On the adjacency matrix of a threshold graph

R.B. Bapat*
Indian Statistical Institute, Delhi Centre, 7 S.J.S.S. Marg, New Delhi 110 016, India
rbb@isid.ac.in

Abstract

A threshold graph on n vertices is coded by a binary string of length $n-1$. We obtain a formula for the inertia of (the adjacency matrix of) a threshold graph in terms of the code of the graph. It is shown that the number of negative eigenvalues of the adjacency matrix of a threshold graph is the number of ones in the code, whereas the nullity is given by the number of zeros in the code that are preceded by either a zero or a blank. A formula for the determinant of the adjacency matrix of a generalized threshold graph and the inverse, when it exists, of the adjacency matrix of a threshold graph are obtained. Results for antiregular graphs follow as special cases.

AMS Classification: 05C50
Keywords: threshold graph, antiregular graph, adjacency matrix, inertia

1 Introduction

The graphs we consider are simple, that is, without loops or parallel edges. For basic terminology and definitions we refer to $[1],[5]$.

Let G be a connected graph with vertex set $V(G)=\{1, \ldots, n\}$ and edge set $E(G)$. The adjacency matrix $A(G)$, or simply A, is the $n \times n$ matrix with (i, j)-element equal to 1 if vertices i and j are adjacent, and equal to 0 otherwise.

A threshold graph is a graph with no induced subgraph isomorphic to the path on 4 vertices, the cycle on 4 vertices, or to two disjoint copies of K_{2}, the complete graph on 2 vertices. Threshold graphs admit several equivalent definitions, in particular, a recursive definition based on a binary code will be relevant to this paper, and will be described later. We refer to the definitive [2] for further information concerning threshold graphs.

[^0]An antiregular graph is a graph with at most two vertices of equal degree [3], [4]. These graphs enjoy several nice properties. There is a unique connected antiregular graph on n vertices, up to isomorphism. It can be shown that antiregular graphs are threshold graphs.

We introduce some notation. Let $\alpha_{1} \cdots \alpha_{n-1}$ be an ($n-1$)-tuple of real numbers. We define a generalized threshold graph on n vertices as follows. The graph is defined recursively. We start with a single vertex and label it as 1 . We then add vertex 2 and make it adjacent to 1 by an edge of weight α_{1}, if α_{1} is nonzero. If $\alpha_{1}=0$, then 1 and 2 are not adjacent. We then add vertex 3 and make it adjacent to 1 and 2 by edges with weight α_{2}, if α_{2} is nonzero. The process is continued. Having constructed the graph on vertices $1, \ldots, k$, we add vertex $k+1$ and make it adjacent to $1, \ldots, k$ by edges of weight α_{k-1} if $\alpha_{k-1} \neq 0, k=2,3, \ldots, n-1$. We denote the resulting graph on n vertices by $G\left[\alpha_{1} \cdots \alpha_{n-1}\right]$. Note that if each α_{i} is either 0 or 1 , then the resulting graph is a threshold graph. Hence we refer to $G\left[\alpha_{1} \cdots \alpha_{n-1}\right]$ as a generalized threshold graph.

If $\alpha_{1} \cdots \alpha_{n-1}$ are alternately 0 and 1 (where α_{1} is either 0 or 1) then the resulting graph is an antiregular graph. Furthermore, if $\alpha_{n-1}=1$ (respectively, 0 ,) then the graph is the unique connected (respectively, disconnected) antiregular graph on n vertices. If $\alpha_{1} \cdots \alpha_{n-1}$ are alternately zero and nonzero (where α_{1} is either zero or nonzero), then we refer to $G\left[\alpha_{1} \cdots \alpha_{n-1}\right]$ as a generalized antiregular graph.

We now describe the results of this paper. Recall that the inertia of the symmetric $n \times n$ matrix A is the triple $\left(n_{+}(A), n_{0}(A), n_{-}(A)\right)=\left(n_{+}, n_{0}, n_{-}\right)$, where n_{+}, n_{0} and n_{-} are respectively the number of eigenvalues of A that are positive, zero and negative. By the inertia of a graph we mean the inertia of its adjacency matrix. It is well-known (see, for example, [3],[4]) that if G is an antiregular graph on n vertices, then the inertia of G is given by $\left(\frac{n}{2}, 0, \frac{n}{2}\right)$ if n is even, and by $\left(\frac{n-1}{2}, 1, \frac{n-1}{2}\right)$ if n is odd.

In Section 2 we obtain the inertia of a threshold graph. It is shown that if G is a connected threshold graph with the adjacency matrix A, then $n_{-}(A)$ is the number of ones in the code, whereas $n_{0}(A)$, or the nullity of A is given by the number of zeros in the code that are preceded by either a zero or a blank. We remark that some partial results concerning $n_{-}(A)$ and an equivalent formula for $n_{0}(A)$ are proved in [4]. Results for the inertia of an antiregular graph mentioned earlier follow as special cases from the results on threshold graphs.

In Section 3 we obtain a formula for the determinant and the inverse, when it exists, of the adjacency matrix of a threshold graph.

2 Inertia of a threshold graph

We begin by showing that the adjacency matrix of a generalized threshold graph may be reduced to a certain tridiagonal matrix by row and column operations.

Theorem 1 Let A be the adjacency matrix of $G\left[\alpha_{1} \cdots \alpha_{n-1}\right]$, where $\alpha_{1}, \ldots, \alpha_{n-1}$ are real numbers. Then there exists an $n \times n$ matrix P with $\operatorname{det} P=1$ such that

$$
P A P^{\prime}=\left(\begin{array}{cccccc}
-2 \alpha_{1} & \alpha_{1} & 0 & 0 & \cdots & 0 \tag{1}\\
\alpha_{1} & -2 \alpha_{2} & \alpha_{2} & 0 & \cdots & 0 \\
0 & \alpha_{2} & -2 \alpha_{3} & \alpha_{3} & \vdots & \vdots \\
\vdots & & & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & \alpha_{n-2} & -2 \alpha_{n-1} & \alpha_{n-1} \\
0 & \cdots & \cdots & 0 & \alpha_{n-1} & 0
\end{array}\right)
$$

Proof: Note that

$$
A=\left(\begin{array}{cccccc}
0 & \alpha_{1} & \alpha_{2} & \cdots & \cdots & \alpha_{n-1} \\
\alpha_{1} & 0 & \alpha_{2} & \cdots & \cdots & \alpha_{n-1} \\
\alpha_{2} & \alpha_{2} & 0 & \cdots & \cdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \alpha_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{n-1} & \alpha_{n-1} & \cdots & \cdots & \alpha_{n-1} & 0
\end{array}\right)
$$

Replace the first row (column) of A by the first row (column) minus the second row (column). The resulting matrix is

$$
B=\left(\begin{array}{ccccc}
-2 \alpha_{1} & \alpha_{1} & 0 & \cdots & 0 \\
\alpha_{1} & & & & \\
0 & & A(1 \mid 1) & & \\
\vdots & & & & \\
0 & & & &
\end{array}\right)
$$

where $A(1 \mid 1)$ is the submatrix of A obtained by deleting the first row and column. Note that if Q is the matrix obtained by replacing the first row of I_{n}, the identity matrix of order n, by the first row minus the second row, then $Q A Q^{\prime}=B$. Clearly, $\operatorname{det} Q=1$. We may assume, as an induction assumption, that there exists an $n \times n$ matrix R with determinant 1 such that

$$
R A(1 \mid 1) R^{\prime}=\left(\begin{array}{cccccc}
-2 \alpha_{2} & \alpha_{2} & 0 & 0 & \cdots & 0 \\
\alpha_{2} & -2 \alpha_{3} & \alpha_{3} & 0 & \ldots & 0 \\
0 & \alpha_{3} & -2 \alpha_{4} & \alpha_{3} & \vdots & \vdots \\
\vdots & & & \ddots & \vdots & \vdots \\
0 & \cdots & 0 & \alpha_{n-2} & -2 \alpha_{n-1} & \alpha_{n-1} \\
0 & \cdots & \cdots & 0 & \alpha_{n-1} & 0
\end{array}\right)
$$

Let $S=\left(\begin{array}{cc}1 & 0 \\ 0 & R\end{array}\right)$. The result is proved by setting $P=S^{-1} Q$.

As consequences of Theorem 1, we obtain a formula for the inertia of a threshold graph and a generalized antiregular graph. We first prove a preliminary result.

Lemma 2 Let $n \geq 2$ be a positive integer and let

$$
T_{n}=\left(\begin{array}{ccccc}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \cdots & 0 \\
0 & 1 & -2 & \cdots & 0 \\
\vdots & & & & 1 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

Then $\operatorname{det} T_{n}=(-1)^{n-1}(n-1)$. Furthermore, the inertia of T_{n} is $(1,0, n-1)$.
Proof: We prove the result by induction on n, the cases $n=2,3$ being easy. Assume the result to be true for $T_{k}, 2 \leq k \leq n-1$. A simple Laplace expansion shows that

$$
\begin{aligned}
\operatorname{det} T_{n} & =-2 \operatorname{det} T_{n-1}-\operatorname{det} T_{n-2} \\
& =(-2)(-1)^{n-2}(n-2)-(-1)^{n-3}(n-3) \\
& =(-1)^{n-1}(n-1)
\end{aligned}
$$

It follows by the Cauchy interlacing inequalities that the inertia of T_{n} is $(1,0, n-1)$. This completes the proof.

Theorem 3 Let G be a connected threshold graph on n vertices with the code $\alpha_{1} \cdots \alpha_{n-1}$ where each α_{i} is 0 or 1 and $\alpha_{n-1}=1$. Let A be the adjacency matrix of G. Then $n_{-}(A)$ equals the number of ones in the code, while $n_{0}(A)$ equals the number of zeros in the code that are preceded by a zero or a blank (a zero is preceded by a blank if it is the first element of the code).

Proof: Let the code $\alpha_{1} \cdots \alpha_{n-1}$ be given by

$$
\underbrace{0 \cdots 0}_{t_{1}} \underbrace{1 \cdots 1}_{s_{1}} \underbrace{0 \cdots 0}_{t_{2}} \underbrace{1 \cdots 1}_{s_{2}} \cdots \underbrace{0 \cdots 0}_{t_{k}} \underbrace{1 \cdots 1}_{s_{k}},
$$

where $t_{1}+\cdots+t_{k}+s_{1}+\cdots+s_{k}=n-1$. Since A and $P A P^{\prime}$ have the same inertia for a nonsingular P, by Theorem 1, A has the same inertia as the matrix on the right side of (1). Let \mathcal{O}_{m} be the $m \times m$ null matrix and let T_{n} be the $n \times n$ matrix defined as in Lemma 2. It can be seen that the matrix on the right side of (1) is the direct sum of $\mathcal{O}_{t_{1}}, T_{s_{1}+1}, \mathcal{O}_{t_{2}-1}, T_{s_{2}+1}, \cdots, \mathcal{O}_{t_{k}-1}$ and $T_{s_{k}+1}$. By Lemma $2, T_{s_{i}+1}$ has s_{i} negative eigenvalues, $i=1, \ldots, k$, and therefore A has $s_{1}+\cdots+s_{k}$ negative eigenvalues. Note that $s_{1}+\cdots+s_{k}$ is the number of ones in the code. The zero eigenvalues of A come only from $\mathcal{O}_{t_{1}}, \mathcal{O}_{t_{2}-1}, \cdots, \mathcal{O}_{t_{k}-1}$ and their total number is $t_{1}+\left(t_{2}-1\right)+\cdots+\left(t_{k}-1\right)$, which is precisely the number of zeros in the code that are preceded by a zero or a blank. This completes the proof.

Theorem 4 Let G be a connected generalized antiregular graph on n vertices with the code $\alpha_{1} \cdots \alpha_{n-1}$. Let A be the adjacency matrix of G. If n is even, then $n_{+}(A)=n_{-}(A)=\frac{n}{2}$, and if n is odd, then $n_{+}(A)=n_{-}(A)=\frac{n-1}{2}$.

Proof: First let $n=2 m$ be even. Then $\alpha_{2}=\alpha_{4}=\cdots=\alpha_{2 m-2}=0$, whereas the remaining α_{i} 's are nonzero. The matrix on the right side of (1) is the direct sum of

$$
\left(\begin{array}{cc}
-2 \alpha_{1} & \alpha_{1} \\
\alpha_{1} & 0
\end{array}\right),\left(\begin{array}{cc}
-2 \alpha_{3} & \alpha_{3} \\
\alpha_{3} & 0
\end{array}\right), \cdots,\left(\begin{array}{cc}
-2 \alpha_{n-1} & \alpha_{n-1} \\
\alpha_{n-1} & 0
\end{array}\right) .
$$

Since $\left(\begin{array}{cc}-2 \alpha_{i} & \alpha_{i} \\ \alpha_{i} & 0\end{array}\right)$ has negative determinant, it has one positive and one negative eigenvalue, $i=1,3, \ldots, n-1$. Hence by Lemma 2, A has m positive and m negative eigenvalues. The proof is similar when n is odd.

As remarked earlier, Theorem 4 is well-known in the case of antiregular graphs, see [3],[4]. An equivalent description of the nullity of a threshold graph $\left(n_{0}(A)\right.$ in the notation of Theorem 3) as well as some partial results concerning the inertia of a threshold graph are given in [4].

3 Determinant and inverse

Theorem 5 Let G be a connected threshold graph on n vertices with the code

$$
\underbrace{0 \cdots 0}_{t_{1}} \underbrace{1 \cdots 1}_{s_{1}} \underbrace{0 \cdots 0}_{t_{2}} \underbrace{1 \cdots 1}_{s_{2}} \cdots \underbrace{0 \cdots 0}_{t_{k}} \underbrace{1 \cdots 1}_{s_{k}},
$$

where $t_{1}+\cdots+t_{k}+s_{1}+\cdots+s_{k}=n-1$. Let A be the adjacency matrix of G. Then $\operatorname{det} A=0$ if $t_{1}>0$ or if $t_{i} \geq 2$ for some $i \in\{2, \ldots, k\}$. If $t_{1}=0$ and $t_{i}=1, i=2, \ldots, k$, then $\operatorname{det} A=(-1)^{s_{1}+\cdots+s_{k}} \prod_{i=1}^{k} s_{i}$.

Proof: If $t_{1}>0$ or if $t_{i} \geq 2$ for some $i \in\{2, \ldots, k\}$, then by Theorem $3, A$ has a zero eigenvalue and $\operatorname{det} A=0$. So we assume that $t_{1}=0$ and $t_{i}=1, i=2, \ldots, k$. The result will be proved by induction on n. Let the code

$$
\underbrace{1 \cdots 1}_{s_{1}} 0 \underbrace{1 \cdots 1}_{s_{2}} 0 \cdots 0 \underbrace{1 \cdots 1}_{s_{k}}
$$

be denoted as $\alpha_{1} \cdots \alpha_{n-1}$. By Theorem 1, $\operatorname{det} A$ equals the determinant of the matrix on the right side of (1).

Let G_{1} and G_{12} denote the graphs obtained from G by deleting vertex 1 and vertices 1,2 respectively and let A_{1} and A_{12} be the corresponding adjacency matrices. A simple determinant expansion shows that

$$
\begin{equation*}
\operatorname{det} A=-2 \alpha_{1} \operatorname{det} A_{1}-\alpha_{1}^{2} \operatorname{det} A_{12} . \tag{2}
\end{equation*}
$$

We consider cases:
Case (i): $\alpha_{1}=1, \alpha_{2}=0, \alpha_{3}=1$.
By the induction assumption and (2), $\operatorname{det} A=-2(0)-(-1)^{s_{2}+\cdots+s_{k}} \prod_{i=2}^{k} s_{i}$. Since $s_{1}=1$, $\operatorname{det} A=(-1)^{s_{1}+\cdots+s_{k}} \prod_{i=1}^{k} s_{i}$.

Case (ii): $\alpha_{1}=1, \alpha_{2}=1, \alpha_{3}=0$.
By the induction assumption and (2), det $A=-2(-1)^{1+s_{2}+\cdots+s_{k}} \prod_{i=2}^{k} s_{i}-0$. Since $s_{1}=$ $2, \operatorname{det} A=(-1)^{s_{1}+\cdots+s_{k}} \prod_{i=1}^{k} s_{i}$.

Case (iii): $\alpha_{1}=1, \alpha_{2}=1, \alpha_{3}=1$.
By the induction assumption and (2),

$$
\begin{aligned}
\operatorname{det} A & =-2(-1)^{\left(s_{1}-1\right)+s_{2}+\cdots+s_{k}}\left(s_{1}-1\right) s_{2} \cdots s_{k} \\
& -(-1)^{\left(s_{1}-2\right)+s_{2}+\cdots+s_{k}}\left(s_{1}-2\right) s_{2} \cdots s_{k} \\
& =(-1)^{s_{1}+\cdots+s_{k}} s_{2} \cdots s_{k}\left(2 s_{1}-2-s_{1}+2\right) \\
& =(-1)^{s_{1}+\cdots+s_{k}} \prod_{i=1}^{k} s_{i}
\end{aligned}
$$

and the proof is complete.

The next result follows readily from Theorem 5.
Corollary 6 Let G be the connected antiregular graph on $n=2 m$ vertices, and let A be the adjacency matrix of G. Then $\operatorname{det} A=(-1)^{m}$.

We now turn to the inverse of the adjacency matrix of a threshold graph. Let s_{1}, \ldots, s_{k} be positive integers with $s_{1}+\cdots+s_{k}+k=n$, and consider the threshold graph G on n vertices with the code

$$
\underbrace{1 \cdots 1}_{s_{1}} 0 \underbrace{1 \cdots 1}_{s_{2}} 0 \cdots 0 \underbrace{1 \cdots 1}_{s_{k}} .
$$

Let X_{1} be the $\left(s_{1}+2\right) \times\left(s_{1}+2\right)$ matrix given by

$$
X_{1}=\left(\begin{array}{ccccc}
\frac{1}{s_{1}}-1 & \frac{1}{s_{1}} & \cdots & \frac{1}{s_{1}} & -\frac{1}{s_{1}} \\
\frac{1}{s_{1}} & \frac{1}{s_{1}}-1 & \cdots & \frac{1}{s_{1}} & -\frac{1}{s_{1}} \\
\vdots & & \ddots & & \vdots \\
\frac{1}{s_{1}} & \cdots & & \frac{1}{s_{1}}-1 & -\frac{1}{s_{1}} \\
-\frac{1}{s_{1}} & \cdots & & -\frac{1}{s_{1}} & \frac{1}{s_{1}}
\end{array}\right)
$$

For $r=2, \ldots, k-1$, define the $\left(s_{r}+2\right) \times\left(s_{r}+2\right)$ matrix

$$
X_{r}=\left(\begin{array}{ccccc}
\frac{1}{s_{r}} & \frac{1}{s_{r}} & \cdots & \frac{1}{s_{r}} & -\frac{1}{s_{r}} \\
\frac{1}{s_{r}} & \frac{1}{s_{r}}-1 & \cdots & \frac{1}{s_{r}} & -\frac{1}{s_{r}} \\
\vdots & & \ddots & & \vdots \\
\frac{1}{s_{r}} & \cdots & & \frac{1}{s_{r}}-1 & -\frac{1}{s_{r}} \\
-\frac{1}{s_{r}} & \cdots & & -\frac{1}{s_{r}} & \frac{1}{s_{r}}
\end{array}\right) .
$$

Finally, define the $\left(s_{k}+1\right) \times\left(s_{k}+1\right)$ matrix

$$
X_{k}=\left(\begin{array}{ccccc}
\frac{1}{s_{k}} & \frac{1}{s_{k}} & \cdots & \frac{1}{s_{k}} & \frac{1}{s_{k}} \\
\frac{1}{s_{k}} & \frac{1}{s_{k}}-1 & \cdots & \frac{1}{s_{k}} & \frac{1}{s_{k}} \\
\vdots & & \ddots & & \vdots \\
\frac{1}{s_{k}} & \cdots & & \frac{1}{s_{k}}-1 & \frac{1}{s_{k}} \\
\frac{1}{s_{k}} & \cdots & & \frac{1}{s_{k}} & \frac{1}{s_{k}}-1
\end{array}\right) .
$$

For $r=0,1, \ldots, k-2$, let C_{r} be the $n \times n$ matrix whose principal submatrix indexed by the rows and the columns $s_{1}+\cdots+s_{r}+r+1, \ldots, s_{1}+\cdots+s_{r+1}+r+2$ equals X_{r+1} and with its remaining entries equal to zero. Let C_{k-1} be the $n \times n$ matrix whose principal submatrix indexed by the rows and the columns $s_{1}+\cdots+s_{k-1}+k, \ldots, s_{1}+\cdots+s_{k}+k$ equals X_{k} and with its remaining entries equal to zero. With this notation we have the following result.

Theorem 7 Let s_{1}, \ldots, s_{k} be positive integers with $s_{1}+\cdots+s_{k}+k=n$, and let G be the threshold graph on n vertices with the code

If A is the adjacency matrix of G, then A is nonsingular, and $A^{-1}=C_{0}+\cdots+C_{k-1}$.
Proof: By Theorem 3, A does not have an eigenvalue equal to zero and hence A is nonsingular. Let J_{m} denote the $m \times m$ matrix of all ones, and let $\mathbf{1}$ be the column vector of all ones of appropriate order. We let $J_{p \times q}$ denote the $p \times q$ matrix of all ones. The boldface $\mathbf{0}$ will denote the matrix of all zeros, whose size will be clear from the context. We have

$$
X_{1}=\left(\begin{array}{cc}
\frac{1}{s_{1}} J_{s_{1}+1}-I_{s_{1}+1} & -\frac{1}{s_{1}} \mathbf{1} \\
-\frac{1}{s_{1}} \mathbf{1}^{\prime} & \frac{1}{s_{1}}
\end{array}\right)
$$

For $r=2, \ldots, k-1$, we may write

$$
X_{r}=\frac{1}{s_{r}}\left(\begin{array}{c|c|c}
1 & \mathbf{1}^{\prime} & 1 \\
\hline \mathbf{1} & J_{s_{r}}-s_{r} I_{s_{r}} & -\mathbf{1} \\
\hline-1 & -\mathbf{1}^{\prime} & 1
\end{array}\right)
$$

Finally,

$$
X_{k}=\frac{1}{s_{k}}\left(\begin{array}{cc}
1 & \mathbf{1}^{\prime} \\
\mathbf{1} & J_{s_{k}}-s_{k} I_{s_{k}}
\end{array}\right)
$$

The result is proved by verifying that $A\left(C_{0}+C_{1}+\cdots+C_{k-1}\right)=I_{n}$. For clarity, we illustrate the argument for $k=3$. The general case is similar. If $k=3$, then we have

$$
\begin{aligned}
& A=\left(\begin{array}{c|c|c|c|c}
J_{s_{1}+1}-I_{s_{1}+1} & \mathbf{0} & J_{\left(s_{1}+1\right) \times s_{2}} & \mathbf{0} & J_{\left(s_{1}+1\right) \times s_{3}} \\
\hline \mathbf{0} & 0 & \mathbf{1}^{\prime} & 0 & \mathbf{1}^{\prime} \\
\hline J_{s_{2} \times\left(s_{1}+1\right)} & \mathbf{1} & J_{s_{2}}-I_{s_{2}} & \mathbf{0} & J_{s_{2} \times s_{3}} \\
\hline \mathbf{0} & 0 & \mathbf{0} & 0 & \mathbf{1}^{\prime} \\
\hline J_{s_{3} \times\left(s_{1}+1\right)} & \mathbf{1} & J_{s_{3} \times s_{2}} & \mathbf{1} & J_{s_{3}}-I_{s_{3}}
\end{array}\right), \\
& C_{0}=\frac{1}{s_{1}}\left(\begin{array}{c|c|c|c|c}
J_{s_{1}+1}-s_{1} I_{s_{1}+1} & -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline-\mathbf{1}^{\prime} & 1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & 0 & \mathbf{0} & 0 & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right), \\
& C_{1}=\frac{1}{s_{2}}\left(\begin{array}{c|c|c|c|c}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & 1 & \mathbf{1}^{\prime} & -1 & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{1} & J_{s_{2}}-s_{2} I_{s_{2}} & -\mathbf{1} & \mathbf{0} \\
\hline \mathbf{0} & -1 & -\mathbf{1}^{\prime} & 1 & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right), \\
& C_{2}=\frac{1}{s_{3}}\left(\begin{array}{c|c|c|c|c}
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & 0 & \mathbf{0} & 0 & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & 0 & \mathbf{0} & 1 & \mathbf{1}^{\prime} \\
\hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & J_{s_{3}}-s_{3} I_{s_{3}}
\end{array}\right) .
\end{aligned}
$$

A routine calculation shows that

$$
\begin{gathered}
A C_{0}=\left(\begin{array}{c|c|c|c|c}
I_{s_{1}+1} & -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & 0 & \mathbf{0} & 0 & \mathbf{0} \\
\hline \mathbf{0} & -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\hline \mathbf{0} & 0 & \mathbf{0} & 0 & \mathbf{0} \\
\hline \mathbf{0} & -\mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right), \\
A C_{1}=\left(\begin{array}{c|c|c|c|c}
\mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{1} & \mathbf{0} \\
\hline \mathbf{0} & 1 & \mathbf{0} & -1 & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{1} & I_{s_{2}} & -\mathbf{1} & \mathbf{0} \\
\hline \mathbf{0} & 0 & \mathbf{0} & 0 & \mathbf{0} \\
\hline \mathbf{0} & \mathbf{1} & \mathbf{0} & -\mathbf{1} & \mathbf{0}
\end{array}\right),
\end{gathered}
$$

$A C_{2}=\left(\begin{array}{c|c|c|c|c}\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \hline \mathbf{0} & 0 & \mathbf{0} & 1 & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \hline \mathbf{0} & 0 & \mathbf{0} & 1 & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & I_{s_{3}}\end{array}\right)$.

It follows that $A C_{0}+A C_{1}+A C_{2}=I_{n}$ and hence $A^{-1}=C_{0}+C_{1}+C_{2}$. In the general case we can similarly conclude that $A^{-1}=C_{0}+C_{1}+\cdots+C_{k-1}$ and the proof is complete.

Inverse of the adjacency matrix of an antiregular graph

Define the matrices

$$
U=\left(\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & -1 \\
-1 & -1 & 1
\end{array}\right), V=\left(\begin{array}{ccc}
1 & 1 & -1 \\
1 & 0 & -1 \\
-1 & -1 & 1
\end{array}\right) \text { and } W=\left(\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right)
$$

Let G be the connected antiregular graph on $n=2 m$ vertices. Let H_{0} be the $n \times n$ matrix whose principal submatrix indexed by the rows and the columns $1,2,3$ equals U and with its remaining entries equal to zero. For $r=1, \ldots, m-2$, let H_{r} be the $n \times n$ matrix whose principal submatrix indexed by the rows and the columns $2 r+1,2 r+2,2 r+3$ equals V and with its remaining entries equal to zero. Let H_{m-1} be the $n \times n$ matrix whose principal submatrix indexed by the rows and the columns $2 m-1,2 m$ equals V and with its remaining entries equal to zero. With this notation we have the following result, which follows from Theorem 7.

Theorem 8 Let G be the connected, antiregular graph on $n=2 m$ vertices, and let A be the adjacency matrix of G. Then $A^{-1}=H_{0}+\cdots+H_{m-1}$.

We conclude with an example. The adjacency matrix of the connected antiregular graph on 8 vertices is given by

$$
A=\left(\begin{array}{llllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right) .
$$

Then

$$
A^{-1}=\left(\begin{array}{rrrrrrrr}
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
-1 & -1 & 2 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & 2 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right),
$$

thereby verifying the formula given in Theorem 8.

Acknowledgment I sincerely thank Arbind K. Lal and S. Sivasubramanian for a careful reading of the manuscript and for making several helpful suggestions.

References

[1] R.B. Bapat, Graphs and Matrices, Springer, London; Hindustan Book Agency, New Delhi, 2010.
[2] N.V.R. Mahadev and U.N. Peled, Threshold Graphs and Related Topics, Annals of Discrete Math., 58, Elsevier, Amsterdam, 1995.
[3] Russell Merris, Antiregular graphs are universal for trees, Publ. Elektrotehn. Fak. Univ. Beograd. Ser. Mat. 14 (2003), 1-3.
[4] Irene Sciriha and Stephaie Farrugia, On the spectrum of threshold graphs, ISRN Discrete Mathematics (2011) doi:10.5402/2011/108509
[5] D. B. West, Introduction to Graph Theory. Prentice Hall, Inc., Upper Saddle River, NJ, 1996.

[^0]: *The author acknowledges support from the JC Bose Fellowship, Department of Science and Technology, Government of India.

