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Abstract

Let T be a tree with n vertices and let D be the distance matrix of T. According

to a classical result due to Graham and Pollack, the determinant of D is a function

of n, but does not depend on T. We allow the edges of T to carry weights, which are

square matrices of a fixed order. The distance matrix D of T is then defined in a

natural way. We obtain a formula for the determinant of D, which involves only the

determinants of the sum and the product of the weight matrices.
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1 Introduction

We consider simple graphs, that is, graphs which have no loops or parallel edges.

Thus a graph G = (V (G), E(G)) consists of a finite set of vertices, V (G), and a set

of edges, E(G), each of whose elements is a pair of distinct vertices. We generally

take V (G) = {1, 2, . . . , n} and E(G) = {e1, . . . , em}, unless stated otherwise. We

will assume familiarity with basic graph-theoretic notions, see, for example, [2, 3].

Let G be a connected graph. The distance between vertices i, j of G, denoted

by dij, is defined to be the length (i.e., the number of edges) in a shortest path

from i to j in the graph. The distance matrix of G, denoted by D(G), or simply by

D, is the n × n matrix with its (i, j)-entry equal to dij; i, j = 1, 2, . . . , n. Note that

dii = 0, i = 1, 2, . . . , n.

If T is a tree with n vertices, then according to a well-known result of Graham

and Pollack [4], the determinant of D is (−1)n−1(n− 1)2n−2. Thus the determinant

of D is a function of n but does not depend on the tree itself. An extension of this

result to weighted trees, the weights being scalars, was obtained in [1].

In this paper we consider a tree with each of its edges bearing a square matrix as

weight. All the weight matrices will be of a fixed order, to be generally denoted by s.

If i and j are vertices of T, then there is a unique path from i to j, and the distance

between i and j is defined to be the sum of the matrices associated as weights to

the edges of the path. The distance matrix D of T is then a block matrix, of order

ns×ns, with its (i, j)-block dij equal to the distance between i and j, if i 6= j and is

the s × s null matrix if i = j. We obtain a formula for the determinant of D which

contains the classical formula due to Graham and Pollack [4] as a special case.

We introduce some more notation. The n× 1 vector of all ones and the identity

matrix of order n will be denoted by 1n and In respectively. Let δi denote the degree

of the vertex i, let τi = 2− δi, i = 1, 2, . . . , n, and let τ = [δ1, . . . , δn]T . Note that

n∑
i=1

τi =
n∑

i=1

(2− δi) = 2n− 2(n− 1) = 2. (1)

The Kronecker product of matrices will be denoted by ⊗.

2



2 The Main Result

We first prove a preliminary result.

Lemma 1 Let T be a tree with n vertices, let Wi be the s × s edge weight matrix

associated with the edge ei, i = 1, 2, . . . , n− 1, let τ be the vector with τi = 2− δi, i =

1, 2, . . . , n, and let D be the distance matrix of T. Then

D(τ ⊗ Is) = 1n ⊗ (
n−1∑
i=1

Wi).

Proof: Recall that D is a block matrix, of order ns × ns, with its (i, j)-block equal

to dij. Let i be fixed, 1 ≤ i ≤ n. Then we must prove that

n∑
r=1

τrdir =
n−1∑
j=1

Wj. (2)

For 1 ≤ j ≤ n − 1, 1 ≤ k ≤ n, let pkj = 1 if the (unique) path from i to k in T

passes through ej and let pkj = 0 otherwise. Then

n∑
r=1

τrdir =
n−1∑
j=1

(
n∑

k=1

pkjτk)Wj. (3)

For j, 1 ≤ j ≤ n − 1, let Tj be the component of T \ ej that does not contain i

and let V (Tj) be the vertex set of Tj. Let u ∈ V (Tj) be an end-vertex of ej. Note

that for k ∈ V (Tj), the degree of k in T and in Tj coincide if k 6= u, while the degree

of u in T exceeds the degree of u in Tj by 1. This observation and (1) imply that

n∑
k=1

pkjτk =
∑

k∈V (Tj)

τk

=
∑

k∈V (Tj)

(2− δk)

=
∑

k∈V (Tj),k 6=u

(2− δk) + (2− δu + 1)− 1

= 2− 1 = 1.

Substituting the above expression in (3) we see that (2) is proved.
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Theorem 2 Let T be a tree with n vertices, let Wi be the s× s edge weight matrix

associated with the edge ei, i = 1, 2, . . . , n− 1, and let D be the distance matrix of T.

Then

det D = (−1)(n−1)s2(n−2)s det(
n−1∏
i=1

Wi) det(
n−1∑
i=1

Wi).

Proof: If n = 2, then D =

 0 W1

W1 0

 . It is easily verified that

det D = (−1)s(det W1)
2,

and the proof is complete in this case. Let n ≥ 3, assume the result to be true for a

tree with n− 1 vertices, and proceed by induction.

Now, as in the hypothesis, let T be a tree with n vertices, n ≥ 3. We assume,

without loss of generality, that vertex n is a pendant vertex and that it is adjacent

to vertex n− 1. We also assume that the edge with end-vertices n and n− 1 is en−1.

Let T1 be the subtree of T obtained by deleting vertex n and let D1 be the distance

matrix of T1.

We think of D as a block matrix with each block being an s × s matrix. The

blocks are indexed by (i, j), i, j = 1, 2, . . . , n. In D, subtract block (n−1, i) from block

(n, i), i = 1, 2, . . . , n and then subtract block (i, n−1) from block (i, n), i = 1, 2, . . . , n.

The resulting matrix, denoted D̃, is given by

D̃ =



Wn−1

D1
...

Wn−1

Wn−1 · · · Wn−1 −2Wn−1

 .

Since the theorem is assumed to hold for trees with n− 1 vertices, then

det D1 = (−1)(n−2)s2(n−3)s det(
n−2∏
i=1

Wi) det(
n−2∑
i=1

Wi). (4)

We first assume that
∏n−2

i=1 Wi and
∑n−2

i=1 Wi are nonsingular, so that D1 is non-

singular as well. The general case then follows by a continuity argument.
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By the well-known formula for the determinant of a partitioned matrix,

det D = det D̃

= (det D1) det(−2Wn−1 − [Wn−1, · · · , Wn−1]D
−1
1


Wn−1

...

Wn−1

). (5)

Note that

D−1
1 (1n−1 ⊗Wn−1) = D−1

1 (1n−1 ⊗ (
n−2∑
i=1

Wi)(
n−2∑
i=1

Wi)
−1Wn−1)

= D−1
1 (1n−1 ⊗ (

n−2∑
i=1

Wi))(
n−2∑
i=1

Wi)
−1Wn−1. (6)

The degree of vertex n− 1 in T1 is δn−1 − 1. Therefore an application of Lemma

1 gives

D1




τ1

...

τn−1 + 1

⊗ Is

 = 1n−1 ⊗ (
n−2∑
i=1

Wi),

and hence

D−1
1 (1n−1 ⊗ (

n−2∑
i=1

Wi)) =


τ1

...

τn−1 + 1

⊗ Is. (7)

It follows from (6) and (7) that

[Wn−1, · · · , Wn−1]D
−1
1


Wn−1

...

Wn−1

 = (τ1 + · · ·+ τn−1 + 1)Wn−1(
n−2∑
i=1

Wi)
−1Wn−1. (8)

Since τn = 1, by (1) we have τ1 + · · ·+ τn−1 + 1 = 2 and hence (8) implies that

[Wn−1, · · · , Wn−1]D
−1
1


Wn−1

...

Wn−1

 = 2Wn−1(
n−2∑
i=1

Wi)
−1Wn−1. (9)

In view of (4),(5) and (9),
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det D = (det D1) det(−2Wn−1 − 2Wn−1(
n−2∑
i=1

Wi)
−1Wn−1)

= (det D1)(det Wn−1) det(−2I − 2(
n−2∑
i=1

Wi)
−1Wn−1)

= (−1)(n−2)s2(n−3)s det(
n−2∏
i=1

Wi) det(
n−2∑
i=1

Wi)

× det(Wn−1)(−2)s det(I + (
n−2∑
i=1

Wi)
−1Wn−1)

= (−1)(n−2)s2(n−3)s(−2)s det(
n−2∏
i=1

Wi)

×(det Wn−1) det(
n−2∑
i=1

Wi) det(I + (
n−2∑
i=1

Wi)
−1Wn−1)

= (−1)(n−1)s2(n−2)s det(
n−1∏
i=1

Wi) det(
n−1∑
i=1

Wi)

and the proof is complete.

As an application, if A, B and C are s× s matrices, then by using Theorem 2 we

get the following determinantal identity. (Here the tree is taken to be the path on

four vertices.)

det



0 A A + B A + B + C

A 0 B B + C

A + B B 0 C

A + B + C B + C C 0

 = (−1)s22s det(ABC) det(A+B+C).

It is known that the distance matrix of an unweighted tree or a tree with positive

numbers as edge weights has exactly one positive eigenvalue (see, for example, [1]).

An analogous property in the case of positive definite matrix weights is proved in

the next result.

Theorem 3 Let T be a tree with n vertices, let Wi be a positive definite s× s edge

weight matrix associated with the edge ei, i = 1, 2, . . . , n−1, and let D be the distance

matrix of T. Then D has s positive and (n− 1)s negative eigenvalues.
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Proof: First suppose that each weight matrix is the s× s identity matrix, and let D1

be the corresponding distance matrix. Also, let D2 be the n× n distance matrix of

the tree T where each edge is assigned the weight 1. As remarked earlier, D2 has 1

positive and n − 1 negative eigenvalues. Then, since D1 = D2 ⊗ Is, it follows that

D1 has s positive and (n− 1)s negative eigenvalues.

For 0 ≤ α ≤ 1, let the edge weights of T be (1− α)Wi + αIs, i = 1, 2, . . . , n− 1,

and let Dα be the corresponding distance matrix. Since each Dα is nonsingular by

Theorem 2, D0 and D1 have the same inertia. Thus D = D0 has s positive and

(n− 1)s negative eigenvalues.
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