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Abstract. Let T be a tree with vertex set V (T ) = {1, . . . , n} and with a positive

weight associated with each edge. The tree distance between i and j is the weight

of the ij-path. Given a symmetric, positive real valued function on V (T )×V (T ),

we consider the problem of approximating it by a tree distance corresponding to

T, by the least-squares method. The problem is solved explicitly when T is a path

or a double-star. For an arbitrary tree, a result is proved about the nature of

the least-squares approximation. Some properties of the incidence matrix of all

the paths in the tree are proved and used. We also note similar results for the

corresponding matrix of a directed graph and obtain a formula for the Moore-

Penrose inverse of the all-paths matrix.

1. Introduction

Let T be a tree with V (T ) = {1, . . . , n} and E(T ) = {e1, . . . , en−1}. Let β :

E(T ) → [0,∞). Thus β is an assignment of nonnegative weights to each edge of T.

We extend β to a function on V (T )× V (T ) as follows. We set β(i, i) = 0 for each i.

If i 6= j, then β(i, j) is defined to be the weight of the ij−path, where the weight of

a path is the sum of the weights of the edges in the path. Note that β(i, j) = β(j, i)

for all i, j. The extended function β : V (T ) × V (T ) → [0,∞) will be called a tree

distance, corresponding to T.

Suppose w : V (T ) × V (T ) → [0,∞) is a function satisfying w(i, i) = 0 and

w(i, j) = w(j, i) for all i, j. We will call w a dissimilarity. We consider the problem

of approximating w by a tree distance β, corresponding to T, by the least-squares

method. This problem is of interest and has been considered in the context of

classification of species, see [2], Chapter 2, and [5]. A more recent reference is [8].

We now proceed to formulate this problem as a standard linear estimation problem.
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It will be convenient to define the all-paths matrix S of T. The order of S is(
n
2

)
× (n− 1). The rows of S are indexed by (i, j), 1 ≤ i < j ≤ n, while the columns

are indexed by E(T ). The entries of S are either 0 or 1. The row of S corresponding

to (i, j) is the incidence vector of the ij-path in T. Thus the k-th entry in that row

is 1 if ek is on the ij-path, and 0 otherwise.

Example 1. Consider the tree

◦1
e1

AA
AA

AA
AA

◦3
e3 ◦4

e4

◦5

◦2

e2
}}}}}}}}

Then

S =



1 1 0 0

1 0 0 0

1 0 1 0

1 0 1 1

0 1 0 0

0 1 1 0

0 1 1 1

0 0 1 0

0 0 1 1

0 0 0 1


If w : V (T )×V (T )→ [0,∞), then let w also denote the vector of order

(
n
2

)
×1 with

its components indexed by (i, j), 1 ≤ i < j ≤ n, where the component corresponding

to (i, j), i < j, is set equal to w(i, j). The problem of approximating a dissimilarity

by a tree distance may be formulated as follows.

Let w : V (T ) × V (T ) → [0,∞) be a dissimilarity. Then the problem is to find

β : E(T ) → [0,∞) such that ||Sβ − w|| is minimized. Here ||x|| denotes the usual

Euclidean norm. It is well-known from the theory of least squares estimation that

the minimizing vector β is a solution of the normal equations S′Sβ = S′w. We first

make an elementary observation

Lemma 2. S′S is nonsingular.
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Proof: Consider the submatrix B of S, indexed by the rows (i, j), where {i, j} ∈
E(T ). If {i, j} ∈ E(T ), then the row of S corresponding to (i, j) has all zeros except

a 1 in the position corresponding to the column indexed by the edge {i, j}. Thus B

is a permutation matrix. It follows that the columns of S are linearly independent.

Hence rank(S′S) = rank(S) = n− 1 and therefore S′S is nonsingular.

We refer to [3,4] for background material on generalized inverses, and particularly,

the Moore-Penrose inverse. It follows from Lemma 2 that the unique solution of the

normal equations S′Sβ = S′w is given by β̂ = (S′S)−1S′w. Note that (S′S)−1S′

equals the Moore-Penrose inverse S+. In the rest of the paper we obtain an explicit

formula for (S′S)−1 when T is a path or a double star. For an arbitrary tree we

show that the (i, j)-element of (S′S)−1 is 0 if the corresponding edges of T have no

common vertex. This leads to some observations regarding the least squares solution

β̂ in case of an arbitrary tree T. In the final section some results for a directed tree

are described. A formula for the Moore-Penrose inverse of the all-paths matrix is

obtained.

2. Path and double-star

In the following Theorem we provide a formula for (S′S)−1 where S is the all-paths

matrix of a path.

Theorem 3. Let T be the path with V (T ) = {1, . . . , n} and E(T ) = {e1, . . . , en−1},
where ei is the edge {i, i + 1}, i = 1, . . . , n − 1. Let S be the all-paths matrix of T.

Then the (i, j)-entry of (S′S)−1 is given by 2
n , if i = j, − 1

n if i 6= j, and 0 otherwise.

Proof: Let B = S′S. Then it is easy to see that

bij =

{
i(n− j) if i ≤ j
j(n− i) if i > j

Thus the i-th row of B is given by

[n− i, 2(n− i), . . . , (i− 1)(n− i), i(n− i), i(n− i− 1), . . . , 2i, i].

Let C be the (n− 1)× (n− 1) matrix with

cij =


2
n if i = j

− 1
n if |i− j| = 1

0 otherwise

We have, for 2 ≤ j ≤ n− 2,
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(1)
n−1∑
k=1

bikckj = bij−1cj−1i + bijcjj + bij+1cjj+1 =
1
n

(2bij − bij−1 − bij+1)

If i = j, the it follows from (1) that

n−1∑
k=1

bikcki =
1
n

(2bii − bii−1 − bii+1)

=
1
n

(2i(n− i)− (i− 1)(n− i)− i(n− i− 1)

= 1

If i > j, then
n−1∑
k=1

bikckj =
1
n

(2(n− i)j − (n− i)(j − 1)− (n− i)(j + 1))

= 0

Finally, If i < j, then
n−1∑
k=1

bikckj =
1
n

(2i(n− j + 1)− i(n− j)− i(n− j))

= 0

It can similarly be shown that if j = 1 or if j = n− 1, then
n−1∑
k=1

bikckj =

{
1 if i = j

0 if i 6= j

Thus BC is the identity matrix and hence C = (S′S)−1.

We now derive a formula for the Moore-Penrose inverse S+ of S.

Theorem 4. Let T be the path with V (T ) = {1, . . . , n} and E(T ) = {e1, . . . , en−1},
where ei is the edge {i, i + 1}, i = 1, . . . , n − 1. Let S be the all-paths matrix of T.

The rows of S+ are indexed by the edges {i, i + 1}, i = 1, . . . , n − 1 of T, while the

columns are indexed by (i, j), 1 ≤ i < j ≤ n. The entry of S+ corresponding to the

edge {i, i+ 1} and the pair (j, k) is given by 1
n if i = j or i = k − 1, − 1

n if i = j − 1

or i = j, and 0 otherwise.

Proof: We consider the case when 2 ≤ i ≤ n − 2. The cases i = 1, n − 1 are

similar. By Theorem 3 the row of (S′S)−1 corresponding to the edge {i, i+1} has all

coordinates 0 except 2
n at coordinate i, and − 1

n at coordinates i−1, i+1. The column
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of S′ corresponding to the pair (j, k) has 1 at coordinates j, j+1, . . . , k−1 and zeros

elsewhere. The inner product of these vectors gives the entry of (S′S)−1S′ = S+

corresponding to the edge {i, i+ 1} and the pair (j, k), and is seen to be as asserted

in the Theorem.

Let T be the path with V (T ) = {1, . . . , n} and E(T ) = {e1, . . . , en−1}, where ei is

the edge {i, i+1}, i = 1, . . . , n−1. Let w : V (T )×V (T )→ [0,∞), be a dissimilarity.

Consider the problem of finding β : E(T )→ [0,∞) such that ||Sβ−w|| is minimized.

Then we have the following

Theorem 5. Let β : E(T )→ [0,∞) that minimizes ||Sβ−w|| be β̂. The coefficients

of β̂ are indexed by the edges {i, i + 1}, i = 1, . . . , n − 1 of T. The coefficient of β̂

corresponding to {i, i+ 1}, i = 1, . . . , n− 1, is given by

n∑
j=i+1

w(i, j) +
i∑

k=1

w(k, i+ 1)−
n∑

j=i+2

w(i+ 1, j)−
i−1∑
k=1

w(k, i).

Proof: The β that minimizes ||Sβ − w|| is given by S+w. The result follows in

view of the expression for S+ given in Theorem 4.

We consider another example in which the inverse of S′S can be calculated explic-

itly. A double star is a tree in which all vertices have degree 1 except two vertices,

which may have degree greater than 1. Consider the double star T with n vertices

{1, . . . , n}, n = p+ q+ 2, in which vertices 1, . . . , p+ q are pendant, vertex p+ q+ 1

is adjacent to 1, . . . , p, and vertex p+ q + 2 is adjacent to p+ 1, . . . , p+ q. Let S be

the all-paths matrix of T. Let Jrs be the r × s matrix of all ones. Then it can be

seen that

(2) S′S =

 (n− 2)Ip + Jpp Jpq (q + 1)Jp1

Jqp (n− 2)Iq + Jqq (p+ 1)Jq1

(q + 1)J1p (p+ 1)J1q (p+ 1)(q + 1)

 .
Theorem 6. Let S′S be as in (2). Then

(S′S)−1 =


1

n−2Ip + v1Jpp 0pq cJp1

0qp
1

n−2Iq + v2Jqq dJq1

cJ1p dJ1q e

 ,
where

c = − 1
p+ q + 2p2

, d = − 1
p+ q + 2q2

,



6 R. B. BAPAT

v1 =
c(p− q)
n− 2

, v2 =
d(q − p)
n− 2

, e =
1− p(q + 1)c− q(p+ 1)d

(p+ 1)(q + 1)
.

We omit the proof as it follows by simple verification. Once we have a formula

for (S′S)−1, an explicit expression for the least-squares approximation can also be

obtained.

3. All-paths matrix of a tree

We now consider the all-paths matrix S of an arbitrary tree. We first prove some

preliminary results.

Lemma 7. Let T be a tree with V (T ) = {1, . . . , n} and E(T ) = {e1, . . . , en−1}. Let

ei ∈ E(T ) and let T1 and T2 be the components of T \{ei}. Let X be the submatrix of

S′S formed by the rows indexed by E(T1)∪{ei} and columns indexed by E(T2)∪{ei}.
Then rankX = 1.

Proof: For ej ∈ E(T ), ej 6= ei, let f(ej) denote the number of vertices in the

component of T \ {ej} that does not contain ei. Note that if ej ∈ E(T1) and ek ∈
E(T2), then the (ej , ek)-entry of X is f(ej)f(ek). If ej ∈ E(T1), then the (ej , ei)-entry

of X is f(ej)|V (T2)|, while if ek ∈ E(T2), then the (ei, ek)-entry of X is f(ek)|V (T1)|.
It follows that rankX = 1.

Lemma 8. Let A be an m ×m matrix, m ≥ 2. Let B be an r × s submatrix of A

such that r + s = m+ 2 and rankB = 1. Then A is singular.

Proof: We may assume, without loss of generality, that

A =

[
B C

D E

]
.

Then

rankA ≤ rank[B,C] + rank[D,E]

≤ rankB + rankC +m− r

≤ 1 +m− s+m− r

≤ m− 1,

and hence A is singular.

Denote by A(i|j) the submatrix obtained by deleting row i and column j of A.

We now prove the main result of this section.
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Theorem 9. Let T be a tree with V (T ) = {1, . . . , n} and E(T ) = {e1, . . . , en−1}.
Let S be the all-paths matrix of T. The rows and the columns of S′S are indexed by

E(T ). If ej , ek ∈ E(T ) have no vertex in common, then S′S(j|k) is singular, and

hence, the (j, k)-entry of (S′S)−1 is zero.

Proof: Since ej and ek have no vertex in common, there exists an edge ei, distinct

from ej and ek, on the path from ej to ek. Let T1 and T2 be the components of

T \{ei}. As in Lemma 7, let X be the submatrix of S′S formed by the rows indexed by

E(T1)∪{ei} and the columns indexed by E(T2)∪{ei}. By Lemma 7, rankX = 1. Note

that X is a matrix with |E(T1)|+1 rows and |E(T2)|+1 columns, and it is a submatrix

of S′S(j|k), which is of order (n− 2)× (n− 2). Since |E(T1)|+ |E(T2)|+ 2 = n, the

result follows by Lemma 8.

Theorem 9 has the following implication in terms of the problem of least-squares

approximation by a tree distance. Let T be a tree with V (T ) = {1, . . . , n} and

E(T ) = {e1, . . . , en−1}. Let w : V (T )× V (T )→ [0,∞), be a dissimilarity. Consider

the problem of finding β : E(T ) → [0,∞) such that ||Sβ − w|| is minimized. Then

we have the following

Theorem 10. Let β : E(T ) → [0,∞) that minimizes ||Sβ − w|| be β̂. Let k ∈
{1, . . . , n − 1}. Let F be the set of edges of T which have a vertex in common with

ek. The least-squares estimate β̂k of βk is a linear combination∑
i,j

α(i, j)w(i, j),

such that

: (i) if the ij-path has no intersection with F, then α(i, j) = 0.

: (ii) if the intersection of the ij-path with F is the same as the intersection of

the uv-path with F, then α(i, j) = α(u, v),

Proof: The β that minimizes ||Sβ − w|| is given by S+w = (S′S)−1S′w. The

coefficient β̂k is given by the inner product of the k-th row of (S′S)−1 and S′w.

First suppose the ij-path has no intersection with F. By Theorem 9, the coordi-

nates of the k-th row of (S′S)−1 corresponding to edges not in F are all zero. Also

the row of S corresponding to (i, j) has zeros at the places which correspond to edges

in F. Thus the inner product of the k-th row of (S′S)−1 and the row of S indexed

by (i, j) is zero. This inner product equals α(i, j), which must then be zero. The

second part follows similarly in view of the fact that the coordinates of the k-th row

of (S′S)−1 corresponding to edges not in F are all zero.
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Recall that a phylogenetic tree is a binary tree whose leaves are labelled by the

species in a set X, and the internal vertices represent the unknown ancestors. An

examination of the proof reveals that the results in this section apply equally well to a

phylogenetic tree. It is known that the matrix S is nonsingular for any phylogenetic

X-tree, see, for example, [7]. In fact, (i), Theorem 10 has been observed in the

context of a phylogenetic tree by Vach [9] and the property has been termed the

independence of irrelevant pairs property in [7].

We also remark that the least-squares solution may not be nonnegative, a property

required in practical applications in bioinformatics. The nonnegative least-squares

problem must be approached by heuristic methods such as those in [2, 5]. Our results

might be useful in that the least-squares solution, after rounding the negative entries

to zero, can provide a good initial guess for such iterative methods. Our emphasis

is on providing exact results for the least-squares solution.

We further remark that the least-squares method, without the nonnegativity con-

straint, involves inverting a matrix, or equivalently, solving a system of linear equa-

tions. The algorithmic complexity of matrix inversion by Gaussian elimination is

known to be of the order O(n3). There exist faster methods which bring down the

complexity to around O(n2.8).

4. All-paths matrix of a directed tree

We consider directed graphs in this section. Let T be a directed tree with V (T ) =

{1, . . . , n} and E(T ) = {e1, . . . , en−1}. We define the all-paths matrix P of T, which

is a natural analogue of the undirected case. The order of P is
(
n
2

)
× (n − 1). The

rows of P are indexed by (i, j), 1 ≤ i < j ≤ n, while the columns are indexed by

E(T ). The entries of P are either 0 or ±1. The row of P corresponding to (i, j) is

the incidence vector of the ij-path in T, where the directions of the edges are taken

into account. Thus the k-th entry in that row is 1 if ek is on the ij-path, and ek is

directed in the same way as we go from i to j along the path, it is −1 if ek is on the

ij-path, and ek is directed in the opposite way as we go from i to j along the path,

and it is 0 otherwise.

Example 11. Consider the directed tree
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◦1
e1

  A
AA

AA
AA

A

◦3

e2~~}}
}}

}}
}}

◦4
e3

oo e4 // ◦5

◦2

Then

P =



1 1 0 0

1 0 0 0

1 0 −1 0

1 0 −1 1

0 −1 0 0

0 −1 −1 0

0 −1 −1 1

0 0 −1 0

0 0 −1 1

0 0 0 1


Recall the definition of the (vertex-edge) incidence matrix of T, denoted by Q. It

is a matrix of order n × (n − 1), with its rows and columns indexed by V (T ) and

E(T ) respectively. The (i, j)-entry of Q is 0 if vertex i and edge ej are not incident,

and otherwise it is 1 or −1 according as ej originates or terminates at i, respectively.

The incidence matrix of the tree T in Example 11 can be seen to be

Q =



1 0 0 0

0 −1 0 0

−1 1 −1 0

0 0 1 1

0 0 0 −1


.

The matrix K = Q′Q has been termed the edge-Laplacian matrix of T by Merris

[6] where a remarkable formula for K−1 is obtained. It is evident that the formula

obtained by Merris can be expressed in the following equivalent form.

Theorem 12. K−1 = (Q′Q)−1 = 1
nP
′P.
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The rows and the columns of P ′P are indexed by E(T ). It follows from Theorem

12 that (P ′P )−1 = 1
nQ
′Q. Thus if edges ei and ej have no vertex in common, then

the (i, j)-element of (P ′P )−1 is zero. This property holds in the undirected case as

well, as observed in Theorem 9. In the directed case, an explicit formula is available

for (P ′P )−1, namely (P ′P )−1 = 1
nQ
′Q. However such a formula seems difficult to

obtain in the case of an undirected tree.

We mention in passing that the matrices S′ and P ′ may also be viewed as the

fundamental cut-set matrices, over integers modulo 2 and over reals respectively, of

the complete graph Kn, with respect to the spanning tree T.

It follows from Theorem 12 that Q′QP ′P = nI, and hence P+ = 1
nQ
′QP ′. It is

possible to give a graph-theoretic description of the entries of P+ as we proceed to

show.

The rows of P+ are indexed by E(T ), while the columns of P+ are indexed by

{(i, j) : 1 ≤ i < j ≤ n}. Let ek ∈ E(T ) have end-vertices u and v, and suppose ek is

directed from u to v. Fix (i, j), i < j. Let the entry of P+ in the row indexed by ek,

and the column indexed by (i, j) be θ. We consider the following cases:

: (i) i = u, j 6= v and the ij-path in T contains ek. Then nθ = 1.

: (ii) i = u and the ij-path in T does not contain ek. Then nθ = 1.

: (iii) i = v, j 6= u and the ij-path in T contains ek. Then nθ = −1.

: (iv) i = v and the ij-path in T does not contain ek. Then nθ = −1.

: (v) j = u, i 6= v and the ij-path in T contains ek. Then nθ = −1.

: (vi) j = u and the ij-path in T does not contain ek. Then nθ = −1.

: (vii) i = u, j = v. Then nθ = 2.

: (viii) i = v, j = u. Then nθ = −2.

If none of the cases (i)-(viii) hold, then ek does not have even one vertex from i

and j as an end-vertex and in that event, θ = 0.

Note that the entries of nP+ are all from {0,±1,±2}. Each row has exactly 2n−3

nonzero entries out of which one entry is ±2.

We indicate an argument in justification of Case (i). Let ek and e` be the first

two edges on the (ij)-path. Let v and w be the end-vertices of e`.

Suppose i = u, j 6= u and that the (ij)-path contains ek. Let x be the row of Q′Q

indexed by ek, and let y be the row of S indexed by (i, j). Since nS+ = Q′QS′, nθ

is given by the inner product x and y.

The elements of both x and y are indexed by E(T ). For s ∈ {1, . . . , n− 1}, xs is

nonzero if and only if es has a vertex in common with ek, while ys is nonzero if and
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only if es is on the (ij)-path. Thus xsys 6= 0 if and only if s equals either k or `.

Also xk = 2 and yk = 1.

If e` is directed from v to w, then x` = −1 and y` = 1. Thus

nθ =
n−1∑
s=1

xsys = xkyk + x`y` = 1.

Now suppose e` is directed from w to v. Then x` = 1 and y` = −1. Thus

nθ =
n−1∑
s=1

xsys = xkyk + x`y` = 1.

This completes the proof of the statement pertaining to Case (i). The proof is

similar in the remaining cases.

The Moore-Penrose inverse of the all-paths matrix P of the tree in Example 11 is

given by

P+ =
1
5


1 2 1 1 1 0 0 −1 −1 0

1 −1 0 0 −2 −1 −1 1 1 0

0 1 −1 0 1 −1 0 −2 −1 1

0 0 −1 1 0 −1 1 −1 1 2


Consider the entry in row 3 and column 9. This corresponds to the edge e3 and

the pair (3, 5). Setting u = 4, v = i = 3 and j = 4, we see from Case (iii) that the

entry in 5P+ should be −1.
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