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Abstract

The determinant and the inverse of the distance matrix of a tree has been

investigated in the literature, following the classical formulas due to Graham and

Pollak for the determinant, and due to Graham and Lovász for the inverse. We

consider two q-analogs of the distance matrix of a tree and obtain formulas for

the inverses of the two distance matrices. Yan and Yeh have previously obtained

expressions for the determinants of the two distance matrices. Some related results

are proved.
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1 Introduction

We consider graphs which have no loops or parallel edges. Thus a graph G =

(V (G), E(G)) consists of a finite set of vertices, V (G), and a set of edges, E(G),

each of whose elements is a pair of distinct vertices. A weighted graph is a graph

in which each edge is assigned a positive number, called its weight. An unweighted

graph, or simply a graph, is thus a weighted graph with each of the edges bearing

weight 1. We will assume familiarity with basic graph-theoretic notions, see, for

example, [1,6].

Let G be a connected, weighted graph with vertex set {1, 2, . . . , n}. The distance

between vertices i and j, denoted by d(i, j), is defined to be the minimum weight
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of all paths from i to j, where the weight of a path is the sum of the weights of

the edges in that path. The distance matrix D of G is an n× n matrix with zeros

along the diagonal and with its (i, j)-entry equal to d(i, j).

A tree is a simple connected graph without a cycle. The distance matrix of a

tree is extensively investigated in the literature. A classical result concerning the

determinant of the distance matrix of a tree, due to Graham and Pollak [5], asserts

that if T is an unweighted tree on n vertices, then det(D) = (−1)n−1(n − 1)2n−2.

Thus, det(D) is a function dependent on only n, the number of vertices of the

tree. An extension of the formula to the weighted case has been given in [2]. In

the unweighted case, a formula for the inverse of the matrix D was obtained in a

subsequent paper by Graham and Lovász [4]. Again, an extension of the formula

to the weighted case was provided in [2].

Some q-analogs of the distance for a tree were considered in [3,11]. In particu-

lar, the following two kinds of q-distances have been defined by Yan and Yeh[11].

Consider a weighted tree T with n vertices and with edge weights α1, α2, . . . , αn−1.

Let u, v be two distinct vertices of T with d(u, v) = α. Then let

(i) dq(u, v) = [α], where [α] = 1−qα

1−q
, if q 6= 1, and [α] = α, if q = 1. We set [0] = 0.

Note that [α] = 1 + q + q2 + · · ·+ qα−1 if α is a positive integer.

(ii) dq
∗(u, v) = qα.

We set dq(u, u) = d∗q(u, u) = 0. Let Dq(T ) and Dq
∗(T ) be the n × n matrices

with the (i, j)-entry as dq(i, j) and dq
∗(i, j) respectively, where 1, . . . , n are the

vertices of T. The two distances have also been considered in [3] in the unweighted

case, where the matrix D∗
q(T ) has been termed the exponential distance matrix.

Yan and Yeh[11] obtained formulas for the determinants of the matrices Dq(T )

and D∗
q(T ). The purpose of this paper is to give formulas for the inverses of these

two matrices, when q 6= ±1. We also obtain a formula for the determinant of

Dq(T ) which is more compact than the one in [11]. Our results generalize formulas

obtained in [3] in the unweighted case, to the case of a weighted tree.

2 Inverses of Dq
∗(T ) and Dq(T )

We introduce some notation. Let T be a weighted tree with n vertices, 1, . . . , n.

If (ij) is an edge of the tree T with end points i and j, then let w(ij) denote its

weight. Let A be the n× n matrix defined as follows. The diagonal elements of A
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are zero. Let q ∈ R. The (i, j)-element of A is zero if i and j are not adjacent, and

otherwise it is qw(ij)

1−q2w(ij) .

Let δ be the diagonal matrix with its (i, i)-element equal to
∑

j∼i
q2w(ij)

1−q2w(ij) , where

j ∼ i denotes that j is adjacent to i, i = 1, . . . , n. With this notation we have the

following.

Theorem 2.1 Let T be a weighted tree with n vertices. Then for q 6= ±1, Dq
∗(T )

is nonsingular and

Dq
∗(T )−1 = I −A+ δ. (2.1)

Proof. We will prove the result by induction on n. The result can be easily

verified for n = 2. Let the result be true for a tree with k vertices. Let T̄ be a

tree on k + 1 vertices with k + 1 being a pendant vertex, and the vertex k being

adjacent to k + 1. Let T = T̄ \ {k + 1}. Suppose Dq
∗(T̄ ), Ī , Ā, δ̄ represent the

matrices corresponding to T̄ . Then

Dq
∗(T̄ ) =

[
D∗

q(T ) q

qt 1

]
, (2.2)

where for any q ∈ R,

qt = (qd∗q(1,k+1), qd∗q(2,k+1), . . . , qd∗q(k,k+1)). (2.3)

We first show that Dq
∗(T̄ ) is nonsingular if q 6= ±1. By the Schur formula,

applied to (2.2),

detDq
∗(T̄ ) = WdetDq

∗(T ), (2.4)

where

W = 1− qtD∗
q(T )−1q.

For 1 ≤ i ≤ k,

d∗q(i, k + 1) = qd(i,k+1)

= qd(i,k)+w(kk+1)

= qw(kk+1)qd(i,k).

Let ek denote the k×1 unit vector with 1 at the k-th place, and zeros elsewhere.

Hence the last column of D∗
q(T ) equals

D∗
q(T )ek =

1

qw(kk+1)
q, (2.5)
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and therefore

qw(kk+1)ek = D∗
q(T )−1q. (2.6)

Then

W = 1− qtD∗
q(T )−1q

= 1− qtqw(kk+1)ek by (2.6)

= 1− qw(kk+1)qtek

= 1− q2w(kk+1), (2.7)

and hence W 6= 0 for q 6= ±1.

It follows from (2.4) that Dq
∗(T̄ ) is nonsingular, q 6= ±1. Let

Dq
∗(T̄ )

−1
=

[
D∗

q(T ) q

qt 1

]−1

=

[
B11 B12

B21 B22

]
(2.8)

be a partitioning of Dq
∗(T̄ )

−1
, conformal with the partitioning of Dq

∗(T̄ ). By

the formula for the inverse of a partitioned matrix we have

B11 = D∗
q(T )−1 + D∗

q(T )−1qW−1(D∗
q(T )−1q)t, (2.9)

B12 = −D∗
q(T )−1qW−1, (2.10)

and

B22 =
1

W
= (1− qtD∗

q(T )−1q)−1. (2.11)

Let

Ī − Ā+ δ̄ =

[
A11 A12

A21 A22

]
(2.12)

be a partitioning of Ī − Ā+ δ̄, conformal with (2.8). We have

B11 = D∗
q(T )−1 + D∗

q(T )−1qW−1(D∗
q(T )−1q)t

= D∗
q(T )−1 + qw(kk+1)ekW

−1qw(kk+1)et
k by (2.6)

= D∗
q(T )−1 +

q2w(kk+1)

1− q2w(kk+1)
eke

t
k by (2.7) (2.13)

and

B12 = −D∗
q(T )−1qW−1 = − qw(kk+1)

1− q2w(kk+1)
ek. (2.14)
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Note that

Ā =

[
A qw(kk+1)

1−q2w(kk+1)ek

qw(kk+1)

1−q2w(kk+1)e
t
k 0

]
(2.15)

and

δ̄ =

[
δ + q2w(kk+1)

1−q2w(kk+1)eke
t
k 0

0 qw(2kk+1)

1−q2w(kk+1)

]
. (2.16)

Thus

[
A11 A12

A21 A22

]
=

[
I 0

0 1

]
−

[
A qw(kk+1)

1−q2w(kk+1)ek

qw(kk+1)

1−q2w(kk+1)e
t
k 0

]
+

[
δ + q2w(kk+1)

1−q2w(kk+1)eke
t
k 0

0 qw(2kk+1)

1−q2w(kk+1)

]
.

(2.17)

Hence

A11 = I −A+ δ +
q2w(kk+1)

1− q2w(kk+1)
eke

t
k. (2.18)

By the induction hypothesis,

D∗
q(T )−1 = I −A+ δ (2.19)

It follows from (2.13),(2.18) and (2.19) that

A11 = D∗
q(T )−1 +

q2w(kk+1)

1− q2w(kk+1)
eke

t
k = B11. (2.20)

Also, from (2.14),(2.17),

A12 = 0− qw(kk+1)

1− q2w(kk+1)
ek = B12. (2.21)

Furthermore, from (2.11) and (2.17),

B22 = W−1 =
1

1− q2w(kk+1)
= 1 +

q2w(kk+1)

1− q2w(kk+1)
= A22. (2.22)

We have shown that A11 = B11, A12 = B12 and A22 = B22. By symmetry it

follows that A21 = B21. Thus[
B11 B12

B21 B22

]
=

[
A11 A12

A21 A22

]
,

or equivalently,

D∗
q(T̄ )

−1
= Ī − Ā+ δ̄.

That completes the proof.
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Let T be a tree with n vertices, 1, . . . , n. Suppose T is unweighted, or equiva-

lently, that the edge weights are all equal to 1. Let D be the distance matrix, A

the adjacency matrix and δ the diagonal matrix of vertex degrees of T. For a real

number q, the matrix F whose (i, j)-entry is qd(i,j) has been termed the exponential

matrix in [3]. The following result, proved in [3], follows by setting w(ij) = 1 in

Theorem 2.1.

Corollary 2.2 Let T be an unweighted tree on n vertices and let F be the expo-

nential distance matrix of T. If q 6= ±1 then

F−1 = I − q

1− q2
A +

q2

1− q2
δ.

We now turn to the matrix Dq(T ) of a weighted tree. For q 6= −1, let τ be the

n× 1 vecter with components τ1, . . . , τn given by

τi = 1−
∑
j∼i

qw(ij)

1 + qw(ij)
i = 1, 2, . . . , n.

We first prove the following.

Lemma 2.3 If q 6= ±1, then Dq(T ) is nonsingular.

Proof. Observe that

Dq(T ) = −
D∗

q(T )− eet

1− q
, (2.23)

where e is the vector of all ones.

Evaluating the determinant of the matrix[
D∗

q(T ) e

et 1

]
by Schur formula, applied in two ways, we get

det (D∗
q(T ))(1− et(D∗

q(T ))−1e) = det (D∗
q(T )− eet) (2.24)

It follows from Theorem 2.1 that
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et(D∗
q(T ))−1e = n−

n∑
i=1

∑
j∼i

qw(ij)

1− q2w(ij)

n∑
i=1

∑
j∼i

2qw(ij)

1− q2w(ij)

= n−
n∑

i=1

∑
j∼i

qw(ij)

1− qw(ij)
(1− qwij)

= n−
n∑

i=1

∑
j∼i

qw(ij)

1 + qw(ij)

= n−
n∑

i=1

(1− τi)

=
n∑

i=1

τi.

Hence

1− et(D∗
q(T ))−1e = 1−

n∑
i=1

τi

= 1−
n∑

i=1

(1−
∑
j∼i

qw(ij)

1 + qw(ij)
)

=
n∑

i=1

∑
j∼i

qw(ij)

1 + qw(ij)
− (n− 1)

=
∑

{i,j}∈E(T )

(
2qw(ij)

1 + qw(ij)
− 1)

= −
∑

{i,j}∈E(T )

1− qw(ij)

1 + qw(ij)
. (2.25)

It follows that 1− et(D∗
q(T ))−1e 6= 0 for q 6= ±1. Since by Theorem 2.1, D∗

q(T )

is nonsingular, we conclude, in view of (2.23) and (2.24), that Dq(T ) is nonsingular.

In the next result we provide a formula for the inverse of Dq(T ), q 6= ±1.

Theorem 2.4 Let T be a weighted tree with n vertices. Then the inverse of dis-

tance matrix Dq(T ), q 6= ±1, is given by

Dq(T )−1 = −(1− q)(I −A+ δ +
ττ t

1− etτ
). (2.26)
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Proof. Let q 6= ±1. By Lemma 2.3, Dq(T ) is nonsingular. It follows from (2.23)

that

Dq(T )−1 = −(1− q)(D∗
q(T )− eet)−1. (2.27)

Recall the Sherman-Morrison formula which asserts that if X is a nonsingular

n × n matrix, and U and V are n × 1 vectors such that X + UV t is nonsingular,

then

(X + UV t)−1 = X−1 − X−1UV tX−1

1 + V tX−1U
. (2.28)

Using (2.28) with X = D∗
q(T ),U = e and V = −e we get

Dq(T )−1 = −(1− q)(D∗
q(T )−1 +

D∗
q(T )−1eetD∗

q(T )−1

1− etD∗
q(T )e

). (2.29)

Since D∗
q(T )−1e = τ, it follows from (2.29) that

Dq(T )−1 = −(1− q)(D∗
q(T )−1 +

ττ t

1− etτ
). (2.30)

Using Theorem 2.1 and (2.30), (2.26) is proved.

Let G be an unweighted graph with n vertices, labeled 1, 2, . . . , n. Let A be the

adjacency matrix of G. Let ∆ be the n× n diagonal matrix with its i-th diagonal

entry equal to the degree of vertex i, i = 1, 2, . . . , n. Then L = ∆ − A is the

Laplacian of G. For a parameter q, the q-Laplacian Lq of G is defined as

Lq = I − qA + q2(∆− I) = qL + (1− q2)I + q(q − 1)∆. (2.31)

The matrix Lq has been called the generalized Laplacian of G in [9, 10] and it

arises in the context of zeta functions of graphs. The matrix was independently

introduced in [3] for the case of a tree, where the following result was proved.

Theorem 2.5 Let T be an unweighted tree with n vertices. Let f = e−q(∆−I)e.

Then for q 6= −1,

Dq(T )−1 =
1

(n− 1)(1 + q)
f f ′ − 1

1 + q
Lq. (2.32)

It may be verified that for q 6= ±1, Theorem 2.5 follows from Theorem 2.1. The

case q = 1 needs a similar, separate analysis. We omit the details.
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3 Determinants of D∗
q(T ) and Dq(T )

Let T a weighted tree on n vertices with edge weights α1, α2, . . . , αn−1. The follow-

ing formula has been obtained in [3].

Theorem 3.1

det (Dq
∗(T )) =

n−1∏
i=1

(1− q2αi). (3.1)

A formula for the determinant of Dq(T ) has also been given by Yan and Yeh

[11] and is stated next.

Theorem 3.2 Let T be a weighted tree with n ≥ 3 vertices and weights α1, α2, . . . , αn−1.

Then

det(Dq(T )) = (−1)n−1(
n−1∏
i=1

[2αi])

× (
[α1][α2][α1 + α2]

[2α1][2α2]
+

[αn−1][αn−2][αn−1 + αn−2]

[2αn−1][2αn−2]
+

n−3∑
i=1

[αi][αi+2][αi + αi+2]

[2αi][2αi+2]
).

We now derive a formula for det(Dq(T )), using the formula for det(D∗
q(T )),

which is more compact than the one in Theorem 3.2.

Theorem 3.3 Let T be a weighted tree with n vertices and weights α1, α2, . . . , αn−1.

Then

det(Dq(T )) = (−1)n−1

n−1∏
i=1

[2αi]
n−1∑
i=1

[αi]

1 + qαi
. (3.2)

Proof. Substituting the expression for det (Dq
∗(T )) given in (3.1) in (2.24) we

get

det (Dq(T )) = (−1)n

n−1∏
i=1

(1− q2αi)

(1− q)n
(1− et(D∗

q(T ))−1e). (3.3)

From (2.25) we have,

(1− et(D∗
q(T ))−1e) = −

n−1∑
i=1

1− qαi

1 + qαi
. (3.4)

It follows from (3.3) and (3.4) that
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det (Dq(T )) = (−1)n−1

n−1∏
i=1

(1− q2αi)

(1− q)n−1

n−1∑
i=1

1− qα
i

(1− q)(1 + qαi)

= (−1)n−1

n−1∏
i=1

[2αi]
n−1∑
i=1

[αi]

1 + qαi
,

and the proof is complete.

It can be seen that the formula (3.2) is equivalent to the one in Theorem 3.2,

since
[αi][αj][αi + αj]

[2αi]2αj]
=

1

2(1− q)
[
1− qαi

1 + qαi
+

1− qαj

1 + qαj
].
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