LEAST-SQUARES APPROXIMATION BY A TREE DISTANCE

R. B. BAPAT

Abstract

Let T be a tree with vertex set $V(T)=\{1, \ldots, n\}$ and with a positive weight associated with each edge. The tree distance between i and j is the weight of the $i j$-path. Given a symmetric, positive real valued function on $V(T) \times V(T)$, we consider the problem of approximating it by a tree distance corresponding to T, by the least-squares method. The problem is solved explicitly when T is a path or a double-star. For an arbitrary tree, a result is proved about the nature of the least-squares approximation. Some properties of the incidence matrix of all the paths in the tree are proved and used. We also note similar results for the corresponding matrix of a directed graph and obtain a formula for the MoorePenrose inverse of the all-paths matrix.

1. Introduction

Let T be a tree with $V(T)=\{1, \ldots, n\}$ and $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$. Let β : $E(T) \rightarrow[0, \infty)$. Thus β is an assignment of nonnegative weights to each edge of T. We extend β to a function on $V(T) \times V(T)$ as follows. We set $\beta(i, i)=0$ for each i. If $i \neq j$, then $\beta(i, j)$ is defined to be the weight of the $i j$-path, where the weight of a path is the sum of the weights of the edges in the path. Note that $\beta(i, j)=\beta(j, i)$ for all i, j. The extended function $\beta: V(T) \times V(T) \rightarrow[0, \infty)$ will be called a tree distance, corresponding to T.

Suppose $w: V(T) \times V(T) \rightarrow[0, \infty)$ is a function satisfying $w(i, i)=0$ and $w(i, j)=w(j, i)$ for all i, j. We will call w a dissimilarity. We consider the problem of approximating w by a tree distance β, corresponding to T, by the least-squares method. This problem is of interest and has been considered in the context of classification of species, see [2], Chapter 2, and [5]. A more recent reference is [8]. We now proceed to formulate this problem as a standard linear estimation problem.

[^0]It will be convenient to define the all-paths matrix S of T. The order of S is $\binom{n}{2} \times(n-1)$. The rows of S are indexed by $(i, j), 1 \leq i<j \leq n$, while the columns are indexed by $E(T)$. The entries of S are either 0 or 1 . The row of S corresponding to (i, j) is the incidence vector of the $i j$-path in T. Thus the k-th entry in that row is 1 if e_{k} is on the $i j$-path, and 0 otherwise.

Example 1. Consider the tree

Then

$$
S=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

If $w: V(T) \times V(T) \rightarrow[0, \infty)$, then let w also denote the vector of order $\binom{n}{2} \times 1$ with its components indexed by $(i, j), 1 \leq i<j \leq n$, where the component corresponding to $(i, j), i<j$, is set equal to $w(i, j)$. The problem of approximating a dissimilarity by a tree distance may be formulated as follows.

Let $w: V(T) \times V(T) \rightarrow[0, \infty)$ be a dissimilarity. Then the problem is to find $\beta: E(T) \rightarrow[0, \infty)$ such that $\|S \beta-w\|$ is minimized. Here $\|x\|$ denotes the usual Euclidean norm. It is well-known from the theory of least squares estimation that the minimizing vector β is a solution of the normal equations $S^{\prime} S \beta=S^{\prime} w$. We first make an elementary observation

Lemma 2. $S^{\prime} S$ is nonsingular.

Proof: Consider the submatrix B of S, indexed by the rows (i, j), where $\{i, j\} \in$ $E(T)$. If $\{i, j\} \in E(T)$, then the row of S corresponding to (i, j) has all zeros except a 1 in the position corresponding to the column indexed by the edge $\{i, j\}$. Thus B is a permutation matrix. It follows that the columns of S are linearly independent. Hence $\operatorname{rank}\left(S^{\prime} S\right)=\operatorname{rank}(S)=n-1$ and therefore $S^{\prime} S$ is nonsingular.

We refer to $[3,4]$ for background material on generalized inverses, and particularly, the Moore-Penrose inverse. It follows from Lemma 2 that the unique solution of the normal equations $S^{\prime} S \beta=S^{\prime} w$ is given by $\hat{\beta}=\left(S^{\prime} S\right)^{-1} S^{\prime} w$. Note that $\left(S^{\prime} S\right)^{-1} S^{\prime}$ equals the Moore-Penrose inverse S^{+}. In the rest of the paper we obtain an explicit formula for $\left(S^{\prime} S\right)^{-1}$ when T is a path or a double star. For an arbitrary tree we show that the (i, j)-element of $\left(S^{\prime} S\right)^{-1}$ is 0 if the corresponding edges of T have no common vertex. This leads to some observations regarding the least squares solution $\hat{\beta}$ in case of an arbitrary tree T. In the final section some results for a directed tree are described. A formula for the Moore-Penrose inverse of the all-paths matrix is obtained.

2. Path and double-star

In the following Theorem we provide a formula for $\left(S^{\prime} S\right)^{-1}$ where S is the all-paths matrix of a path.

Theorem 3. Let T be the path with $V(T)=\{1, \ldots, n\}$ and $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$, where e_{i} is the edge $\{i, i+1\}, i=1, \ldots, n-1$. Let S be the all-paths matrix of T. Then the (i, j)-entry of $\left(S^{\prime} S\right)^{-1}$ is given by $\frac{2}{n}$, if $i=j,-\frac{1}{n}$ if $i \neq j$, and 0 otherwise.

Proof: Let $B=S^{\prime} S$. Then it is easy to see that

$$
b_{i j}=\left\{\begin{array}{l}
i(n-j) \text { if } i \leq j \\
j(n-i) \text { if } i>j
\end{array}\right.
$$

Thus the i-th row of B is given by

$$
[n-i, 2(n-i), \ldots,(i-1)(n-i), i(n-i), i(n-i-1), \ldots, 2 i, i]
$$

Let C be the $(n-1) \times(n-1)$ matrix with

$$
c_{i j}=\left\{\begin{array}{c}
\frac{2}{n} \text { if } i=j \\
-\frac{1}{n} \text { if }|i-j|=1 \\
0 \text { otherwise }
\end{array}\right.
$$

We have, for $2 \leq j \leq n-2$,

$$
\begin{equation*}
\sum_{k=1}^{n-1} b_{i k} c_{k j}=b_{i j-1} c_{j-1 i}+b_{i j} c_{j j}+b_{i j+1} c_{j j+1}=\frac{1}{n}\left(2 b_{i j}-b_{i j-1}-b_{i j+1}\right) \tag{1}
\end{equation*}
$$

If $i=j$, the it follows from (1) that

$$
\begin{aligned}
\sum_{k=1}^{n-1} b_{i k} c_{k i} & =\frac{1}{n}\left(2 b_{i i}-b_{i i-1}-b_{i i+1}\right) \\
& =\frac{1}{n}(2 i(n-i)-(i-1)(n-i)-i(n-i-1) \\
& =1
\end{aligned}
$$

If $i>j$, then

$$
\begin{aligned}
\sum_{k=1}^{n-1} b_{i k} c_{k j} & =\frac{1}{n}(2(n-i) j-(n-i)(j-1)-(n-i)(j+1)) \\
& =0
\end{aligned}
$$

Finally, If $i<j$, then

$$
\begin{aligned}
\sum_{k=1}^{n-1} b_{i k} c_{k j} & =\frac{1}{n}(2 i(n-j+1)-i(n-j)-i(n-j)) \\
& =0
\end{aligned}
$$

It can similarly be shown that if $j=1$ or if $j=n-1$, then

$$
\sum_{k=1}^{n-1} b_{i k} c_{k j}=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { if } i \neq j
\end{array}\right.
$$

Thus $B C$ is the identity matrix and hence $C=\left(S^{\prime} S\right)^{-1}$.
We now derive a formula for the Moore-Penrose inverse S^{+}of S.
Theorem 4. Let T be the path with $V(T)=\{1, \ldots, n\}$ and $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$, where e_{i} is the edge $\{i, i+1\}, i=1, \ldots, n-1$. Let S be the all-paths matrix of T. The rows of S^{+}are indexed by the edges $\{i, i+1\}, i=1, \ldots, n-1$ of T, while the columns are indexed by $(i, j), 1 \leq i<j \leq n$. The entry of S^{+}corresponding to the edge $\{i, i+1\}$ and the pair (j, k) is given by $\frac{1}{n}$ if $i=j$ or $i=k-1,-\frac{1}{n}$ if $i=j-1$ or $i=j$, and 0 otherwise.

Proof: We consider the case when $2 \leq i \leq n-2$. The cases $i=1, n-1$ are similar. By Theorem 3 the row of $\left(S^{\prime} S\right)^{-1}$ corresponding to the edge $\{i, i+1\}$ has all coordinates 0 except $\frac{2}{n}$ at coordinate i, and $-\frac{1}{n}$ at coordinates $i-1, i+1$. The column
of S^{\prime} corresponding to the pair (j, k) has 1 at coordinates $j, j+1, \ldots, k-1$ and zeros elsewhere. The inner product of these vectors gives the entry of $\left(S^{\prime} S\right)^{-1} S^{\prime}=S^{+}$ corresponding to the edge $\{i, i+1\}$ and the pair (j, k), and is seen to be as asserted in the Theorem.

Let T be the path with $V(T)=\{1, \ldots, n\}$ and $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$, where e_{i} is the edge $\{i, i+1\}, i=1, \ldots, n-1$. Let $w: V(T) \times V(T) \rightarrow[0, \infty)$, be a dissimilarity. Consider the problem of finding $\beta: E(T) \rightarrow[0, \infty)$ such that $\|S \beta-w\|$ is minimized. Then we have the following

Theorem 5. Let $\beta: E(T) \rightarrow[0, \infty)$ that minimizes $\|S \beta-w\|$ be $\hat{\beta}$. The coefficients of $\hat{\beta}$ are indexed by the edges $\{i, i+1\}, i=1, \ldots, n-1$ of T. The coefficient of $\hat{\beta}$ corresponding to $\{i, i+1\}, i=1, \ldots, n-1$, is given by

$$
\sum_{j=i+1}^{n} w(i, j)+\sum_{k=1}^{i} w(k, i+1)-\sum_{j=i+2}^{n} w(i+1, j)-\sum_{k=1}^{i-1} w(k, i)
$$

Proof: The β that minimizes $\|S \beta-w\|$ is given by $S^{+} w$. The result follows in view of the expression for S^{+}given in Theorem 4.

We consider another example in which the inverse of $S^{\prime} S$ can be calculated explicitly. A double star is a tree in which all vertices have degree 1 except two vertices, which may have degree greater than 1 . Consider the double star T with n vertices $\{1, \ldots, n\}, n=p+q+2$, in which vertices $1, \ldots, p+q$ are pendant, vertex $p+q+1$ is adjacent to $1, \ldots, p$, and vertex $p+q+2$ is adjacent to $p+1, \ldots, p+q$. Let S be the all-paths matrix of T. Let $J_{r s}$ be the $r \times s$ matrix of all ones. Then it can be seen that

$$
S^{\prime} S=\left[\begin{array}{ccc}
(n-2) I_{p}+J_{p p} & J_{p q} & (q+1) J_{p 1} \tag{2}\\
J_{q p} & (n-2) I_{q}+J_{q q} & (p+1) J_{q 1} \\
(q+1) J_{1 p} & (p+1) J_{1 q} & (p+1)(q+1)
\end{array}\right]
$$

Theorem 6. Let $S^{\prime} S$ be as in (2). Then

$$
\left(S^{\prime} S\right)^{-1}=\left[\begin{array}{ccc}
\frac{1}{n-2} I_{p}+v_{1} J_{p p} & 0_{p q} & c J_{p 1} \\
0_{q p} & \frac{1}{n-2} I_{q}+v_{2} J_{q q} & d J_{q 1} \\
c J_{1 p} & d J_{1 q} & e
\end{array}\right]
$$

where

$$
c=-\frac{1}{p+q+2 p^{2}}, d=-\frac{1}{p+q+2 q^{2}},
$$

$$
v_{1}=\frac{c(p-q)}{n-2}, v_{2}=\frac{d(q-p)}{n-2}, e=\frac{1-p(q+1) c-q(p+1) d}{(p+1)(q+1)}
$$

We omit the proof as it follows by simple verification. Once we have a formula for $\left(S^{\prime} S\right)^{-1}$, an explicit expression for the least-squares approximation can also be obtained.

3. All-Paths matrix of a tree

We now consider the all-paths matrix S of an arbitrary tree. We first prove some preliminary results.

Lemma 7. Let T be a tree with $V(T)=\{1, \ldots, n\}$ and $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$. Let $e_{i} \in E(T)$ and let T_{1} and T_{2} be the components of $T \backslash\left\{e_{i}\right\}$. Let X be the submatrix of $S^{\prime} S$ formed by the rows indexed by $E\left(T_{1}\right) \cup\left\{e_{i}\right\}$ and columns indexed by $E\left(T_{2}\right) \cup\left\{e_{i}\right\}$. Then $\operatorname{rank} X=1$.

Proof: For $e_{j} \in E(T), e_{j} \neq e_{i}$, let $f\left(e_{j}\right)$ denote the number of vertices in the component of $T \backslash\left\{e_{j}\right\}$ that does not contain e_{i}. Note that if $e_{j} \in E\left(T_{1}\right)$ and $e_{k} \in$ $E\left(T_{2}\right)$, then the $\left(e_{j}, e_{k}\right)$-entry of X is $f\left(e_{j}\right) f\left(e_{k}\right)$. If $e_{j} \in E\left(T_{1}\right)$, then the $\left(e_{j}, e_{i}\right)$-entry of X is $f\left(e_{j}\right)\left|V\left(T_{2}\right)\right|$, while if $e_{k} \in E\left(T_{2}\right)$, then the $\left(e_{i}, e_{k}\right)$-entry of X is $f\left(e_{k}\right)\left|V\left(T_{1}\right)\right|$. It follows that $\operatorname{rank} X=1$.

Lemma 8. Let A be an $m \times m$ matrix, $m \geq 2$. Let B be an $r \times s$ submatrix of A such that $r+s=m+2$ and $\operatorname{rank} B=1$. Then A is singular.

Proof: We may assume, without loss of generality, that

$$
A=\left[\begin{array}{ll}
B & C \\
D & E
\end{array}\right]
$$

Then

$$
\begin{aligned}
\operatorname{rank} A & \leq \operatorname{rank}[B, C]+\operatorname{rank}[D, E] \\
& \leq \operatorname{rank} B+\operatorname{rank} C+m-r \\
& \leq 1+m-s+m-r \\
& \leq m-1,
\end{aligned}
$$

and hence A is singular.

Denote by $A(i \mid j)$ the submatrix obtained by deleting row i and column j of A. We now prove the main result of this section.

Theorem 9. Let T be a tree with $V(T)=\{1, \ldots, n\}$ and $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$. Let S be the all-paths matrix of T. The rows and the columns of $S^{\prime} S$ are indexed by $E(T)$. If $e_{j}, e_{k} \in E(T)$ have no vertex in common, then $S^{\prime} S(j \mid k)$ is singular, and hence, the (j, k)-entry of $\left(S^{\prime} S\right)^{-1}$ is zero.

Proof: Since e_{j} and e_{k} have no vertex in common, there exists an edge e_{i}, distinct from e_{j} and e_{k}, on the path from e_{j} to e_{k}. Let T_{1} and T_{2} be the components of $T \backslash\left\{e_{i}\right\}$. As in Lemma 7, let X be the submatrix of $S^{\prime} S$ formed by the rows indexed by $E\left(T_{1}\right) \cup\left\{e_{i}\right\}$ and the columns indexed by $E\left(T_{2}\right) \cup\left\{e_{i}\right\}$. By Lemma 7 , rank $X=1$. Note that X is a matrix with $\left|E\left(T_{1}\right)\right|+1$ rows and $\left|E\left(T_{2}\right)\right|+1$ columns, and it is a submatrix of $S^{\prime} S(j \mid k)$, which is of order $(n-2) \times(n-2)$. Since $\left|E\left(T_{1}\right)\right|+\left|E\left(T_{2}\right)\right|+2=n$, the result follows by Lemma 8.

Theorem 9 has the following implication in terms of the problem of least-squares approximation by a tree distance. Let T be a tree with $V(T)=\{1, \ldots, n\}$ and $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$. Let $w: V(T) \times V(T) \rightarrow[0, \infty)$, be a dissimilarity. Consider the problem of finding $\beta: E(T) \rightarrow[0, \infty)$ such that $\|S \beta-w\|$ is minimized. Then we have the following

Theorem 10. Let $\beta: E(T) \rightarrow[0, \infty)$ that minimizes $\|S \beta-w\|$ be $\hat{\beta}$. Let $k \in$ $\{1, \ldots, n-1\}$. Let F be the set of edges of T which have a vertex in common with e_{k}. The least-squares estimate $\hat{\beta}_{k}$ of β_{k} is a linear combination

$$
\sum_{i, j} \alpha(i, j) w(i, j)
$$

such that
: (i) if the ij-path has no intersection with F, then $\alpha(i, j)=0$.
: (ii) if the intersection of the ij-path with F is the same as the intersection of the uv-path with F, then $\alpha(i, j)=\alpha(u, v)$,

Proof: The β that minimizes $\|S \beta-w\|$ is given by $S^{+} w=\left(S^{\prime} S\right)^{-1} S^{\prime} w$. The coefficient $\hat{\beta}_{k}$ is given by the inner product of the k-th row of $\left(S^{\prime} S\right)^{-1}$ and $S^{\prime} w$.

First suppose the $i j$-path has no intersection with F. By Theorem 9, the coordinates of the k-th row of $\left(S^{\prime} S\right)^{-1}$ corresponding to edges not in F are all zero. Also the row of S corresponding to (i, j) has zeros at the places which correspond to edges in F. Thus the inner product of the k-th row of $\left(S^{\prime} S\right)^{-1}$ and the row of S indexed by (i, j) is zero. This inner product equals $\alpha(i, j)$, which must then be zero. The second part follows similarly in view of the fact that the coordinates of the k-th row of $\left(S^{\prime} S\right)^{-1}$ corresponding to edges not in F are all zero.

Recall that a phylogenetic tree is a binary tree whose leaves are labelled by the species in a set X, and the internal vertices represent the unknown ancestors. An examination of the proof reveals that the results in this section apply equally well to a phylogenetic tree. It is known that the matrix S is nonsingular for any phylogenetic X-tree, see, for example, [7]. In fact, (i), Theorem 10 has been observed in the context of a phylogenetic tree by Vach [9] and the property has been termed the independence of irrelevant pairs property in [7].

We also remark that the least-squares solution may not be nonnegative, a property required in practical applications in bioinformatics. The nonnegative least-squares problem must be approached by heuristic methods such as those in $[2,5]$. Our results might be useful in that the least-squares solution, after rounding the negative entries to zero, can provide a good initial guess for such iterative methods. Our emphasis is on providing exact results for the least-squares solution.

We further remark that the least-squares method, without the nonnegativity constraint, involves inverting a matrix, or equivalently, solving a system of linear equations. The algorithmic complexity of matrix inversion by Gaussian elimination is known to be of the order $O\left(n^{3}\right)$. There exist faster methods which bring down the complexity to around $O\left(n^{2.8}\right)$.

4. All-Paths matrix of a directed tree

We consider directed graphs in this section. Let T be a directed tree with $V(T)=$ $\{1, \ldots, n\}$ and $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$. We define the all-paths matrix P of T, which is a natural analogue of the undirected case. The order of P is $\binom{n}{2} \times(n-1)$. The rows of P are indexed by $(i, j), 1 \leq i<j \leq n$, while the columns are indexed by $E(T)$. The entries of P are either 0 or ± 1. The row of P corresponding to (i, j) is the incidence vector of the $i j$-path in T, where the directions of the edges are taken into account. Thus the k-th entry in that row is 1 if e_{k} is on the $i j$-path, and e_{k} is directed in the same way as we go from i to j along the path, it is -1 if e_{k} is on the $i j$-path, and e_{k} is directed in the opposite way as we go from i to j along the path, and it is 0 otherwise.

Example 11. Consider the directed tree

Then

$$
P=\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 \\
1 & 0 & -1 & 1 \\
0 & -1 & 0 & 0 \\
0 & -1 & -1 & 0 \\
0 & -1 & -1 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Recall the definition of the (vertex-edge) incidence matrix of T, denoted by Q. It is a matrix of order $n \times(n-1)$, with its rows and columns indexed by $V(T)$ and $E(T)$ respectively. The (i, j)-entry of Q is 0 if vertex i and edge e_{j} are not incident, and otherwise it is 1 or -1 according as e_{j} originates or terminates at i, respectively. The incidence matrix of the tree T in Example 11 can be seen to be

$$
Q=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 1 & -1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

The matrix $K=Q^{\prime} Q$ has been termed the edge-Laplacian matrix of T by Merris [6] where a remarkable formula for K^{-1} is obtained. It is evident that the formula obtained by Merris can be expressed in the following equivalent form.

Theorem 12. $K^{-1}=\left(Q^{\prime} Q\right)^{-1}=\frac{1}{n} P^{\prime} P$.

The rows and the columns of $P^{\prime} P$ are indexed by $E(T)$. It follows from Theorem 12 that $\left(P^{\prime} P\right)^{-1}=\frac{1}{n} Q^{\prime} Q$. Thus if edges e_{i} and e_{j} have no vertex in common, then the (i, j)-element of $\left(P^{\prime} P\right)^{-1}$ is zero. This property holds in the undirected case as well, as observed in Theorem 9. In the directed case, an explicit formula is available for $\left(P^{\prime} P\right)^{-1}$, namely $\left(P^{\prime} P\right)^{-1}=\frac{1}{n} Q^{\prime} Q$. However such a formula seems difficult to obtain in the case of an undirected tree.

We mention in passing that the matrices S^{\prime} and P^{\prime} may also be viewed as the fundamental cut-set matrices, over integers modulo 2 and over reals respectively, of the complete graph K_{n}, with respect to the spanning tree T.

It follows from Theorem 12 that $Q^{\prime} Q P^{\prime} P=n I$, and hence $P^{+}=\frac{1}{n} Q^{\prime} Q P^{\prime}$. It is possible to give a graph-theoretic description of the entries of P^{+}as we proceed to show.

The rows of P^{+}are indexed by $E(T)$, while the columns of P^{+}are indexed by $\{(i, j): 1 \leq i<j \leq n\}$. Let $e_{k} \in E(T)$ have end-vertices u and v, and suppose e_{k} is directed from u to v. Fix $(i, j), i<j$. Let the entry of P^{+}in the row indexed by e_{k}, and the column indexed by (i, j) be θ. We consider the following cases:
: (i) $i=u, j \neq v$ and the $i j$-path in T contains e_{k}. Then $n \theta=1$.
: (ii) $i=u$ and the $i j$-path in T does not contain e_{k}. Then $n \theta=1$.
: (iii) $i=v, j \neq u$ and the $i j$-path in T contains e_{k}. Then $n \theta=-1$.
: (iv) $i=v$ and the $i j$-path in T does not contain e_{k}. Then $n \theta=-1$.
: (v) $j=u, i \neq v$ and the $i j$-path in T contains e_{k}. Then $n \theta=-1$.
: (vi) $j=u$ and the $i j$-path in T does not contain e_{k}. Then $n \theta=-1$.
: (vii) $i=u, j=v$. Then $n \theta=2$.
: (viii) $i=v, j=u$. Then $n \theta=-2$.
If none of the cases (i)-(viii) hold, then e_{k} does not have even one vertex from i and j as an end-vertex and in that event, $\theta=0$.

Note that the entries of $n P^{+}$are all from $\{0, \pm 1, \pm 2\}$. Each row has exactly $2 n-3$ nonzero entries out of which one entry is ± 2.

We indicate an argument in justification of Case (i). Let e_{k} and e_{ℓ} be the first two edges on the $(i j)$-path. Let v and w be the end-vertices of e_{ℓ}.

Suppose $i=u, j \neq u$ and that the $(i j)$-path contains e_{k}. Let x be the row of $Q^{\prime} Q$ indexed by e_{k}, and let y be the row of S indexed by (i, j). Since $n S^{+}=Q^{\prime} Q S^{\prime}, n \theta$ is given by the inner product x and y.

The elements of both x and y are indexed by $E(T)$. For $s \in\{1, \ldots, n-1\}, x_{s}$ is nonzero if and only if e_{s} has a vertex in common with e_{k}, while y_{s} is nonzero if and
only if e_{s} is on the $(i j)$-path. Thus $x_{s} y_{s} \neq 0$ if and only if s equals either k or ℓ. Also $x_{k}=2$ and $y_{k}=1$.

If e_{ℓ} is directed from v to w, then $x_{\ell}=-1$ and $y_{\ell}=1$. Thus

$$
n \theta=\sum_{s=1}^{n-1} x_{s} y_{s}=x_{k} y_{k}+x_{\ell} y_{\ell}=1
$$

Now suppose e_{ℓ} is directed from w to v. Then $x_{\ell}=1$ and $y_{\ell}=-1$. Thus

$$
n \theta=\sum_{s=1}^{n-1} x_{s} y_{s}=x_{k} y_{k}+x_{\ell} y_{\ell}=1
$$

This completes the proof of the statement pertaining to Case (i). The proof is similar in the remaining cases.

The Moore-Penrose inverse of the all-paths matrix P of the tree in Example 11 is given by

$$
P^{+}=\frac{1}{5}\left[\begin{array}{cccccccccc}
1 & 2 & 1 & 1 & 1 & 0 & 0 & -1 & -1 & 0 \\
1 & -1 & 0 & 0 & -2 & -1 & -1 & 1 & 1 & 0 \\
0 & 1 & -1 & 0 & 1 & -1 & 0 & -2 & -1 & 1 \\
0 & 0 & -1 & 1 & 0 & -1 & 1 & -1 & 1 & 2
\end{array}\right]
$$

Consider the entry in row 3 and column 9 . This corresponds to the edge e_{3} and the pair $(3,5)$. Setting $u=4, v=i=3$ and $j=4$, we see from Case (iii) that the entry in $5 P^{+}$should be -1 .

REFERENCES

(1) R.B. Bapat, Moore-Penrose inverse of the incidence matrix of a tree, Linear and Multilinear Algebra, 42(2):159-167 (1997)
(2) Jean-Peirre Barthélemy and Alain Guénoche, Trees and Proximity Representations, Wiley, 1991.
(3) A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and $A p$ plications, Wiley-Interscience, 1974.
(4) S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear Transformations, Pitman, 1979.
(5) V. Makarenkov and B. Leclerc, An algorithm for the fitting of a phylogenetic tree according to a weighted least-squares criterion, Journal of Classification, 16(1):3-26 (1999)
(6) Russell Merris, An edge version of the matrix-tree theorem and the Wiener index Linear and Multilinear Algebra, 25(4):291-296 (1989)
(7) R. Mihaescu and L. Pachter, Combinatorics of least-squares trees, www.pnas.org/cgi/doi/10.1073/pnas. 0802089105
(8) Charles Semple and Mike Steel, Phylogenetics, Oxford Lecture Series in Mathematics and its Applications, 24. Oxford University Press, Oxford, 2003.
(9) W. Vach, Least squares approximation of additive trees, Conceptual and Numerical Analysis of Data, ed. O. Opitz, Springer, Heidelberg, pp. 230238, 1990.

Indian Statistical Institute, New Delhi, 110016, India
E-mail address: rbb@isid.ac.in

[^0]: Date: (date1), and in revised form (date2).
 1991 Mathematics Subject Classification. 05C05, 05C12, 05C50, 62J05.
 Key words and phrases. tree, distance, weighted directed graph, Laplacian matrix, least-squares method, Moore-Penrose inverse.

 The support of the JC Bose Fellowship, Department of Science and Technology, Government of India, is gratefully acknowledged.

