
Resistance matrix and q-Laplacian
of a unicyclic graph

R. B. Bapat

Indian Statistical Institute

New Delhi, 110016, India

e-mail: rbb@isid.ac.in

Abstract: The resistance distance between two vertices of a graph can be

defined as the effective resistance between the two vertices, when the graph is

viewed as an electrical network with each edge carrying unit resistance. The

concept has several different motivations. The resistance matrix of a graph is a

matrix with its (i, j)-entry being the resistance distance between vertices i and

j. We obtain an explicit formula for the determinant of the resistance matrix

of a unicyclic graph. Some properties of a q-analogue of the Laplacian are also

studied, with special attention to the limiting behaviour as q approaches 1. An

expression for the inverse of the q-Laplacian of a unicyclic graph is derived.

1 Introduction and Preliminaries

The classical definition of distance between two vertices in a graph is the length

of a shortest path between the two vertices. This definition is well-known and

the concept is widely studied. However, it does not capture some features of

“distance”, such as the degree of communication between the vertices. For

example, if there is a multitude of paths between two vertices, intuitively the

two vertices should be thought of as having shorter distance.

The concept of resistance distance, introduced by Klein and Randić [8],

arises naturally from several different considerations and is also mathematically

more attractive than the classical distance. For more background information

about resistance distance we refer to [2, 5, 8, 14].

It may be remarked that in the case of a tree, the concepts of classical
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distance and resistance distance coincide. This perhaps explains some very

attractive properties of distances in trees which do not carry over to arbitrary

graphs. However, if one uses the notion of resistance distance, then some of

these attractive properties do have analogs for arbitrary graphs.

We consider only simple graphs, i.e., those with no loops or parallel edges.

The results that we obtain can easily be extended to weighted graphs, though

we consider only unweighted graphs for simplicity. Now we introduce some

notation. Let G = (V, E) be a graph with n vertices, labeled {1, 2, . . . , n}.
The Laplacian matrix L of G is defined as follows. For i 6= j, the (i, j)-entry

of L is zero, if vertices i and j are not adjacent, while it is −1, if i and j are

adjacent. The (i, i)-entry of L is defined to make the i-th row-sum equal to

zero, i = 1, 2, . . . , n. Thus L is a singular matrix. For basic properties of the

Laplacian matrix, see [1,10].

Let G be a connected graph with vertex set {1, 2, . . . , n}. The resistance

distance between two vertices can be defined in a number of different, equivalent

ways. We give two definitions here. Let L be the Laplacian of G. Let i, j be

vertices of G. The resistance distance rij between i and j is zero if i = j, and

if i 6= j, then

rij =
detL(i, j; i, j)

detL(i, i)
,

where L(i, i) is the submatrix obtained by deleting row i, column i, of L; while

L(i, j; i, j) is the submatrix obtained by deleting rows i, j and columns i, j of

L. As usual, det denotes determinant. Let χ(G) denote the complexity, that

is, the number of spanning trees of G. We remark that by the well-known

Matrix-Tree theorem [13], detL(i, i) equals χ(G) for i = 1, 2, . . . , n.

The second definition is in terms of electrical networks. Think of G as

an electrical network in which a unit resistance is placed along each edge.

Current is allowed to enter the network only at vertex i and leave the network

only at vertex j. Then the resistance distance between i and j is the “effective

resistance” between i and j.

If there is a unique (ij)-path in G, then it is clear from the second definition

that the resistance distance between i and j equals the length (that is, the
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number of edges) of the path. This explains why the resistance distance and

the classical distance coincide when the graph is a tree.

We now state some known results which will be required. The proofs are

omitted and can be found in [2]. Denote the vector of all ones by 1, the size

of which will be clear from the context. The n × n matrix of all ones will be

denoted Jn. Let G be a connected graph with vertex set {1, 2, . . . , n}, and let

L be the Laplacian of G. Then L is singular, has rank n− 1, and any vector in

the null space of L is a scalar multiple of 1. The matrix L+ 1
n
Jn is nonsingular.

We set

X = (L +
1

n
Jn)−1. (1)

The resistance matrix R of G is the n×n matrix with its (i, j)-entry equal

to 0 if i = j, and rij, the resistance distance between i and j, otherwise. Let τ

be a vector of order n× 1 with its components defined by

τi = 2−
∑
j:j∼i

rij, i = 1, 2, . . . , n, (2)

where j ∼ i denotes that j is adjacent to i.

Theorem 1 Let G be a connected graph with vertex set {1, 2, . . . , n}, let L be

the Laplacian of G, let R be the resistance matrix of G, and let X = (xij) and τ

be defined as in (1),(2). Let X̃ be the n×n diagonal matrix with x11, x22, . . . , xnn

along the diagonal. Then the following assertions are true:

(i) rij = xii + xjj − 2xij, i, j = 1, 2, . . . , n

(ii) R = X̃J + JX̃ − 2X

(iii) τ = LX̃1 + 2
n
1

(iv) 1′τ = 2

(v) R is nonsingular and R−1 = −1
2
L + 1

τ ′Rτ
ττ ′

(vi) detR = (−1)n−12n−3 τ ′Rτ
χ(G)
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For a graph G with n vertices, D will denote the (classical) distance matrix

of G; thus the (i, j)-entry of D is 0, if i = j and it is the length of the shortest

path between i and j, if i 6= j. When the graph is a tree, one gets the following

consequence of Theorem 1. Assertions (iii) and (iv) are well-known results due

to Graham and Pollack [7] and Graham and Lovász [6] respectively.

Theorem 2 Let G be a tree with vertex set {1, 2, . . . , n}, let L be the Laplacian

of G, let D be the distance matrix of G, and let τ be defined as in (2). Then

the following assertions are true:

(i) τi = 2− δi, where δi is the degree of vertex i, i = 1, 2, . . . , n

(ii) τ ′Dτ = 2(n− 1)

(iii) D is nonsingular and D−1 = −1
2
L + 1

2(n−1)
ττ ′

(vi) detD = (−1)n−1(n− 1)2n−2

2 Determinant of the resistance matrix of a

unicyclic graph

We now consider unicyclic graphs. Recall that a graph is unicyclic if it is

connected and has a unique cycle. The resistance distance between two vertices

in a unicyclic graph G is particularly easy to determine. Clearly, if there is

a unique path between vertices i and j of G, then the resistance distance rij

between i and j is the length of the path between i and j.

Suppose a path between vertices i and j meets the cycle in G in at least

two vertices. Let u and v be vertices on the cycle such that there is a unique

path between i and u, and a unique path between j and v (see Figure). Let

the length of the iu-path be a, that of the jv-path be b, and suppose the two

paths between u and v have lengths c and d, where c+d = k, the length of the

cycle. By the interpretation of resistance distance as effective resistance in an

electrical network, it follows that rij is the sum of a, b and the “parallel” sum

of c and d. Thus
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rij = a + b +
1

1
c

+ 1
d

= a + b +
cd

c + d
. (3)

Since the resistance matrix R of a unicyclic graph has simple structure, it

is natural to seek a precise formula for the determinant of R, which we now

proceed to obtain.

We first consider the case of a cycle. Let G = Cn, the cycle on the n vertices

{1, 2, . . . , n}, n ≥ 3, (where, of course, i and i+1 are adjacent, i = 1, 2, . . . , n−1

and 1 is adjacent to n). If i, j ∈ {1, 2, . . . , n}, then there are two paths between

vertices i and j, of lengths |i − j| and n − |i − j|. If R denotes the resistance

matrix of G, then in view of the preceding discussion, rii = 0, i = 1, 2, . . . , n;

rij = rji for all i and j, and

rij =
(j − i)(n− j + i)

n
(4)

if i < j.

Let τ be defined as in (2). Then

τi = 2− ri−1,i − ri,i+1, i = 1, 2, . . . , n;

where the subscripts are interpreted modulo n. It follows from (4) that

ri−1,i = ri,i+1 =
n− 1

n
, i = 1, 2, . . . , n,

and hence τi = 2
n
, i = 1, 2, . . . , n. This last observation also follows from the

fact that 1′τ = 2 (see (iv), Theorem 1) and by symmetry.

Theorem 3 Let Cn be the cycle on the vertices {1, 2, . . . , n}, n ≥ 3, and let R

be the resistance matrix of Cn. Then
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(i) τ ′Rτ = 2(n2−1)
3n

(ii) detR = (−1)n−12n−2 (n2−1)
3n2 .

Proof: (i). We first consider the case when n is even, say n = 2m. It is

clear by symmetry that each row-sum of R is the same. Using the expression

(4) we see that the first row of R has sum

r11 + r12 + · · ·+ r1n = (r12 + r13 + · · ·+ r1m)

+ r1,m+1 + (r1,m+2 + r1,m+3 + · · ·+ r1,2m)

= 2(
1(n− 1)

n
+

2(n− 2)

n
+ · · ·+ (m− 1)(n−m + 1)

n
)

+
m(n−m)

n

=
2

n
· n(1 + 2 + · · ·+ (m− 1))− 2

n
(12 + 22 + · · ·+ (m− 1)2)

+
m(n−m)

n

=
2

n
(
nm(m− 1)

2
− (m− 1)m(2m− 1)

6
) +

m(n−m)

n

=
m− 1

2
(2m− 2m− 1

3
) +

m2

2m

=
n2 − 1

6
.

Thus each row-sum of R is n2−1
6

. Since τi = 2
n
, i = 1, 2, . . . , n, it follows that

τ ′Rτ =
n∑

i=1

n∑
j=1

rijτiτj =
4

n2
· n · n2 − 1

6
=

2(n2 − 1)

3n
.

The proof when n is odd is similar and we omit the details.

(ii). By (vi), Theorem 1, detR = (−1)n−12n−3 τ ′Rτ
χ(Cn)

. Since τ ′Rτ = 2(n2−1)
3n

by the first part and since χ(Cn) = n, the result follows.

We give an example. The resistance matrix of C5 is

1

5



0 1 · 4 2 · 3 3 · 2 4 · 1
1 · 4 0 1 · 4 2 · 3 3 · 2
2 · 3 1 · 4 0 1 · 4 2 · 3
3 · 2 2 · 3 1 · 4 0 1 · 4
4 · 1 3 · 2 2 · 3 1 · 4 0


.
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According to Theorem 3, (ii), the determinant of the matrix is 23(52−1)
3.52 = 64

25
.

This matrix is a symmetric Toeplitz matrix and a formula for its determinant

may be of independent interest.

The following is the main result of this section.

Theorem 4 Let G be a unicyclic graph with vertices {1, 2, . . . , n}, suppose

the unique cycle Ck of G has length k, and that it is formed by the vertices

{1, 2, . . . , k}; n ≥ k ≥ 3. Let R be the resistance matrix of G. Then

detR = (−1)n−12n−2 3kn− 2k2 − 1

3k2
. (5)

Proof: If k = n ≥ 3, then G is Cn and the result follows by Theorem 3,

(ii). So let n > k ≥ 3. We prove the result by induction on n. So suppose that

the result is true for a graph with n − 1 vertices. Since n > k, then G has at

least one pendant vertex. We assume, without loss of generality, that vertex n

is pendant and that it is adjacent to vertex n− 1.

Partition R as  Rn−1 z

z′ 0

 ,

where Rn−1 is of order n− 1 and z is (n− 1)× 1. If 1 ≤ i, j ≤ n− 1, then an

(ij)-path does not pass through n and therefore Rn−1 is in fact the resistance

matrix of G \ {n}.
Perform the following row and column operations on R. From row n, sub-

tract row n−1 and from column n, subtract column n−1. For any 1 ≤ i ≤ n−1,

the resistance distance between i and n is 1 plus the resistance distance be-

tween i and n−1. Therefore after the row and column operations, the resulting

matrix, which has the same determinant as R, is Rn−1 1

1′ −2

 .

By Theorem 1, (v), Rn−1 is nonsingular. Using the well-known Schur for-

mula for the determinant,

detR = (detRn−1)(−2− 1′R−1
n−11). (6)
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Let L̃ be the Laplacian of G \ {n} and let τ̃ be defined for G \ {n} as in

(2). By Theorem 1, (v),

R−1
n−1 = −1

2
L̃ +

1

τ̃ ′Rn−1τ̃
τ̃ τ̃ ′. (7)

Since L̃ has row-sums zero, (7) and Theorem 1, (iv) give

1′R−1
n−11 =

4

τ̃ ′Rn−1τ̃
. (8)

It follows from (6) and (8) that

detR = (detRn−1)(−2− 4

τ ′Rn−1τ
) = −2detRn−1 − 4

detRn−1

τ ′Rn−1τ
. (9)

Again, (9) and Theorem 1, (vi) lead to

detR = −2detRn−1 − 4
(−1)n−22n−4

k
. (10)

By induction assumption,

detRn−1 = (−1)n−22n−3 3k(n− 1)− 2k2 − 1

3k2
. (11)

Substituting (11) in (10) we get

detR = (−1)n−12n−2(
3k(n− 1)− 2k2 − 1

3k2
+

1

k
)

= (−1)n−12n−2 3kn− 2k2 − 1

3k2

and (5) is proved.

We conclude this section with the remark that a formula for the determinant

of the (classical) distance matrix of a unicyclic graph has been obtained in [3].

3 The q-Laplacian

Let G be a graph with n vertices, labeled {1, 2, . . . , n}. Let A be the adjacency

matrix of G. Thus A is an n × n matrix with (ij)-entry equal to 1 if i and j

are adjacent, and zero if i and j are not adjacent. Also, aii = 0, i = 1, 2, . . . , n.
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Let ∆ be the n × n diagonal matrix with its i-th diagonal entry equal to the

degree of vertex i, i = 1, 2, . . . , n. Then L = ∆− A is the Laplacian of G. For

a parameter q, the q-Laplacian Lq of G is defined as

Lq = I − qA + q2(∆− I) = qL + (1− q2)I + q(q − 1)∆. (12)

The matrix Lq has been called the generalized Laplacian of G in [9]. The

matrix was also introduced in [4] for the case of a tree, in the context of a

formula for the inverse of a q-analogue of the distance matrix.

The following result has been obtained by Northshield [11].

Theorem 5 Let G be a graph with n vertices and m edges, and let Lq be the

q-Laplacian of G. If f(q) = detLq, then f ′(q)|q=1 = 2(m− n)χ(G).

Lemma 6 Let G be a graph with n vertices and m edges, and let Lq be the

q-Laplacian of G. Suppose G is connected and not unicyclic. Then

lim
q→1

(1− q)L−1
q L = 0. (13)

Proof: Let adjLq be the adjoint of Lq, so that L−1
q = adjLq

detLq
.

Now

lim
q→1

(1− q)L−1
q L = lim

q→1
(1− q)

(adjLq)L

detLq

. (14)

Since limq→1(1 − q)(adjLq)L = 0 and limq→1 detLq = 0, we may apply

L’Hospital’s rule and then the limit in (14) equals

lim
q→1

(1− q) d
dq

(adjLq)L− (adjLq)L
d
dq

(detLq)
. (15)

Note that

lim
q→1

(1− q)
d

dq
(adjLq)L = 0, (16)

and

lim
q→1

(adjLq)L = (adjL)L = 0. (17)

Furthermore, by Theorem 5,
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lim
q→1

d

dq
(detLq) = 2(m− n)χ(G), (18)

which is nonzero, since G is connected and not unicyclic.

Substituting (16), (17) and (18) in (15) we get (13).

We now obtain a limiting property of the inverse of the q-Laplacian, which

is motivated by the expression for resistance distance contained in Theorem

1,(i).

Theorem 7 Let G be a graph with n vertices and m edges, let Lq be the q-

Laplacian of G and let Kq = L−1
q . Suppose G is connected and not unicyclic.

Then for i, j = 1, 2, . . . , n,

lim
q→1

((Kq)ii + (Kq)jj − 2(Kq)ij) = rij, (19)

the resistance distance between i and j.

Proof: Since LqL
−1
q L = L, therefore, using the definition of Lq,

(I − qA + q2∆− q2I)L−1
q L = L. (20)

After a routine simplification, (20) leads to

(1− q2)L−1
q L + (q2 − q)∆L−1

q L + qLL−1
q L = L. (21)

By Lemma 6 we see that the first two terms on the left hand side in (21)

approach 0 as q approaches 1. Therefore

lim
q→1

LL−1
q L = lim

q→1
LKqL = L. (22)

We now introduce some notation. Fix vertices i 6= j of G. Let eij be the

n × 1 vector with i-th coordinate 1, j-th coordinate −1 and zeros elsewhere.

Since 1′eij = 0, eij is in the column space of L and hence there exists a vector

wij such that Lwij = eij.

Let X be defined as in (1). Then L1 = 0 implies (L+ 1
n
Jn)1 = 1 and hence

X1 = 1. Therefore it easily follows that LXL = L. Hence

e′ijXeij = w′ijLXLwij = w′ijLwij. (23)
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Now

lim
q→1

((Kq)ii + (Kq)jj − 2(Kq)ij) = lim
q→1

e′ijKqeij

= lim
q→1

w′ijLKqLwij

= w′ijLwij by (22)

= e′ijXeij

= xii + xjj − 2xij

= rij, by Theorem 1, (i),

and the proof is complete.

4 Inverse of the q-Laplacian of a unicyclic graph

A walk without backtracking is a walk in which any two consecutive edges are

distinct. Let G be a graph with the vertices {1, 2, . . . , n}. For m ≥ 1, let Am

be the n×n matrix whose (i, j)-entry is the number of walks in G of length m

with no backtracking from i to j, i, j = 1, . . . , n. We also set A0 = I. Note that

A1 = A, the adjacency matrix of G. The following identity has been proved in

[12],p.139.

Lemma 8 Let G be a graph with the vertices {1, 2, . . . , n}, and let Lq be the

q-Laplacian of G. Then

(
∞∑

m=0

Amqm)Lq = (1− q2)I. (24)

For a tree or a unicyclic graph, matrices Am can be described explicitly and

then Lemma 8 may be employed to get an expression for L−1
q .

First consider the case of a tree. As usual, we denote the distance between

vertices i and j as rij. Clearly, (Am)ii = 0 for m ≥ 1 and (A0)ii = 1, i =

1, 2, . . . , n. If i, j are distinct vertices of the tree with d = rij, then (Ad)ij = 1,

whereas (Am)ij = 0 for m 6= d. It follows from (24) that

(L−1
q )ii =

1

1− q2
and (L−1

q )ij =
qd

1− q2
, i, j = 1, 2, . . . , n. (25)
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The matrix (qrij) has been termed the “exponential distance matrix” of a

tree in [4], where its relation with L−1
q is proved in a different way.

We return to unicyclic graphs. For any vertex i of a unicylic graph G, denote

by αi the distance from αi to the cycle in G. Thus αi is the least distance from

i to a vertex in the cycle.

Theorem 9 Let G be a unicyclic graph with vertices {1, 2, . . . , n} and suppose

the unique cycle Ck of G has length k, n ≥ k ≥ 3. Let αi denote the distance

of i from the cycle, i = 1, 2, . . . , n. Let Lq be the q-Laplacian of G. Let d(i, j)

denote the classical distance between i and j. Then for i, j = 1, 2, . . . , n;

(1− q2)(L−1
q )ij = qd(i,j) +

2qαi+αj+k

1− qk
, (26)

if an ij-path does not meet the cycle and

(1− q2)(L−1
q )ij =

qd(i,j) + q2(αi+αj)+k−d(i,j)

1− qk
, (27)

if an ij-path meets the cycle.

Proof: Let i, j be vertices of G and suppose an ij-path does not meet the

cycle. There is an ij-path, which is also an ij-walk with no backtracking, of

length d(i, j). There are two ij-walks with no backtracking of length αi+αj +k,

two ij-walks with no backtracking of length αi + αj + 2k, and, in general, two

ij-walks with no backtracking of length αi +αj + sk, s ≥ 1. Therefore, by (24),

it follows that

(1− q2)(L−1
q )ij = qd(i,j) + 2

∞∑
s=1

qαi+αj+sk = qd(i,j) +
2qαi+αj+k

1− qk
, (28)

and (26) is proved. It may be remarked that when i = j, (26) is applicable

(whether or not i is on the cycle) and we have

(1− q2)(L−1
q )ii = 1 +

2q2αi+k

1− qk
. (29)

The proof of (27) is similar.

We are now in a position to complete the case of unicyclic graphs which

was left out in Theorem 7. Interestingly, the conclusion is different in case of

unicyclic graphs.
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Theorem 10 Let G be a unicyclic graph with vertices {1, 2, . . . , n} and sup-

pose the unique cycle Ck of G has length k, n ≥ k ≥ 3. Let αi denote the

distance of i from the cycle, i = 1, 2, . . . , n. Let Lq be the q-Laplacian of G and

let Kq = L−1
q . Then for i, j = 1, 2, . . . , n,

lim
q→1

((Kq)ii + (Kq)jj − 2(Kq)ij) = rij +
(αi − αj)

2

k
, (30)

where rij is the resistance distance between i and j.

Proof: Let i, j be vertices of G and suppose an ij-path does not meet the

cycle. By Theorem 9,

(1−q2)((Kq)ii+(Kq)jj−2(Kq)ij) = 2+
2q2αi+k

1− qk
+

2q2αj+k

1− qk
−2(qd(i,j)+

2qαi+αj+k

1− qk
).

The result follows by computing the limit of (Kq)ii +(Kq)jj −2(Kq)ij as q → 1

by L’Hospital’s rule. We omit the details. The proof follows similarly when an

ij-path meets the cycle.
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