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Abstract

Let T be a tree on n vertices and let the n− 1 edges e1, e2, . . . , en−1 have
weights that are s× s matrices W1,W2, . . . ,Wn−1, respectively. For two ver-
tices i, j, let the unique ordered path between i and j be pi,j = er1er2 . . . erk .
Define the distance between i and j as the s × s matrix Ei,j =

∏k
p=1Wep .

Consider the ns × ns matrix D whose i, j-th block is the matrix Ei,j . We
give a formula for det(D) and for its inverse, when it exists. These general-
ize known results for the product distance matrix when the weights are real
numbers.
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1 Introduction
Let T be a tree with vertex set [n] = {1, 2, . . . , n}. Let D = (di,j)1≤i,j≤n be its
distance matrix, i.e. di,j is the distance between vertices i and j. A classical result
of Graham and Pollak [7] is the following.

Theorem 1 Let T be a tree on n vertices and let D be its distance matrix. Then
det(D) = (−1)n−1(n− 1)2n−2.

Thus, det(D) only depends on n and is independent of the structure of the tree
T . Later, Graham and Lovász [6] gave a formula for the inverse of D. Motivated
by this, Bapat and Sivasubramanian, building on the work of Bapat, Lat and Pati
[3] considered the exponential distance matrix of a tree T . Let the tree T have n
vertices and let e1, e2, . . . , en−1 be an ordering of its edges. Let edge ei have weight
qi, i = 1, . . . , n − 1, where q1, . . . , qn−1 are commuting indeterminates, and define
ET = (ei,j), the exponential distance matrix of T as follows. For vertices i, j, let pi,j
be the unique path between i and j. Define ei,j =

∏
k∈pi,j qk. Note that ei,j = ej,i

as the qk’s commute with each other. By convention, for all i, we set ei,i = 1. With
this, Bapat and Sivasubramanian [4] showed the following.

Theorem 2 Let T be a tree on n vertices with edges having weights q1, q2, . . . , qn−1
and let E be the exponential distance matrix E. Then, det(E) =

∏n−1
i=1 (1− q2i ).

In [4], a slightly more general setup was considered and the inverse of E was
also determined.

In this work, we consider the product distance matrix of a tree with matrix
weights. The motivation for considering matrix weights may be described as fol-
lows. When we consider product distance, it is natural to let the weights be non-
commutative, since the edges on a path come with a natural order. The entries of
the product distance matrix are then elements of an underlying ring. The formula
for the inverse given in Theorem 4 holds in the case of noncommutative weights,
even though we have chosen to formulate the result with the weights being matri-
ces which provide a natural example of noncommutative weights. In the case of
the formula for the determinant of the product distance matrix, given in Theorem 3,
matrix weights are justified since there are difficulties in defining the determinant of
a matrix with general noncommutative elements. It is apparent from our results that
noncommutative weights do not present any obstacle in obtaining formulas for the
determinant and the inverse of distance matrices.

An application of weighted graphs arises naturally in circuit theory, where the
graph represents an electrical network, and the weights on the edges are the resis-
tances. Thus the weights are nonnegative numbers. Ando and Bunce [1], motivated
by the work of Duffin [5], consider the case where nonnegative weights are replaced
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by positive semidefinite matrices, and show that certain operator inequalities extend
naturally to the more general setting.

In the context of classical distance, matrix weights have been considered in [2]
where an analogue of Theorem 1 is proved. It is natural to consider a similar setup
in the case of product distance.

Thus, we have a tree T on n vertices and each edge ei has an s×s matrix weight
Wi, i = 1, 2, . . . , n− 1. The matrices W1, . . . ,Wn−1 may be over an arbitrary field,
or more generally, over a commutative ring. Given two vertices i, j, let pi,j be the
sequential path from i to j in T . This means that pi,j is a sequence of edges of T
with the order of the edges taken into account. Formally, if pi,j = (ek1 , ek2 , . . . , ekr),
then i ∈ ek1 , j ∈ ekr and successive edges in pi,j have a common vertex. Define
Di,j = Wk1 · · ·Wkr , and when i = j, define Di,i to be the s × s identity matrix
for all 1 ≤ i ≤ n. Denote the ns × ns matrix whose (i, j)-th block is Di,j by DT .
When, the tree T is clear from the context, we abuse notation and denote DT as D.

We show that as in the commutative case, the determinant of the ns× ns matrix
D is again independent of the structure of T (see Theorem 3) and explicitly find the
inverse of D when it exists (see Theorem 4).

2 Determinant of D.
Consider the tree in Figure 1. The product distance matrix of the tree in Figure 1 is
given by

D =


I P PQ PQR PQS
P I Q QR QS
QP Q I R S
RQP RQ R I RS
SQP SQ S SR I

 .

◦4

◦1 P ◦2 Q ◦3

R
||||||||

S BB
BB

BB
BB

◦5

Figure 1: A matrix-weighted tree T .

Recall that the matrix P is called unimodular if det(P ) = ±1. The transpose of
the matrix P is denoted P t.
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Lemma 1 Let T be a tree on the vertex set [n] with edge ei having weight Wi, i =
1, . . . , n− 1 and let D be its distance matrix. Then there exists a unimodular matrix
P such that

P tDP =


I 0 · · · 0
0 I −W 2

1 · · · 0
...

... . . . ...
0 0 · · · I −W 2

n−1

 .

Proof: We induct on n, the number of vertices of T . When n = 2, D =(
I W1

W1 I

)
and performing elementary operations in blocks, we get the result.

Let T have n vertices with vertex n being a pendant vertex adjacent to n − 1. Let
T ′ = T − {n} be the smaller tree obtained by deleting vertex n and its adjacent
edge and letD′ be the product distance matrix of T ′. Let V be the “column” of s×s
block-matrices indexed by the vertex n− 1 and U the “row” of s× s block-matrices

indexed by n− 1. Writing D as blocks, we get D =

(
D′ VWn−1

(Wn−1U)t I

)
.

Consider the following matrix, where each I and 0 (a block of zeroes) is of order
s× s.

R =


I 0 · · · 0 0
0 I · · · 0 0
...

... . . . ...
...

0 0 · · · I −Wn−1
0 0 · · · 0 I

.

Clearly, R is unimodular and we have RtDR =

(
D′ 0
0 I −W 2

n−1

)
. By induc-

tion, there exists a unimodular matrix Q such that

QtD′Q =


I 0 · · · 0
0 I −W 2

1 · · · 0
...

... . . . ...
0 0 · · · I −W 2

n−2

 .

Define S =

(
Q 0
0 I

)
and P = SR. Then it is easy to see that

P tDP =


I 0 · · · 0
0 I −W 2

1 · · · 0
...

... . . . ...
0 0 · · · I −W 2

n−1

 .
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It is also clear that P is unimodular and the proof is complete.

The matrix P in Lemma 1 admits a simple combinatorial description. Let T be
a tree with vertex set [n] and with matrices W1, . . . ,Wn−1 as edge weights. We fix a
root, which we take to be n. Orient the edges of T so that each edge points towards
the root. The matrix P has its rows and columns indexed by [n]. Let i ∈ [n], i 6= n,
be a vertex and let ek = {i, j} be the edge incident to i such that j is on the path
from i to n. For i > 1, the i-th block of P has I at the position n − i + 1, −Wk at
the position j and zeros elsewhere. The first block of P has only I at position n and
zeros elsewhere. This combinatorial description is easily proved using induction.
For the tree in Figure 1, we have

P =


0 0 0 0 I
0 0 0 I −P
0 −R I −Q 0
0 I 0 0 0
I 0 −S 0 0

 .

It may be verified that P ′DP is a diagonal matrix with I, I−R2, I−S2, I−Q2, I−
P 2 on the diagonal, as in Lemma 1. The following is a simple consequence of
Lemma 1.

Theorem 3 Let T be a tree with vertex set [n]. For 1 ≤ i ≤ n− 1, let each edge ei
be assigned an s× s matrix Wi and let D be its non-commutative product distance.
Then, det(D) =

∏n−1
i=1 det(I −W 2

i ).

Proof: By Lemma 1 there exists a unimodular matrix P such that

P tDP =


I 0 · · · 0
0 I −W 2

1 · · · 0
...

... . . . ...
0 0 · · · I −W 2

n−1

 .

The result follows by taking the determinant of both sides of the preceding equation
in view of the fact that det(P ) = det(P t) = ±1.

If we set s = 1 in Theorem 3, then we obtain Theorem 2.
It might be instructive to compare the proof technique adopted in this paper

to the existing proofs of similar results. In proving the determinant formula, the
common technique is to identify a pendant vertex, eliminate the corresponding row
and column by row and column operations, and then to use induction. The technique
used here is similar but we have combined the row and column operations in a single
identity proved in Lemma 1.
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As an application of Theorem 3, let A be an m × m matrix, and consider the
partitioned matrix

B =


I A A2 · · · Am−1

A I A · · · Am−2

...
... . . . ...

...
Am−2 · · · A I A
Am−1 · · · A2 A I

 .

The matrix B is the product distance matrix of the path on m vertices, with each
edge weighted by the matrix A. It follows from Theorem 3 that

detB = (det(I − A2))m−1.

3 Inverse of DT

In this section, we give an explicit formula for the inverse of DT when DT is non-
singular. Thus assume that for all i, 1 ≤ i ≤ n− 1, the matrix I −W 2

i is invertible.
For an s× s matrix P , it is easy to see that when I − P 2 is invertible,(

I P
P I

)−1
=

(
(I − P 2)−1 −P (I − P 2)−1

−P (I − P 2)−1 (I − P 2)−1

)
. (1)

For each edge er = {i, j} of the tree T , consider the following ns × ns matrix
Mer which we describe in terms of s×s blocks as follows. The (i, i)-th and (j, j)-th
blocks of Mer are (I −W 2

r )−1 and the (i, j)-th and (j, i)-th blocks are −Wr(I −
W 2

r )−1. For other indices (p, q), define all (p, q) blocks to be the s × s zero block.
We have n − 1 such matrices Mer , one for each 1 ≤ r ≤ n − 1. If A and B are
matrices of order m × n and p × q respectively then recall that their Kronecker
product A⊗B is the mp× nq matrix given by

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
... . . . ...

am1B am2B · · · amnB

 .

Let the degree sequence of the tree T be d1, d2, . . . , dn and define the n × n
diagonal matrix Deg = Diag(d1, d2, . . . , dn). Define the ns × ns matrix ∆ = Is ⊗
Deg. With these definitions, we are ready to prove the following.
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Theorem 4 Let D be the product distance matrix of the tree T on n vertices with
edge weight matrices Wr for 1 ≤ r ≤ n− 1. Then

D−1 = I −∆ +
n−1∑
r=1

Mer .

Proof: We induct on the number of vertices n of the tree T . The base case when
n = 2 is easy and we assume that n > 2. Let vertex n be a pendant vertex adjacent
to vertex n−1, and let T ′ = T −{n} be the smaller tree obtained by deleting vertex
n. Let D′ be the (n − 1)s × (n − 1)s product distance matrix of T ′. Let V be the
columns of D′ corresponding to vertex n − 1. Thus, V is a (n − 1)s × s matrix.
Similarly, let U be the rows of D′ corresponding to vertex n − 1. Hence, U has
dimension s× s(n− 1).

We recall that the edge {n− 1, n} has weight Wn−1. Clearly,

D =

(
D′ VWn−1

Wn−1U I

)
.

Let K = I − ∆ +
∑n−1

r=1 Mer . Let DegT ′ be the (n − 1) × (n − 1) diagonal
matrix with the degrees of T ′ on the diagonal, and let ∆T ′ = Is ⊗ DegT ′ be the
counterpart of ∆ for the tree T ′. Similarly, for 1 ≤ r < n − 1, if we define M ′

er as
the (n− 1)s× (n− 1)s matrix for T ′, then by induction assumption, we have

(D′)−1 = I −∆T ′ +
n−2∑
r=1

M ′
er . (2)

Let Enn be the n × n matrix with its (n, n)-th entry equal to 1 and all the other
entries equal to zero. If we augment DegT ′ with a last row and a last column of
zeroes, then note that the resulting matrix is Deg−Enn. These observations and (2)
allow us to write K as

K =

(
(D′)−1 0

0 0

)
+


0 0 0 0
... . . . ...

...
0 · · · (I −W 2

n−1)
−1 − I −Wn−1(I −W 2

n−1)
−1

0 · · · −Wn−1(I −W 2
n−1)

−1 (I −W 2
n−1)

−1


(3)

We must show that DK = I . With the above notation, we claim that(
D′ VWn−1

Wn−1U I

)(
(D′)−1 0

0 · · · 0 0

)
=

(
I 0

0 · · · Wn−1 0

)
. (4)

In order to show (4) it is sufficient to show that the s×(n−1)s matrix Wn−1U(D′)−1
has its last s × s block as Wn−1 and all other s × s blocks as zero. To see this,
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note that U is the s × (n − 1)s submatrix of D′ corresponding to vertex n −
1. Thus, U(D′)−1 = (0, · · · , 0, I) where all blocks are of order s × s. Clearly
Wn−1(U(D′)−1) = Wn−1(0, · · · , 0, I) = (0, · · · , 0,Wn−1), which shows (4). A
simple block-wise matrix multiplication shows that

(
D′ VWn−1

Wn−1U I

)
0 0 0 0
... . . . ...

...
0 · · · (I −W 2

n−1)
−1 − I −Wn−1(I −W 2

n−1)
−1

0 · · · −Wn−1(I −W 2
n−1)

−1 (I −W 2
n−1)

−1



=


0 · · · 0 0
... . . . ...

...
0 · · · 0 0
0 · · · −Wn−1 I

 (5)

Adding (4) and (5) gives DK = I and hence D−1 = K, completing the proof.

It may be remarked that the special case of Theorem 4 with scalar weights was
proved in Bapat and Sivasubramanian [4]. Furthermore, if the weights are all equal
to q, then we recover the formula for the inverse of the exponential distance matrix
given in [3], Proposition 3.3.

The proof of Theorem 4 involves a constructive and explicit description of the
inverse. This is in contrast to the proof of the inverse formula in [3], Theorem
2.1, where the main tool employed was the formula for the inverse of a partitioned
matrix, involving the Schur complement.

We illustrate Theorem 4 by an example. For the tree in Figure 1, let us label the
edges {1, 2}, {2, 3}, {3, 4} and {3, 5} as e1, e2, e3 and e4, respectively. Then

Me1 =


(I − P 2)−1 −P (I − P 2)−1 0 0 0
−P (I − P 2)−1 (I − P 2)−1 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,

Me2 =


0 0 0 0 0
0 (I −Q2)−1 −Q(I −Q2)−1 0 0
0 −Q(I −Q2)−1 (I −Q2)−1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
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Me3 =


0 0 0 0 0
0 0 0 0 0
0 0 (I −R2)−1 −R(I −R2)−1 0
0 0 −R(I −R2)−1 (I −R2)−1 0
0 0 0 0 0

 ,

Me2 =


0 0 0 0 0
0 0 0 0 0
0 0 (I − S2)−1 0 −S(I − S2)−1

0 0 0 0 0
0 0 −S(I − S2)−1 0 (I −Q2)−1

 ,

and ∆ = Is ⊗ Diag(1, 2, 3, 1, 1). Then according to Theorem 4,

D−1 = I5s −∆ + Me1 + Me2 + Me3 + Me4 .
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