Determinant of the distance matrix of a tree with matrix weights

R. B. Bapat

Indian Statistical Institute New Delhi, 110016, India fax: 91-11-26856779, e-mail: rbb@isid.ac.in

Abstract

Let T be a tree with n vertices and let D be the distance matrix of T. According to a classical result due to Graham and Pollack, the determinant of D is a function of n, but does not depend on T. We allow the edges of T to carry weights, which are square matrices of a fixed order. The distance matrix D of T is then defined in a natural way. We obtain a formula for the determinant of D, which involves only the determinants of the sum and the product of the weight matrices.

Key words and phrases: tree, distance matrix, Laplacian matrix, matrix weights, determinant

AMS Classification Number: 15A09, 15A15

1 Introduction

We consider simple graphs, that is, graphs which have no loops or parallel edges. Thus a graph G = (V(G), E(G)) consists of a finite set of vertices, V(G), and a set of edges, E(G), each of whose elements is a pair of distinct vertices. We generally take $V(G) = \{1, 2, ..., n\}$ and $E(G) = \{e_1, ..., e_m\}$, unless stated otherwise. We will assume familiarity with basic graph-theoretic notions, see, for example, [2, 3].

Let G be a connected graph. The *distance* between vertices i, j of G, denoted by d_{ij} , is defined to be the length (i.e., the number of edges) in a shortest path from i to j in the graph. The *distance matrix* of G, denoted by D(G), or simply by D, is the $n \times n$ matrix with its (i, j)-entry equal to $d_{ij}; i, j = 1, 2, ..., n$. Note that $d_{ii} = 0, i = 1, 2, ..., n$.

If T is a tree with n vertices, then according to a well-known result of Graham and Pollack [4], the determinant of D is $(-1)^{n-1}(n-1)2^{n-2}$. Thus the determinant of D is a function of n but does not depend on the tree itself. An extension of this result to weighted trees, the weights being scalars, was obtained in [1].

In this paper we consider a tree with each of its edges bearing a square matrix as weight. All the weight matrices will be of a fixed order, to be generally denoted by s. If i and j are vertices of T, then there is a unique path from i to j, and the distance between i and j is defined to be the sum of the matrices associated as weights to the edges of the path. The distance matrix D of T is then a block matrix, of order $ns \times ns$, with its (i, j)-block d_{ij} equal to the distance between i and j, if $i \neq j$ and is the $s \times s$ null matrix if i = j. We obtain a formula for the determinant of D which contains the classical formula due to Graham and Pollack [4] as a special case.

We introduce some more notation. The $n \times 1$ vector of all ones and the identity matrix of order n will be denoted by $\mathbf{1}_n$ and I_n respectively. Let δ_i denote the degree of the vertex i, let $\tau_i = 2 - \delta_i$, i = 1, 2, ..., n, and let $\tau = [\delta_1, ..., \delta_n]^T$. Note that

$$\sum_{i=1}^{n} \tau_i = \sum_{i=1}^{n} (2 - \delta_i) = 2n - 2(n - 1) = 2.$$
(1)

The Kronecker product of matrices will be denoted by \otimes .

2 The Main Result

We first prove a preliminary result.

Lemma 1 Let T be a tree with n vertices, let W_i be the $s \times s$ edge weight matrix associated with the edge $e_i, i = 1, 2, ..., n - 1$, let τ be the vector with $\tau_i = 2 - \delta_i, i = 1, 2, ..., n$, and let D be the distance matrix of T. Then

$$D(\tau \otimes I_s) = \mathbf{1}_n \otimes (\sum_{i=1}^{n-1} W_i).$$

Proof: Recall that D is a block matrix, of order $ns \times ns$, with its (i, j)-block equal to d_{ij} . Let i be fixed, $1 \le i \le n$. Then we must prove that

$$\sum_{r=1}^{n} \tau_r d_{ir} = \sum_{j=1}^{n-1} W_j.$$
 (2)

For $1 \leq j \leq n-1, 1 \leq k \leq n$, let $p_{kj} = 1$ if the (unique) path from *i* to *k* in *T* passes through e_j and let $p_{kj} = 0$ otherwise. Then

$$\sum_{r=1}^{n} \tau_r d_{ir} = \sum_{j=1}^{n-1} (\sum_{k=1}^{n} p_{kj} \tau_k) W_j.$$
(3)

For $j, 1 \leq j \leq n-1$, let T_j be the component of $T \setminus e_j$ that does not contain iand let $V(T_j)$ be the vertex set of T_j . Let $u \in V(T_j)$ be an end-vertex of e_j . Note that for $k \in V(T_j)$, the degree of k in T and in T_j coincide if $k \neq u$, while the degree of u in T exceeds the degree of u in T_j by 1. This observation and (1) imply that

$$\sum_{k=1}^{n} p_{kj} \tau_{k} = \sum_{k \in V(T_{j})} \tau_{k}$$

=
$$\sum_{k \in V(T_{j})} (2 - \delta_{k})$$

=
$$\sum_{k \in V(T_{j}), k \neq u} (2 - \delta_{k}) + (2 - \delta_{u} + 1) - 1$$

=
$$2 - 1 = 1.$$

Substituting the above expression in (3) we see that (2) is proved.

Theorem 2 Let T be a tree with n vertices, let W_i be the $s \times s$ edge weight matrix associated with the edge $e_i, i = 1, 2, ..., n - 1$, and let D be the distance matrix of T. Then

$$\det D = (-1)^{(n-1)s} 2^{(n-2)s} \det\left(\prod_{i=1}^{n-1} W_i\right) \det\left(\sum_{i=1}^{n-1} W_i\right).$$
$$n = 2, \text{ then } D = \begin{bmatrix} 0 & W_1 \\ W_1 & 0 \end{bmatrix}. \text{ It is easily verified that}$$

Proof: If n = 2, then $D = \begin{bmatrix} 0 & 0 & 1 \\ W_1 & 0 \end{bmatrix}$. It is easily verified that $\det D = (-1)^s (\det W_1)^2,$

and the proof is complete in this case. Let $n \ge 3$, assume the result to be true for a tree with n - 1 vertices, and proceed by induction.

Now, as in the hypothesis, let T be a tree with n vertices, $n \ge 3$. We assume, without loss of generality, that vertex n is a pendant vertex and that it is adjacent to vertex n - 1. We also assume that the edge with end-vertices n and n - 1 is e_{n-1} . Let T_1 be the subtree of T obtained by deleting vertex n and let D_1 be the distance matrix of T_1 .

We think of D as a block matrix with each block being an $s \times s$ matrix. The blocks are indexed by (i, j), i, j = 1, 2, ..., n. In D, subtract block (n-1, i) from block (n, i), i = 1, 2, ..., n and then subtract block (i, n-1) from block (i, n), i = 1, 2, ..., n. The resulting matrix, denoted \tilde{D} , is given by

$$\tilde{D} = \begin{bmatrix} D_1 & & & W_{n-1} \\ & & & \vdots \\ & & & W_{n-1} \\ \hline & & & W_{n-1} \\ \hline & & & W_{n-1} & -2W_{n-1} \end{bmatrix}.$$

Since the theorem is assumed to hold for trees with n-1 vertices, then

$$\det D_1 = (-1)^{(n-2)s} 2^{(n-3)s} \det(\prod_{i=1}^{n-2} W_i) \det(\sum_{i=1}^{n-2} W_i).$$
(4)

We first assume that $\prod_{i=1}^{n-2} W_i$ and $\sum_{i=1}^{n-2} W_i$ are nonsingular, so that D_1 is nonsingular as well. The general case then follows by a continuity argument. By the well-known formula for the determinant of a partitioned matrix,

$$\det D = \det \tilde{D}$$

= $(\det D_1) \det(-2W_{n-1} - [W_{n-1}, \cdots, W_{n-1}]D_1^{-1} \begin{bmatrix} W_{n-1} \\ \vdots \\ W_{n-1} \end{bmatrix}).$ (5)

Note that

$$D_{1}^{-1}(\mathbf{1}_{n-1} \otimes W_{n-1}) = D_{1}^{-1}(\mathbf{1}_{n-1} \otimes (\sum_{i=1}^{n-2} W_{i})(\sum_{i=1}^{n-2} W_{i})^{-1}W_{n-1})$$

$$= D_{1}^{-1}(\mathbf{1}_{n-1} \otimes (\sum_{i=1}^{n-2} W_{i}))(\sum_{i=1}^{n-2} W_{i})^{-1}W_{n-1}.$$
 (6)

The degree of vertex n - 1 in T_1 is $\delta_{n-1} - 1$. Therefore an application of Lemma 1 gives

$$D_1\left(\left[\begin{array}{c}\tau_1\\\vdots\\\tau_{n-1}+1\end{array}\right]\otimes I_s\right)=\mathbf{1}_{n-1}\otimes(\sum_{i=1}^{n-2}W_i),$$

and hence

$$D_1^{-1}(\mathbf{1}_{n-1} \otimes (\sum_{i=1}^{n-2} W_i)) = \begin{bmatrix} \tau_1 \\ \vdots \\ \tau_{n-1} + 1 \end{bmatrix} \otimes I_s.$$
(7)

It follows from (6) and (7) that

$$[W_{n-1}, \cdots, W_{n-1}]D_1^{-1} \begin{bmatrix} W_{n-1} \\ \vdots \\ W_{n-1} \end{bmatrix} = (\tau_1 + \dots + \tau_{n-1} + 1)W_{n-1}(\sum_{i=1}^{n-2} W_i)^{-1}W_{n-1}.$$
 (8)

Since $\tau_n = 1$, by (1) we have $\tau_1 + \cdots + \tau_{n-1} + 1 = 2$ and hence (8) implies that

$$[W_{n-1}, \cdots, W_{n-1}]D_1^{-1} \begin{bmatrix} W_{n-1} \\ \vdots \\ W_{n-1} \end{bmatrix} = 2W_{n-1}(\sum_{i=1}^{n-2} W_i)^{-1}W_{n-1}.$$
 (9)

In view of (4), (5) and (9),

$$\det D = (\det D_1) \det(-2W_{n-1} - 2W_{n-1}(\sum_{i=1}^{n-2} W_i)^{-1}W_{n-1})$$

$$= (\det D_1)(\det W_{n-1}) \det(-2I - 2(\sum_{i=1}^{n-2} W_i)^{-1}W_{n-1})$$

$$= (-1)^{(n-2)s}2^{(n-3)s} \det(\prod_{i=1}^{n-2} W_i) \det(\sum_{i=1}^{n-2} W_i)$$

$$\times \det(W_{n-1})(-2)^s \det(I + (\sum_{i=1}^{n-2} W_i)^{-1}W_{n-1})$$

$$= (-1)^{(n-2)s}2^{(n-3)s}(-2)^s \det(\prod_{i=1}^{n-2} W_i)$$

$$\times (\det W_{n-1}) \det(\sum_{i=1}^{n-2} W_i) \det(I + (\sum_{i=1}^{n-2} W_i)^{-1}W_{n-1})$$

$$= (-1)^{(n-1)s}2^{(n-2)s} \det(\prod_{i=1}^{n-1} W_i) \det(\sum_{i=1}^{n-1} W_i)$$

and the proof is complete.

As an application, if A, B and C are $s \times s$ matrices, then by using Theorem 2 we get the following determinantal identity. (Here the tree is taken to be the path on four vertices.)

$$\det \begin{bmatrix} 0 & A & A+B & A+B+C \\ A & 0 & B & B+C \\ A+B & B & 0 & C \\ A+B+C & B+C & C & 0 \end{bmatrix} = (-1)^s 2^{2s} \det(ABC) \det(A+B+C).$$

It is known that the distance matrix of an unweighted tree or a tree with positive numbers as edge weights has exactly one positive eigenvalue (see, for example, [1]). An analogous property in the case of positive definite matrix weights is proved in the next result.

Theorem 3 Let T be a tree with n vertices, let W_i be a positive definite $s \times s$ edge weight matrix associated with the edge $e_i, i = 1, 2, ..., n-1$, and let D be the distance matrix of T. Then D has s positive and (n-1)s negative eigenvalues. *Proof:* First suppose that each weight matrix is the $s \times s$ identity matrix, and let D_1 be the corresponding distance matrix. Also, let D_2 be the $n \times n$ distance matrix of the tree T where each edge is assigned the weight 1. As remarked earlier, D_2 has 1 positive and n-1 negative eigenvalues. Then, since $D_1 = D_2 \otimes I_s$, it follows that D_1 has s positive and (n-1)s negative eigenvalues.

For $0 \leq \alpha \leq 1$, let the edge weights of T be $(1 - \alpha)W_i + \alpha I_s$, i = 1, 2, ..., n - 1, and let D_{α} be the corresponding distance matrix. Since each D_{α} is nonsingular by Theorem 2, D_0 and D_1 have the same inertia. Thus $D = D_0$ has s positive and (n-1)s negative eigenvalues.

REFERENCES

- 1. R. B. Bapat, S. J. Kirkland and M. Neumann, On distance matrices and Laplacians, *Linear Algebra and Its Applications*, to appear
- 2. Belá Bollobás, Modern Graph Theory, Springer-Verlag, New York, 1998.
- J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Macmillan, London, 1976.
- R. L. Graham and H. O. Pollack, On the addressing problem for loop switching, Bell System Tech. J., 50 (1971), 2495-2519.