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The standard deck of cards is a very useful tool for exploring mathematical
phenomena arising out of card games, tricks and recreations. Here we describe
some such connections between card recreations and topics in combinatorial
mathematics. The reader is encouraged to have a deck of cards handy and try
out some of the activities mentioned here.

The standard deck consists of 52 cards. The cards are divided into 4 suits:
Spades, Clubs, Hearts and Diamonds. Each suit has 13 denominations: Ace,
Two, Three, . . . , Ten are the denominations identified by the number of spots.
The three face cards in each suit are the Jack, the Queen and the King. The
cards come in two colours. Spades and Clubs are black while Hearts and
Diamonds are red. The interplay between suits, denominations and colour is
the basis of most of the card tricks and recreations performed with the deck.

Shuffling

There are various ways to shuffle the deck. The cut is the simplest and
the most relevant for our purpose. In a cut, the deck is held face down, one
or more cards are removed from the top of the deck and the entire set of the
removed cards is inserted at the bottom. Equivalently, a set of one or more
cards is removed from the bottom and replaced on top, without disturbing
the order. If a series of cuts are rapidly performed then it is known as the
overhand shuffle. A cut leaves the cyclic order of the cards unchanged, no
matter how many times it is executed. This property can be used to construct
several tricks with the deck.

Here is a simple example. Prearrange the face cards and aces (16 cards
in all, which we will refer to as the picture cards) in the order: Ace, King,
Queen and Jack of one suit, followed by the same cards, in the same order, of
another suit, etc. Hold the pile of cards face down. Thus the top card, facing
down is an Ace, while the bottom card is a Jack. Hand over the pile of the
16 cards, still face down, to the spectator and ask her to cut the cards any
number of times. Then take back the pile from her, execute a few more cuts
using overhand shuffle. If possible, make sure that the bottom card is a Jack
as you finish shuffling (a quick peek can ensure this). Then deal the cards face
up on the table into 4 piles in a sequence. Note that this deal is made as in a
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typical card game such as the game of bridge. The cards will come out neatly
sorted in the four denominations, which is quite magical.

Another shuffle is the perfect shuffle. Here the deck is cut in exactly half
and the cards are divided into two equal piles. Then the piles are pressed
on the table, and mixed into each other perfectly so that the cards from the
two piles alternate. If the cards are numbered 1, 2 . . . , 10 from top to bottom,
then after a perfect shuffle the order will be either 1, 6, 2, 7, 3, 8, 4, 9, 5, 10, or
6, 1, 7, 2, 8, 3, 9, 4, 10, 5 depending on whether the bottom pile or the top pile
is released first while mixing. Sometimes the terms in-shuffle and out-shuffle
are used for the two types.

Suppose the deck is held face down, with the top card being the Ace of
Diamonds. After one in-shuffle the Ace will move to the second position while
after two in-shuffles it will move to the fourth position. What will happen if,
starting from the beginning, we execute one in-shuffle followed by two out-
shuffles and then two in-shuffles? Sounds complicated? Write a 1 for an
in-shuffle and a 0 for an out-shuffle. Then the sequence of shuffles mentioned
above is coded as 10011, which is 19 in binary notation. The Ace of Diamonds
will move to the 19−th position after the indicated sequence of shuffles! Try
to figure out why.

A perfect shuffle is difficult to perform since it is likely that the cards from
the two piles do not alternate exactly. If the cards alternate in a random
fashion then the shuffle is known as a riffle shuffle. The well-known juggler,
magician and mathematician Persi Diaconis has investigated properties of the
riffle shuffle and, in particular, the number of riffle shuffles required to change
a well-ordered deck into a randomly ordered one. He has shown, in joint work
with other authors that, using a suitable measure of randomness, seven shuffles
are sufficient to get a randomly ordered deck. More importantly, the common
practice of using three or four shuffles is shown to be ineffective in mixing the
deck well.

Cyclic arrangements

Remove the 13 cards of any one suit, say Hearts, and arrange them in the
following order:

7, Ace, Queen, 2, 8, 3, Jack, 4, 9, 5, King, 6, 10.

Hold the deck of the 13 cards face down, so that the bottom card is 10.
Remove one card from the top, insert it at the bottom and turn the next card
over, keeping it on the table, face up. It will be the Ace. Now remove the next
card from the top, insert it at the bottom and turn the next card over, keeping
it on the table, face up. It will be the Two. Continue this process until all
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the 13 cards are put on the table. They will appear in their natural order:
Ace, Two, Three, . . . , Jack, Queen and King. Clearly this forms the basis of a
card trick. Also there is a more general question one can ask. Suppose instead
of removing one card at a time, we remove two cards and place them at the
bottom (this is to be done one card at a time), turn the next card over etc.
If we want to get the cards in the natural order, what should be the initial
arrangement of the deck? More generally, let a1, a2, . . . , a13 be a sequence of
positive integers. We wish to remove a1 cards from the top (one at a time as
before) place them at the bottom, get the Ace, then remove a2 cards from the
top, place them at the bottom, get the Two etc. What should be the initial
arrangement? The reader is invited to find the solution, at least for some
specific sequences a1, a2, . . . , a13 such as the one where all a′

is are equal.

Hall’s Theorem

The assignment problem is a well-known problem in the theory of opti-
mization. Consider n jobs which are to be assigned to n individuals. Each
individual is to be assigned exactly one job. Not everyone is suitable for, or
capable of, doing all the jobs. However, for each individual i, we do have the
list of jobs he/she is capable of doing. The question is: Is it possible to assign
the jobs so that everyone is assigned a job he/she can do?

Clearly, if such an assignment exists, then for any subset of k individuals,
the union of all the jobs they are capable of, must contain at least k elements.
For example, if individual 1 and 2 can both do job 1 but no other job, then
an assignment will not be possible. Hall’s Theorem asserts that this obvious
necessary condition is also sufficient. In other words, if for any subset of k
individuals, the union of all the jobs they are capable of, contains at least k
elements, then a job assignment is feasible. Hall’s Theorem is one of the most
important results in combinatorial mathematics and has many applications
and extensions.

Now here is a solitaire game based on Hall’s Theorem. Arrange the deck
of 52 cards in a 13× 4 array, all cards face up, in any arbitrary manner. Then
it is always possible to choose one card from each row, so that the 13 cards so
chosen are from all the 13 denominations. That is, all the 13 denominations
are represented. Finding such a choice is a simple solitaire game. Why is
such a choice always possible? Consider 13 individuals, corresponding to the
13 rows of the array. Suppose there are 13 jobs, corresponding to the 13
denominations, numbered 1 to 13 for convenience. Let us imagine that the
i-th individual can do the j-th job if and only if a card of denomination j
appears in row i of the array. A moment’s reflection will show that in any k
rows of the array, at least k denominations must occur. Thus the condition
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of Hall’s Theorem is satisfied and therefore the choice of 13 cards as indicated
above is possible.

An iteration with a fixed point

There is a simple iteration which can be performed with any number of
cards, but works particularly well when the number of cards is triangular.
Recall that an integer of the form n(n + 1)/2 is said to be triangular.

To illustrate the iteration, start with 15 cards (the values of the cards are
not important) and form any number of piles out of them. The piles can be of
any size, not necessarily equal. For example, there may be 4 piles containing
2, 4, 4, 5 cards to begin with. Pick one card from each pile and put those cards
in a new pile besides the existing ones. For example, starting with the piles
given above, we will arrive at 5 piles containing 1, 3, 3, 4, 4 cards respectively.
Continue the same procedure, each time forming a new pile, picking one card
from each of the existing ones.

You will find that after several iterations you will arrive at 5 piles, contain-
ing 1, 2, 3, 4, 5 cards. This is a fixed point of the iteration, since the next step
again produces the same configuration.

The iteration can in general be performed with 1 + 2 + · · · + n cards and
will lead to the fixed point of n piles containing 1, 2, . . . , n cards. The proof
of this assertion is not easy.

What happens if the number is not triangular? Then we will get into a
loop, containing a particular sequence of configurations. But again, given that
we start with m cards, it is not easy to say what that sequence will be, unless
of course m is triangular. You may want to try with 8 cards and see what
happens.

A self-working trick

Many card tricks are based on simple principles which work on their own,
without any effort on the part of the person performing them.

Here is an example. Take a deck of 21 cards and place the cards in 3
piles, containing 7 cards each, face up. Ask the spectator to review the cards
and mentally make note of one particular card, pointing only to the pile to
which the noted card belongs. Pick up the 3 piles and place them on top of
each other, making sure that the pile containing the spectator’s card is in the
centre. Deal the deck again in 3 piles as in the game of bridge. Again request
the spectator to only point to the pile containing the noted card. Repeat the
procedure one more time. It will so happen that after the second step, the
spectator’s card will be located exactly in the middle of the pile in which it is
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contained. Then it is easy to identify the noted card.
Observe that when we pick up the 3 piles the first time, the noted card is

somewhere in positions 8 to 14 in the deck. The next time it is in positions 10
to 12 and in the final step it reaches the centre of the pile to which it belongs.

The trick also works with 15 or with 27 cards. Will it work with 51 cards?

Josephus type questions

Suppose the numbers 1 to 41 are written along the circumference of a
circle in the order 1, 2, . . . , 39, 40, 41, 1. Starting at 1, erase every third number.
Continue until only one number remains. (When a number is erased, it is no
longer taken into account while arriving at every third number.) Which will
be that number? You will see that the last two numbers that remain are 16
and 31, while the last number that remains is 31. This problem is related to
an historic anecdote involving Josephus, who cleverly used the observation to
save himself from the Romans.

Suppose we start with n numbers and follow the same procedure, erasing
every k-th number. Let the last remaining number be f(n, k). The function
f(n, k) does not have a closed form and its analysis is complicated.

A deck of cards is convenient to model the exercise given in this problem.
Each time we transfer k− 1 cards from the top of the deck to the bottom, one
card at a time, and then discard the k-th card.

A simple trick can be designed using the phenomenon mentioned here.
Select a deck of 12 cards, ask the spectator to choose one card, note what it is,
and then return it to the deck. Make sure that the spectator’s card is at the 9-
th position from the top when the deck is held face down. Now discard every
second card by the procedure mentioned above. That is, transfer one card
from the top of the deck to the bottom, discard the next card, and continue
until only one card remains. That remaining card will be the card chosen by
the spectator! It is easy to see that this trick is based on the observation that
f(12, 2) = 9.

Latin squares

A Latin square of order n is an arrangement of n symbols in an n×n array
so that every symbol occurs once in each row and column. Theory of Latin
squares is an important area of combinatorial mathematics which finds many
applications, particularly in design of experiments.

The following example shows a Latin square of order 4 using the symbols
1, 2, 3, 4 :
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2 4 1 3
1 3 2 4
4 2 3 1
3 1 4 2

Two Latin squares of order n are said to be mutually orthogonal if the n2

pairs formed by taking the symbols in the i−th row and the j−th column in the
two squares for i, j = 1, 2, . . . , n are all distinct. For example, the Latin square
displayed above and the following Latin square are mutually orthogonal:

2 4 1 3
4 2 3 1
3 1 4 2
1 3 2 4

The term Graeco-Latin squares is used to describe the arrangement ob-
tained by superimposing a pair of mutually orthogonal Latin squares.

A deck of cards offers a convenient tool to build Latin squares and Graeco-
Latin squares. Arrange the 16 picture cards in a 4× 4 array. Then move the
cards around so that in each row you have one card of each suit. Continue
moving the cards so that in each column there is one card of each suit as well.
Now you have an example of a Latin square. Continue rearranging the cards
so that in each row there is a card of each denomination (Ace, King, Queen
and Jack). Finally, try to get a card of each denomination in every column
as well. Now you have in front of you a compact example of a Graeco-Latin
square. When the suits are considered as symbols, you have one Latin square.
Similarly, when the denominations are treated as symbols, there is another
Latin square. Further, the two Latin squares are clearly mutually orthogonal
since every suit has precisely one card of each denomination.

Theory of Probability

Choosing cards from a deck at random is a popular theoretical model, along
with tossing a coin and casting a die. Concepts in probability theory can be
nicely illustrated using the model of drawing cards from a deck.

A card is chosen from the standard deck at random. Let A be the event
that it is a Spade and let B be the event that it is an Ace. Are A and B
independent? First give an intuitive answer and then check it with numbers.

There are two boxes, one contains two Aces and the other contains an Ace
and a King. A box is chosen and a card selected at random. If it happens to
be an Ace, what is the probability that the other card in the box is also an
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Ace? The immediate reaction is that it should be 1/2, but a careful calculation
using conditional probability reveals the answer to be 2/3.

These are simple examples. But one quickly stumbles into more difficult
questions such as computing probabilities of different compositions of a hand
of poker or very difficult ones such as computing probabilities of winning in a
particular solitaire game.

We now describe an intriguing phenomenon that has been observed, but
has no simple probabilistic explanation. Hold the deck of 52 cards, well-
shuffled, face-up in your hand. Think of a number between 1 to 9 and then
count and remove that many cards from the top. Note the value of the new
top card and now remove that may cards from the deck. For example, if the
top card is a 7, then count seven cards from the top, including the top card,
and discard them. Observe the new top card and repeat the process. For
the purpose of this game, we are going to assign the value 5 to all the face
cards. Continue removing the cards, either until all cards are discarded, or
there are not enough cards to discard at some point. Now collect the cards
together, without changing there order, and restart with some other integer
from 1 to 9. Most likely it will be seen that the way the game ends the second
time is identical to the way it ended the first time. Try again with some other
integer from 1 to 9. It has been observed that with a high probability (about
80 percent) the same sequence of cards starts to appear after a certain initial
stage, and as a result the game always ends in the same way.

Gilbreath principle

In his well-known series “Mathematical Games” which ran in the maga-
zine “Scientific American” for several decades, Martin Gardner has described
several card recreations. One idea descibed by Gardner is Gilbreath principle
according to which the cards are prearranged in a particular way and it results
in certain magical phenomena. We saw a similar example earlier using the fact
that the cards maintain their cyclical order after any number of cuts.

We will give two examples of application of Gilbreath principle. Arrange
the 52 cards of the deck so that the suits of the cards appear in the same fixed
sequence. For illustration, the sequence may be Diamonds, Clubs, Hearts and
Spades. Thus the top card is of Diamonds, followed by a card of Clubs, then
Hearts, then Spades, then again a card of Diamonds etc. Hand the prearranged
deck over to the spectator, face down, and ask her to deal off about 20 − 25
cards from the top of the deck, one at a time, so that they form a pile on the
table. Now instruct the spectator to hold the two piles, one formed on the
table and the one of the remaining cards, and give them a riffle shuffle. The
shuffle need not be perfect but it is important that the two piles get mixed into
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each other, preserving their individual order. Now we are ready to witness the
magical effect. In the top four cards of the deck, there will be one card of each
suit. The next set of four cards will also contain one card of each suit. Again
the next four will have one card of each suit and this will continue to hold for
the entire deck!

Let us examine how this effect works. For convenience, suppose the deck
has only 16 cards, arranged as

DCSHDCSHDCSHDCSH,

where we have used D for Diamonds, C for Clubs etc.
Suppose the top 7 cards are dealt, one at a time, face down, to form a pile.

Then their order will be reversed and we now have two piles, one containing
the cards (from top to bottom)

pile 1: SCDHSCD

while the other, containing the cards (again from top to bottom)

pile 2: HDCSHDCSH.

When we give a riffle shuffle to the two piles, we essentially mix them,
taking some cards from pile 1, then some cards from pile 2 and so on. Note
that if we take x cards from pile 1 and y cards from pile 2, where x and y are
nonnegative integers adding up to 4, those 4 cards will contain one card of each
suit. Now if we remove those 4 cards and continue with the remaining piles,
it is as if we started with a deck of 12 cards, and so the entire phenomenon
will be repeated.

In the second example, the 13 cards of any one suit, say Diamonds, are
removed from the deck and the deck of the remaining 39 cards is used. Arrange
the deck as in the previous example, and suppose that the cards are in a
particular sequence, say Spades, Hearts and Clubs, when the deck is held face
up. Hand over the deck to the spectator, face up, and ask her to divide it in two
approximately equal halves. Note that the top card will be a Spades. Instruct
her to riffle shuffle the two halves, still holding them face up. While she is
doing the exercise, make a note of the top card of the bottom half. Take back
the shuffled deck from the spectator and turn it over face down. Now in every
group of three cards, starting from the top, the following phenomenon will be
observed. If the card noted earlier was of Spades then in any group of three
cards there will be at most two Spades. If the noted card was a Hearts then in
any group of three cards there will be at most two Clubs. Finally, if the noted
card was a Clubs then in any group of three cards there will be at most two
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Hearts. It must be remarked that these phenomena are to be combined with
other devices to make them appear more magical. For example, the magician
could take a bet with the spectator that the cards will appear in a particular
way and then manage to win each time.

Tricks based on colour

Here is a well-known puzzle. There are two containers, one containing
a litre of water, the other, a litre of milk. A spoon of water is transferred
from the first container to the second, mixed, and a spoon of the mixture is
transferred back from the second container to the first. The question is, which
is greater? The amount of water in the second container or the amount of milk
in the first? The answer is of course that they are the same. This requires
some thought and some people are never convinced.

A discreet version of the problem is easily modeled by a deck of cards.
Separate the cards in two piles, the first containing 26 black cards and the
second, 26 red ones. Transfer some cards from the black pile to the red, shuffle,
and then transfer an equal number back to the first. Clearly the number of
black cards in the second pile must equal the number of red cards in the first
pile.

In fact, if the deck is arbitrarily divided into two piles of 26 cards each, the
number of black cards in one pile must equal the number of red cards in the
other.

Now a trick based on these ideas. The magician hands over the deck of 52
cards to the spectator. The deck has some cards facing up and some facing
down. The spectator is instructed to cut the deck, or even shuffle it to his
satisfaction, and return it to the magician. The magician counts off 26 cards
from the top and places the two piles so formed on the table. Then she instructs
the spectator to count the number of face up cards in one of the piles. She
then instructs him to count the number of face up cards in the second pile and
it turns out to be the same!

How does it work? The deck is prearranged by taking 26 face up cards and
thoroughly mixing them with the 26 face down cards. As in the red and black
phenomenon noted earlier, if the deck is divided into two equal parts, then the
number of face up cards in one part equals the number of face down cards in
the second. The crucial point is that when the magician counts 26 cards from
the top and forms a pile, she turns it over before placing it on the table. That
makes the number of face up cards in the two parts equal!

More about the interplay between cards and mathematics can be learnt
through the vast literature on the subject, particularly the writings of Mar-
tin Gardner, and for more advanced mathematical ideas, the work of Persi

9



Diaconis.
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