariant factors of X equals 1. Let

X = Udiag(Ir, 0)n×pV
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be the Smith normal form of X. Then

AXB = AU

 Ir

0


n×r

[
Ir 0

]
r×p

V B.

Let C = AU

 Ir

0

 and D =
[

Ir 0

]
V B. By Theorem 5,

δ(CD) ≥ δ(C) + δ(D)− r. (3)

Clearly, δ(AX) = δ(C), δ(XB) = δ(D) and the result follows from (3).

We now turn to the sum of two matrices. If A ∈ Mm,n(Z), B ∈ Mm,n(Z),

then it is not true in general that δ(A + B) ≤ δ(A) + δ(B). For example, let

A = diag(2, 0), B = diag(0, 3). Then δ(A) = δ(B) = 0, whereas δ(A + B) = 1.

However, if either A or B is regular, then δ(A + B) ≤ δ(A) + δ(B) holds,

as we see now. We first prove a preliminary result. We include a proof for

completeness, although it is essentially contained in the proof of Theorem 3.

Lemma 7 Let Am,n(Z) and let C ∈ Mm+1,n(Z) be obtained by augmenting A

by a row vector. Then δ(C) ≤ δ(A) + 1.

Proof: Any t×t minor of C is an integral linear combination of (t−1)×(t−1)

minors of A. Thus dt−1(A)|dt(C). Putting t = δ(A) we see that δ(A) ≥ δ(C)−1

and the proof is complete.

Theorem 8 Let A ∈ Mm,n(Z), B ∈ Mm,n(Z), and suppose either A or B is

regular. Then

δ(A + B) ≤ δ(A) + δ(B).

Proof: First suppose B is regular. We assume, without loss of generality,

that B is in Smith normal form. Since

A + B = [Im, Im]

 A

B
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we see, in view of Lemma 4, that

δ(A + B) ≤ δ

 A

B

 .

The result follows by a repeated application of Lemma 7, keeping in mind that

the determinantal divisor rank is unchanged when a matrix is augmented by a

zero row. The proof is similar when A is regular.

3 Complementary submatrices in a matrix and

its inverse

It has been shown by Fiedler and Markham [4] and by Gustafson [5] that if A

is a nonsingular n× n matrix over a field, then the nullity of any submatrix of

A equals the nullity of the complementary submatrix in A−1. The result was

extended to Moore-Penrose inverse by Robinson [10] and then an extension to

any generalized inverse was given in [1]. We now prove the analogues of these

results for the determinantal divisor rank.

Theorem 9 Let A ∈ Mn,n(Z) be a unimodular matrix, let B ∈ Mn,n(Z) be the

inverse of A and suppose A and B are partitioned as

A =


s n− s

r A11 A12

n− r A21 A22

 and B =


r n− r

s B11 B12

n− s B21 B22

.

Then r − δ(A11) = n− s− δ(B22).

Proof: By Jacobi’s identity, any t×t minor of A11 equals the complementary

minor in B, 1 ≤ t ≤ min{r, s}. Let the submatrix of B which is complementary

to A11 be partitioned as


r − t n− r

s− t ∗ ∗
n− s ∗ B22

. (4)
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First suppose that n− r− s + t > 0. It can be seen, by Laplace expansion,

that the determinant of the matrix (4) can be expressed as an integral linear

combination of minors of B22 of order n−s−r+t. Thus dn−s−r+t(B22)|dt(A11).

Setting t = δ(A11) we see that dn−s−r+t(B22) divides 1 and therefore

δ(B22) ≥ n− s− r + δ(A11). (5)

If n− r − s + δ(A11) ≤ 0, then (5) is obvious.

Therefore

r − δ(A11) ≥ n− s− δ(B22).

Reversing the role of A and B we can prove

r − δ(A11) ≤ n− s− δ(B22)

and hence the result is proved.

If A and G are matrices of order m×n and n×m respectively, then it will

be convenient to assume that they are partitioned as follows:

A =


q1 q2

p1 A11 A12

p2 A21 A22

 and G =


p1 p2

q1 G11 G12

q2 G21 G22

 (6)

where p1 + p2 = m and q1 + q2 = n.

The next result is similar to a result due to Nomakuchi [7] over a field. The

proof is based on familiar ideas, see, for example, [8].

Theorem 10 Let A ∈ Mm,n(Z) be a regular matrix of rank r and let G ∈
Mn,m(Z) be a generalized inverse of A. Then there exist matrices B ∈ Mm,m−r(Z), Q ∈
Mn−r,n(Z) and T ∈ Mn−r,m−r(Z) such that the matrix A B

Q T
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is unimodular and G is the submatrix formed by the first n rows and the first

m columns of its inverse.

Proof: The matrices AG and GA are idempotent. Thus Im − AG and

In −GA are idempotent as well and admit rank factorization by Lemma 2.

Let Im − AG = BC and In − GA = PQ be rank factorizations. Let P−

and C− be a left-inverse of P and a right inverse of C respectively and set

T = −P−(G−GAG)C−.

We have

 A B

Q T


 G P

C 0

 =

 AG + BC AP

QG + TC QP

 . (7)

Since In −GA = PQ, then APQ = 0 and hence AP = 0. Similarly we can

verify that AG + BC = Im, QG + TC = 0 and QP = In−r. Thus A B

Q T


 G P

C 0


equals the identity matrix and the result is proved.

We now prove the main result of this section.

Theorem 11 Let A ∈ Mm,n(Z) be a regular matrix of rank r and let G ∈
Mn,m(Z) be a generalized inverse of A. Let A and G be partitioned as in (6).

Then

r − p1 − q1 ≤ δ(G22)− δ(A11) ≤ p2 + q2 − r. (8)

Proof: By Theorem 10 there exist matrices B ∈ Mm,m−r(Z), Q ∈ Mn−r,n(Z)

and T ∈ Mn−r,m−r(Z) such that the matrix A B

Q T


is unimodular and G is the submatrix formed by the first n rows and the first

m columns of its inverse.
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Thus we may write

S =



q1 q2 m− r

p1 A11 A12 B1

p2 A21 A22 B2

n− r Q1 Q2 T

, and S−1 =



p1 p2 n− r

q1 G11 G12 P1

q2 G21 G22 P2

m− r C1 C2 0


Since S is unimodular, we have, using Theorem 9, and Theorem 3, (i),

p1 − δ(A11) = m + q2 − r − δ

 G22 P2

C2 0

 (9)

≤ m + q2 − r − δ(G22). (10)

It follows that δ(G22) − δ(A11) ≤ p2 + q2 − r and the proof of the second

inequality in (8) is complete.

We now prove the first inequality. By Theorem 3, (ii) we have

p2 + q2 − δ(G22) ≤ (q2 + m− r) + (p2 + n− r)− δ

 G22 P2

C2 0

 . (11)

Combining (9) and (11) we see that the first inequality in (8) is true and

the proof is complete.
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