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5.3. Lemmas 31
5.4. Proof of (3.3.5) for k = 4 and primes k ≥ 5 32
5.5. Proof of (3.3.5) 32
5.6. Proof of (3.3.3) 32

Chapter 6. Refinement of an analogue of Sylvester’s theorem for arithmetic progressions:
Proof of Theorem 3.3.1 35

6.1. Lemmas for the proof of Theorem 3.3.1 35
6.2. Proof of Theorem 3.3.1 for k with 2k − 1 prime 36
6.3. Proof of Theorem 3.3.1 42

Chapter 7. Squares in arithmetic progression, a prelude 43
7.1. Introduction 43
7.2. A proof of Euler’s result 44
7.3. k is bounded when d = 1 45

Chapter 8. An explicit bound for the number of terms of an arithmetic progression whose
product is almost square: Proof of Theorem 7.1.2 49

8.1. Two Propositions 49

7



8.2. Notations and Preliminaries 49
8.3. Lemmas 50
8.4. Proof of Proposition 8.1.1 61
8.5. Proof of Proposition 8.1.2 62

Chapter 9. Cubes and higher powers in arithmetic progression, a survey 65
9.1. Introduction 65
9.2. The case (k, `) = (3, 3) 66
9.3. k < 500000 when (9.1.1) with d = 1 and P (∆(n, k) > k holds 67
9.4. abc-conjecture implies Erdős conjecture 69
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Introduction

An old and well known theorem of Sylvester for consecutive integers [56] states that a product
of k consecutive integers each of which exceeds k is divisible by a prime greater than k.

In this thesis, we give refinements, extensions, generalisations and applications of this theorem.
First we give some notation which will be used throughout the thesis.

Let pi denote the i− th prime number. Thus p1 = 2, p2 = 3, · · · . We always write p for a prime
number. For an integer ν > 1, we denote by ω(ν) and P (ν) the number of distinct prime divisors
of ν and the greatest prime factor of ν, respectively. Further we put ω(1) = 0 and P (1) = 1. For
positive real number ν and integers l, d with d ≥ 1, gcd(l, d) = 1, we denote

π(ν) :=
∑

p≤ν

1,

πd(ν) :=
∑

p≤ν
gcd(p,d)=1

1,

π(ν, d, l) :=
∑

p≤ν
p≡l(mod d)

1.

We say that a number is effectively computable if it can be explicitly determined in terms
of given parameters. We write computable number for an effectively computable number. Let
d ≥ 1, k ≥ 2, n ≥ 1 and y ≥ 1 be integers with gcd(n, d) = 1. We denote by

∆ = ∆(n, d, k) = n(n+ d) · · · (n+ (k − 1)d)

and we write

∆(n, k) = ∆(n, 1, k).

Further for x ≥ k, we write

∆′ = ∆′(x, k) = ∆(x− k + 1, k).

In the above notation, Sylvester’s theorem can be stated as

P (∆(n, k)) > k if n > k.(1)

On the other hand, there are infinitely many pairs (n, k) with n ≤ k such that P (∆) ≤ k. We
observe that (1) is equivalent to

ω(∆(n, k)) > π(k) if n > k.(2)

Here we notice that

ω(∆(n, k)) ≥ π(k)

since k! divides ∆.
Let d > 1. Sylvester [56] proved that

P (∆) > k if n ≥ k + d.(3)

i
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Note that (3) includes (1). Langevin [24] improved (3) to

P (∆) > k if n > k.

Finally Shorey and Tijdeman [52] proved that

P (∆) > k unless (n, d, k) = (2, 7, 3).(4)

We observe that it is necessary to exclude the triple (2, 7, 3) in the above result since P (2 ·9 ·16) = 3.
The proof of [52] for (4) depends on the results on primes in arithmetic progressions. In Chapter
5, we give a proof of (4) which does not depend on these results and the computations required are
considerably less.

We give a brief description of the results proved in this thesis. In Chapter 1, we prove Sylvester’s
Theorem. The proof is due to Erdős [8] but we have made simplifications. This proof is elementary
and self contained; it does not make use of results from prime number theory. In Chapter 2, we
collect together certain estimates on π function and other functions involving primes. In Chapter
3, we give a brief survey on refinements and generalisations of Sylvester’s Theorem. These include
the statements of our new results. We state here two of our following original results (i) and (ii)
appeared in Acta Arith. and Indag. Math., respectively.

(i) Let n > k. Then ω(∆(n, k)) ≥ π(k)+[ 3
4π(k)]−1 except when (n, k) belongs to an explicitly

given finite set. (Laishram and Shorey [18])
(ii) Let d > 1. Then ω(∆) ≥ π(2k) − 1 except when (n, d, k) = (1, 3, 10). (Laishram and

Shorey [19])

This is best possible for d = 2 since ω(1 · 3 · · · (2k − 1)) = π(2k) − 1. The latter result (ii) solves a
conjecture of Moree [29]. Chapter 4 contains a proof of (i). In Chapter 5, we give a proof of (4).
In Chapter 6, we prove (ii).

In 1939, Erdős [9] and Rigge [36], independently, proved that ∆(n, k) is divisible by a prime
> k to an odd power. As a consequence, we see that product of two or more consecutive positive
integers is never a perfect square. In other words, the equation

n(n+ 1) · · · (n+ k − 1) = y2

does not hold. More generally we consider the equation

n(n+ d) · · · (n+ (k − 1)d) = by2.(5)

with P (b) ≤ k. The above equation has been completely solved when d = 1 (see Chapter 7).
Therefore we suppose that d > 1. Erdős conjectured that (5) implies that k is bounded by a
computable absolute constant. In Chapter 7, we give a survey of results on Erdős conjecture.
Shorey and Tijdeman [53] showed that (5) implies that k is bounded by an effectively computable
number depending only on ω(d). Our aim in Chapter 8 is to give an explicit upper bound κ0 from
Laishram [20] for k in terms of ω(d) whenever (5) holds. We show that κ0 is given by

ω(d) κ0(d even) κ0(d odd) ω(d) κ0(d even) κ0(d odd)
2 500 800 7 2.643 × 105 1.376 × 106

3 700 3400 8 1.172 × 106 6.061 × 106

4 2900 15300 9 5.151 × 106 2.649 × 107

5 13100 69000 10 2.247 × 107 1.149 × 108

6 59000 3.096 × 105 11 9.73 × 107 4.95 × 108

Table 1. κ0(ω(d)) for 2 ≤ ω(d) ≤ 11
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for 2 ≤ ω(d) ≤ 11 and for ω(d) ≥ 12,

κ0(ω(d)) =

{

2.25ω(d)4ω(d) if d is even

11ω(d)4ω(d) if d is odd.
(6)

This original result has been submitted for publication in Publ. Math. Debrecen [20].
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CHAPTER 1

Sylvester’s theorem for consecutive integers

In this chapter, we prove the theorem of Sylvester [56] for consecutive integers stated in the
Introduction, see (1).

Theorem 1.0.1. Let d = 1. Then

P (∆) > k if n > k.(1.0.1)

Let us now consider n ≤ k. For 1 ≤ n ≤ pπ(k)+1−k where pπ(k)+1 is the smallest prime exceeding
k, we see that P (∆) ≤ k since n+k−1 < pπ(k)+1. Thus it is necessary to assume n > pπ(k)+1−k for
the proof of P (∆) > k. Then n = pπ(k)+1 − k+ r for some 1 ≤ r < k and hence pπ(k)+1 = n+ k− r
is a term in ∆, giving P (∆) > k.

For x ≥ 2k, x = n+ k − 1 and a prime p > k, we see that p divides
(x
k

)

if and only if p divides
∆ = ∆(n, k). Thus we observe that (1.0.1) is equivalent to the following result.

Theorem 1.0.2. If x ≥ 2k, then
(x
k

)

contains a prime divisor greater than k.

Therefore, we shall prove Theorem 1.0.2. The proof is due to Erdős [8] but we have made
simplifications. This proof is elementary and self contained; it does not make use of results from
prime number theory.

1.1. Lemmas for the proof of Theorem 1.0.2

Lemma 1.1.1. Let X be a positive real number and k0 a positive integer. Suppose that pi+1−pi <
k0 for any two consecutive primes pi < pi+1 ≤ pπ(X)+1. Then

P (x(x− 1) · · · (x− k + 1)) > k

for 2k ≤ x < X and k ≥ k0.

Proof. Let 2k ≤ x < X. We may assume that none of x, x− 1, · · · , x− k+ 1 is a prime, since
otherwise the result follows. Thus

pπ(x−k+1) < x− k + 1 < x < pπ(x−k+1)+1 ≤ pπ(X)+1.

Hence by our assumption, we have

k − 1 = x− (x− k + 1) < pπ(x−k+1)+1 − pπ(x−k+1) < k0,

which implies k − 1 < k0 − 1, a contradiction. � �

Lemma 1.1.2. Suppose that Theorem 1.0.2 holds for all primes k, then it holds for all k.

Proof. Assume that Theorem 1.0.2 holds for all primes k. Let k1 ≤ k < k2 with k1, k2

consecutive primes. Let x ≥ 2k. Then x ≥ 2k1 and x(x − 1) · · · (x − k1 + 1) has a prime factor
p > k1 by our assumption. Further we observe that p ≥ k2 > k since k1 and k2 are consecutive

primes. Hence p divides x···(x−k1+1)(x−k1)···(x−k+1)
k! =

(x
k

)

. � �

By Lemma 1.1.2, we see that it is enough to prove Theorem 1.0.2 for k prime which we assume
from now on. Further we take x ≥ 2k.



2 1. SYLVESTER’S THEOREM FOR CONSECUTIVE INTEGERS

Lemma 1.1.3. Let pa
∣

∣

(

x
k

)

. Then pa ≤ x.

Proof. We observe that

ordp

(

x

k

)

=
∞
∑

ν=1

([

x

pν

]

−
[

x− k

pν

]

−
[

k

pν

])

.

Each of the summand is at most 1 if pν ≤ x and 0 otherwise. Therefore ordp

(x
k

)

≤ s where

ps ≤ x < ps+1. Thus

pa ≤ pordp(x
k) ≤ ps ≤ x. �(1.1.1)

�

Lemma 1.1.4. For k > 1, we have
(

2k

k

)

>
4k

2
√
k

(1.1.2)

and
(

2k

k

)

<
4k

√
2k
.(1.1.3)

Proof. For k > 1, we have

1 >

(

1 − 1

32

)(

1 − 1

52

)

· · ·
(

1 − 1

(2k − 1)2

)

=
2 · 4
32

4 · 6
52

· · · (2k − 2)2k

(2k − 1)2

>
1

4k

(

2kk!

3 · 5 · · · (2k − 1)

)2

=
1

4k

(

4k(k!)2

(2k)!

)2

implying (1.1.2). Further we have

1 >

(

1 − 1

22

)(

1 − 1

42

)

· · ·
(

1 − 1

(2k − 2)2

)

=
1 · 3
22

3 · 5
42

· · · (2k − 3)(2k − 1)

(2k − 2)2

>
1

2k − 1

(

3 · 5 · · · (2k − 1)

2kk!
· 2k
)2

>
4k2

2k

(

(2k)!

4k(k!)2

)2

implying (1.1.3). � �

Lemma 1.1.5. We have
∏

p≤x

p
∏

p≤√
x

p
∏

p≤ 3
√

x

p · · · < 4x.(1.1.4)

Proof. We see that for every prime p and a positive integer a with

x < pa ≤ 2x,

we have

ordp

((

2x

x

))

= ordp

(

(2x)!

(x!)2

)

=
a
∑

i=1

{[

2x

pi

]

− 2

[

x

pi

]}

≥ 1(1.1.5)

since
[

2x

pi

]

− 2

[

x

pi

]

≥ 0 and

[

2x

pa

]

−
[

x

pa

]

= 1.
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Let
⌈

ν
⌉

denote the least integer greater than or equal to ν. Let 2m−1 ≤ x < 2m and we put

a1 =
⌈x

2

⌉

, a2 =
⌈ x

22

⌉

, · · · , ah =
⌈ x

2h

⌉

, · · · , am =
⌈ x

2m

⌉

= 1.

Then

a1 > a2 > · · · > am

and

ah <
x

2h
+ 1 =

2x

2h+1
+ 1 ≤ 2ah+1 + 1

implying

ah ≤ 2ah+1.

Also, we have 2a2 <
x
2 + 2 ≤ a1 + 2. Therefore

2a2 ≤ a1 + 1.(1.1.6)

Since 2a1 ≥ x, we see that

(1, x] ⊆ ∪m
h=1(ah, 2ah].

Let p and r be given such that pr ≤ x < pr+1. Let 1 ≤ i ≤ r. Then pi ≤ x. It is clear from the
above inclusion that there exists ki such that

aki
< pi ≤ 2aki

.

We observe that aki
6= akj

for 1 ≤ j < i ≤ r since pakj
< pj+1 ≤ pi ≤ 2aki

. Thus we see from
(1.1.5) that

pr
∣

∣

(

2a1

a1

)(

2a2

a2

)

· · ·
(

2am

am

)

.

Hence we have
∏

p≤x

p
∏

p≤x
1
2

p
∏

p≤x
1
3

p · · · =
∏

pr≤x<pr+1

pr ≤
(

2a1

a1

)(

2a2

a2

)

· · ·
(

2am

am

)

,

the middle product being taken over all prime powers pr with pr ≤ x < pr+1. To complete the proof
of the lemma, we show that

(

2a1

a1

)(

2a2

a2

)

· · ·
(

2am

am

)

< 4x.(1.1.7)

By direct calculation, we check that (1.1.7) holds for x ≤ 10. For example, when x = 5, we have
a1 = 3, a2 = 2, a3 = 1 so that

(

2a1

a1

)(

2a2

a2

)(

2a3

a2

)

= 20 × 6 × 2 < 45.

Suppose that x > 10 and (1.1.7) holds for any integer less than x. Then
(

2a1

a1

)(

2a2

a2

)

· · ·
(

2am

am

)

<

(

2a1

a1

)

42a2−1(1.1.8)

which we obtain by applying (1.1.7) with x = 2a2 − 1 and seeing that

⌈1

2
(2a2 − 1)

⌉

= a2,
⌈1

4
(2a2 − 1)

⌉

=
⌈a2

2

⌉

= a3, · · · .
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We obtain from (1.1.3) that
(

2x

x

)

< 4x−1

for x ≥ 8. Hence we see that
(

2a1

a1

)(

2a2

a2

)

· · ·
(

2am

am

)

< 4a1−1+2a2−1.(1.1.9)

Now (1.1.7) follows from (1.1.6) and 2a1 ≤ x+ 1. � �

Lemma 1.1.6. Assume that

P

((

x

k

))

≤ k(1.1.10)

holds. Then we have

(i) x < k2 for k ≥ 11

(ii) x < k
3
2 for k ≥ 37.

Proof. We have
(

x

k

)

=
x

k

x− 1

k − 1
· · · x− k + 1

1
>
(x

k

)k
.

From (1.1.10) and Lemma 1.1.3, we have
(x
k

)

≤ xπ(k). Comparing the upper and lower bounds for
(x
k

)

, we derive that

x < k
k

k−π(k) .(1.1.11)

For k ≥ 11, we exclude 1 and 9 to see that there are at most [ k+1
2 ] − 2 odd primes upto k. Hence

π(k) ≤ [k+1
2 ] − 1 ≤ k

2 for k ≥ 11. Further the number of composite integers ≤ k and divisible by 2
or 3 or 5 is

[
k

2
] + [

k

3
] + [

k

5
] − [

k

6
] − [

k

10
] − [

k

15
] + [

k

30
] − 3 ≥ k

2
+
k

3
+
k

5
+

k

30
− k

6
− k

10
− k

15
− 7

=
11

15
k − 7.

Thus we have π(k) ≤ k−1− ( 11
15k−7) ≤ k

3 for k ≥ 90. By direct computation, we see that π(k) ≤ k
3

for 37 ≤ k < 90. Hence

k

k − π(k)
≤
{

2 for k ≥ 11
3
2 for k ≥ 37

which, together with (1.1.11), proves the assertion of the lemma. � �

Lemma 1.1.7. Let x < k
3
2 . Assume that (1.1.10) holds. Then

(

x

k

)

< 4k+
√

x.(1.1.12)

Proof. We have from Lemma 1.1.3 and (1.1.10) that
(

x

k

)

=
∏

pa||(x
k)

pa ≤
∏

p≤k

p
∏

p≤√
x

p
∏

p≤ 3
√

x

p · · · .
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By (1.1.4), we have
∏

p≤k

p
∏

p≤
√

k

p
∏

p≤ 3√
k

p · · · < 4k(1.1.13)

and taking k =
√
x,

∏

p≤√
x

p
∏

p≤ 4√x

p
∏

p≤ 6√x

p · · · < 4
√

x.(1.1.14)

Since x < k
3
2 , we have 2l−1

√
x ≤ l

√
k for l ≥ 2. Hence (1.1.13) and (1.1.14) give
∏

p≤k

p
∏

p≤√
x

p
∏

p≤ 3
√

x

p · · · < 4k+
√

x

implying (1.1.12). � �

Lemma 1.1.8. Let k ≥ 11 and x < k
3
2 . Assume (1.1.10). Then

(i) x < 4k
(ii) k ≤ 103 for 5

2k < x < 4k

(iii) k ≤ 113 for 2k ≤ x ≤ 5
2k.

Proof. We have from (1.1.2) that

(

x

k

)

≥



















(4k
k

)

=
(2k

k

)4k(4k−1)···(3k+1)
2k(2k−1)···(k+1) > 4k

2
√

k
2k = 8k

2
√

k
if x ≥ 4k

(

⌈

5
2
k
⌉

k

)

=
(2k

k

)

⌈

5
2
k
⌉

(
⌈

5
2
k
⌉

−1)···(
⌈

5
2
k
⌉

−k+1)

2k(2k−1)···(k+1) > 4k

2
√

k

(

5
4

)k
if 5

2k < x < 4k
(2k

k

)

> 4k

2
√

k
if 2k ≤ x ≤ 5

2k.

(1.1.15)

Let x ≥ 4k. Then 4k < k
3
2 implying k ≥ 17. Comparing (8.1.2) with the upper bound of

(x
k

)

given by (1.1.12), we see from x < k
3
2 that

1 >

(

4k

k

)

4−k−√
x ≥

(

4k

k

)

2−2k−2k
3
4 >

8k

2
√
k
2−2k−2k

3
4(1.1.16)

implying

2
√
k > 2k−2k

3
4 .

By induction, we see that 2
1
7
k > 2

√
k for k ≥ 23. Thus 1

7k > k − 2k
3
4 giving k ≤ 29. For

k = 17, 19, 23, 29, we see that (1.1.16) is not valid, proving (i).
Let 5

2k < x < 4k. Comparing (8.1.2) with the upper bound of
(x
k

)

given by (1.1.12), we see that

1 >

(
⌈

5
2k
⌉

k

)

4−k−√
x ≥

(
⌈

5
2k
⌉

k

)

2−2k−4k
1
2 >

4k

2
√
k

(

5

4

)k

2−2k−4k
1
2(1.1.17)

implying
(

5

4

)k

< 2
√
k 24

√
k.

Also 2x > 2x for x ≥ 3 so that 2
√

k > 2
√
k for k ≥ 11. Thus
(

5

4

)k

< 25
√

k

which gives k < 257. Further, we check that (1.1.17) does not hold for 107 ≤ k < 257 with k prime.
Thus (ii) is valid.
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Finally let 2k ≤ x ≤ 5
2k. In this case, we see that every prime p with 1

3x < p ≤ k occurs to the

second power in the denominator of x!
k!(x−k)! since 2p > 2x

3 > k and 2p > 2x
3 = x− x

3 > x−p ≥ x−k
and it cannot occur to third power in the numerator since 3p > x. Thus when p ≤ k and p |

(x
k

)

,

then p ≤ 1
3x. Therefore we have

(

x

k

)

=
∏

pa||(x
k)

pa ≤
∏

p≤x
3

p
∏

p≤√
x

p
∏

p≤ 3
√

x

p · · · .

Since 1
3x > x

2
3 for x > 27, we have l

√

1
3x ≥ 2l−1

√
x for l ≥ 2. Hence

(

x

k

)

≤







∏

p≤x
3

p
∏

p≤
√

x
3

p · · ·











∏

p≤√
x

p
∏

p≤ 4
√

x

p · · ·



 .

Now we use (1.1.4) with x replaced by 1
3x and

√
x to get

(

x

k

)

< 4
1
3
x+

√
x ≤ 4

5
6
k+

q

5
2
k
.

Comparing this with the lower bound given by (8.1.2), we obtain

1 >

(

2k

k

)

2−
5
3
k−

√
10k >

4k

2
√
k
2−

5
3
k−

√
10k(1.1.18)

implying

2
k
3 < 2

√
k 2

√
10k < 2

√
k+

√
10k

since 2
√
k < 2

√
k. Therefore

k

3
<

√
k(1 +

√
10)

so that k ≤ 151. Further we check that (1.1.18) does not hold for 113 ≤ k ≤ 151 with k prime,
giving (iii). � �

1.2. Proof of Theorem 1.0.2

Let x ≥ 2k. Assume that P (
(

x
k

)

) ≤ k. Then P (∆′(x, k)) = P (k!
(

x
k

)

) ≤ k. We first prove
Theorem 1.0.2 for k ≤ 7. We note that k divides exactly one term of ∆′. Let p ≤ k. Let x− ip be
the term in which p occurs to the highest power in ∆′. Then we see that

ordp(x− i) ≤ ordp(x− i− (x− ip)) = ordp(i− ip)(1.2.1)

for any 0 ≤ i < k, i 6= ip.
Let k = 2. Then x(x − 1) is divisible by an odd prime, a contradiction. Let k = 3. After

removing the term divisible by 3 and then the term in which 2 appears to maximal power, we are
left with one term divisible only by 2, and by (1.2.1), this term must be ≤ 2. Hence x − 2 ≤ 2 or
x ≤ 4, which is not possible since x ≥ 6. Let k = 5. After removing the terms divisible by 5, 3 and
term in which 2 appears to maximal power, we are left with at least one term divisible by 2 and
the term is ≤ 4 by (1.2.1). Therefore x − 4 ≤ 4, a contradiction since x ≥ 10. Let k = 7. After
removing the terms divisible by 7, 5 and terms in which 3 and 2 appears to maximal power, we are
left with at least two terms divisible by 2 or 3 only and we get x− 6 ≤ 4 · 3 = 12 by (1.2.1). Thus
14 ≤ x ≤ 18. Now we check that P (∆′) > 7 in all these cases.
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Thus it remains to consider the case k ≥ 11. From Lemma 1.1.6 and 1.1.8, we have

k ≤ 113; x < k2 for 11 ≤ k ≤ 31; x < 4k for 37 ≤ k ≤ 113.(1.2.2)

We check that

pi+1 − pi < 15 for pi+1 ≤ 457 = pπ(4×113)+1.(1.2.3)

Thus Lemma 1.1.1 with X = 452, k0 = 15 implies that P (∆′(x, k)) > k for x < 452 and k ≥ 15, a
contradiction. Now we consider the case x < k2 with 11 ≤ k ≤ 31. We check that

pi+1 − pi <

{

21 for pi+1 ≤ 967 = pπ(312)+1

11 for pi+1 ≤ 173 = pπ(132)+1 with (pi, pi+1) 6= (113, 127).
(1.2.4)

We apply Lemma 1.1.1 as follows: for 23 ≤ k ≤ 31, take X = 961, k0 = 21; for k = 17, 19, take
X = 361, k0 = 15; for k = 11, 13, take X = 169, k0 = 11. Now Theorem 1.0.2 follows from (1.2.3)
for k = 17, 19 and (1.2.4) except possibly when 113 < x− k + 1 < x < 127 and k = 13. This gives
x = 126 and P (∆′(x, k)) > k holds in this case as well. �





CHAPTER 2

Results from prime number theory

In this chapter, we give the results from Prime Number Theory which we will be using in the
subsequent chapters. We begin with the bounds for π(ν) given by Rosser and Schoenfeld, see [38,
p. 69-71].

Lemma 2.0.1. For ν > 1, we have

(i) π(ν) <
ν

log ν

(

1 +
3

2 log ν

)

(ii) π(ν) >
ν

log ν − 1
2

for ν ≥ 67

(iii)
∏

pa≤ν

pa < (2.826)ν

(iv)
∏

p≤ν

p < (2.763)ν

(v) pi ≥ i log i for i ≥ 2.

The following sharper estimates are due to Dusart [4, p.14]. See also [5, p.55], [6, p.414].

Lemma 2.0.2. For ν > 1, we have

(i) π(ν) ≤ ν

log ν

(

1 +
1.2762

log ν

)

=: a(ν)

(ii) π(ν) ≥ ν

log ν − 1
=: b(ν) for ν ≥ 5393.

The following lemma is due to Ramaré and Rumely [35, Theorems 1, 2].

Lemma 2.0.3. Let k ∈ {3, 4, 5, 7} and

θ(x, k, l) =
∑

p≤x
p≡l(mod k)

log p.

For x0 ≤ 1010, we have

θ(x, k, l) ≥







x
φ(k)(1 − ε′) for x ≥ 1010

x
φ(k)

(

1 − εφ(k)√
x0

)

for 1010 > x ≥ x0

(2.0.1)

and

θ(x, k, l) ≤







x
φ(k)(1 + ε′) for x ≥ 1010

x
φ(k)

(

1 + εφ(k)√
x0

)

for 1010 > x ≥ x0

(2.0.2)

where ε := ε(k) and ε′ := ε′(k) are given by

k 3 4 5 7
ε 1.798158 1.780719 1.412480 1.105822
ε′ 0.002238 0.002238 0.002785 0.003248

9
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In the next lemma, we derive estimates for π(x, k, l) and π(2x, k, l) − π(x, k, l) from Lemma
2.0.3.

Lemma 2.0.4. Let k ∈ {3, 4, 5, 7}. Then we have

π(x, k, l) ≥ x

log x

(

c1 +
c2

log x
2

)

for x ≥ x0(2.0.3)

and

π(2x, k, l) − π(x, k, l) ≤ c3
x

log x
for x ≥ x0(2.0.4)

where c1, c2, c3 and x0 are given by

k 3 4 5 7
c1 0.488627 0.443688 0.22175 0.138114
c2 0.167712 0.145687 0.0727974 0.043768
c3 0.013728 0.067974 0.0170502 0.0114886
x0 25000 1000 2500 1500

Proof. We have

θ(x, k, l) =
∑

p≤x
p≡l(mod k)

log p ≤ π(x, k, l) log x

so that

π(x, k, l) ≥ θ(x, k, l)

log x
.(2.0.5)

Also,

θ(x, k, l) ≤ π(
x

2
, k, l) log

x

2
+
(

π(x, k, l) − π(
x

2
, k, l)

)

log x = π(x, k, l) log x− π(
x

2
, k, l) log 2

giving

π(x, k, l) log x ≥ θ(x, k, l) + π(
x

2
, k, l) log 2.

Now we use (2.0.5) for x
2 to derive

π(x, k, l) ≥ x

log x

(

θ(x, k, l)

x
+
θ(x

2 , k, l) log 2

x

1

log x
2

)

.(2.0.6)

Let k = 3, 4, 5, 7 and x0 := x0(k) be as given in the statement of the lemma. Since x0 ≤ 50000 ≤
( εφ(k)

ε′ )2, we have from (2.0.1) that

θ(x, k, l) ≥ x

φ(k)

(

1 − εφ(k)√
x0

)

for x ≥ x0,

θ(
x

2
, k, l) ≥ x

2φ(k)

(

1 − εφ(k)
√

x0
2

)

for x ≥ x0.

(2.0.7)

This with (2.0.6) implies (2.0.3). Further we also have from (2.0.2) that

θ(2x, k, l) ≤ 2x

φ(k)

(

1 +
εφ(k)√

2x0

)

for x ≥ x0.

This with (2.0.7), (2.0.6) and

θ(2x, k, l) − θ(x, k, l) ≥ (π(2x, k, l) − π(x, k, l)) log x

implies (2.0.4). � �
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The next lemma gives a lower bound for ordp(k − 1)!.

Lemma 2.0.5. For a prime p < k, we have

ordp(k − 1)! ≥ k − p

p− 1
− log(k − 1)

log p
.

Proof. Let pr ≤ k − 1 < pr+1. Then we have

ordp(k − 1)! =

[

k − 1

p

]

+ · · · +
[

k − 1

pr

]

.

Now, we note that
[

k−1
pi

]

≥ k−1
pi − pi−1

pi = k
pi − 1 for i ≥ 1. Hence

ordp(k − 1)! ≥
r
∑

i=1

(

k

pi
− 1

)

=
k

p− 1
(1 − 1

pr
) − r =

k

p− 1
− 1

p− 1

k

pr
− r.

Since pr ≤ k − 1 < k ≤ pr+1, we have r ≤ log(k−1)
log p and k

pr ≤ p, which we use in the estimate for

ordp((k − 1)!) above to get the lemma. � �

We end this chapter with a lemma on Stirling’s formula, see Robbins [37].

Lemma 2.0.6. For a positive integer ν, we have
√

2πν e−νννe
1

12ν+1 < ν! <
√

2πν e−νννe
1

12ν .





CHAPTER 3

A survey of refinements and extensions of Sylvester’s theorem

Let n, d and k ≥ 2 be positive integers. For a pair (n, k) and a positive integer h, we write
[n, k, h] for the set of all pairs (n, k), · · · , (n+ h− 1, k) and we set [n, k] = [n, k, 1] = {(n, k)}.

Let W (∆) denote the number of terms in ∆ divisible by a prime > k. We observe that every
prime exceeding k divides at most one term of ∆. On the other hand, a term may be divisible by
more than one prime exceeding k. Therefore we have

W (∆) ≤ ω(∆) − πd(k).(3.0.1)

If max(n, d) ≤ k, we see that n + (k − 1)d ≤ k2 and therefore no term of ∆ is divisible by more
than one prime exceeding k. Thus

W (∆) = ω(∆) − πd(k) if max(n, d) ≤ k.(3.0.2)

We are interested in finding lower bounds for P (∆), ω(∆) and W (∆). The first result in this
direction is due to Sylvester [56] who proved that

P (∆) > k if n ≥ d+ k.(3.0.3)

This immediately gives

ω(∆) > πd(k) if n ≥ d+ k.(3.0.4)

We give a survey of several results in this direction.

3.1. Improvements of ω(∆(n, k)) > π(k)

Let d = 1. A proof of Sylvester’s result is given in Chapter 1. The result of Sylvester was
rediscovered by Schur [48] and Erdős [8]. Let k = 2 and n > 2. We see that ω(n(n+ 1)) 6= 1 since
gcd(n, n + 1) = 1. Thus ω(n(n + 1)) ≥ 2. Suppose ω(n(n + 1)) = 2. Then both n and n + 1 are
prime powers. If either n or n+ 1 is a prime, then n+ 1 or n is a power of 2, respectively. A prime
of the form 22m

+ 1 is called a Fermat prime and a prime of the form 2m − 1 is called a Mersenne
prime. Thus we see that either n is a Mersenne prime or n+1 is a Fermat prime. Now assume that
n = pα, n+ 1 = qβ where p, q are distinct primes and α, β > 1. Thus qβ − pα = 1, which is Catalan
equation. In 1844, Catalan [2] conjectured that 8 and 9 are the only perfect powers that differ by
1. Tijdeman [58] proved in 1976 that there are only finitely many perfect powers that differ by 1.
Catalan’s conjecture has been confirmed recently by Mihăilescu [27]. Thus n = 8 is the only other
n for which ω(n(n+ 1)) = 2. For all other n, we have ω(n(n+ 1)) ≥ 3. Let k ≥ 3. We observe that

ω(∆(n, k)) = π(2k) if n = k + 1.(3.1.1)

If k + 1 is prime and 2k + 1 is composite, then we observe from (3.1.1) by writing

∆(k + 2, k) = ∆(k + 1, k)
2k + 1

k + 1

that

ω(∆(k + 2, k)) = π(2k) − 1.(3.1.2)

13
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Let k + 1 be a prime of the form 3r + 2. Then 2k + 1 = 3(2r + 1) is composite. Since there are
infinitely many primes of the form 3r+ 2, we see that there are infinitely many k for which k+ 1 is
prime and 2k + 1 is composite. Therefore (3.1.2) is valid for infinitely many k. Thus an inequality
sharper than ω(∆(n, k)) ≥ π(2k) − 1 for n > k is not valid.

Saradha and Shorey [41, Corollary 3] extended the proof of Erdős [8] given in Chapter 1 to
sharpen (3.0.4) and gave explicit bounds of ω(∆(n, k)) as

ω(∆(n, k)) ≥ π(k) +

[

1

3
π(k)

]

+ 2 if n > k > 2(3.1.3)

unless (n, k) ∈ S1 where S1 is the union of sets










[4, 3], [6, 3, 3], [16, 3], [6, 4], [6, 5, 4], [12, 5], [14, 5, 3], [23, 5, 2],

[7, 6, 2], [15, 6], [8, 7, 3], [12, 7], [14, 7, 2], [24, 7], [9, 8], [14, 8],

[14, 13, 3], [18, 13], [20, 13, 2], [24, 13], [15, 14], [20, 14], [20, 17].

(3.1.4)

Laishram and Shorey [18] improved it to 3
4 . Define

δ(k) =











2 if 3 ≤ k ≤ 6

1 if 7 ≤ k ≤ 16

0 otherwise

so that
[

3

4
π(k)

]

− 1 + δ(k) ≥
[

1

3
π(k)

]

+ 2.

We have

Theorem 3.1.1. Let n > k ≥ 3. Then

ω(∆(n, k)) ≥ π(k) +

[

3

4
π(k)

]

− 1 + δ(k)(3.1.5)

unless
(n, k) ∈ S1 ∪ S2

where S1 is given by (3.1.4) and S2 is the union of sets










































































[20, 19, 3], [24, 19], [21, 20], [48, 47, 3], [54, 47], [49, 48], [74, 71, 2], [74, 72],

[74, 73, 3], [84, 73], [75, 74], [84, 79], [84, 83], [90, 83], [108, 83], [110, 83],

[90, 89], [102, 89], [104, 89], [108, 103], [110, 103, 2], [114, 103, 2], [110, 104],

[114, 104], [108, 107, 12], [109, 108, 10], [110, 109, 9], [111, 110, 7], [112, 111, 5],

[113, 112, 3], [114, 113, 7], [138, 113], [140, 113, 2], [115, 114, 5], [140, 114],

[116, 115, 3], [117, 116], [174, 173], [198, 181], [200, 181, 2], [200, 182],

[200, 193, 2], [200, 194], [200, 197], [200, 199, 3], [201, 200], [282, 271, 5],

[282, 272], [284, 272, 2], [284, 273], [278, 277, 3], [282, 277, 5], [279, 278],

[282, 278, 4], [282, 279, 3], [282, 280], [282, 281, 7], [283, 282, 5],

[284, 283, 5], [294, 283], [285, 284, 3], [286, 285], [294, 293].

(3.1.6)

We note here that the right hand sides of (3.1.3) and (3.1.5) are identical for 3 ≤ k ≤ 18.
Theorem 3.1.1 is an improvement of (3.1.3) for k ≥ 19. The proof of this theorem uses sharp
bounds of π function due to Dusart given by Lemma 2.0.2. We derive the following two results
from Theorem 3.1.1. We check that the exceptions in Theorem 3.1.1 satisfy ω(∆(n, k)) ≥ π(2k)−1.
Hence Theorem 3.1.1 gives
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Corollary 3.1.2. Let n > k. Then

ω(∆(n, k)) ≥ min

(

π(k) +

[

3

4
π(k)

]

− 1 + δ(k), π(2k) − 1

)

.(3.1.7)

Further all the exceptions in Theorem 3.1.1 except (n, k) ∈ {(114, 109), (114, 113)} satisfy
ω(∆(n, k)) ≥ π(k) +

[

2
3π(k)

]

− 1. Thus we obtain the following corollary from Theorem 3.1.1.

Corollary 3.1.3. Let n > k. Then

ω(∆(n, k)) ≥ π(k) +

[

2

3
π(k)

]

− 1(3.1.8)

unless

(n, k) ∈ {(114, 109), (114, 113)}.(3.1.9)

The constant 3
4 in Theorem 3.1.1 can be replaced by a number close to 1 if n > 17

12k.

Theorem 3.1.4. Let k ≥ 3 and (n, k) 6= (6, 4). Then we have

ω(∆(n, k)) ≥ π(2k) if n >
17

12
k.(3.1.10)

The inequality (3.1.10) is an improvement of (3.1.3) for k ≥ 10. We observe that 17
12k in Theorem

3.1.4 is optimal since ω(∆(34, 24)) = π(48)−1. Also the assumption (n, k) 6= (6, 4) is necessary since
ω(∆(6, 4)) = π(8) − 1. We recall that there are infinitely many pairs (n, k) = (k + 2, k) satisfying
(3.1.2). Thus there are infinitely many pairs (n, k) with n ≤ 17

12k such that ω(∆(n, k)) < π(2k).
Let n = k + r with 0 < r ≤ k. We observe that every prime p with k ≤ n − 1 < p ≤ n+ k − 1 is
a term of ∆(n, k). Since k > n−1

2 , we also see that 2p is a term in ∆(n, k) for every prime p with

k < p ≤ n+k−1
2 . Further all primes ≤ k divide ∆(n, k). Thus

ω(∆(n, k)) = π(2k + r − 1) − π(k + r − 1) + π(k +
r − 1

2
) = π(2k) + F (k, r)

where

F (k, r) = π(2k + r − 1) − π(2k) −
(

π(k + r − 1) − π(k +
r − 1

2
)

)

.

We use the above formula for finding some pairs (n, k) as given below when k < 5000 and n ≤ 2k
for which ω(∆(n, k)) < π(2k):

ω(∆(n, k)) = π(2k) − 1 if (n, k) = (6, 4), (34, 24), (33, 25), (80, 57)

ω(∆(n, k)) = π(2k) − 2 if (n, k) = (74, 57), (284, 252), (3943, 3880)

ω(∆(n, k)) = π(2k) − 3 if (n, k) = (3936, 3879), (3924, 3880), (3939, 3880)

ω(∆(n, k)) = π(2k) − 4 if (n, k) = (1304, 1239), (1308, 1241), (3932, 3879)

ω(∆(n, k)) = π(2k) − 5 if (n, k) = (3932, 3880), (3932, 3881), (3932, 3882).

It is also possible to replace 3
4 in Theorem 3.1.1 by a number close to 1 if n > k and k is

sufficiently large. Let k < n < 17
12k. Then

ω(∆(n, k)) ≥ π(n+ k − 1) − π(n− 1) + π(k).
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Let ε > 0 and k ≥ k0 where k0 exceeds a sufficiently large number depending only on ε. Using the
estimates (i) and (ii) of Lemma 2.0.2, we get

π(n+ k − 1) − π(n− 1) ≥ n+ k − 1

log(n+ k − 1) − 1
− n

log n
− 1.2762n

log2 n

≥ n+ k − 1

log n
− n

log n
− 1.2762n

log2 n

≥ k − 1

log n
− 1.2762k

log2 k

≥ (1 − ε)π(k).

Thus ω(∆(n, k)) ≥ (2 − ε)π(k) for k < n < 17
12k which we combine with Theorem 3.1.4 to conclude

the following result.

Theorem 3.1.5. Let ε > 0 and n > k. Then there exists a computable number k0 depending
only on ε such that for k ≥ k0, we have

ω(∆(n, k)) ≥ (2 − ε)π(k).(3.1.11)

Proofs of Theorems 3.1.1 and 3.1.4 are given in Chapter 4. We end this section with a conjecture
of Grimm [14]:

Suppose n, n + 1, · · · , n + k − 1 are all composite numbers, then there are distinct primes pij

such that pij |(n+ j) for 0 ≤ j < k.
This conjecture is open. The conjecture implies that if n, n+1, · · · , n+ k− 1 are all composite,

then ω(∆(n, k)) ≥ k which is also open. Let g(n) be the largest integer such that there exist
distinct prime numbers P0, · · ·Pg(n) with Pi|n+ i. A result of Ramachandra, Shorey and Tijdeman
[33] states that

g(n) > c1

(

log n

log log n

)3

where c1 > 0 is a computable absolute constant. Further Ramachandra, Shorey and Tijdeman [34]
showed that

ω(∆(n+ 1, k)) ≥ k for 1 ≤ k ≤ exp(c2(log n)
1
2 )

where c2 is a computable absolute constant.

3.2. Results on refinement of P (∆(n, k)) > k

Hanson [16] improved (1) as P (∆(n, k)) > 1.5k − 1 for n > k > 1. The best results in this
direction can be found in Langevin [23], [25]. Sharper estimates have been obtained when k is
sufficiently large. See Shorey and Tijdeman [50, Chapter 7]. Ramachandra and Shorey [32] proved
that

P (∆(n, k)) > c3k log k

(

log log k

log log log k

)
1
2

if n > k
3
2

where c3 > 0 is a computable absolute constant. Further it follows from the work of Jutila [17] and
Shorey [49] that

P (∆(n, k)) > c4k log k
log log k

log log log k
if n > k

3
2

where c4 is a computable absolute positive constant. If n ≤ k
3
2 , it follows from the results on

difference between consecutive primes that ∆(n, k) has a term which is prime. The proofs are not
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elementary. The proof of the result of Ramachandra and Shorey depends on Sieve method and
the theory of linear forms in logarithms. The proof of the result of Jutila and Shorey depends on
estimates from exponential sums and the theory of linear forms in logarithms. Langevin [21], [22]
proved that for any ε > 0,

P (∆(n, k)) > (1 − ε)k log log k if n ≥ c5 = c5(k, ε)

where c5 is a computable number depending only on k and ε. For an account of results in this
direction, see Shorey and Tijdeman [50, p. 135].

3.3. Sharpenings of (3.0.3) and (3.0.4)

We first state Schinzel’s Hypothesis H [46]:
Let f1(x), · · · , fr(x) be irreducible non constant polynomials with integer coefficients such that

for every prime p, there is an integer a such that the product f1(a) · · · fr(a) is not divisible by p.
Then there are infinitely many positive integers m such that f1(m), · · · , fr(m) are all primes.

We assume Schinzel’s hypothesis. Then 1 + d and 1 + 2d are primes for infinitely many d.
Therefore

ω(∆) = π(k), k = 3(3.3.1)

for infinitely many pairs (n, d) = (1, d). Let fr(x) = 1 + rx for r = 1, 2, 3, 4. For a given p, we see
that p - f1(p)f2(p) · · · f4(p). Hence there are infinitely many d such that 1 + d, 1 + 2d, 1 + 3d, 1 + 4d
are all primes. Thus

ω(∆) = π(k) + 1, k = 4, 5(3.3.2)

for infinitely many pairs (n, d) = (1, d).
Langevin [24] sharpened (3.0.3) to

P (∆) > k if n > k.

Shorey and Tijdeman [52] improved the above result as

P (∆) > k unless (n, d, k) = (2, 7, 3).(3.3.3)

Further Shorey and Tijdeman [51] proved that

ω(∆) ≥ π(k).(3.3.4)

Thus (3.3.4) is likely to be best possible when k = 3 by (3.3.1). A proof of (3.3.3) is given in
Chapter 5. Moree [29] sharpened (3.3.4) to

ω(∆) > π(k) if k ≥ 4 and (n, d, k) 6= (1, 2, 5).(3.3.5)

We observe that (3.3.5) implies (3.3.3) for k ≥ 4. If k = 4, 5, then (3.3.5) is likely to be best possible
by (3.3.2).

Saradha and Shorey [42] showed that for k ≥ 4, ∆ is divisible by at least 2 distinct primes
exceeding k except when (n, d, k) ∈ {(1, 5, 4), (2, 7, 4), (3, 5, 4), (1, 2, 5), (2, 7, 5), (4, 7, 5), (4, 23, 5)}.
Further Saradha, Shorey and Tijdeman [45, Theorem 1] improved (3.3.5) to

ω(∆) >
6

5
π(k) + 1 for k ≥ 6(3.3.6)

unless (n, d, k) ∈ V0 where V0 is

{(1, 2, 6), (1, 3, 6), (1, 2, 7), (1, 3, 7), (1, 4, 7), (2, 3, 7), (2, 5, 7), (3, 2, 7),

(1, 2, 8), (1, 2, 11), (1, 3, 11), (1, 2, 13), (3, 2, 13), (1, 2, 14)}.
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In fact they derived (3.3.6) from

W (∆) >
6

5
π(k) − πd(k) + 1 for k ≥ 6(3.3.7)

unless (n, d, k) ∈ V0. It is easy to see that the preceding result is equivalent to [45, Theorem 2].
We have no improvement for (3.3.7) when k = 6, 7 and 8. For k ≥ 9, Laishram and Shorey [19]
sharpened (3.3.7) as

Theorem 3.3.1. Let k ≥ 9 and (n, d, k) /∈ V where V is given by










n = 1, d = 3, k = 9, 10, 11, 12, 19, 22, 24, 31;

n = 2, d = 3, k = 12; n = 4, d = 3, k = 9, 10;

n = 2, d = 5, k = 9, 10; n = 1, d = 7, k = 10.

(3.3.8)

Then

W (∆) ≥ π(2k) − πd(k) − ρ(3.3.9)

where

ρ = ρ(d) =

{

1 if d = 2, n ≤ k

0 otherwise.
.

When d = 2 and n = 1, we see that

ω(∆) = π(2k) − 1

and

W (∆) = π(2k) − πd(k) − 1

by (3.0.2), for every k ≥ 2. This is also true for n = 3, d = 2 and 2k + 1 not a prime. Therefore
(3.3.9) is best possible when d = 2. We see from Theorem 3.3.1 and (3.0.1) that

ω(∆) ≥ π(2k) − ρ if (n, d, k) /∈ V.(3.3.10)

For (n, d, k) ∈ V , we see that ω(∆) = π(2k) − 1 except at (n, d, k) = (1, 3, 10). This is also the case
for (n, d, k) ∈ V0 with k = 6, 7, 8. Now, we apply Theorem 3.3.1, (3.3.6) for k = 6, 7, 8 and (3.3.5)
for k = 4, 5 to derive

Corollary 3.3.2. Let k ≥ 4. Then

ω(∆) ≥ π(2k) − 1(3.3.11)

except at (n, d, k) = (1, 3, 10).

This solves a conjecture of Moree [29]. Proof of Theorem 3.3.1 is given in Chapter 6.



CHAPTER 4

Refinement of Sylvester’s theorem for consecutive integers: Proof

of Theorems 3.1.1 and 3.1.4

In this chapter we prove Theorems 3.1.1 and 3.1.4. We give a sketch of the proof. We first show
that it is enough to prove Theorem 3.1.1 for k which are primes and Theorem 3.1.4 for k such that
2k− 1 is a prime. The sharp estimates of π function due to Dusart given in Lemma 2.0.2 have been
applied to count the number of terms in ∆′(x, k) which are primes and the number of terms of the
form ap with 2 ≤ a ≤ 6 and p > k. The latter contribution is crucial for keeping the estimates well
under computational range. It has been applied in the interval 2k ≤ x < 7k. In fact this interval
has been partitioned into several subintervals and it has been applied to each of those subintervals.
This leads to sharper estimates. See Lemmas 4.2.6, 4.2.7, 4.2.9. For covering the range x ≥ 7k, the
ideas of Erdős [8] have been applied, see Lemmas 4.2.3, 4.2.5, 4.2.8.

4.1. An Alternative Formulation

As remarked in Chapter 3, we prove Theorem 3.1.1 for k ≥ 19 and Theorem 3.1.4 for k ≥ 10.
Further we derive these two theorems from the following more general result.

Theorem 4.1.1. (a) Let k ≥ 19, x ≥ 2k and (x, k) /∈ S3 where S3 is the union of all sets
[x, k, h] such that [x − k + 1, k, h] belongs to S2 given by (3.1.6). Let f1 < f2 < · · · < fµ be all the
integers in [0, k) satisfying

P ((x− f1) · · · (x− fµ)) ≤ k.(4.1.1)

Then

µ ≤ k −
[

3

4
π(k)

]

+ 1.(4.1.2)

(b) Let k ≥ 10, x > 29
12k − 1. Assume (4.1.1). Then we have

µ ≤ k −M(k)(4.1.3)

where

M(k) = max(π(2k) − π(k),

[

3

4
π(k)

]

− 1).(4.1.4)

Thus, under the assumptions of the theorem, we see that the number of terms in ∆ ′ = x(x −
1) · · · (x− k+1) divisible by a prime > k is at least k−µ. Since each prime > k can divide at most
one term, there are at least k − µ primes > k dividing ∆′. Thus

ω(∆′) ≥ π(k) + k − µ.

Putting x = n+ k − 1, we see that ∆′ = ∆ and hence

ω(∆) ≥ π(k) + k − µ

and the Theorems 3.1.1 for k ≥ 19 and Theorem 3.1.4 for k ≥ 10 follow from (4.1.2) and (4.1.3).

19
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4.2. Lemmas

Lemma 4.2.1. We have

M(k) =

{

[

3
4π(k)

]

− 1 if k ∈ K1

π(2k) − π(k) otherwise
(4.2.1)

where K1 is given by

K1 = {19, 20, 47, 48, 73, 74, 83, 89, 107, 108, 109, 110, 111, 112, 113, 114,

115, 116, 173, 199, 200, 277, 278, 281, 282, 283, 284, 285, 293}.(4.2.2)

Proof. By Lemma 2.0.2 (i) and (ii), we have

π(2k) − π(k) −
[

3

4
π(k)

]

+ 1 ≥ 2k

log(2k) − 1
− 7

4

k

log k

(

1 +
1.2762

log k

)

+ 1

for k ≥ 2697. The right hand side of the above inequality is an increasing function of k and it
is non-negative at k = 2697. Hence π(2k) − π(k) ≥

[

3
4π(k)

]

− 1 for k ≥ 2697 thereby giving
M(k) = π(2k) − π(k) for k ≥ 2697. For k < 2697, we check that (4.2.1) is valid. �

Lemma 4.2.2. (i) Let k′ < k′′ be consecutive primes. Suppose Theorem 4.1.1 (a) holds at k ′.
Then it holds for all k with k′ ≤ k < k′′.
(ii) Let k1 < k2 be such that 2k1 − 1 and 2k2 − 1 are consecutive primes. Suppose Theorem 4.1.1
(b) holds at k1. Then Theorem 4.1.1 (b) holds for all k with k1 ≤ k < k2, k /∈ K1.

Proof. Firstly, we see that (4.1.2) and (4.1.3) are equivalent to

W (∆′) ≥
[

3

4
π(k)

]

− 1(4.2.3)

and

W (∆′) ≥M(k),(4.2.4)

respectively.
Suppose that Theorem 4.1.1 (a) holds at k ′ for k′ prime. Let k as in the statement of the

Lemma and x ≥ 2k. Then x ≥ 2k1 and ∆′ = x(x− 1) · · · (x− k′ + 1)(x− k′) · · · (x− k + 1). Thus

W (∆′) ≥W (x(x− 1) · · · (x− k′ + 1)) ≥
[

3

4
π(k′)

]

− 1 =

[

3

4
π(k)

]

− 1

implying (i). We now prove (ii). Assume that Theorem 4.1.1 (b) holds at k1. Let k be as
in the statement of the lemma. Further let x ≥ 29

12k − 1 ≥ 29
12k1 − 1. Since k /∈ K1, we have

M(k) = π(2k) − π(k) by Lemma 4.2.1. Also π(2k1) = π(2k1 − 1) = π(2k − 1) = π(2k). Therefore

W (∆′) ≥W (x(x− 1) · · · (x− k1 + 1)) ≥M(k1) = π(2k1) − π(k1) ≥ π(2k) − π(k)

implying (4.2.4). �

The next lemma is a generalisation of Lemma 1.1.7. We need some notations. Let P0 > 0 and
ν ≥ 0 with g1, g2, · · · gν be all the integers in [0, k) such that each of x−gi with 1 ≤ i ≤ ν is divisible
by a prime exceeding P0. Further we write

(x− g1) · · · (x− gν) = GH(4.2.5)

with gcd(G,H) = 1, gcd(H,
∏

p≤P0

p) = 1. Then we have
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Lemma 4.2.3. If x < P
3
2
0 , then

(

x

k

)

≤ (2.83)P0+
√

xxν



G
∏

p>P0

pordp(k!)





−1

.(4.2.6)

Proof. Let pa||
(x
k

)

. From (1.1.1), we have pordp(x
k) = pa ≤ x. Therefore

∏

p≤P0

pordp(x
k) ≤

∏

p≤P0
pa≤x

pa ≤
∏

p≤P0

p
∏

p≤x
1
2

p
∏

p≤x
1
3

p · · · .(4.2.7)

From Lemma 2.0.1 (iii) with ν =
√
x and ν = P0, we get

∏

p≤x
1
2

p
∏

p≤x
1
4

p
∏

p≤x
1
6

p · · · . < (2.83)
√

x(4.2.8)

and
∏

p≤P0

p
∏

p≤P
1
2
0

p
∏

p≤P
1
3
0

p · · · . < (2.83)P0 ,

respectively. Since x < P
3
2
0 , we have P

1
l

0 > x
1

2l−1 for l ≥ 2 so that the latter inequality implies
∏

p≤P0

∏

p≤x
1
3

p
∏

p≤x
1
5

p · · · . < (2.83)P0 .(4.2.9)

Combining (4.2.7), (4.2.8) and (4.2.9), we get
∏

p≤P0

pordp(x
k) ≤ (2.83)P0+

√
x.(4.2.10)

By (4.2.5), we have
∏

p>P0

pordp(x
k) =

(x− g1) · · · (x− gν)

G
∏

p>P0
pordp(k!)

.(4.2.11)

Further we observe that

(x− g1) · · · (x− gν) < xν .(4.2.12)

Finally, we combine (4.2.10), (4.2.11) and (4.2.12) to conclude (4.2.6). �

Lemma 4.2.3 with G ≥ 1, P0 = k and ν = k − µ implies the following Corollary, see Saradha
and Shorey [41, Lemma 3].

Corollary 4.2.4. Let x < k
3
2 . Assume that (4.1.1) holds. Then

(

x

k

)

≤ (2.83)k+
√

xxk−µ.

Lemma 4.2.5. Assume (4.1.1) and

µ ≥ k −M(k) + 1(4.2.13)

where M(k) is given by (4.1.4). Then we have

(i) x < k
3
2 for k ≥ 71

(ii) x < k
7
4 for k ≥ 25

(iii) x < k2 for k ≥ 13
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(iv) x < k
9
4 for k ≥ 10.

Proof. Since (x− f1) · · · (x− fµ) divides
(x
k

)

k!, we observe from (4.1.1) and (1.1.1) that

(x− f1) · · · (x− fµ) ≤





∏

p≤k

pordp(x
k)



 k! ≤





∏

p≤k

x



 k! = xπ(k)k!.(4.2.14)

Also

(x− f1) · · · (x− fµ) ≥ (x− fµ)µ ≥ (x− k + 1)µ > xµ

(

1 − k

x

)µ

.

Comparing this with (4.2.14), we get

k! > xµ−π(k)

(

1 − k

x

)µ

.(4.2.15)

Let k ≥ 71. We assume that x ≥ k
3
2 and we shall arrive at a contradiction. From (4.2.15), we

have

k! > k
3
2
(µ−π(k))

(

1 − 1√
k

)µ

(4.2.16)

and since µ ≤ k,

k! > k
3
2
(µ−π(k))

(

1 − 1√
k

)k

.(4.2.17)

We use (4.2.17), (4.2.13), (4.2.1) and Lemmas 2.0.2 (i) and 2.0.6 to derive for k ≥ 294 that

1 > 2.718k
1
2
− 3

log2k
(1+ 1.2762

log2k
)(1 − 1√

k
)

since exp
(

log 0.3989k
k − 1

12k2

)

≥ 1. The right hand side of above inequality is an increasing function

of k and it is not valid at k = 294. Thus k ≤ 293. Further we check that (4.2.17) is not valid for
71 ≤ k ≤ 293 except at k = 71, 73 by using (4.2.13) with µ = k −M(k) + 1 and the exact values of
k! and M(k). Let k = 71, 73. We check that (4.2.16) is not satisfied if (4.2.13) holds with equality
sign. Thus we may suppose that (4.2.13) holds with strict inequality. Then we find that (4.2.17)

does not hold. This proves (i). For the proofs of (ii), (iii) and (iv), we may assume that x ≥ k
7
4 for

25 ≤ k ≤ 70, x ≥ k2 for 13 ≤ k ≤ 24 and x ≥ k
9
4 for k = 10, 11, 12, respectively, and arrive at a

contradiction. �

The next four lemmas show that under the hypothesis of Theorem 4.1.1, k is bounded. Further
we show that Theorem 4.1.1 (a) is valid for primes k if x ≤ 29

12k− 1 and Theorem 4.1.1 (b) is valid
for all k ∈ K where

K = K1 ∪ {k
∣

∣k ≥ 10 and 2k − 1 is a prime}.(4.2.18)

Lemma 4.2.6. (a) Let k ≥ 19 be a prime, 2k ≤ x ≤ 29
12k − 1 and (x, k) /∈ S3. Then Theorem

4.1.1(a) is valid.
(b) Let k ≥ 10, 29

12k − 1 < x < 3k. Then Theorem 4.1.1(b) holds for all k ∈ K.

Proof. Let 2k ≤ x < 3k. We observe that every prime p with k ≤ x− k < p ≤ x is a term of
∆′. Since k > x−k

2 , we also see that 2p is a term in ∆′ for every prime p with k < p ≤ x
2 . Thus

W (∆′) ≥ π(x) − π(x− k) + π
(x

2

)

− π(k).(4.2.19)
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The contribution of π(x
2 ) − π(k) in the above expression is necessary to get an upper bound for k

which is not very large.
(a) Let 2k ≤ x ≤ 29

12k − 1 with (x, k) /∈ S3. We will show that (4.2.3) holds. Let (2 + t1)k ≤ x <

(2 + t2)k with 0 ≤ t1 < t2 ≤ 1 and t2 − t1 ≤ 1
4 . Then we have from (4.2.19) that

W (∆′) ≥ π(2k + t1k) − π(k + t2k) + π(k +
t1k

2
) − π(k).

Hence it is enough to prove

π((2 + t1)k) − π((1 + t2)k) + π((1 +
t1
2

)k) − π(k) −
[

3

4
π(k)

]

+ 1 ≥ 0.(4.2.20)

Using Lemma 2.0.2 (i), (ii) and

log Y

logZ
= 1 +

log(Y
Z )

logZ
and

log Y

logZ − 1
= 1 +

1 + log(Y
Z )

logZ − 1
,

we see that the left hand side of (4.2.20) is at least

2
∑

i=1

b

(

2 + t1
i

k

)

− a((1 + t2)k) −
7

4
a(k) + 1

=
k

(log(2 + t1)k)2

{

f(k, t1, t2) − g(k, t1, t2) −
7

4
g(k, t1, 0)

}

+ 1

(4.2.21)

for k ≥ 5393, where

f(k,t1,t2)=(1.5t1−t2+
1

4
)(log(2 + t1)k)+

2
∑

i=1

(2 + t1)(1+log i)

i

(

1 +
1+log i

log((2+t1)k/i)−1

)

and

g(k,t1,t2)=(1+t2)

(

1 +
log(2+t1

1+t2
)

log((1 + t2)k)

)(

1.2762+log

(

2 + t1
1 + t2

)

+
1.2762 log( 2+t1

1+t2
)

log((1 + t2)k)

)

.

Then we have

kf ′(k, t1, t2) = (1.5t1 − t2 +
1

4
) −

2
∑

i=1

(

2 + t1
i

)(

1 + log i

log((2 + t1)k/i) − 1

)2

.

We write

1.5t1 − t2 +
1

4
= 0.5t1 − (t2 − t1) +

1

4

to observe that the left hand side is positive unless (t1, t2) = (0, 1
4) and we shall always assume that

(t1, t2) 6= (0, 1
4).

Let k0 = k0(t1, t2) be such that kf ′(k, t1, t2) is positive at k0. Since kf ′(k, t1, t2) is an increasing
function of k, we see that f(k, t1, t2) is also an increasing function of k for k ≥ k0. Also g(k, t1, t2)
is a decreasing function of k. Hence (4.2.21) is an increasing function of k for k ≥ k0. Let
k1 = k1(t1, t2) ≥ k0 be such that (4.2.21) is non-negative at k1. Then (4.2.20) is valid for k ≥ k1.
For k < k1, we check inequality (4.2.20) by using the exact values of π(ν). Again for k not satisfying
(4.2.20), we take x = 2k + r with t1k ≤ r < t2k and check that the right hand side of (4.2.19) is at
least the right hand side of (4.2.3).
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Let 2k ≤ x < 49
24k. Then t1 = 0, t2 = 1

24 and we find k1 = 5393 by (4.2.21). For k < 5393 and k
prime, we check that (4.2.20) holds except at the following values of k:

{

19, 47, 71, 73, 83, 89, 103, 107, 109, 113, 151, 167, 173, 191, 193, 197,

199, 269, 271, 277, 281, 283, 293, 449, 463, 467, 491, 503, 683, 709.

Thus (4.2.3) is valid for all primes k except at above values of k. For these values of k, we take
x = 2k + r with 0 ≤ r < k

24 and show that the right hand side of (4.2.19) is at least the right hand
side of (4.2.3) except at (x, k) /∈ S3.

We divide the interval [ 4924k,
29
12k) into following subintervals

[

49

24
k,

25

12
k

)

,

[

25

12
k,

13

6
k

)

,

[

13

6
k,

9

4
k

)

,

[

9

4
k,

19

8
k

)

and

[

19

8
k,

29

12
k

)

.

We find k1 = 5393 for each of these intervals. For k < 5393 and k prime, we check that (4.2.20)
holds except at following values of k for the intervals:

[

49

24
k,

25

12
k

)

:

{

19, 47, 67, 71, 73, 79, 83, 103, 107, 109, 113, 131, 151, 167, 181, 199,

211, 263, 271, 277, 293, 467, 683
[

25

12
k,

17

8
k

)

:
{

19, 71, 83, 101, 103, 107, 113, 179, 181, 199, 257, 281, 283, 467, 683

[

17

8
k,

13

6
k

)

:
{

19, 37, 47, 61, 73, 89, 113, 197

[

13

6
k,

9

4
k

)

:
{

19, 43, 61, 67, 83, 89, 113, 139, 193, 197, 199, 257, 281, 283

[

9

4
k,

19

8
k

)

:

{

19, 23, 31, 43, 47, 61, 79, 83, 109, 113, 139, 151, 167, 193, 197, 199,

239, 283, 359

and there are no exceptions for the subinterval
[

19
8 k,

29
12k
)

. Now we apply similar arguments as in

the case 2k ≤ x < 49
24k to each of the above subintervals to complete the proof.

For the proof of (b), we divide 29
12k − 1 < x < 3k into subintervals

(

29
12k − 1, 5

2k
)

,
[

5
2k,

21
8 k
)

,
[

21
8 k,

11
4 k
)

and
[

11
4 k, 3k

)

. We apply the arguments of (a) to each of these subintervals to conclude
that the right hand side of (4.2.19) is at least the right hand side of (4.2.4). Infact we have the
inequality

π((2 + t1)k) − π((1 + t2)k) + π((1 +
t1
2

)k) − π(k) −M(k) ≥ 0(4.2.22)

analogous to that of (4.2.20). As in (a), using (4.2.1), we derive that k1 = 5393 in each of these
intervals. For k < 5393 and k ∈ K, we check that (4.2.22) hold except at the following values of k
for the intervals:
(

29
12k − 1, 5

2k
)

: {54, 55, 57, 73, 79, 142},
[

5
2k,

21
8 k
)

: {12, 52, 55, 70},
[

21
8 k,

11
4 k
)

: {22, 27}
[

11
4 k, 3k

)

: {10, 12, 19, 21, 22, 24, 37, 54, 55, 57, 59, 70, 91, 100, 121, 142, 159}.
Now we proceed as in (a) to get the required result. �

Lemma 4.2.7. Let 3k ≤ x < 7k. Then Theorem 4.1.1 (b) holds for k ∈ K.

We prove a stronger result that Theorem 4.1.1 (b) holds for all k ≥ 29000 and for k ∈ K.
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Proof. Let 3k ≤ x < 7k. We show that (4.2.4) holds. Let (s + t1)k ≤ x < (s + t2)k with
integers 3 ≤ s ≤ 6 and t1, t2 ∈ {0, 1

4 ,
1
2 ,

3
4 , 1} such that t2 − t1 = 1

4 . Then ∆′ contains a term equal

to ip with x−k
i < p ≤ x

i for each i with 1 ≤ i < s and a term equal to sp for k < p ≤ x
s . Therefore

W (∆′) ≥
s−1
∑

i=1

(

π
(x

i

)

− π

(

x− k

i

))

+ π
(x

s

)

− π(k).(4.2.23)

Since x ≥ (s+ t1)k and x− k < (s− 1 + t2)k, we observe from (4.2.23) that

W (∆′) ≥
s−1
∑

i=1

(

π

(

s+ t1
i

k

)

− π

(

s− 1 + t2
i

k

))

+ π

(

s+ t1
s

k

)

− π(k).

Hence it is enough to show

s−1
∑

i=1

(

π

(

s+ t1
i

k

)

− π

(

s− 1 + t2
i

k

))

+ π

(

s+ t1
s

k

)

− π(k) −M(k) ≥ 0.(4.2.24)

Using (4.2.1) and Lemma 2.0.2 (i), (ii), we see that the left hand side of (4.2.24) is at least

s−1
∑

i=1

(

b

(

s+ t1
i

k

)

− a

(

s− 1 + t2
i

k

))

+ b

(

s+ t1
s

k

)

− a(2k)

=
k

(log(s+ t1)k)2

{

F (k, s, t1, t2) −
s−1
∑

i=1

G(k, s, t1, t2, i) −G(k, s, t1, 1,
s

2
)

}
(4.2.25)

for k ≥ 5393, where

F (k, s, t1, t2) =

(

s−1
∑

i=1

(

1 + t1 − t2
i

)

+
t1
s
− 1

)

(log(s+ t1)k) +

+

s
∑

i=1

(s+ t1)(1 + log i)

i

(

1 +
1 + log i

log((s+ t1)k/i) − 1

)

and

G(k, s, t1, t2, i) =

(

s− 1 + t2
i

)



1 +
log
(

(s+t1)i
s−1+t2

)

log
(

s−1+t2
i k

)



×



1.2762 + log

(

(s+ t1)i

s− 1 + t2

)

+
1.2762 log

(

(s+t1)i
s−1+t2

)

log
(

s−1+t2
i k

)



 .

Then

kF ′(k,s,t1,t2)=

(

s−1
∑

i=1

(

1 + t1 − t2
i

)

+
t1
s
− 1

)

−
s
∑

i=1

(s+ t1)

i

(

1 + log i

log((s+ t1)k/i) − 1

)2

.

If s = 2, we note that F and G are functions similar to f and g appearing in Lemma 4.2.6. As
in Lemma 4.2.6, we find K1 := K1(s, t1, t2) such that (4.2.25) is non negative at k = K1 and it is
increasing for k ≥ K1. Hence (4.2.24) is valid for k ≥ K1. For k < K1, we check inequality (4.2.24)
by using the exact values of π function in (4.2.24) for k with 2k − 1 prime or primes k given by
(4.2.2). Again for k not satisfying (4.2.24), we take x = sk + r with t1k ≤ r < t2k and check that
the right hand side of (4.2.23) is at least the right hand side of (4.2.4).



26 4. PROOF OF THEOREMS 3.1.1 AND 3.1.4

Let 3k ≤ x < 13
4 k. Here t1 = 0, t2 = 1

4 and and we find K1 = 29000. We check that (4.2.24)
holds for 3 ≤ k < 29000 except at k = 10, 12, 19, 22, 40, 42, 52, 55, 57, 100, 101, 126, 127, 142. For
these values of k, putting x = 3k+ r with 0 ≤ r < 1

4k , we show that the right hand side of (4.2.23)

is at least the right hand side of (4.2.4). Hence the assertion follows in 3k ≤ x < 13
4 k. For x ≥ 13

4 k,
we apply similar arguments to intervals (s + t1)k ≤ x < (s + t2)k with integers 3 ≤ s ≤ 6 and
t1, t2 ∈ {0, 1

4 ,
1
2 ,

3
4 , 1} such that t2 − t1 = 1

4 . We find K1 = 5393 for each of these intervals except for

6k ≤ x < 25
4 k where K1 = 5500. �

In view of Lemmas 4.2.6 and 4.2.7, it remains to prove Theorem 4.1.1 for x ≥ 7k which we
assume. Further we may also suppose (4.2.13). Otherwise (4.1.3) follows. Now we derive from

Lemma 4.2.5 that x < k
9
4 . On the other hand, we prove x ≥ k

9
4 . This is a contradiction. We split

the proof of x ≥ k
9
4 in the following two lemmas.

Lemma 4.2.8. Assume (4.1.1), (4.2.13) with x ≥ 7k. Then x ≥ k
3
2 for k ∈ K.

Proof. We prove it by contradiction. We assume (4.1.1), (4.2.13) and 7k ≤ x < k
3
2 . Then

k ≥ 50. Further by Corollary 4.2.4 and
(

x
k

)

≥
(

7k
k

)

, we have
(

7k

k

)

< (2.83)k+k
3
4 k

3
2
(M(k)−1)(4.2.26)

since x < k
3
2 . We observe from Lemma 2.0.6 that

(

7k

k

)

=
(7k)!

k!(6k)!
>

√
14πkexp−7k(7k)7kexp

1
84k+1

√
2πkexp−kkkexp

1
12k

√
12πkexp−6k(6k)6kexp

1
72k

>
0.4309√

k
exp

1
84k+1

− 7
72k (17.65)k .

Combining this with (4.2.26), we get

1 > exp

(

log(0.4309k) +
1

84k + 1
− 7

72k

)

(17.65)k(2.83)−k−k
3
4 k−

3
2
M(k).(4.2.27)

Using (4.2.1), Lemma 1(i), (ii) and exp
(

log(0.4309k)
k + 1

84k2+k − 7
72k2

)

≥ 1, we derive for k ≥ 5393

that

1 > 6.2367(2.83)−k− 1
4 k

− 3
log 2k

(1+ 1.2762
log 2k

)+ 3
2(log k−1)

> 6.2367 exp

(

3

2
+

3

2 log k − 2

)

(2.83)−k− 1
4 k−

3
log 2k

(1+ 1.2762
log 2k

)

> 27.95(2.83)−k− 1
4 k

− 3
log 2k

(1+ 1.2762
log 2k

)
:= h(k)

since exp
(

3
2 log k−2

)

> 1 for k ≥ 3. We see that h(k) is an increasing function of k and h(k) > 1 at

k = 5393. Therefore k < 5393. By using the exact values of M(k), we now check that (4.2.27) does
not hold for 50 ≤ k < 5393 and k ∈ K. �

Lemma 4.2.9. If (4.1.1) and (4.2.13) holds and x ≥ k
3
2 , then x ≥ k

9
4 for k ∈ K.

Proof. We prove by contradiction. Assume (4.1.1), (4.2.13) and k
3
2 ≤ x < k

9
4 . We derive from

Lemma 4.2.5 that k ≤ 70. Let k = 10, 11, 12, 13. By Lemmas 4.2.5, 4.2.7 and 4.2.8, we can take
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max(7k, k
3
2 ) ≤ x < k

9
4 for k = 10, 11, 12 and max(7k, k

3
2 ) ≤ x < k2 for k = 13. For these values of

x and k, we find that

W
(

∆′) ≥
6
∑

i=1

(

π
(x

i

)

− π

(

x− k

i

))

≥M(k)

contradicting (4.2.13).

Therefore we assume that k ≥ 14. Let k
3
2 ≤ x < k

25
16 . By Lemma 4.2.7 and 4.2.8, we can take

x ≥ max(7k, k
3
2 ) so that we can assume k ≥ 32. Then

(

x

k

)

≥
(

max(7k,
⌈

k
3
2

⌉

)

k

)

where
⌈

ν
⌉

denotes the least integer ≥ ν. From (1.1.1), we have ordp(
(x
k

)

) ≤
[

log x
log p

]

≤
[

25
16

log k
log p

]

and

hence
(

x

k

)

≤





π(k)
∏

i=1

p

h

25
16

log k
log pi

i

i



xk−µ <





π(k)
∏

i=1

p

h

25
16

log k
log pi

i

i



 k
25
16

(M(k)−1)

by (4.2.13). Combining the above estimates for
(x
k

)

, we get

(

max(7k,
⌈

k
3
2

⌉

)

k

)

<





π(k)
∏

i=1

p

h

25
16

log k
log pi

i

i



 k
25
16

(M(k)−1)

which is not possible for 32 ≤ k ≤ 70. By similar arguments, we arrive at a contradiction for

max(7k, k
25
16 ) ≤ x < k

26
16 in 23 ≤ k ≤ 70, max(7k, k

26
16 ) ≤ x < k

27
16 in 17 ≤ k ≤ 70 and max(7k, k

27
16 ) ≤

x < k
7
4 in 14 ≤ k ≤ 70 except at k = 16. Let k = 16 and max(7k, k

27
16 ) ≤ x < k

7
4 . Then we observe

that

W
(

∆′) ≥
6
∑

i=1

(

π
(x

i

)

− π

(

x− 16

i

))

≥ 5 = M(16)

contradicting (4.2.13).

Now we consider x ≥ k
7
4 . We observe that k

7
4 ≥ 7k since k ≥ 14. Further we derive from

Lemma 4.2.5 that k ≤ 24. We apply similar arguments for 14 ≤ k ≤ 24 as above to arrive at a

contradiction in the intervals k
7
4 ≤ x < k

15
8 except at k = 16, k

15
8 ≤ x < k

31
16 and k

31
16 ≤ x < k2.

The case k = 16 and k
7
4 ≤ x < k

15
8 is excluded as earlier. �

4.3. Proof of Theorem 4.1.1

Suppose that the hypothesis of Theorem 4.1.1 (b) is valid and k ≥ 10. By Lemmas 4.2.6 (b),
4.2.7, 4.2.8 and 4.2.9, we see that Theorem 4.1.1 (b) is valid for all k ∈ K. Thus (4.2.4) holds for
all k ∈ K and x > 29

12k − 1. Let k /∈ K and k1 < k be the largest integer with 2k1 − 1 prime. Then

k1 ≥ 10. For x > 29
12k − 1 > 29

12k1 − 1, we see that (4.2.4) is valid at (x, k1). By Lemma 4.2.2 (ii),
(4.2.4) is valid at (x, k) too. Hence Theorem 4.1.1 (b) is valid for all k.

Suppose that the hypothesis of Theorem 4.1.1 are satisfied and k ≥ 19. We have from Lemma
4.2.6 (a) that (4.2.3) holds for (x, k) with k prime, x ≤ 29

12k − 1 and (x, k) /∈ S3. By Theorem

4.1.1(b), (4.2.4) and hence (4.2.3) is valid for all k and x > 29
12k − 1. Thus (4.2.3) holds for (x, k)

with k prime and (x, k) /∈ S3. Let k be a composite number and k′ < k be the greatest prime. Then
k′ ≥ 19. Suppose (x, k′) /∈ S3. Then (4.2.3) is valid at (x, k′) and hence valid at (x, k) by Lemma
4.2.2 (i). Suppose now that (x, k′) ∈ S3. Then we check the validity of (4.2.3) at (x, k). We see



28 4. PROOF OF THEOREMS 3.1.1 AND 3.1.4

that (4.2.3) does not hold only if (x, k) ∈ S3. We explain this with two examples. Let k = 20.
Then k′ = 19. Since (42, 19) ∈ S3, we check the validity of (4.2.3) at (42, 20) which is true. Hence
(42, 20) /∈ S3. Again let k = 72. Then k′ = 71. Since (145, 71) ∈ S3, we check the validity of (4.2.3)
at (145, 72) and see that (4.2.3) does not hold at (145, 72) which is an element of S3. This completes
the proof. �

4.4. Corollary 3.1.3 revisited

We remark here that Corollary 3.1.3 can also be obtained by imitating the proof of Theorem
3.1.1 and using the weaker bounds for prime function given by Lemma 2.0.1 instead of that given
by Lemma 2.0.2. We present here few details. By (3.1.3), it is enough to prove Corollary 3.1.3 for
k ≥ 19. Assume (4.1.1). Now as in Lemma 4.2.5, if we have µ ≥ k − [ 2

3π(k)], then

x < k
3
2 for k ≥ 62; x < k

7
4 for k ≥ 25; x < k2 for k ≥ 19.(4.4.1)

As in Lemmas 4.2.8 and 4.2.9, we see that if x ≥ 7k, then x ≥ k2. This contradicts (4.4.1). Thus
from now on, we consider only x < 7k. Analogous to Lemma 4.2.6 (a), we have

W (∆′) ≥
[

2

3
π(k)

]

− 1(4.4.2)

for all k prime, 2k ≤ x < 3k except when (x, k) = (222, 109), (226, 113). Infact we split [2k, 3k) into
13 subintervals

[

2k,
49

24
k

)

,

[

49

24
k,

37

18
k

)

,

[

37

18
k,

25

12
k

)

,

[

25

12
k,

19

9
k

)

,

[

19

9
k,

15

7
k

)

,

[

15

7
k,

11

5
k

)

,

[

11

5
k,

9

4
k

)

,

[

9

4
k,

7

3
k

)

,

[

7

3
k,

29

12
k

) [

29

12
k,

5

2
k

)

,

[

5

2
k,

21

8
k

)

,

[

21

8
k,

11

4
k

)

,

[

11

4
k, 3k

)

and bound k ≤ 150000 and we check that (4.4.2) holds at all primes k. We note here that the
equation analogous to (4.2.20) is taken as

π(2k) − π

(

25

24
k

)

−
[

2

3
π(k)

]

+ 1 ≥ 0

while using the bounds of π function given by Lemma 2.0.1. This is necessary to reduce the bound
for k. Next we take k prime and 3k ≤ x < 7k. Here we split this interval into subintervals of length
k
8 and arguing as in Lemma 4.2.7, we bound k ≤ 60000. We also note here that when t1 = 0, we
take the equation

s−1
∑

i=1

(

π
(s

i
k
)

− π

(

s− 1 + 1
8

i
k

))

−
[

2

3
π(k)

]

+ 1 ≥ 0

analogous to (4.2.24) while applying the bounds of π function given by Lemma 2.0.1. We observe
here that this bound can be reduced further by taking subintervals of smaller lengths than k

8 . We
check that (4.4.2) holds for all primes k ≤ 60000. Now as in Lemma 4.2.2 (i), we see that (4.4.2) is
valid for all k. �



CHAPTER 5

An analogue of Sylvester’s theorem for arithmetic progressions:

Proofs of (3.3.5) and (3.3.3)

In this chapter, we prove (3.3.5) viz,

ω(∆) > π(k) if k ≥ 4 and (n, d, k) 6= (1, 2, 5)

and derive (3.3.3) i.e.,

P (∆) > k if k ≥ 3 and (n, d, k) 6= (2, 7, 3).

The proof depends on the combinatorial arguments of Sylvester and Erdős. In particular it depends
on their fundamental inequality which we shall explain below. We sharpen this inequality. Further
we use the estimates of π function due to Dusart given in Lemma 2.0.2. The proof of (3.3.3) for
k = 3 depends on solving some special cases of Catalan equation.

5.1. Fundamental inequality of Sylvester and Erdős

For 0 ≤ i < k, let

n+ id = BiB
′
i(5.1.1)

where Bi and B′
i are positive integers such that P (Bi) ≤ k and gcd(B ′

i,
∏

p≤k

p) = 1. Let S ⊂

{B0, · · · , Bk−1}. Let p ≤ k be such that p - d and p divides at least one element of S. Choose Bip ∈ S
such that p does not appear to a higher power in the factorisation of any other element of S. Let S1

be the subset of S obtained by deleting from S all such Bip . Let P be the product of all the elements
of S1. For any i 6= ip, we have ordp(Bi) =ordp(n + id) ≤ordp((n + id) − (n + ipd)) =ordp(i − ip).
Therefore

(5.1.2) ordp(P) ≤ ordp





∏

i∈S1

(i− ip)



 ≤ ordp(ip!(k − 1 − ip)!) ≤ ordp((k − 1)!).

Hence

P ≤
∏

p-d

pordp((k−1)!)(5.1.3)

which is the fundamental inequality of Sylvester and Erdős. �

5.2. Refinement of fundamental inequality of Sylvester and Erdős

The following lemma is a refinement of a fundamental inequality (5.1.3) of Sylvester and Erdős.

Lemma 5.2.1. Let S,S1,P be as in Section 5.1 and let a′ be the number of terms in S1 divisible
by 2. Also we denote

n0 = gcd(n, k − 1)

29
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and

θ =

{

1 if 2|n0

0 otherwise.
(5.2.1)

Then

P ≤ n0

∏

p-d

pordp((k−2)!).(5.2.2)

Further for d odd, we have

P ≤ 2−θn02
a′+ord2([

k−2
2

]!)
∏

p-2d

pordp((k−2)!).(5.2.3)

We shall use only (5.2.2) in the proof of (3.3.5).

Proof. Let p < k, p - d be such that p divides at least one element of S. Let rp ≥ 0 be the
smallest integer such that p | n+ rpd. Write n+ rpd = pn1. Then

n+ rpd, n+ rpd+ pd, · · · , n+ rpd+ p[
k − 1 − rp

p
]d

are all the terms in ∆ divisible by p. Let Brp+pip be such that p does not divide any other term
of S to a higher power. Let ap be the number of terms in S1 divisible by p. We note here that

ap ≤ [
k−1−rp

p ]. For any Brp+pi ∈ S1, we have ordp(Brp+pi) =ordp(n+ rpd + pid) ≤ordp((n+ rpd +

pid)) − (n+ rpd+ pipd)) = 1+ordp(i− ip). Therefore

(5.2.4) ordp(P) ≤ ap + ordp









[
k−1−rp

p
]

∏

i=0
i6=ip

(i− ip)









≤ ap + ordp

(

ip![
k − 1 − rp

p
− ip]!

)

Thus

ordp(P) ≤ ap + ordp([
k − 1 − rp

p
]!).(5.2.5)

Let p - n. Then rp ≥ 1 and hence ap ≤ [k−2
p ]. From (5.2.5), we have

ordp(P) ≤ [
k − 2

p
] + ordp([

k − 2

p
]!) = ordp((k − 2)!).(5.2.6)

Let p = 2. Then a2 = a′ so that

ord2(P) ≤ a′ + ord2([
k − 2

2
]!).(5.2.7)

Let p|n. Then rp = 0. Assume that p - (k − 1). Then from (5.2.5), we have

ordp(P) ≤ ap + ordp([
k − 2

p
]!).(5.2.8)

Assume p|(k−1) and let i0 ∈ {0, k−1
p } with i0 6= ip be such that ordp(n+pi0d) =min (ordp(n),ordp(k−

1)). If ordp(n) =ordp(k− 1), we take i0 = 0 if ip 6= 0 and i0 = k−1
p otherwise. From (5.2.4), we have

ordp(P) ≤ min(ordp(n), ordp(k − 1)) + ap − 1 + ordp









k−1
p
∏

i=0
i6=i0,ip

(i− ip)









.
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Thus

ordp(P) ≤ min(ordp(n), ordp(k − 1)) + ap − 1 + ordp((
k − 1 − p

p
)!).(5.2.9)

From (5.2.8) and (5.2.9), we conclude

ordp(P) ≤ min(ordp(n), ordp(k − 1)) + [
k − 2

p
] + ordp([

k − 2

p
]!)

since ap ≤ [k−1
p ]. Thus

ordp(P) ≤ min(ordp(n), ordp(k − 1)) + ordp((k − 2)!).(5.2.10)

Now (5.2.2) follows from (5.2.6) and (5.2.10). Let p = 2. By (5.2.8) and (5.2.9), we have in case of
even n that

ord2(P) ≤ min(ord2(n), ord2(k − 1)) − θ + a′ + ord2([
k − 2

2
]!)

which, together with (5.2.6), (5.2.7) and (5.2.10), implies (5.2.7). �

5.3. Lemmas

The following Lemma is a consequence of Lemma 5.2.1.

Lemma 5.3.1. Let α ≥ 0 and m ≥ 0. Suppose W (∆) ≤ m. Then there exists a set T =
{n+ ihd|0 ≤ h ≤ t, i0 < i1 < · · · < it} such that 1 + t := |T| ≥ k −m− πd(k) satisfying

dt ≤ n0

n

∏

p-d

pordp((k−2)!)

(α+ i1) · · · (α+ it)
if n = αd(5.3.1)

and

(n+ i0d) · · · (n+ itd)

2a
≤ 2−θn02

ord2([ k−2
2

]!)
∏

p-2d

pordp((k−2)!) if d is odd(5.3.2)

where a is the number of even elements in T.

We shall use only (5.3.1) in the proof of (3.3.5).

Proof. Let α > 0 be given by n = αd. Let S be the set of all terms of ∆ composed of primes
not exceeding k. Then |S| ≥ k −m. For every p dividing an element of S, we delete an f(p) ∈ S

such that

ordp(f(p)) = max
s∈S

ordp(s).

Then we are left with a set T with 1 + t := |T| ≥ k −m− πd(k) elements of S. Let

P :=

t
∏

ν=0

(n+ id) ≥ (n+ i0d)(α + i1) · · · (α+ it)d
t.

We now apply Lemma 5.2.1 with S = S and S1 = T so that P = P. Thus the estimates (5.2.2) and
(5.2.3) are valid for P. Comparing the upper and lower bounds of P, we have (5.3.1) and further
(5.3.2) for d odd. �

The next lemma is an analogue of Lemma 1.1.2 for d > 1.

Lemma 5.3.2. Let k1 < k2 be such that k1 and k2 are consecutive primes. Suppose (3.3.5) holds
at k1. Then it holds for all k with k1 ≤ k < k2.
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Proof. Assume that (3.3.5) holds at k1. Let k be as in the statement of the lemma. From
∆(n, d, k) = n(n+ d) · · · (n+ (k1 − 1)d)(n + k1d) · · · (n+ (k − 1)d), we have

ω(∆(n, d, k)) ≥ ω(∆(n, d, k1)) > π(k1) = π(k)

since k1 < k2 are consecutive primes. �

5.4. Proof of (3.3.5) for k = 4 and primes k ≥ 5

Suppose ω(∆) ≤ π(k). Then W (∆) ≤ π(k) − πd(k). Thus m = π(k) − πd(k) so that t ≥
k − π(k) − 1 in Lemma 5.3.1. Let α > 0 be given by n = αd. From (5.3.1) and since n0 ≤ n, we
have

dk−π(k)−1 ≤

(k − 2)!
∏

p|d
p−ordp((k−2)!)

(α+ 1) · · · (α+ k − π(k) − 1)
.(5.4.1)

Since α > 0, this gives

dk−π(k)−1 ≤

(k − 2)!
∏

p|d
p−ordp((k−2)!)

(k − π(k) − 1)!
< (k − 2)π(k)−1

∏

p|d
p−ordp((k−2)!).(5.4.2)

Hence

d < (k − 2)
π(k)−1

k−π(k)−1 .(5.4.3)

Using Lemma 2.0.2 (i), we derive that

d < exp





log(k−2)
log k (1 + 1.2762

log k ) − log(k−2)
k

1 − 1
log k (1 + 1.2762

log 2k ) − 1
k



 .(5.4.4)

We see that the right hand side of the above inequality is a non increasing function of k and < 2
at k = 43. Thus d < 2 for k ≥ 43. Hence we need to consider only k < 43. By using exact values
of π(k), we get from (5.4.3) that d = 2, k = 5, 7. Taking d = 2, k = 5, 7 in the first inequality of
(5.4.2), we get d = 2, k = 5. Let d = 2, k = 5 and n > 4. Then α > 2 and we get from (5.4.1)
that 2 ≤ 1, a contradiction. For d = 2, k = 5 and n = 1, 3, we check that (3.3.5) holds except at
(1, 2, 5). �

5.5. Proof of (3.3.5)

By the preceding Section and Lemma 5.3.2, we see that (3.3.5) is valid for all k ≥ 4, (n, d, k) 6=
(1, 2, 5) except possibly at (1, 2, 6). We check that (3.3.5) is valid at (1, 2, 6). �

5.6. Proof of (3.3.3)

Let (n, d, k) = (1, 2, 5). Then we see that (3.3.3) holds. For (n, d, k) 6= (1, 2, 5), we have by
(3.3.5) and Lemma 5.3.2 that there is a prime > k dividing ∆ for k ≥ 4. Thus (3.3.3) is valid for
all k ≥ 4. Let k = 3 and assume that P (n(n+d)(n+2d)) ≤ 3. If d is even, then n, n+d, n+2d are
all odd and 3 does not divide all of them. Hence there is a prime p > 3 dividing n(n+ d)(n+ 2d).
Assume d is odd. Then we have the following possibilities.

n = 1, n+ d = 2a and n+ 2d = 3b implying 2a+1 − 3b = 1

n = 2a, n+ d = 3b and n+ 2d = 2c implying 3b = 2a−1(2c−a + 1)
(5.6.1)

where a, b, c are positive integers. In the first case, we see that a > 1, b > 1 since d > 1. Thus we
have 3b ≡ −1(mod 8). This is not possible since 3b ≡ 1, 3(mod 8). In the second case, we get a = 1
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giving 3b = 2c−1 +1. Since d > 1, we have b > 1, c > 3 so that b is even since 3b ≡ 1(mod 4). Hence

2c−1 = (3
b
2 − 1)(3

b
2 + 1) which implies 3

b
2 − 1 = 2, 3

b
2 + 1 = 2c−2 giving b = 2, c = 4. Hence we see

that P (n(n+ d)(n+ 2d)) > 3 except at (n, d, k) = (2, 7, 3). �





CHAPTER 6

Refinement of an analogue of Sylvester’s theorem for arithmetic

progressions: Proof of Theorem 3.3.1

In this chapter, we prove Theorem 3.3.1. We give a sketch of the proof. The proof of Theorem
3.3.1 depends on the sharpening of the upper bound for P in the fundamental inequality (5.1.3)
of Sylvester and Erdős which we described in Lemma 5.2.1. Further we also give a better lower
bound for P, see (6.2.12). Comparing the upper and lower bounds for P, we bound n, d and k.
When d ≤ 7, we also need to use estimates on primes in arithmetic progression due to Ramaré and
Rumely given in Lemma 2.0.4. We apply these estimates to count the number of terms of ∆ which
are of the form ap where 1 ≤ a < d, gcd(a, d) = 1 and p > k, see Lemma 6.1.3. For the finitely
many values of n, d, k thus obtained, we check the validity of (3.3.9) on a computer.

6.1. Lemmas for the proof of Theorem 3.3.1

The following lemma is analogue of Lemma 4.2.2 (ii) for d > 1.

Lemma 6.1.1. Let k1 < k2 be such that 2k1 − 1 and 2k2 − 1 are consecutive primes. Suppose
(3.3.9) holds at k1. Then it holds for all k with k1 ≤ k < k2.

Proof. Assume that (3.3.9) holds at k1. Let k be as in the statement of the lemma. Then
π(2k1) = π(2k). From ∆(n, d, k) = n(n+ d) · · · (n+ (k1 − 1)d)(n + k1d) · · · (n+ (k − 1)d), we have

W (∆(n, d, k)) ≥W (∆(n, d, k1)) ≥ π(2k1) − πd(k1) − ρ ≥ π(2k) − πd(k) − ρ

since πd(k) ≥ πd(k1). �

Lemma 6.1.2. Let max(n, d) ≤ k. Let 1 ≤ r < k with gcd(r, d) = 1 be such that

W (∆(r, d, k)) ≥ π(2k) − ρ.

Then for each n with r < n ≤ k and n ≡ r(mod d), we have

W (∆(n, d, k)) ≥ π(2k) − ρ.

Proof. For r < n ≤ k, we write

∆(n, d, k) =
r(r + d) · · · (r + (k − 1)d)(r + kd) · · · (n+ (k − 1)d)

r(r + d) · · · (n− d)

= ∆(r, d, k)
(r + kd) · · · (n+ (k − 1)d)

r(r + d) · · · (n− d)
.

We observe that p | ∆(n, d, k) for every prime p > k dividing ∆(r, d, k). �

Lemma 6.1.3. Let d ≤ k. For each 1 ≤ r < d with gcd(r, d) = 1, let r ′ be such that rr′ ≡
1(mod d). Then
(a) For a given n with 1 ≤ n ≤ k, Theorem 3.3.1 holds if

∑

1≤r<d
gcd(r,d)=1

π

(

n+ (k − 1)d

r
, d, nr′

)

− π(2k) + ρ ≥ 0(6.1.1)

35
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is valid.
(b) For a given n with k < n < 1.5k, Theorem 3.3.1 holds if

(6.1.2)
∑

1≤r<d
gcd(r,d)=1

π

(

k(d+ 1) − d+ 1

r
, d, nr′

)

− π(2k) + π(k, d, n) − π(1.5k, d, n) ≥ 0

is valid.
(c) For a given n with k < n ≤ 2k, Theorem 3.3.1 holds if

(6.1.3)
∑

1≤r<d
gcd(r,d)=1

π

(

k(d+ 1) − d+ 1

r
, d, nr′

)

− π(2k) + π(k, d, n) − π(2k, d, n) ≥ 0

is valid.

Proof. Let 1 ≤ r < d ≤ k, gcd(r, d) = 1. Then for each prime p ≡ nr ′(mod d) with

max(k, n−1
r ) < p ≤ n+(k−1)d

r , there is a term rp = n+ id in ∆(n, d, k). Therefore

W (∆(n, d, k)) ≥
∑

1≤r<d
gcd(r,d)=1

(

π

(

n+ (k − 1)d

r
, d, nr′

)

− π(max(k,
n− 1

r
), d, nr′)

)

.(6.1.4)

Since
∑

1≤r<d
gcd(r,d)=1

π(k, d, nr′) = πd(k),(6.1.5)

it is enough to prove (6.1.1) for deriving (3.3.9) for 1 ≤ n ≤ k. This gives (a).

Let k < n < k
′
where k

′
= 1.5k or 2k + 1. Then from (6.1.4) and (6.1.5), we have

W (∆(n, d, k)) ≥
∑

1≤r<d
gcd(r,d)=1

(

π

(

k + 1 + (k − 1)d

r
, d, nr′

)

− π(max(k,
k

′ − 1

r
), d, nr′)

)

≥
∑

1≤r<d
gcd(r,d)=1

π

(

k(d+ 1) − d+ 1

r
, d, nr′

)

− π(k
′ − 1, d, n) − πd(k) + π(k, d, n)

since r′ = 1 for r = 1. Hence it suffices to show (6.1.2) for proving (3.3.9) for k < n < 1.5k or
(6.1.3) for proving (3.3.9) for k < n ≤ 2k. Hence (b) and (c) are valid. �

6.2. Proof of Theorem 3.3.1 for k with 2k − 1 prime

Let

χ = χ(n) =































min



1, k−1
n

∏

p|2d

p−ordp(k−1)



 if 2 - n

min



2θ−1, k−1
n

∏

p|d
p−ordp(k−1)



 if 2 | n
(6.2.1)

and

χ1 = χ1(n) = min







1,
k − 1

n

∏

p|d
p−ordp(k−1)







.(6.2.2)
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We observe that χ is non increasing function of n even and n odd separately. Further χ1 is a non
increasing function of n. We also check that

n0

n
≤ χ ≤ χ1(6.2.3)

and χ(1) = 1, χ(2) = 2θ−1.
We take (n, d, k) /∈ V , n > k when d = 2 so that ρ = 0. We assume that (3.3.9) is not valid

and we shall arrive at a contradiction. We take m = π(2k) − πd(k) − 1 in Lemma 5.3.1. Then
t ≥ k − π(2k) in Lemma 5.3.1 and we have from (5.3.1) and (6.2.3) that

dk−π(2k) ≤ χ1(n)

(k − 2)!
∏

p|d
p−ordp((k−2)!)

(α+ 1) · · · (α+ k − π(2k))
(6.2.4)

where n = αd which is also the same as

k−π(2k)
∏

i=1

(n+ id) ≤ χ1(n)(k − 2)!
∏

p|d
p−ordp((k−2)!).(6.2.5)

From (6.2.4), we have

dk−π(2k)≤



































χ1(αd)[α]!(k−2) · · · ([α]+k−π(2k)+1)
∏

p|d
p−ordp(k−2)! if [α] ≤ π(2k) − 3,

χ1(αd)[α]!
∏

p|d
p−ordp(k−2)! if [α] = π(2k) − 2,

χ1(αd)
[α]!

(k−1)k(k+1)···([α]+k−π(2k))

∏

p|d
p−ordp(k−2)! if [α] ≥ π(2k) − 1.

(6.2.6)

We observe that the right hand sides of (6.2.4), (6.2.5) and (6.2.6) are non-increasing functions
of n = αd when d and k are fixed. Thus (6.2.6) and hence (6.2.4) and (6.2.5) are not valid for
n ≥ n0 whenever it is not valid at n0 = α0d for given d and k. This will be used without reference
throughout this chapter. We obtain from (6.2.4) and χ1 ≤ 1 that

dk−π(2k) ≤ (k − 2) · · · (k − π(2k) + 1)
∏

p|d
p−ordp(k−2)!(6.2.7)

which implies that

dk−π(2k) ≤
{

(k − 2) · · · (k − π(2k) + 1)2−ord2(k−2)! if d is even,

(k − 2) · · · (k − π(2k) + 1) if d is odd
(6.2.8)

and

d ≤ (k − 2)
π(2k)−2
k−π(2k)

∏

p|d
p

−ordp(k−2)!

k−π(2k) .(6.2.9)

Using Lemmas 2.0.2 (i) and 2.0.5, we derive from (6.2.9) that

d ≤ exp





2 log(k−2)
log 2k (1 + 1.2762

log 2k ) − 2 log(k−2)
k

1 − 2
log 2k (1 + 1.2762

log 2k )





∏

p|d
p
−max{0,

“

k−1−p
p−1

− log(k−2)
log p

”

/
“

k− 2k
log 2k

(1+ 1.2762
log 2k

)
”

}

(6.2.10)
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which implies

d ≤



















exp

[

2 log(k−2)
log 2k

(1+ 1.2762
log 2k

)− 2 log(k−2)
k

−
“

(1− 3
k
) log 2− log(k−2)

k

”

1− 2
log 2k

(1+ 1.2762
log 2k

)

]

for d even,

exp

[

2 log(k−2)
log 2k

(1+ 1.2762
log 2k

)− 2 log(k−2)
k

1− 2
log 2k

(1+ 1.2762
log 2k

)

]

for d odd.

(6.2.11)

We use the inequalities (6.2.5)-(6.2.11) at several places.
Let d be odd. Then for n even, 2 | n+ id if and only if i is even and for n odd, 2 | n+ id if and

only if i is odd. Let b = k− π(2k) + 1− a and a0 = min(k− π(2k) + 1, [ k−2+θ
2 ]). We note here that

a ≤ [k−2+θ
2 ] where θ is given by (5.2.1). Let ne, de, no and do be positive integers with ne even and

no odd. Let n ≥ ne and d ≤ de for n even, and n ≥ no and d ≤ do for n odd. Assume (5.3.2). The
left hand side of (5.3.2) is greater than



























n
2d

k−π(2k)
a−1
∏

i=1

(

ne

2de
+ i

) b
∏

j=1

(

ne

de
+ 2j − 1

)

:=
n

2
dk−π(2k)F (a) if n is even

ndk−π(2k)
a
∏

i=1

(

no

2do
+ i− 1

2

) b−1
∏

j=1

(

no

do
+ 2j

)

:= ndk−π(2k)G(a) if n is odd.

(6.2.12)

Let Ae := min
(

a0,
⌈

2
3(k − π(2k)) + ne

6de
+ 1

3

⌉

)

and Ao := min
(

a0,
⌈

2
3(k − π(2k)) + no

6do
− 1

6

⌉)

. By

considering the ratios F (a+1)
F (a) and G(a+1)

G(a) , we see that the functions F (a) and G(a) take minimal

values at Ae and Ao, respectively. Thus (5.3.2) with (6.2.3) implies that

dk−π(2k)F (Ae) ≤ 2−θ+1χ(ne)2
ord2([ k−2

2
]!)
∏

p-2d

pordp(k−2)! for n even(6.2.13)

since χ(n) ≤ χ(ne) and

dk−π(2k)G(Ao) ≤ χ(no)2
ord2([

k−2
2

]!)
∏

p-2d

pordp((k−2)!) for n odd(6.2.14)

since χ(n) ≤ χ(no). In the following two lemmas, we bound d if (3.3.9) does not hold.

Lemma 6.2.1. Let d be even. Assume that (3.3.9) does not hold. Then d ≤ 4.

Proof. Let d be even. By (6.2.11), d ≤ 6 for k ≥ 860. For k < 860, we use (6.2.8) to derive
that

d ≤ 12 for k ≥ 9; d ≤ 10 for k = 100; d ≤ 8 for k > 57;

d ≤ 6 for k > 255, k 6= 262, 310, 331, 332, 342.
(6.2.15)

Let d be a multiple of 6. Then we see from (6.2.10) that k ≤ 100. Again for k ≤ 100, (6.2.7) does
not hold. Let d be a multiple of 10. Then we see from (6.2.15) that k = 100 and k ≤ 57. Again,
(6.2.7) does not hold at these values of k.

Let d = 8. By (6.2.15), we may assume that k ≤ 255 and k = 262, 310, 331, 332, 342. Let n ≤ k.
From Lemma 6.1.2, we need to consider only n = 1, 3, 5, 7 and (3.3.9) is valid for these values of
n. Let n = k + 1. Then, we see that (6.2.5) does not hold. Thus (6.2.5) is not valid for all n > k.
Hence d ≤ 4. �

Lemma 6.2.2. Let d be odd. Assume that (3.3.9) does not hold. Then d ≤ 53 and d is prime.

Proof. Let d be odd. We may assume that d > 53 whenever d is prime. Firstly we use (6.2.11)
and then (6.2.8) to derive that d ≤ 15 for k ≥ 2164, d ≤ 59 for k ≥ 9 except at k = 10, 12, and
d ≤ 141 for k = 10, 12.
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We further bring down the values of d and k by using (6.2.13) and (6.2.14). We shall be using
(6.2.13) with ne = 2, χ(ne) = 2θ−1 and (6.2.14) with no = 1, χ(no) = 1 unless otherwise specified.
Let k < 2164. We take de = do = 59 when k 6= 10, 12 and de = do = 141 for k = 10, 12. Let n be
even. From (6.2.13), we derive that

d ≤ 27 for k ≥ 9, k 6= 10, 12, 16, 22, 24, 31, 37, 40, 42, 54, 55, 57;

d ≤ 57 for k = 10, 12, 16, 22, 24, 31, 37, 40, 42, 54, 55, 57;

d ≤ 21 for k > 100, k 6= 106, 117, 121, 136, 139, 141, 142, 147, 159;

d ≤ 17 for k > 387, k 6= 415, 420, 432, 442, 444;

d ≤ 15 for k > 957, k 6= 1072, 1077, 1081.

(6.2.16)

Further we check that (6.2.16) holds for n odd using (6.2.14). Let d > 3 with 3 | d. Then k ≤ 1600
by (6.2.10) and k ≤ 850 by (6.2.7). Further we apply (6.2.13) and (6.2.14) with de = do = 57 to
conclude that d = 9, k ≤ 147, k = 157, 159, 232, 234 and d = 15, k = 10. The latter case is excluded
by applying (6.2.13) and (6.2.14) with de = do = 15. Let d = 9. Suppose n ≤ k. We check that
(3.3.9) is valid for 1 ≤ n < 9 and gcd(n, 3) = 1. Now we apply Lemma 6.1.2 to find that (3.3.9) is
valid for all n ≤ k. Let n > k. Taking ne = 2

⌈

k+1
2

⌉

, no = 2
⌈

k
2

⌉

+1, de = do = 9, we see that (6.2.13)
and (6.2.14) are not valid for n > k.

Let d > 15 with 5 | d and 3 - d. Then k ≤ 159 by (6.2.16). Now, by taking de = do = 55,
we see that (6.2.13) and (6.2.14) do not hold unless k = 10, d = 25 and n odd. We observe that
(6.2.14) with no = 3 and do = 25 is not valid at k = 10. Thus (n, d, k) = (1, 25, 10) and we
check that (3.3.9) holds. Let d > 7 and 3 - d, 5 - d. Then we see from (6.2.16) that d = 49 and
k = 10, 12, 16, 22, 24, 31, 37, 40, 42, 54, 55, 57. Taking de = do = 49, we see that both (6.2.13) and
(6.2.14) do not hold. Thus d < 57 and the least prime divisor of d when d /∈ {3, 5, 7} is at least 11.
Hence d is prime and d ≤ 53. �

In view of Lemmas 6.2.1 and 6.2.2, it suffices to consider d = 2, 4 and primes d ≤ 53. We now
consider some small values of d.

Lemma 6.2.3. Let d = 2, 3, 4, 5 and 7. Assume that n ≤ k and (n, d, k) /∈ V . Then (3.3.9) holds.

Proof. First, we consider the case 1 ≤ n ≤ k and (n, d, k) /∈ V . By Lemma 6.1.2, we may
assume that 1 ≤ n < d and gcd(n, d) = 1. Let d = 2. Then

π(n+ 2(k − 1), 2, 1) − π(2k) + 1 = π(n+ 2k − 2) − 1 − π(2k − 1) + 1 ≥ 0.

Now the assertion follows from Lemma 6.1.3. Let d = 3, 4, 5 or 7. We may assume that k is different
from those given by (n, d, k) ∈ V , otherwise the assertion follows by direct computations. By using
the bounds for π(x, d, l) and π(x) from Lemmas 2.0.4 and 2.0.2, we see that the left hand side of
(6.1.1) is at least

k

{

d−1
∑

i=1

(d
i − d−1

ik )

log 1+dk−d
i

(

c1 +
c2

log 1+dk−d
2i

)

− 2

log 2k

(

1 +
1.2762

log 2k

)

}

(6.2.17)

for k ≥ d−1
d (1 + x0) at d = 3, 5, 7 and

k







∑

i=1,3

(4
i − 3

ik )

log 4k−3
i

(

c1 +
c2

log 4k−3
2i

)

− 2

log 2k

(

1 +
1.2762

log 2k

)







(6.2.18)

for k ≥ 3
4(1 + x0) at d = 4. Here x0 is as given in Lemma 2.0.4. We see that (6.2.17) and (6.2.18)

are increasing functions of k and (6.2.17) is non negative at k = 20000, 2200, 1500 for d = 3, 5 and
7, respectively, and (6.2.18) is non negative at k = 751. Therefore, by Lemma 6.1.3, we conclude
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that k is less than 20000, 751, 2200 and 1500 according as d = 3, 4, 5 and 7, respectively. Further
we recall that n < d. For these values of n and k, we check directly that (3.3.9) is valid. �

Therefore, by Lemma 6.2.3, we conclude that n > k when d = 2, 3, 4, 5 and 7.

Lemma 6.2.4. Let d = 2, 3, 4, 5 and 7. Assume that k < n ≤ 2k if d 6= 2 and k < n < 1.5k if
d = 2. Then (3.3.9) holds.

Proof. Let d = 2 and k < n < 1.5k. By Lemma 6.1.3, it suffices to prove (6.1.2). By using
the bounds for π(k) from Lemma 2.0.2, we see that the left hand side of (6.1.2) is at least

k

{

3

log 3k − 1
+

1

log k − 1
− 2

log 2k

(

1 +
1.2762

log 2k

)

− 1.5

log 1.5k

(

1 +
1.2762

log 1.5k

)}

− 1

for k ≥ 5393 since π(3k − 1, 2, 1) = π(3k) − 1. We see that the above expression is an increasing
function of k and it is non negative at k = 5393. Thus (6.1.2) is valid for k ≥ 5393. For k < 5393,
we check using exact values of π function that (6.1.2) is valid except at k = 9, 10, 12. For these
values of k, we check directly that (3.3.9) is valid since k < n < 1.5k.

Let d = 3, 4, 5, 7 and k < n ≤ 2k. By Lemma 6.1.3, it suffices to prove (6.1.3). By using the
bounds for π(x, d, l), π(2x, d, l) − π(x, d, l) and π(k) from Lemmas 2.0.4 and 2.0.2, respectively, we
see that (6.1.3) is valid for k ≥ 20000, 4000, 2500, 1500 at d = 3, 4, 5 and 7, respectively. Thus
we need to consider only k < 20000, 4000, 2500, 1500 for d = 3, 4, 5 and 7, respectively. Taking
ne = 2

⌈

k+1
2

⌉

, no = 2
⌈

k
2

⌉

+ 1, de = do = d for d = 3, 5, 7 in (6.2.13) and (6.2.14), and n = k + 1 for
d = 4 in (6.2.5), we see that

k ≤ 3226 or k = 3501, 3510, 3522 when d = 3

k ≤ 12 or k = 16, 22, 24, 31, 37, 40, 42, 52, 54, 55, 57, 100, 142 when d = 4

k ≤ 901 or k = 940 when d = 5

k ≤ 342 when d = 7.

For these values of k, we check that (3.3.9) holds whenever k < n < 1.5k. Hence we may assume
that n ≥ 1.5k. Taking ne = 2

⌈

1.5k
2

⌉

, no = 2
⌈

1.5k−1
2

⌉

+ 1, de = do = d for d = 3, 5, 7 in (6.2.13) and

(6.2.14), and n =
⌈

1.5k
⌉

for d = 4 in (6.2.5), we see that

k ∈ {54, 55, 57} when d = 3

k ∈ {10, 22, 24, 40, 42, 54, 55, 57, 70, 99, 100, 142} when d = 5

k ∈ {10, 12, 24, 37, 40, 42, 54, 55, 57, 100} when d = 7.

For these values of k, we check directly that (3.3.9) holds for 1.5k ≤ n ≤ 2k. �

Lemma 6.2.5. Let d = 2, 3, 4, 5 and 7. Assume n > 2k if d 6= 2 and n ≥ 1.5k if d = 2. Then
(3.3.9) holds.

Proof. Let d = 2 and n ≥ 1.5k. Then we take α = 1.5k
2 so that n ≥ αd. Further we observe

that α ≥ π(2k) − 1. Then we see from (6.2.6) and (6.2.2) that

2k−π(2k) ≤
⌈

.75k
⌉

!

1.5k2(k + 1) · · · (
⌈

.75k
⌉

+ k − π(2k))
2−ord2(k−1)!.(6.2.19)



6.2. PROOF OF THEOREM 3.3.1 FOR k WITH 2k − 1 PRIME 41

Now we apply Lemmas 2.0.6, 2.0.5 and 2.0.2 (i) in (6.2.19) to derive that

2 ≤
(

8
3

√
2π exp(−.75k)(.75(k + 1)).75(k+1)+ 1

2 exp( 1
9k )2π(2k)

k2(k + 1).75k−π(2k)

)
1

2k−
log(k−1)

log 2

≤ exp





2 log 2(k+1)
log 2k (1 + 1.2762

log 2k ) − .75 + .75 log .75 + 1
9k2 + 1.25 log(k+1)−2 log k+1.54017

k

2 − log(k−1)
k log 2





for k ≥ 9. This does not hold for k ≥ 700. Thus k < 700. Further using (6.2.5) with n =
⌈

1.5k
⌉

,
we get k ∈ {16, 24, 54, 55, 57, 100, 142}. For these values of k, taking n = 2k+ 1, we see that (6.2.5)
is not valid. Thus n ≤ 2k. Now we check that (3.3.9) holds for these values of k and 1.5 ≤ n ≤ 2k.

Let d = 3, 4, 5 and 7 and n > 2k. Then we take α = 2k+1
d so that n ≥ αd. We proceed as in the

case d = 2 to derive from (6.2.5) that k < 70, 69, 162 and 1515 for d = 3, 4, 5 and 7, respectively.
Let d = 3, 5 and 7. We use (6.2.13) and (6.2.14) with ne = 2k + 2, no = 2k + 1 and de = do = d if
d = 3, 5, 7, respectively to get d = 5, k = 10 and n even. Let k = 10, d = 5 and n even. We take
ne = 2k+6, de = 5 to see that (6.2.13) holds. Hence n ≤ 2k+4. Now we check directly that (3.3.9)
is valid for n = 2k + 2, 2k + 4. Finally we consider d = 4 and k < 69. Taking n = 2k + 1, we see
that (6.2.5) is not valid. Thus (3.3.9) holds for all n > 2k. �

By Lemmas 6.2.1, 6.2.2, 6.2.3, 6.2.4, and 6.2.5, it remains to consider

11 ≤ d ≤ 53, d prime.

We prove Theorem 3.3.1 for these cases in the next section.

6.2.1. The Case d≥ 11 with d prime. Our strategy is as follows. Let U0, U1, · · · be sets of
positive integers. For any two sets U and V , we denote U − V = {u ∈ U |u /∈ V }. Let d be given.
We take de = do = d always unless otherwise specified. We apply steps 1 − 5 as given below.

1. Let d = 11, 13. We first use (6.2.10) to bound k. We reduce this bound considerably using
(6.2.7). For d > 13, we use (6.2.16) to bound k. Then we apply (6.2.13) and (6.2.14) with

ne = n
(0)
e = 2, no = n

(0)
o = 1 to bring down the values of k still further. Let U0 be these

finite set of values of k.
2. For each k ∈ U0, we check that (3.3.9) is valid for 1 ≤ n < d. Hence by Lemma 6.1.2, we

get n > k.
3. For k ∈ U0, we apply (6.2.5) with n = k + 1 to find a subset U

′

0 ( U0.

4. For k ∈ U
′

0, we apply (6.2.13) and (6.2.14) with ne = n
(1)
e = 2

⌈

k+1
2

⌉

, no = n
(1)
o = 2

⌈

k
2

⌉

+ 1

to get a subset U1 ( U
′

0.

5. Let i ≥ 2. For k ∈ Ui−1, we apply (6.2.13) and (6.2.14) with suitable values of ne = n
(i)
e and

no = n
(i)
o to get a subset Ui ( Ui−1. Thus for k ∈ Ui−1−Ui, we have k < n < max(n

(i)
e , n

(i)
o )

and we check that (3.3.9) is valid for these values of n and k. We stop as soon as Ui = φ.

We explain the above strategy for d = 11. From (6.2.10), we get k ≤ 11500 which is reduced to

k ≤ 5589 by (6.2.7). By taking n
(0)
e = 2, n

(0)
o = 1, we get

U0 = {k|k ≤ 2977, k = 3181, 3184, 3187, 3190, 3195, 3199}.

We now check that (3.3.9) is valid for 1 ≤ n < 11 for each k ∈ U0 so that we conclude n > k. By

Step 3, we get U
′

0 = {k|k ≤ 252}. Further by step 4, we find

U1 = {9, 10, 12, 16, 21, 22, 24, 27, 31, 37, 40, 42, 45, 52, 54, 55, 57, 70, 91, 99, 100, 121, 142}.
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Now we take

n(2)
e = 2

⌈1.5k

2

⌉

, n(2)
o = 2

⌈1.5k − 1

2

⌉

+ 1

to get U2 = {10, 22, 37, 42, 54, 55, 57}. Then we have

k < n < 1.5k for k ∈ U1 − U2.(6.2.20)

Next we take n
(3)
e = 2k + 2, n

(3)
o = 2k + 1 to get U3 = {10, 22, 55} and we have

k < n < 2k for k ∈ U2 − U3.(6.2.21)

Finally we take n
(4)
e = 4k, n

(4)
o = 4k + 1 to get U4 = φ and hence

k < n < 4k for k ∈ U3(6.2.22)

and our procedure stops here since U4 = φ. Now we check that (3.3.9) holds for k and n as given
by (6.2.20), (6.2.21) and (6.2.22).

We follow steps 1 − 5 with the same parameters as for d = 11 in the cases d = 13, 17, 19 and
23. Let 23 < d ≤ 53, d prime. We modify our steps 1 − 5 slightly to cover all these values of d
simultaneously. For each of k ∈ U0, we check that (3.3.9) is valid for 1 ≤ n ≤ min(d, k) and coprime
to d. Thus n > k. Now we apply step 4 with de = do = 53 to get U1 = {10, 12, 16, 24, 37, 55, 57}.
In step 5, we take n

(2)
e = 2

⌈

3k+1
2

⌉

, n
(2)
o = 2

⌈

3k
2

⌉

+ 1, de = do = 53 to see that that U2 = φ. Thus

k < n < 3k for k ∈ U1.(6.2.23)

Now we check that (3.3.9) holds for k and n as given by (6.2.23) for every d with 23 < d ≤ 53 and
d prime. �

6.3. Proof of Theorem 3.3.1

By the preceding section, Theorem 3.3.1 is valid for all k such that 2k − 1 is prime. Let k be
any integer and k1 < k < k2 be such that 2k1 − 1, 2k2 − 1 are consecutive primes. By Lemma
6.1.3, we see that (3.3.9) is valid except possibly for those triples (n, d, k) with (n, d, k1) ∈ V . We
check the validity of (3.3.9) at those (n, d, k). For instance, let k = 11. Then k1 = 10. We see
that (1, 3, 10), (4, 3, 10), (2, 5, 10), (1, 7, 10) ∈ V . We check that (3.3.9) does not hold at (1, 3, 11)
and (3.3.9) holds at (4, 3, 11), (2, 5, 11) and (1, 7, 11). Thus (1, 3, 11) ∈ V . We find that all the
exceptions to Theorem 3.3.1 are given by V . �



CHAPTER 7

Squares in arithmetic progression, a prelude

7.1. Introduction

Let n, d, k, b, y be positive integers such that b is square free, d ≥ 1, k ≥ 2, P (b) ≤ k and
gcd(n, d) = 1. We consider the equation

(7.1.1) ∆(n, d, k) = n(n+ d) · · · (n+ (k − 1)d) = by2.

If k = 2, we observe that (7.1.1) has infinitely many solutions. Therefore we always suppose that
k ≥ 3. Let p ≥ k, p|(n + id). Then p - (n + jd) for j 6= i otherwise p|(i − j) and |i − j| < k, a
contradiction. Equating powers of p on both sides of (7.1.1), we see that ordp(n+ id) is even. From
(7.1.1), we have

n+ id = aix
2
i = AiX

2
i(7.1.2)

with ai squarefree and P (ai) ≤ k, P (Ai) ≤ k and (Xi,
∏

p<k p) = 1 for 0 ≤ i < k. Since gcd(n, d) =
1, we also have

(Ai, d) = (ai, d) = (Xi, d) = (xi, d) = 1 for 0 ≤ i < k.(7.1.3)

We call (ak−1, ak−2, · · · , a1, a0) as the mirror image of (a0, a1, a2, · · · , ak−1).
Let d = 1. We recall that ∆(n, 1, k) = ∆(n, k). A conjecture in the folklore says that a product

of two or more consecutive positive integers is never a square. Several particular cases have been
treated by many mathematicians. We refer to Dickson [3] for a history. It is a consequence of some
old diophantine results that (7.1.1) with k = 3 is possible only when n = 1, 2, 48. Let k ≥ 4. As
mentioned in Chapter 1 after (1.0.1), there are infinitely many pairs (n, k) such that P (∆(n, k)) ≤ k.
Then (7.1.1) is satisfied with P (y) ≤ k for these infinitely many pairs. Therefore we consider (7.1.1)
with P (∆(n, k)) > k. This assumption is satisfied when n > k by (1.0.1). Developing on the
earlier work of Erdős [9] and Rigge [36], it was shown by Erdős and Selfridge [11] that (7.1.1) with
n > k2 and P (b) < k does not hold. Suppose P := P (∆(n, k)) > k. Then there is a unique i with
0 ≤ i < k such that n + i is divisible by P . Hence by (7.1.1), n + i is divisible by P 2 showing
that n + i ≥ (k + 1)2 giving n > k2. Thus it follows from the result of Erdős and Selfridge [11]
that (7.1.1) with P > k and P (b) < k does not hold. The assumption P (b) < k has been relaxed
to P (b) ≤ k in Saradha [40]. In Section 7.3, we show that (7.1.1) with P > k implies that k is
bounded by an absolute constant.

Let d > 1. Let k = 3. Then for r, s with r, s of opposite parity, r > s and gcd(r, s) = 1, we
see that n = (r2 − s2 − 2rs)2, d = 4rs(r2 − s2) give infinitely many solutions of (7.1.1). Therefore
we assume from now onward that k ≥ 4. Fermat (see Mordell [28, p.21]) showed that there are
no four squares in an arithmetic progression. Euler proved a more general result that a product of
four terms in arithmetic progression can never be a square. In the next Section we prove this result
using elliptic curves. Euler’s result was extended to k = 5 by Obláth [31] and to 6 ≤ k ≤ 32 by
Hirata-Kohno, Shorey and Tijdeman [55]. This was also proved, independently, by Bennett, Győry
and Hajdu [1] for 6 ≤ k ≤ 11. On the other hand, we shall show in Section 7.2 that (7.1.1) with
k = 4 and b = 6 has infinitely many solutions. We state a conjecture in this regard.

Conjecture 7.1.1. Equation (7.1.1) with P (b) ≤ k implies that k = 4.

43
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Mukhopadhyay and Shorey [30] showed that (7.1.1) with k = 5 and P (b) < k does not hold.
Further Hirata-Kohno, Shorey and Tijdeman [55] showed that (7.1.1) with 6 ≤ k ≤ 20 and P (b) < k
does not hold except in the cases

k = 6, (a0, a1, · · · , a5) = (1, 2, 3, 1, 5, 6)

k = 8, (a0, a1, · · · , a7) = (2, 3, 1, 5, 6, 7, 2, 1), (1, 2, 3, 1, 5, 6, 7, 2)

k = 9, (a0, a1, · · · , a8) = (1, 2, 3, 1, 5, 6, 7, 2, 1)

or their mirror images. A version of the preceding result was proved, independently, by Bennett,
Győry and Hajdu [1] when 6 ≤ k ≤ 11 and P (b) ≤ 5.

Marszalek [26] proved that (7.1.1) with b = 1 implies that k < 2 exp (d(d + 1)
1
2 ). Thus if d

is fixed, then k is bounded by an absolute constant. Equation (7.1.1) was completely solved for
1 < d ≤ 104 in Saradha and Shorey [43]. For earlier results, see Saradha [39] and Filakovszky and
Hajdu [12]. The result of Marszalek was refined by Shorey and Tijdeman [53]. They showed that

k < C1(ω(d))

where C1(ω(d)) is a computable number depending only on ω(d). Thus if ω(d) is fixed, then k is
bounded by an absolute constant.

Let ω(d) = 1 i.e, d = pα, p-prime and α > 0. It was shown in Saradha and Shorey [43] that
(7.1.1) with b = 1 and k ≥ 4 has no solution. In fact the condition gcd(n, d) = 1 is not necessary
in the preceding result. Thus a product of four or more terms in an arithmetic progression with
common difference a prime power can never be a square. This was the first instance where (7.1.1)
was completely solved for an infinite set of values of d. Let b > 1. Then it follows from the
works of Saradha and Shorey [43] and Mukhopadhyay and Shorey [30] that (7.1.1) implies either
(n, d, k, b, y) = (75, 23, 4, 6, 4620) or k = 5, P (b) = 5.

We now take ω(d) ≥ 2. Our aim in the next chapter is to give an explicit expression for C1(ω(d)).
Let κ0 = κ0(ω(d)) be given by Table 1 and (6). We prove the following result of Laishram [20].

Theorem 7.1.2. Equation (7.1.1) implies that

k < κ0.(7.1.4)

7.2. A proof of Euler’s result

Let k = 4. We show that (7.1.1) with b = 1 does not hold. In fact we prove more.

(7.1.1) with b=1, 2, 3 does not hold and there are infinitely many solutions with b=6.

Assume that n(n+ d)(n+ 2d)(n+ 3d) = by2 where b ∈ {1, 2, 3, 6}. Then
(

6b2y

n2

)2

= 6b

(

1 +
d

n

)

3b

(

1 +
2d

n

)

2b

(

1 +
3d

n

)

.

Putting X = 2b+ 6bd
n and Y = 6b2y

n2 , we obtain the elliptic equation

Y 2 = X(X + b)(X + 4b) in X,Y ∈ Q.

We check using MAGMA that the above curves have rank 0 except when b = 6 in which case the
rank is 1. Let b 6= 6. Then the torsion points are given by

b = 1 : (X,Y ) = (0, 0), (−1, 0), (2, 6), (2,−6), (−2, 2), (−2,−2), (−4, 0),

b = 2 : (X,Y ) = (0, 0), (−2, 0), (−8, 0),

b = 3 : (X,Y ) = (0, 0), (−3, 0), (−12, 0).
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We observe that X > 0. Thus it suffices to consider the torsion points (X,Y ) = (2, 6) and (2,−6).
Then 2 = 2 + 6 d

n implying d = 0. This is a contradiction. Therefore the above torsion points do
not give any solution for (7.1.1).

Next we consider b = 6 where we refer to Mordell [28, p.68] and Tijdeman [57]. Suppose
(n0, d0, y0) is a solution of (7.1.1). Then

X0 =
n0

d0
, Y0 =

6y0

d2
0

(7.2.1)

is a solution of

Y 2 = 6X(X + 1)(X + 2)(X + 3) with X,Y ∈ Q.(7.2.2)

Putting X = x+X0 with x 6= 0, we consider a new equation

z2 = 6(x+X0)(x+X0 + 1)(x +X0 + 2)(x +X0 + 3) = a0x
4 + a1x

3 + a2x
2 + a3x+ a4(7.2.3)

in x, z ∈ Q. Then (x, z) = (0, Y0) is a solution of (7.2.3) and a4 = Y 2
0 . Let A and B be given by

2Y0A+B2 = a2, 2Y0B = a3. Then we see that

x =
a1 − 2AB

A2 − a0
, z = Ax2 +Bx+ Y0

is a solution of (7.2.3). This implies that

x+X0 =
a1 − 2AB

A2 − a0
+X0

is a new value of X satisfying (7.2.2). This gives rise to a new solution (n, d, y) of (7.1.1).
Since (n, d, y) = (1, 1, 2) satisfies (7.1.1), we see that X0 = 1, Y0 = 12 is a solution of (7.2.2).

Thus (7.2.3) becomes

z2 = 6(x+ 1)(x+ 2)(x+ 3)(x + 4) = 6x4 + 60x3 + 210x2 + 300x+ 144.

Hence A = 215
96 , B = 25

2 and x = − 36960
9071 . Thus

x+X0 = −27889

9071

is a new value of X satisfying (7.2.2). Thus
(

144041508

90712

)2

= 6
27889 · 18818 · 9747 · 676

90714

giving n = 676, d = 9071, y = 24006918 as a solution of (7.1.1). With these value of (n, d, y), we
continue as in the case (n, d, y) = (1, 1, 2) to get another new solution (n, d, y) of (7.1.1). We get
infinitely many values of n and d satisfying (7.1.1). �

7.3. k is bounded when d = 1

Let d = 1 and k ≥ 1900. As mentioned in Section 7.1 above, we may assume that n > k2. First
we show that a0, a1, · · · , ak−1 are all distinct where ai’s are given by (7.1.2). Let ai = aj with i > j.
Then

k > i− j = aj(x
2
i − x2

j) = aj(xi − xj)(xi + xj) ≥ 2ajxj ≥ 2(ajx
2
j )

1
2 ≥ 2n

1
2 > 2k,

a contradiction.
Let si denote the i−the square free integer. In any set of 36 consecutive integers, after deleting

multiples of 4 and 9, we see that there are at most 24 squarefree integers. Thus the number of
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square free integers ≤ si which is equal to i ≤ 24([ si
36 ] + 1) giving si ≥ 1.5(i − 24). Since ai’s are

squarefree and distinct, we have

a0a1 · · · ak−1 ≥
k
∏

i=25

si > (1.5)k−24(k − 24)!.(7.3.1)

Let p ≤ k. We see that there are at most [ k−1
p ] + 1 terms divisible by p. Since ai’s are squarefree,

we see that

ordp(a0a1 · · · ak−1) ≤ [
k − 1

p
] + 1 ≤ ordp((k − 1)!) + 1.

Therefore

a0a1 · · · ak−1|(k − 1)!





∏

p≤k

p





Thus using Lemma 2.0.1 (iii), we have

a0a1 · · · ak−1 ≤ (k − 1)!(2.7205)k(7.3.2)

This is not sufficient to contradict (7.3.1). We improve (7.3.2) by counting the power of 2 and 3 in
(k− 1)! and a0a1 · · · ak−1 as follows. We see that 2|ai if and only if 2 divides n+ i to an odd power.
After removing a term n+ i to which 2 appears to a maximum power, the number of terms in the
remaining set divisible by 2 to an odd power is at most

[

k − 1

2

]

−
([

k − 1

22

]

− 1

)

+

[

k − 1

23

]

−
([

k − 1

24

]

− 1

)

+ · · ·

≤
[

k−1

2

]

−
([

k−1

22

]

−1

)

+

[

k−1

23

]

−
([

k−1

24

]

− 1

)

+

[

k−1

25

]

since the remaining expression is dominated by [ k−1
25 ]. Further since ai’s are square free, we have

ord2(
∏

i

ai) ≤ 1+

[

k−1

2

]

−
([

k−1

22

]

−1

)

+

[

k−1

23

]

−
([

k−1

24

]

− 1

)

+

[

k−1

25

]

It is known that

ord2



(k − 1)!





∏

p≤k

p







≥ 1+

[

k − 1

2

]

+

[

k−1

22

]

+ · · ·+
[

k−1

25

]

.

Thus

ord2





(k − 1)!
(

∏

p≤k p
)

a0a1 · · · ak−1



 ≥ 2

[

k − 1

22

]

+ 2

[

k − 1

24

]

− 2 ≥ 5

8
k − 10.

Similarly

ord3





(k − 1)!
(

∏

p≤k p
)

a0a1 · · · ak−1



 ≥ 2

[

k − 1

32

]

+ 2

[

k − 1

34

]

− 2 ≥ 20

81
k − 10.

Therefore

(k − 1)!
(

∏

p≤k p
)

a0a1 · · · ak−1
≥ 2

5
8
k3

20
81

k6−10
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giving

a0a1 · · · ak−1 ≤ (k − 1)!





∏

p≤k

p





(

2
5
8 3

20
81

)k
610.

Now we compare this upperbound with the (7.3.1) and using Lemma 2.0.1 (iii) to get
(

(1.5)2
5
8 3

20
81

2.7205

)k

< k23610(1.5)24

i.e.,

0.1091 <
23 log k + 27.65

k
implying k < 1900. �

Remark: The argument in the proof of Section 7.3 can be improved considerably. We may
use more primes in addition to 2 and 3. See Lemma 8.3.12. Also we may use the exact values of
si. These improvements enable us to show that k ≤ 14. The cases k ≤ 14 are excluded by using a
counting argument. For instance, let k = 14. Then the number of ai’s composed of only 2 and 3 is
at least 5. This is a contradiction since there are only 4 distinct squarefree integers composed of 2
and 3, viz, 1, 2, 3, 6.





CHAPTER 8

An explicit bound for the number of terms of an arithmetic

progression whose product is almost square: Proof of Theorem

7.1.2

8.1. Two Propositions

Let κ0 be given by Table 1 and (6). We prove the following two propositions in this chapter.
Theorem 7.1.2 is a direct consequence of the these two propositions.

Proposition 8.1.1. Let k ≥ κ0. Then (7.1.1) implies that

d < 4c1(k − 1)2,(8.1.1)

n < c1(k − 1)3(8.1.2)

and hence

n+ (k − 1)d < 5c1(k − 1)3(8.1.3)

where

c1 =











1
16 if d is odd
1
8 if ord2(d) = 1
1
4 if ord2(d) ≥ 2.

Proposition 8.1.2. Let k ≥ κ0. Then (7.1.1) implies that

n+ (k − 1)d ≥ 2δ 5

16
k3(8.1.4)

where

δ = min{ord2(d), 3}.

Since 5c1≤2δ 5
16 , Theorem 7.1.2 follows immediately from (8.1.3) and (8.1.4). �

In the remaining part of this chapter we shall prove Propositions 8.1.1 and 8.1.2.

8.2. Notations and Preliminaries

First we recall that

n+ id = aix
2
i = AiX

2
i(8.2.1)

with ai squarefree, P (Ai) ≤ k and (Xi,
∏

p≤k p) = 1 for 0 ≤ i < k. Let

T = {i | 0 ≤ i < k, Xi = 1}, T1 = {i | 0 ≤ i < k, Xi 6= 1}.
Note that Xi > k for i ∈ T1. For 0 ≤ i < k, denote

ν(Ai) = | {j ∈ T1, Aj = Ai} |.(8.2.2)

49
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We always suppose that there exist i0 > i1 > · · · > iν(Ai)−1 such that Ai0 = Ai1 = · · · = Aiν(Ai)−1
.

Similarly we define

R = {ai | 0 ≤ i < k}
and

ν(ai) =
∣

∣{j | 0 ≤ j < k, ai = aj}
∣

∣.(8.2.3)

Define

ρ := ρ(d) =

{

1 if 3 - d

3 if 3 | d.(8.2.4)

Let P1 < P2 < · · · be all the odd prime divisors of d. Let r := r(d) ≥ 0 be the unique integer such
that

P1P2 · · ·Pr < (4c1)
1
3 (k − 1)

2
3 but P1P2 · · ·Pr+1 ≥ (4c1)

1
3 (k − 1)

2
3 .(8.2.5)

If r = 0, we understand that the product P1 · · ·Pr = 1.
Let d

′ |d and d
′′

= d
d
′ be such that gcd(d

′
, d

′′
) = 1. We write

d
′′

= d1d2, gcd(d1, d2) =

{

1 if ord2(d
′′
) ≤ 1

2 if ord2(d
′′
) ≥ 2

and we always suppose that d1 is odd if ord2(d
′′
) = 1. We call such pairs (d1, d2) as partitions of

d
′′
.
We observe that the number of partitions of d

′′
is 2ω(d

′′
)−θ1 where

θ1 := θ1(d
′′
) =

{

1 if ord2(d
′′
) = 1, 2

0 otherwise

and we write θ for θ1(d). In particular, by taking d′ = 1 and d
′′

= d, the number of partitions of d

is 2ω(d)−θ .
Let Ai = Aj , i > j. Then from (8.2.1) and (7.1.3), we have

(i− j)d = Ai(X
2
i −X2

j ) = Ai(Xi −Xj)(Xi +Xj)(8.2.6)

such that gcd(d,Xi−Xj, Xi+Xj) = 1 if d is odd and 2 if d is even. Hence for any divisor d
′′

of d, we

have a partition (d1, d2) of d
′′

corresponding to Ai = Aj such that d1 | (Xi −Xj) and d2 | (Xi +Xj)

and it is the unique partition of d
′′

corresponding to pair (i, j). Similarly, we have unique partition

of d
′′

corresponding to every pair (i, j) whenever ai = aj .

8.3. Lemmas

Lemma 8.3.1. Let πd(k) ≤ π(k) − 1. Then

|T1| > k − (k − 2) log (k − 1)

log (n+ (k − 1)d) − log 2
− π(k).(8.3.1)

Proof. We first prove that

|T1| > k − (k − 2) log (k − 1)

log (k − 2) + log d
− πd(k) − 1,

|T1| > k − (k − 2) log (k − 2)

log n
− πd(k) − 1 for n ≥ 2.

(8.3.2)
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We have |T1| = k − |T |. We may assume that |T | > πd(k) for a proof of (8.3.2). We follow an
argument of Erdős. Let ST = {n + id = Ai|i ∈ T}. For each prime p ≤ k and p - d, we remove a
term from ST such that p does not divide any other term of ST to a higher power. Let S1 be the
remaining set and we have |S1| = |T | − πd(k). Then by Lemma 5.2.1, we have

∏

n+id∈S1

(n+ id) ≤ n0

∏

p-d

pordp((k−2)!) ≤ n(k − 2)!
∏

p|d
p−ordp((k−2)!).(8.3.3)

Again

∏

n+id∈S1

(n+ id) ≥
|T |−πd(k)−1

∏

i=0

(n+ id) = n|T |−πd(k)d|T |−πd(k)−1

|T |−πd(k)−1
∏

i=1

(α+ i)(8.3.4)

where α = n
d . Comparing the upper and lower bounds and using

∏

p|d
p−ordp((k−2)!) ≤ 1, we get

d|T |−πd(k)−1(|T | − πd(k) − 1)! ≤ (k − 2)!(8.3.5)

and

n|T |−πd(k)−1 ≤ (k − 2)!.(8.3.6)

Therefore

(|T | − πd(k) − 1) log d ≤ log((k − 2) · · · (|T | − πd(k)))

<(k − |T | + πd(k) − 1) log(k − 1).

The latter relation holds with strict inequality since |T | ≤ k− π(2k) + πd(k) for k ≥ 4 by Theorem
3.3.1. This shows that

|T | < (k − 2) log(k − 1)

log d+ log(k − 1)
+ πd(k) + 1

implying (8.3.2). By (8.3.6), we have

|T | < (k − 2) log(k − 2)

log n
+ πd(k) + 1

for n ≥ 2 which yields (8.3.2).
Now we use πd(k) ≤ π(k) − 1. Let n ≥ (k − 1)d. Then log n ≥ log(n+ (k − 1)d) − log 2. This

gives (8.3.1). For n < (k−1)d, we have log(k−1)+log d > log(n+(k−1)d)− log 2 implying (8.3.1)
again. �

Lemma 8.3.2. Let d = d
′
d
′′

with gcd(d
′
, d

′′
) = 1. Let i0 ∈ T1 be such that Ai0 ≥ d

′
. Then

ν(Ai0) ≤ 2ω(d
′′
)−θ1(d

′′
).(8.3.7)

Proof. For simplicity, we write θ1 = θ1(d
′′
). Assume that ν(Ai0) > 2ω(d

′′
)−θ1 . Then there

exists i0 > i1 > · · · > i
2ω(d

′′
)−θ1

such that Ai0 = Ai1 = · · · = Ai
2ω(d

′′
)−θ1

. For each pair (i0, ir), r =

1, 2, · · · 2ω(d
′′
)−θ1 , we have a unique partition corresponding to the pair. But there are at most

2ω(d
′′
)−θ1 partitions of d

′′
. Since (i0 − ir)d = Ai0(Xi0 −Xir )(Xi0 +Xir) and Ai0 ≥ d

′
, we have

k > i0 − ir =
Ai0

d′

(

Xi0 −Xir

d1

)(

Xi0 +Xir

d2

)

≥
(

Xi0 −Xir

d1

)(

Xi0 +Xir

d2

)

where (d1, d2) is the partition of d
′′

corresponding to pair (i0, ir). This shows that we cannot have

the partition ( d
′′

2θ1
, 2θ1) corresponding to any pair. Hence there can be at most 2ω(d

′′
)−θ1−1 partitions
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of d
′′

with respect to 2ω(d
′′
)−θ1 pairs of (i0, ir), r = 1, · · · 2ω(d

′′
)−θ1 . By Box Principle, there exist

pairs (i0, ir), (i0, is) with 1 ≤ r < s ≤ 2ω(d
′′
)−θ1 and a partition (d1, d2) of d

′′
corresponding to these

pairs. Thus

d1 | (Xi0 −Xir ), d2 | (Xi0 +Xir) and d1 | (Xi0 −Xis), d2 | (Xi0 +Xis)

so that d1|(Xi0 −Xis) − (Xi0 −Xir) = Xir −Xis and d2|(Xi0 +Xir ) − (Xi0 + Xis) = Xir −Xis .
Therefore lcm(d1, d2) | (Xir −Xis). Since Air = Ais = Ai0 and gcd(d1, d2) ≤ 2, we have

k > (ir − is) > (ir − is)
d
′

Ai0

=
(Xir −Xis)

lcm(d1, d2)

(Xir +Xis)

gcd(d1, d2)
>

(Xir +Xis)

2
>

2k

2
= k.

This is a contradiction. �

By taking d
′
= 1 and d

′′
= d, the following result is immediate from Lemma 8.3.2 since θ1(d) = θ.

Corollary 8.3.3. For i0 ∈ T1, we have ν(Ai0) ≤ 2ω(d)−θ.

Lemma 8.3.4. Let k ≥ 17. Suppose n ≥ c1(k − 1)3 or d ≥ 4c1(k − 1)2. Then for 0 ≤ i0 < k, we
have

ν(ai0) ≤ 2ω(d)−θ .(8.3.8)

Proof. Suppose that ν(ai0) > 2ω(d)−θ . We note that both xi + xj and xi − xj are even when

d is even. Continuing as in the proof of (8.3.7) with d
′′

= d, we see that there exists i, j with i > j
and

k >
ai0(xi + xj)

2

where d
2

∣

∣(xi − x0) if d is even and d
∣

∣(xi − x0) if d is odd. We have xi ≥ xj + d
2 so that k >

1
2ai0(xi + xj) ≥

(

ajx
2
j

)
1
2

+ d
4 ≥ n

1
2 + d

4 and hence

k >

{

1 + c1(k − 1)2 if d ≥ 4c1(k − 1)2,

1 + (c1)
1
2 (k − 1)

3
2 if n ≥ c1(k − 1)3

which is not true for k ≥ 17. �

Lemma 8.3.5. The equation (7.1.1) implies that either

d ≥ 4c1(k − 1)2

or

r ≥
[

ω(d)

3

]

.

Proof. If r + 1 ≤ [ω(d)
3 ], then ω(d) ≥ 3(r + 1) giving d ≥ 4c1(k − 1)2 by (8.2.5). �

Lemma 8.3.6. Let S ⊆ {Ai|0 ≤ i < k} and min
Ah∈S

Ah ≥ U . Let t ≥ 1. Assume that

|S| > Qt

(

P1 − 1

2

)

· · ·
(

Pt − 1

2

)

(8.3.9)

where Qt ≥ 1 is an integer. Then

max
Ah∈S

Ah ≥ 2δQtP1 · · ·Pt + U.(8.3.10)
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Proof. For an odd p|d, we have
(

Ah

p

)

=

(

AhX
2
h

p

)

=

(

n

p

)

where ( ··) is Legendre symbol. We observe that Ah belongs to at most p−1
2 distinct residue classes

modulo p for each 0 ≤ h < k. If d is even, then Ah also belongs to a unique residue class modulo 2δ

for each 0 ≤ h < k. Hence, by Chinese remainder theorem, Ah belongs to at most
(

P1−1
2

)

· · ·
(

Pj−1
2

)

distinct residue classes modulo 2δP1 · · ·Pj for each j, 1 ≤ j ≤ t. Assume that (8.3.10) does not
hold. Then

max
Ah∈S

Ah − (U − 1) ≤ 2δQtP1 · · ·Pt.

Therefore

|S| ≤ 2δQtP1 · · ·Pt

2δP1 · · ·Pt

(

P1 − 1

2

)

· · ·
(

Pt − 1

2

)

contradicting (8.3.9). �

Corollary 8.3.7. Let S and U be as in Lemma 8.3.6. Let |S| ≥ s >
(

P1−1
2

)

· · ·
(

Pt−1
2

)

. Then

max
Ah∈S

Ah ≥ 3

4
2t+δs+ U.(8.3.11)

Proof. Let (f − 1)
(

P1−1
2

)

· · ·
(

Pt−1−1
2

)

< s − Qt

(

P1−1
2

)

· · ·
(

Pt−1
2

)

≤ f
(

P1−1
2

)

· · ·
(

Pt−1−1
2

)

where Qt ≥ 1 and 1 ≤ f ≤ Pt−1
2 is an integer. To see this, write s = Q

(

P1−1
2

)

· · ·
(

Pt−1
2

)

+

Q′ (P1−1
2

)

· · ·
(

Pt−1−1
2

)

+ R where 0 ≤ Q′ < Pt−1
2 and 0 ≤ R <

(

P1−1
2

)

· · ·
(

Pt−1−1
2

)

. If R > 0, then

take Qt = Q, f − 1 = Q′; if R = 0 and Q′ > 0, then take Qt = Q, f = Q′; and if R = Q′ = 0, then
take Qt = Q− 1 and f = Pt−1

2 . We arrange the elements of S in increasing order and let S
′ ⊆ S be

the first (f − 1)
(

P1−1
2

)

· · ·
(

Pt−1−1
2

)

+ 1 elements and S
′′

consist of the remaining set. Then we see

from Lemma 8.3.6 with t = t− 1 and Qt = f − 1 that

max
Ah∈S

′
Ah ≥ 2δ(f − 1)P1P2 · · ·Pt−1 + U = U

′
.

Now we apply Lemma 8.3.6 with U = U
′
in S

′′
to derive

max
Ah∈S

Ah ≥ 2δQtP1P2 · · ·Pt + 2δ(f − 1)P1P2 · · ·Pt−1 + U.

Hence to derive (8.3.11), it is enough to prove

QtP1 · · ·Pt + (f − 1)P1 · · ·Pt−1 ≥ 3

4
{Qt(P1 − 1) · · · (Pt − 1) + 2f(P1 − 1) · · · (Pt−1 − 1)} .

By observing that

Qt(P1 − 1) · · · (Pt − 1) ≤ QtP1 · · ·Pt −QtP1 · · ·Pt−1,

2f(P1 − 1) · · · (Pt−1 − 1) ≤ 2fP1 · · ·Pt−1 − 2fP1 · · ·Pt−2,

it suffices to show that

Qt +
3(Qt − 1) − (2f + 1)

Pt
+

6f

PtPt−1
≥ 0

which is true since Qt ≥ 1 and 1 ≤ f ≤ Pt−1
2 . �



54 8. PROOF OF THEOREM 7.1.2

Let ti denote the i−th odd squarefree positive integer. We recall here si is the i-th squarefree
positive integer. The next lemma gives a bound for si and ti.

Lemma 8.3.8. We have

si ≥ 1.6i for i ≥ 78(8.3.12)

and

ti ≥ 2.4i for i ≥ 51.(8.3.13)

Further we have

l
∏

i=1

si ≥ (1.6)ll! for l ≥ 286(8.3.14)

and

l
∏

i=1

ti ≥ (2.4)ll! for l ≥ 200.(8.3.15)

Proof. The proof is similar to that of [43, (6.9)]. For (8.3.12) and (8.3.13), we check that
si ≥ 1.6i for 78 ≤ i ≤ 286 and ti ≥ 2.4i for 51 ≤ i ≤ 132, respectively. Further we observe that
in a given set of 144 consecutive integers, there are at most 90 squarefree integers and at most 60
odd squarefree integers by deleting multiples of 4, 9, 25, 49, 121 and 2, 9, 25, 49, respectively. Then
we continue as in the proof of [43, (6.9)] to get (8.3.12) and (8.3.13). Further we check that (8.3.14)
holds at l = 286 and (8.3.15) holds at l = 200. Then we use (8.3.12) and (8.3.13) to obtain (8.3.14)
and (8.3.15), respectively. �

Lemma 8.3.9. Let X > 1 be a positive integer. Then

X−1
∑

i=1

2ω(i) ≤ η(X)X logX(8.3.16)

where

η := η(X) =



























1 if X = 1
X−1
∑

i=1

2ω(i)

X log X if 1 < X < 248

0.75 if X ≥ 248.

(8.3.17)

Proof. We check that (8.3.16) holds for 1 < X < 11500. Thus we may assume X ≥ 11500.
Let sj be the largest squarefree integer ≤ X. Then i ≥ 78 and hence by Lemma 8.3.8, we have

1.6j ≤ sj ≤ X so that j ≤
[

X
1.6

]

. We have 2ω(i) =
∑

e|i |µ(e)|. Therefore

X−1
∑

i=1

2ω(i) =

X−1
∑

i=1

∑

e|i
|µ(e)| ≤

∑

1≤e<X

[

X − 1

e

]

|µ(e)| ≤ (X − 1)
∑

1≤e<X

|µ(e)|
e

≤ X

[ X
1.6 ]
∑

i=1

1

si
.
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We check that there are 6990 squarefree integers upto 11500. By using (8.3.12), we have

X−1
∑

i=1

2ω(i) ≤ X







6990
∑

i=1

1

si
− 1

1.6

6990
∑

i=1

1

i
+

1

1.6

[ X
1.6

]
∑

i=1

1

i







≤ X

{

6990
∑

i=1

1

si
− 1

1.6

6990
∑

i=1

1

i
+

1

1.6

(

1 + log
X

1.6

)

}

≤ 3

4
X logX

{

4

3

1.1658

logX
+

4

3

1

1.6

}

implying (8.3.16). �

Lemma 8.3.10. Let c > 0 be such that c2ω(d)−3 > 1, µ ≥ 2 and

Cµ = {Ai | ν(Ai) = µ, Ai >
ρ2δk

3c2ω(d)
}.

Then

C :=
∑

µ≥2

µ(µ− 1)

2
|Cµ| ≤

c

8
η(c2ω(d)−3)2ω(d)(2ω(d)−θ − 1)(log c2ω(d)−3).(8.3.18)

Proof. Let i1 > i2 · · · > iµ be such that Ai1 = Ai2 = · · · = Aiµ . These give rise to µ(µ−1)
2 pairs

of (i, j), i > j with Ai = Aj . Therefore the total number of pairs (i, j) with i > j and Ai = Aj is C.
We know that there is a unique partition of d corresponding to each pair (i, j), i > j such

that Ai = Aj . Hence by Box Principle, there exists at least C

2ω(d)−θ−1
pairs of (i, j), i > j with

Ai = Aj and a partition (d1, d2) of d corresponding to these pairs. For every such pair (i, j), we
write Xi −Xj = d1rij , Xi +Xj = d2sij. Then gcd(Xi −Xj, Xi +Xj) = 2 and 24|(X2

i −X2
j ). Let

r′ij, s
′
ij be such that r′ij|rij , s′ij |sij, gcd(r′ij , s

′
ij) = 1 and rijsij = 24

ρ2δ r
′
ijs

′
ij . Then

r′ijs
′
ij =

ρ2δ

24
rijsij =

ρ2δ

24

X2
i −X2

j

d
=
ρ2δ

24

i− j

Ai
<
ρ2δ

24

k

Ai
< c2ω(d)−3

since Ai >
ρ2δk

3c2ω(d) . There are at most

c2ω(d)−3−1
∑

i=1

2ω(i) possible pairs of (r′ij , s
′
ij), and hence an equal

number of possible pairs of (rij, sij). By Lemma 8.3.9, we estimate

c2ω(d)−3−1
∑

i=1

2ω(i) ≤ η(c2ω(d)−3)c2ω(d)−3(log c2ω(d)−3).

Thus if we have
C

2ω(d)−θ − 1
> η(c2ω(d)−3)c2ω(d)−3(log c2ω(d)−3),

then there exist distinct pairs (i, j) 6= (g, h), i > j, g > h with Ai = Aj , Ag = Ah such that
rij = rgh, sij = sgh giving

Xi −Xj = d1rij = Xg −Xh and Xi +Xj = d2sij = Xg +Xh.

Thus Xi = Xg, Xj = Xh implying (i, j) = (g, h), a contradiction. Hence

C

2ω(d)−θ − 1
≤ η(c2ω(d)−3)c2ω(d)−3(log c2ω(d)−3)

implying (8.3.18). �
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The following Lemma is a refinement of [53, Lemma 2].

Lemma 8.3.11. Let i > j, g > h, 0 ≤ i, j, g, h < k be such that

ai = aj, ag = ah(8.3.19)

and

xi − xj = d1r1, xi + xj = d2r2, xg − xh = d1s1, xg + xh = d2s2(8.3.20)

where (d1, d2) is a partition of d; r1 ≡ s1(mod 2), r2 ≡ s2(mod 2) when d is even; and either
r1 ≡ s1(mod 2), ai ≡ ag(mod 4) or 2|gcd(r1, s1) when d is odd. Then we have either

ai = ag, r1 = s1 or ai = ag, r2 = s2(8.3.21)

or (8.1.1) and (8.1.2) hold.

Proof. We follow the proof of [53, Lemma 2]. Suppose that (8.3.21) does not hold. Then

air
2
1 − ags

2
1 6= 0, air

2
2 − ags

2
2 6= 0.(8.3.22)

We proceed as in [53, Lemma 2] to conclude from d | (aix
2
i − agx

2
g) that

d1d2 = d | 1

4

{

(air
2
1 − ags

2
1)d

2
1 + (air

2
2 − ags

2
2)d

2
2 + 2d(air1r2 − ags1s2)

}

.(8.3.23)

Thus we have

(air
2
1 − ags

2
1)d

2
1 = ai(xi − xj)

2 − ag(xg − xh)2 6= 0

and

(air
2
2 − ags

2
2)d

2
2 = ai(xi + xj)

2 − ag(xg + xh)2 6= 0.

Since

n ≤ ajx
2
j < aixixj < aix

2
i ≤ n+ (k − 1)d

and

n ≤ ahx
2
h < agxgxh < agx

2
g ≤ n+ (k − 1)d,

we have
∣

∣aixixj − agxgxh

∣

∣ < (k − 1)d.(8.3.24)

Also

|aix
2
i − agx

2
g| = |i− g|d ≤ (k − 1)d,

|ajx
2
j − ahx

2
h| = |j − h|d ≤ (k − 1)d

(8.3.25)

and

n ≤ min

{

1

4
ai(xi + xj)

2,
1

4
ag(xg + xh)2

}

.(8.3.26)

Hence we derive from (8.3.24), (8.3.25) and (8.3.26) that

|(air
2
2 − ags

2
2)d

2
2| < 4(k − 1)d,(8.3.27)

n|(air
2
1 − ags

2
1)d

2
1| <

1

4
(k − 1)2d2(8.3.28)

and further considering the cases {air
2
1 > ags

2
1, air

2
2 > ags

2
2}, {air

2
1 > ags

2
1, air

2
2 < ags

2
2}, {air

2
1 <

ags
2
1, air

2
2 > ags

2
2} and {air

2
1 < ags

2
1, air

2
2 < ags

2
2}, we derive

G(i, g) = |air
2
1 − ags

2
1|d2

1 + |air
2
2 − ags

2
2|d2

2 < 4(k − 1)d.(8.3.29)
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Let d = d1d2 be odd, gcd(d1, d2) = 1. We have either r1, s1 are even and hence r1, r2, s1, s2 are
even, or ai ≡ ag(mod 4) and r1 ≡ s1(mod 2) and hence r2 ≡ s2(mod 2). Then reading modulo d1

and d2 separately in (8.3.23), we have

d1

∣

∣

∣

1

4
(air

2
2 − ags

2
2) and d2

∣

∣

∣

1

4
(air

2
1 − ags

2
1).(8.3.30)

Therefore

4dd2 = 4d1d
2
2 ≤ |air

2
2 − ags

2
2|d2

2(8.3.31)

and

4dd1 = 4d2
1d2 ≤ |air

2
1 − ags

2
1|d2

1.(8.3.32)

From (8.3.29), we have

4d(d1 + d2) ≤ G(i, g) < 4(k − 1)d

so that

d = d1d2 ≤
(

d1 + d2

2

)2

<
(k − 1)2

4
.

This gives (8.1.1). Again from (8.3.32) and (8.3.28), we see that 4ndd1 <
1
4(k − 1)2d2 i.e. n <

1
16(k − 1)2d2. From (8.3.31) and (8.3.27), we have 4dd2 < 4(k − 1)d i.e. d2 < (k − 1). Thus (8.1.2)
is also valid.

Let d = d1d2 be even with ord2(d) = 1 and d1 odd. Then xi’s are odd and therefore both r1
and s1 are even. We see from (8.3.23) that

4d1

∣

∣

∣
(air

2
2 − ags

2
2)d

2
2 and 4d2

∣

∣

∣
(air

2
1 − ags

2
1)d

2
1.(8.3.33)

Since r1 ≡ s1(mod 2), r2 ≡ s2(mod 2), gcd(d1, d2) = 1 and d1 odd, we derive that

2d1

∣

∣

∣
(air

2
2 − ags

2
2), 4d2

∣

∣

∣
(air

2
1 − ags

2
1).

Therefore

2dd2 = 2d1d
2
2 ≤ |air

2
2 − ags

2
2|d2

2, 4dd1 = 4d2
1d2 ≤ |air

2
1 − ags

2
1|d2

1.

Now we argue as above to conclude (8.1.1) and (8.1.2).
Let d = d1d2 be even with ord2(d) ≥ 2, gcd(d1, d2) = 2. Then we see from (8.3.23) that (8.3.33)

holds. Since gcd(d1, d2) = 2, r1 ≡ s1(mod 2) and r2 ≡ s2(mod 2), we derive that

2d1

∣

∣

∣
(air

2
2 − ags

2
2), 2d2

∣

∣

∣
(air

2
1 − ags

2
1).

Therefore

2dd2 = 2d1d
2
2 ≤ |air

2
2 − ags

2
2|d2

2, 2dd1 = 2d2
1d2 ≤ |air

2
1 − ags

2
1|d2

1.

Now we argue as above to conclude (8.1.1) and (8.1.2). �

Lemma 8.3.12. For a prime p < k, let

γp = ordp





∏

ai∈R

ai



 , γ′p = 1 + ordp((k − 1)!).

Let m > 1 by any real number. Then

∏

2≤p≤m

pγp−γ′
p ≤ k1.5π(m)



z1
∏

2<p≤m

p
2p

p2−1







z2
∏

2<p≤m

p
2

p2−1





−k

(8.3.34)
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where (z1, z2) = (2
4
3 , 2

2
3 ) if d is odd and (z1, z2) = (4, 2) if d is even.

Proof. The proof is the refinement of inequality [43, (6.4)]. Let ph ≤ k− 1 < ph+1 where h is
a positive integer. Then

γ′p − 1 =

[

k − 1

p

]

+

[

k − 1

p2

]

+ · · · +
[

k − 1

ph

]

.(8.3.35)

Let p - d. Then we see that γp is the number of terms in {n, n+ d, · · · , n+ (k − 1)d} divisible by p
to an odd power. After removing a term to which p appears to a maximum power, the number of
terms in the remaining set divisible by p to an odd power is at most

[

k − 1

p

]

−
([

k − 1

p2

]

− 1

)

+

[

k − 1

p3

]

−
([

k − 1

p4

]

− 1

)

+ · · · + (−1)ε

([

k − 1

ph

]

+ (−1)ε

)

where ε = 1 or 0 according as h is even or odd, respectively. We note that the above expression is
always positive. This with (8.3.35) and [ k−1

pi ] ≥ k−1
pi − 1 + 1

pi = k
pi − 1, we have

γp − γ′p ≤ −2

{[

k − 1

p2

]

+ · · · +
[

k − 1

ph−1+ε

]}

+
h− 1 + ε

2

≤ −2

{

k

p2
+ · · · + k

ph−1+ε
− h− 1 + ε

2

}

+
h− 1 + ε

2

= − 2k

p2(1 − 1
p2 )

(1 − 1

ph−1+ε
) + 1.5(h − 1 + ε).

Since ph ≥ k
p and h < log k

log p , we get

γp − γ′p < − 2k

p2 − 1
+

1.5 log k

log p
+

2p2−ε

p2 − 1
+ 1.5ε− 1.5 ≤ − 2k

p2 − 1
+

1.5 log k

log p
+

2p

p2 − 1
.

When d is even, we have γ2 − γ′2 = −1−ord2(k− 1) < −k+ log k
log 2 + 2 by Lemma 2.0.5. Now (8.3.34)

follows immediately. �

Lemma 8.3.13. Suppose that n ≥ c1(k − 1)3 or d ≥ 4c1(k − 1)2. Let 1 ≤ % ≤ 2ω(d)−θ be the
greatest integer such that R% = {ai

∣

∣ν(ai) = %} 6= φ. For k ≥ κ0, we have

r =
∣

∣{(i, j)
∣

∣ai = aj, i > j}
∣

∣ ≥ g(%) :=

{

4%(2ω(d) − 1) if d is odd

2%(2ω(d)−θ − 1) if d is even.

Proof. We have

k =

%
∑

µ=1

µrµ and |R| =

%
∑

µ=1

rµ

where rµ = |Rµ = {ai

∣

∣ν(ai) = µ}|. Each Rµ give rise to µ(µ−1)
2 rµ pairs of i, j with i > j such that

ai = aj . Then

r =

%
∑

µ=1

µ(µ− 1)

2
rµ = k − |R| +

%
∑

µ=1

(µ− 1)(µ− 2)

2
rµ.

Suppose that the assertion of the Lemma 8.3.13 does not hold. Then g(%) > k−|R|+∑%
µ=1

(µ−1)(µ−2)
2 rµ.

We have

g(%) −
%
∑

µ=1

(µ− 1)(µ− 2)

2
rµ ≤ g(%) − (%− 1)(%− 2)

2
:= g0(%).
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We see that g0(%) is an increasing function of %. Since % ≤ 2ω(d)−θ , we find that

k − |R| < g0(2
ω(d)−θ) = (2ω(d)−θ − 1)(z32

ω(d)−θ + 1) := g1

where z3 = 7
2 if d is odd and 3

2 if d is even. Thus |R| > k − g1. Since ai’s are squarefree, we have
by Lemma 8.3.8 that

∏

ai∈R

ai ≥ zk−g1
4 (k − g1)!

where z4 = 1.6 if d is odd and 2.4 if d is even. Also, we have

∏

ai∈R

ai

∣

∣

∣
(k − 1)!





∏

p<k

p





∏

2≤p≤m

pγp−γ′
p

where γp, γ
′
p and m are as in Lemma 8.3.12. This with (8.3.34) and Lemma 2.0.2 (iv) gives

∏

ai∈R

ai < k!k1.5π(m)−1



z1
∏

2<p≤m

p
2p

p2−1









z2
2.7205

∏

2<p≤m

p
2

p2−1





−k

.

Comparing the lower and upper bounds, we have

(8.3.36)
zg1
4 k!

(k − g1)!
> k−1.5π(m)+1



z1
∏

2<p≤m

p
2p

p2−1





−1



z2z4
2.7205

∏

2<p≤m

p
2

p2−1





k

.

By Lemma 2.0.6, we have

zg1
4 k!

(k − g1)!
< zg1

4 e
−g1kg1

(

k

k − g1

)k−g1+
1
2 e

1
12k

e
1

12(k−g1)+1

.

Since k ≥ κ0, we find that g1 <
k
z5

for ω(d) ≥ 12 where z5 = 37, 18 for d odd and d even, respectively.
Thus

zg1
4 k!

(k − g1)!
<











(

z4(k−g1)
e

)g1
(

k
k−g1

)k+ 1
2

if ω(d) ≤ 11
(

z5
z5−1

)k+ 1
2
(

(z4(z5−1)k
z5e

)g1

if ω(d) ≥ 12.

Hence we derive from (8.3.36) that

g1 >

k log





z2z4
2.7205

∏

2<p≤m

p
2

p2−1



+ (k + 1
2) log(1 − g1

k )

log(k − g1) − 1 + log z4
−

(1.5π(m) − 1) log k + log



z1
∏

2<p≤m

p
2p

p2−1





log(k − g1) − 1 + log z4

(8.3.37)

for ω(d) ≤ 11 and

(8.3.38) g1 >

k log





z5−1
z5

z2z4
2.7205

∏

2<p≤m

p
2

p2−1



− (1.5π(m) − 1) log k − log





√

z5
z5−1z1

∏

2<p≤m

p
2p

p2−1





log k − 1 + log z4(z5 − 1) − log z5
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for ω(d) ≥ 12.
Let ω(d) ≤ 11. Taking m = min(1000,

√
κ0) in (8.3.37), we observe that the right hand side of

(8.3.37) is an increasing function of k and the inequality does not hold at k = κ0. Hence (8.3.37) is
not valid for all k ≥ κ0. For instance, when ω(d) = 4, d odd, we have κ0 = 15700 and g1 = 855. With
these values, we see that the right hand side of (8.3.37) exceeds 855 at k = 15700, a contradiction.
Hence (8.3.37) is not valid for all k ≥ 16000.

Let ω(d) ≥ 12. Taking m = 1000 in (8.3.38), we derive that

g1 >

{

0.63104 k
log k if d is odd

1.183 k
log k if d is even.

For d odd, we see that

0.63104
k

log k
≥ 0.63104

κ0

log κ0
=

0.63104 × 11ω(d)4ω(d)

ω(d) log 4 + log 11 + logω(d)

>
7

2
4ω(d) > g1,

a contradiction. Similarly we get a contradiction for d even. �

Lemma 8.3.14. Let k ≥ κ0. Assume that d < 4c1(k − 1)2. Let T1 = {0 ≤ i < k|Xi > 1} defined
in Section 8.2 be such that

|T1| > C1 :=











k
C2

+ k
48 + C3 + 8

3 if ω(d) = 2
k

C2
+ k

12 + C3 + 2ω(d)+1

3 if ω(d) = 3, 4, 5
k

C2
+ k

12 + k
9 if ω(d) ≥ 6

where C2 ≤ 2k
1
3 and C3 = 39, 42, 195, 806 for ω(d) = 2, 3, 4, 5, respectively. Then

max
i∈T1

Ai ≥ 2δC0
k

C2
where C0 = C0(ω(d)) =

{

1 if ω(d) = 2
3
42[ω(d)

3
] if ω(d) ≥ 3.

(8.3.39)

Proof. We see that for ω(d) ≥ 6,

k

20 · 2ω(d)
≥
(

4c1(k − 1)2
)

1
ω(d) > d

1
ω(d) .

where c1 is given by Proposition 8.1.1. Hence there exists a partition d = d1d2 of d with

d1 <
k

20 · 2ω(d)
with ω(d1) ≥ 1 and ω(d2) ≤ ω(d) − 1.

Therefore

ν(Ai) ≤ 2ω(d2) ≤ 2ω(d)−1 for Ai ≥
k

20 · 2ω(d)
(8.3.40)

by Lemma 8.3.2.
Let

T2 = {i ∈ T1

∣

∣Ai >
2δρk

3c2ω(d)
}, T3 = T1 − T2(8.3.41)

where c = 16 if ω(d) = 2, c = 4 if ω(d) = 3, 4, 5 and c = 2 if ω(d) ≥ 6. Further let

S2 = {Ai

∣

∣i ∈ T2}, S3 = {Ai

∣

∣i ∈ T3}(8.3.42)

and |S3| = s. Then considering residue classes modulo 2δρ, we derive that

2δρk

3c · 2ω(d)
≥ max

Ai∈S3

Ai ≥ 2δρ(s− 1) + 1
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so that |S3| = s ≤ k
3c2ω(d) − 1

ρ + 1 ≤ k
3c2ω(d) + 2

3 . We see from Corollary 8.3.3, (8.3.40), (8.3.41) and

(8.3.42) that

|T3| ≤
k

20 · 2ω(d)
2ω(d) +

(

k

6 · 2ω(d)
− k

20 · 2ω(d)
+

2

3

)

2ω(d)−1

≤ k

20
+

(

k

6
− k

20

)

2−1 +
2

3
2ω(d)−1 ≤ k

12
+

k

40
+

k

6 × 26
≤ k

9

if ω(d) ≥ 6 and

|T3| ≤
{

( k
48·2ω(d) + 2

3)2ω(d) = k
48 + 8

3 if ω(d) = 2

( k
12·2ω(d) + 2

3)2ω(d) = k
12 + 2ω(d)+1

3 if ω(d) = 3, 4, 5.

Therefore

|T2| > C1 − |T3| ≥ C4 :=

{

k
C2

+ C3 if ω(d) = 2, 3, 4, 5
k

C2
+ k

12 if ω(d) ≥ 6.

Let C, Cµ be as in Lemma 8.3.10 with c = 16 if ω(d) = 2, c = 4 if ω(d) = 3, 4, 5 and c = 2
if ω(d) ≥ 6. Then C4 < |T2| = |S2| +

∑

µ≥2(µ − 1)|Cµ|. Now we apply Lemma 8.3.10 and use

k ≥ κ0 ≥ η(2ω(d)−2)(log 2ω(d)−2)2ω(d)(2ω(d)−θ − 1) for ω(d) ≥ 6 to get

C4 <

{

|S2| + C3 if 2 ≤ ω(d) ≤ 5

|S2| + k
12 if ω(d) ≥ 6.

Thus

|S2| >
k

C2
.

Let ω(d) = 2. Then considering modulo 2δ , we see that

max
Ai∈S2

Ai ≥ 2δ[
k

C2
] +

2δk

48 × 4
≥ 2δ k

C2

giving (8.3.39). Now we take ω(d) ≥ 3. Since d < 4c1(k − 1)2, we have r ≥ [ω(d)
3 ] by Lemma 8.3.5.

By (8.2.5), we have k
C2

≥ k
2
3

2 > 1
2r (4c1(k − 1)2))

1
3 >

r
∏

j=1

(

Pj − 1

2

)

. We now apply Corollary 8.3.7

with s = [ k
C2

+ 1] and U = 1 to get

max
Ai∈S2

Ai ≥
3

4
2r+δ[

k

C2
+ 1] ≥ 3

4
2[ω(d)

3
]+δ k

C2

giving (8.3.39). �

8.4. Proof of Proposition 8.1.1

We assume that either n ≥ c1(k − 1)3 or d ≥ 4c1(k − 1)2. Then ν(ai0) ≤ 2ω(d)−θ for 0 ≤ i0 < k
by Lemma 8.3.4. Let % be as defined in the statement of Lemma 8.3.13. Then ν(ai0) ≤ %. By

Lemma 8.3.13, there are at least z%(2ω(d) − 1) distinct pairs (i, j) with i > j and ai = aj , where

z = 4 if d is odd and 2 if d is even. Since there can be at most 2ω(d)−θ −1 possible partitions of d, by
Box principle, there exists a partition (d1, d2) of d and at least z% pairs of (i, j) with ai = aj , i > j
corresponding to this partition. We write

xi − xj = d1r1(i, j) and xi + xj = d2r2(i, j).
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Let d be odd. Suppose there are at least % distinct pairs (i1, j1), · · · , (i%, j%), · · · with the
corresponding r1(i, j) even. Then |{i1, · · · , i%, j1, · · · , j%}| > %. Hence we can find 1 ≤ l,m ≤ %
with (il, jl) 6= (im, jm), ail = ajl

, aim = aim and ail 6= aim from amongst the pairs. Now the result
follows by Lemma 8.3.11. Thus we may assume that there are at most %−1 pairs of (i, j) with even
r1(i, j). Then there are at least 3% + 1 distinct pairs of (i, j) with r1(i, j) odd. Since ai ≡ 1, 2, 3(
mod 4), we can find at least % pairs with ai ≡ ag( mod 4) for any two such pairs (i, j), (g, h). Then
there exists two distinct pairs (i, j), (g, h) with ai = aj , ag = ah and ai 6= ag from these pairs. Also
r1(i, j) ≡ r1(g, h)( mod 2). This gives (8.1.1) and (8.1.2) by Lemma 8.3.11 which is a contradiction.

Let d be even. We observe that 8|(x2
i − x2

j) and gcd(xi − xj, xi + xj) = 2. We claim that there

are at least % pairs with r1(i, j) ≡ r1(g, h)(mod 2) and r2(i, j) ≡ r2(g, h)( mod 2) for any two such
distinct pairs (i, j) and (g, h). If the claim is true, then there are two pairs (i, j) 6= (g, h) with
i > j, g > h, ai = aj, ag = ah and ai 6= ag from amongst such pairs since ν(ai) ≤ %. This implies
(8.1.1) and (8.1.2) by Lemma 8.3.11, contradicting our assumption. Let ord2(d) = 1. Then d1 is
odd implying r1(i, j) is even. We choose at least % pairs whose r2’s of the same parity. Thus the
claim is true in this case. Let ord2(d) ≥ 3. Then we have either ord2(d1) = 1 implying all r1’s are
odd, or ord2(d2) = 1 implying all r2’s are odd. Thus the claim follows. Finally let ord2(d) = 2.
Then 2‖d1 and 2‖d2 so that r1 and r2 are of the opposite parity for any pair and hence the claim
holds. �

8.5. Proof of Proposition 8.1.2

In this section, we assume that k ≥ κ0. In view of Proposition 8.1.1, we may assume that
d < 4c1(k− 1)2. We may also assume that Xi is a prime for each i ∈ T1 in the proof of Proposition
8.1.2. Otherwise n+ (k − 1)d ≥ (k + 1)4 implying the assertion.

We see that d has at least one prime divisor ≤ k otherwise d > kω(d) ≥ k2 > 4c1(k − 1)2, a
contradiction. Thus πd(k) ≤ π(k) − 1. Let n+ (k − 1)d ≥ L for some L > 0. By Lemma 8.3.1 and
Lemma 2.0.2 (i), we have

|T1| > k − (k − 1) log(k − 1)

logL− log 2
− k

log k

(

1 +
1.5

log k

)

.(8.5.1)

We see from Theorem 3.3.9 that n(n+ d) · · · (n+ (k − 1)d) is divisible by at least π(2k) − πd(k) ≥
π(2k) − π(k) + 1 primes exceeding k. Hence we have n+ (k − 1)d ≥ 4k2. Thus by taking L = 4k2

in (8.5.1), we get

|T1| > k − (k − 1) log(k − 1)

log(2k2)
− k

log k

(

1 +
1.5

log k

)

.

The right hand side of the above inequality is an increasing function of k and

|T1| >



















k
5 + k

48 + C3 + 8
3 if ω(d) = 2

k
6 + k

12 + C3 + 16
3 if ω(d) = 3

5
24k + k

12 + C3 + 2ω(d)+1

3 if ω(d) = 4, 5
5
48k + k

12 + k
9 if ω(d) ≥ 6.

(8.5.2)

Now we see from Lemma 8.3.14 that (8.3.39) holds with

C2 =



















5 if ω(d) = 2

6 if ω(d) = 3
24
5 if ω(d) = 4, 5
48
5 if ω(d) ≥ 6.
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This gives n + (k − 1)d ≥ C0
C2
k3. Hence (8.1.4) is valid for ω(d) ≥ 4. Now we take ω(d) = 2, 3.

Putting L = C0
5 k

3 in (8.5.1), we derive that

|T1| >
{

5k
16 + k

48 + C3 + 2ω(d)+1

3 if ω(d) = 2
5k
24 + k

12 + C3 + 2ω(d)+1

3 if ω(d) = 3.

We apply Lemma 8.3.14 again to get max
i∈T1

Ai ≥ 2δ 5
16k so that n+(k−1)d ≥ 2δ 5

16k
3 implying (8.1.4).

This completes the proof. �





CHAPTER 9

Cubes and higher powers in arithmetic progression, a survey

9.1. Introduction

We end the thesis with a survey on cubes and higher powers in arithmetic progression. We
consider the equation

∆ = ∆(n, d, k) = n(n+ d) · · · (n+ (k − 1)d) = by`(9.1.1)

in positive integers n, d, k, b, y and ` with d ≥ 1, k ≥ 2, ` ≥ 3, P (b) ≤ k, gcd(n, d) = 1 and b is
`−th power free. We have already considered (9.1.1) with ` = 2 in Chapter 7. Therefore it suffices
to consider (9.1.1) when ` is divisible by an odd prime. Except for Section 9.4, we shall always
suppose that ` is divisible by an odd prime. Further we always suppose that k ≥ 3 otherwise (9.1.1)
has infinitely many solutions. Let d = 1. We also assume that P (∆) > k which is necessary as
explained in Chapter 7. Then (9.1.1) has been completely solved by Erdős and Selfridge [11] for
P (b) < k. Saradha [40] extended this result for P (b) = k with k ≥ 4 and Győry [15] completed the
result for P (b) = k with k = 3.

From now on we assume (9.1.1) with d > 1. Then we always suppose that (n, d, k) 6= (2, 7, 3)
so that P (∆) > k by (3.3.3). Thus P (∆) > k is not an assumption in the case d > 1. Erdős
conjectured that k is bounded by a computable absolute constant whenever (7.1.1) or (9.1.1) holds.
We shall call this Erdős conjecture. Marszalek [26] showed that

k ≤











max (c1,
3
2 exp (1

2d(d+ 2)(d + 1)1/3)) if ` = 3

max (c1,
1
4d(d+ 2)(d + 1)1/2) if ` = 4

max (c1,
3
2(d+ 1)) if ` ≥ 5

where c1 = 3 · 104. Thus when d is fixed, the result of Marszalek confirms Erdős conjecture.
Shorey [54] showed that k is bounded by an effectively computable number depending only on
P (d). Further Shorey and Tijdeman [53] proved that k is bounded by an effectively computable
number depending only on ` and ω(d). They improved Marszalek’s result as d ≥ kc1 log log k where
c1 is an effectively computable constant. We state here the Oesterlé and Masser’s abc-conjecture.

Conjecture 9.1.1. Oesterlé and Masser’s abc-conjecture: For any given ε > 0 there
exists a computable constant κε depending only on ε such that if

a+ b = c

where a, b and c are coprime positive integers, then

c ≤ κε





∏

p|abc

p





1+ε

.

It has been shown in Elkies [7] and Granville and Tucker [13, (13)] that abc-conjecture is
equivalent to the following:

65



66 9. CUBES AND HIGHER POWERS IN ARITHMETIC PROGRESSION, A SURVEY

Conjecture 9.1.2. Let F (x, y) ∈ Z[x, y] be a homogenous polynomial. Assume that F has
pairwise non-proportional linear factors in its factorisation over C. Given ε > 0, there exists a
computable constant κ′ε depending only on F and ε such that if m and n are coprime integers, then

∏

p|F (m,n)

p ≥ κ′ε (max{|m|, |n|})deg(F )−2−ε .

Shorey [54] showed that abc-conjecture implies Erdős conjecture for ` ≥ 4 using d ≥ k c1 log log k.
Granville (unpublished) gave a proof of the preceding result without using the inequality d ≥
kc1 log log k. Furthermore his proof is also valid for ` = 2, 3. I give his proof in Section 9.4. I thank
Professor A. Granville for allowing me to include his proof in the thesis. A stronger conjecture
states that

Conjecture 9.1.3. Equation (9.1.1) implies that (k, `) = (3, 3).

On the other hand, it is known that (9.1.1) has infinitely many solutions if (k, `) = (3, 3), see
Tijdeman [57] and Mordell [28, p.68]. We give the details of this fact in Section 9.2. Saradha [40]
showed that (9.1.1) does not hold for d ≤ 6, d 6= 5 and for k ≥ 4 when d = 5. Saradha and Shorey
[42] extended this result for an infinite set of values of d of the form 2a3b5c > 1 whenever ` is an
odd prime. Further they proved in [44] that (9.1.1) implies that d > D for ` ≥ 3 where D is given
by

D =































30 if ` = 3

950 if ` = 4

5 · 104 if ` = 5, 6

108 if ` = 7, 8, 9, 10

1015 if ` ≥ 11.

The above result confirms Conjecture 9.1.3 for a large number of values of d.

9.2. The case (k, `) = (3, 3)

We show that

Equation (9.1.1) with (k, `) = (3, 3) implies that b = 3, 6, 36
in which cases there are infinitely many solutions.

We consider

n(n+ d)(n+ 2d) = by3(9.2.1)

where b ∈ {1, 2, 3, 4, 6, 9, 12, 18, 36}. Then
(

2by

n

)3

= 4b

(

1 +
d

n

)

2b

(

1 +
2d

n

)

=

(

3b+
4bd

n
+ b

)(

3b+
4bd

n
− b

)

.

Putting X = 2by
n and Y = 3b+ 4bd

n , we obtain the elliptic equation

Y 2 = X3 + b2 in X,Y ∈ Q.(9.2.2)

We check using MAGMA that each of the above elliptic curve has rank 0 except when b = 3, 6, 36
where rank is 1. Thus the elliptic equation (9.2.2) has infinitely many solutions when b = 3, 6, 36.
Let b 6= 3, 6, 36. Then the torsion points are given by (0, 1), (0,−1), (−1, 0), (2, 3), (2,−3) for b = 1
and (0, b), (0,−b) for b 6= 1. The torsion points (X,Y ) with X = 0 implies that y = 0 which
is not possible. Also Y ≤ 0 is not possible since 3n + 4d > 0. Thus it remains to consider
b = 1, (X,Y ) = (2, 3). Then 3 = 3 + 4d

n giving d = 0, a contradiction.
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Let b = 3, 6, 36. Suppose (X,Y ) = (X0, Y0) with Y0 > 0 be a solution of (9.2.2). Putting
X = x+X0, we have from (9.2.2) that

Y 2 = x3 + 3X0x
2 + 3X2

0x+ Y 2
0

since Y 2
0 = X3

0 + b2. Here (x, Y ) = (0, Y0) is a solution. We now make the substitution Y = αx+Y0

where x 6= 0 and α is to be chosen. Then the above equation becomes

x2 + (3X0 − α2)x+ (3X2
0 − 2αY0) = 0.

We take α =
3X2

0
2Y0

. Then

x+ 3X0 = α2 =
9X4

0

4Y 2
0

.

Thus

X = x+X0 =
9X4

0

4Y 2
0

− 2X0, Y =
3X2

0

2Y0
(
9X4

0

4Y 2
0

− 3X0) + Y0

satisfies (9.2.2). We consider the case Y > 3b. We choose n and d to be the denominator and

numerator of (Y −3b)
4b , respectively. The case Y < 3b follows similarly by considering the mirror

image N(N − d)(N − 2d) = by3 with N = n + 2d of n(n + d)(n + 2d). Note that Y = 3b is not
possible otherwise d = 0.

Let b = 3. Since (X0, Y0) = (−2, 1) is a rational point on (9.2.2), we derive that (X,Y ) =
(40, 253) is a new solution of (9.2.2). This gives (n, d, y) = (3, 61, 20) as a solution of (9.2.1).
The solution (40, 253) in turn gives ( 639280

64009 ,
513439919
16194277 ) as a solution of (9.2.1). This gives (n, d, y) =

(48582831, 116214272, 80868920) as another solution of (9.2.1). The process is continued indefinitely.
For b = 6, 36, we start with (X0, Y0) = (−3, 3) and (−8, 28), respectively and we apply the above

process to get infinitely many solutions of (9.2.1).

9.3. k < 500000 when (9.1.1) with d = 1 and P (∆(n, k) > k holds

Let k ≥ 500000. From (9.1.1), we have

n+ i = aix
`
i for 0 ≤ i < k

where ai is `-th power free and P (ai) ≤ k. Then n + k − 1 ≥ (k + 1)` implying n > k`. First we
prove that the products aiaj , 0 ≤ i, j < k are all distinct. Let aiaj = agah = A with i+ j > g + h.
Then

(n+ i)(n+ j) = A(xixj)
`, (n+ g)(n+ h) = A(xgxh)`.

If (n+ i)(n+ j) = (n+ g)(n + h), then

n ≤ n(i+ j − g − h) = gh− ij < k2

a contradiction. Thus (n + i)(n + j) 6= (n + g)(n + h). Then (n + i)(n + j) − (n + g)(n + h) =
(i+ j − g − h)n− (gh− ij) > 0 since n > k` > k2 and gh− ij < k2. Hence xixj ≥ xgxh + 1 giving

2kn > (n+ k − 1)2 − n2 ≥ (n+ i)(n+ j) − (n+ g)(n+ h) ≥ A((xgxh + 1)` − (xgxh)`)

> `A(xgxh)`−1 ≥ `
(

A(xgxh)`
)

`−1
` ≥ `(n2)

`−1
` ≥ 3n

4
3 ,

a contradiction since n > k`. Thus aiaj are all distinct. We now prove a graph theoretic lemma
due to Erdős and Selfridge [11] which is applied to get a lower bound for ai’s.
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9.3.1. A graph theoretic lemma. A Bipartite Graph is a set of graph vertices decomposed
into two disjoint sets such that no two graph vertices within the same set are adjacent.

A subgraph of a graph is a Rectangle if it is comprised of two parts of vertices with each member
of one pair joined to each member of the other pair.

Lemma 9.3.1. Let G be a bipartite graph of s white and t black vertices which contain no
rectangles. Then the number of edges of G is at most s+

(

t
2

)

.

Proof. Let si be the number of white vertices having i edges, i ≥ 0. Then
∑

i≥0

si = s.

Since there are no rectangles, any two black vertices cannot connect more than one white vertex.
Hence the number of V−diagrams is at most

(t
2

)

. Further from a white vertex of valency i, we can

have
(i
2

)

number of V−diagrams. Therefore

The total number of V − diagrams =
∑

i≥2

si

(

i

2

)

.

Hence
∑

i≥2

si

(

i

2

)

≤
(

t

2

)

. Therefore the number of edges of G is

∑

i

isi =
∑

i≥2

(i− 1)si +
∑

i

si ≤
∑

i≥2

si

(

i

2

)

+ s ≤
(

t

2

)

+ s.

This proves the Lemma. �

Given x, let N(x) denote the maximum number of integers 1 ≤ b1 < b2 < · · · < bs ≤ x such
that bibj, 1 ≤ i, j ≤ s are all different. We prove that

Lemma 9.3.2. For any real number x > 1, we have

N(x) ≤ 270

961
x+ 1832.(9.3.1)

In fact Erdős [10] proved a stronger result when x is sufficiently large. He proved

N(x) < π(x) + 3x
7
8 + 2x

1
2 <

2x

log x

whenever x ≥ x0 where x0 is a computable absolute constant.

Proof. of Lemma 9.3.2: Let U = {2a3b5c|0 ≤ a ≤ 4, 0 ≤ b ≤ 3, 0 ≤ c ≤ 2}. Thus |U | = 60.
We take V to be the set of all integer v ≤ x such that every integer n ≤ x can be written as n = uv
with u ∈ U, v ∈ V . We observe that v ∈ V is of the form 25r34s53tm in r ≥ 0, s ≥ 0, t ≥ 0, m ≥ 1
with gcd(m, 30) = 1. Thus

|V | ≤
(

x(1− 1

2
)(1− 1

3
)(1− 1

5
)+1

)(

1+
1

25
+

1

210
+· · ·

)(

1+
1

34
+· · ·

)(

1 +
1

53
+ · · ·

)

≤ 270

961
x+ 2.

We now take (U, V ) to be bipartite graph G with black vertices as elements of U and white vertices
as elements of V . Let {b1, · · · , bN(x)} be the set of positive integers ≤ x with the property that bibj
for 1 ≤ i, j ≤ N(x) are all distinct. We say that there is an edge between an element u ∈ U and
v ∈ V if uv = bi for some i. Then the distinctness of bibj ’s imply that G has no rectangles. Thus

by Lemma 9.3.1, we see that N(x) ≤ |V |+
(|U |

2

)

. Hence N(x) ≤ 270
960x+ 2 +

(60
2

)

≤ 270
960x+ 1832. �
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9.3.2. Proof of k < 500000 (continued). By using (5.1.3), we can find a sequence 0 ≤ i1 <
i2 < · · · < it with t ≥ k − π(k) such that

t
∏

j=1

aij ≤ (k − 1)!(9.3.2)

By arranging these aij , 1 ≤ j ≤ t in increasing order, we get a sequence b1 < b2 < · · · < bt such that
bibj’s are distinct. We put bi = x and use Lemma 9.3.2 to get

i ≤ 270

961
bi + 1832

giving bi > 3.559(i − 1832). Then we have

t
∏

j=1

aij =

t
∏

i=1833

bi >

t
∏

i=69

3.559(i − 1832) > (3.559)t−1832(t− 1832)!.

Since t ≥ k − π(k) and π(k) ≤ k
log k (1 + 1.2762

log k ) by Lemma 2.0.2 (i), we have

(3.559)t−1832(t−1832)!≥k (3.559)k

(3.559k)1832+π(k)
=k!

(

3.559(3.559k)−
1832

k
− 1

log k
(1+1.2762

log k
)
)k
>k!

since 3.559(3.559k)
− 1832

k
− 1

log k
(1+ 1.2762

log k
)
is an increasing function of k and is > 1 at k = 500000. Thus

t
∏

j=1

aij > k!

contradicting (9.3.2). �

9.4. abc-conjecture implies Erdős conjecture

Assume (7.1.1) and (9.1.1). We show that k is bounded by a computable absolute constant.
Let k ≥ k0 where k0 is a sufficiently large computable absolute constant. Let ε > 0. Let c1, c2, · · ·
be positive computable constants depending only on ε. From (7.1.1) and (9.1.1), we write

n+ id = AiX
`
i

with P (Ai) ≤ k and (Xi,
∏

p≤k p) = 1 for 0 ≤ i < k. We may assume that (n, d, k) 6= (2, 7, 3). Then

P (∆(n, d, k)) > k by (3.3.3). Thus

n+ (k − 1)d > k`.

For each p ≤ k with p - d, let n+ ipd be the term to which p divides to the maximal power and we
put

I = {ip|p ≤ k and p - d}.

Let Φ =
∏

i≥[ k
2
]

i/∈I

Ai. Now we refer to Section 5.1. Taking S = {Ai|i ∈ I or [k
2 ] ≤ i < k}, we get from

the first inequality of (5.1.2) that

ordp(Φ) ≤ ordp











∏

i≥[ k
2
]

i/∈I

(i− ip)











≤
{

ordp

(

(k − [k
2 ] − 1 − (ip − [k2 ]))!(ip − [k2 ])!

)

if ip ≥ [k2 ],

ordp

(

(k−1−ip
k−[ k

2
]

)

(k − [k
2 ])!
)

otherwise.
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Since ordp(r!s!) ≤ordp((r + s)!) and k − [ k
2 ] = [k+1

2 ], we see that

pordp(Φ) ≤ p
ordp((

k−1−ip

[k+1
2 ]

))
pordp([ k+1

2
]!) ≤ (k − 1)pordp([ k+1

2
]!).

The latter inequality follows from Lemma 1.1.3. Therefore we get

Φ ≤ (k − 1)πd(k)([
k + 1

2
])! ≤ k

k
2 ec1k

by using Lemmas 2.0.2 and 2.0.6.
Let D be a fixed positive integer and let

J =

{

k − 1

2D
≤ j ≤ k − 1

D
− 1 : {Dj + 1, Dj + 2, · · · , Dj +D} ∩ I = φ

}

.

We shall choose D = 20. Let j, j ′ ∈ J be such that j 6= j ′. Then Dj + i 6= Dj ′ + i′ for 1 ≤ i, i′ ≤ D
otherwise D(j − j ′) = (i − i′) and |i′ − i| < D. Further we also see that [ k

2 ] ≤ Dj + i ≤ k − 1 for

1 ≤ i ≤ D and consequently |J | ≥ k−1
2D − π(k). For each j ∈ J , let Φj =

D
∏

i=1

ADj+i. Then
∏

j∈J Φj

divides Φ implying
∏

j∈J

Φj ≤ Φ ≤ k
k
2 ec1k.

Thus there exists j0 ∈ J such that

Φj0 ≤
(

k
k
2 ec1k)

) 1
|J| ≤

(

k
k
2 ec1k

)
1

k−1
2D

−π(k) ≤ cD2 k
D.

Let

H :=

D
∏

i=1

(n+ (Dj0 + i)d).

Since ADj0+iX
`
Dj0+i ≤ n+ (k − 1)d, we have XDj0+i ≤ (n+(k−1)d

ADj0+i
)

1
` . Thus

∏

p|H
p>k

p =
D
∏

i=1

XDj0+i ≤ (n+ (k − 1)d)
D
` (Φj0)

− 1
`

Therefore

∏

p|H
p =









∏

p|H
p≤k

p

















∏

p|H
p>k

p









≤ Φj0(n+ (k − 1)d)
D
` (Φj0)

− 1
` ≤ c

D(1− 1
`
)

2 kD(1− 1
`
)(n+ (k − 1)d)

D
` .

On the other hand, we have H = F (n+Dj0d, d) where

F (x, y) =

D
∏

i=1

(x+ iy)

is a binary form in x and y of degree D such that F has distinct linear factors. From Conjecture
9.1.2, we have

∏

p|H
p ≥ c3(n+Dj0d)

D−2−ε.



9.4. abc-CONJECTURE IMPLIES ERDŐS CONJECTURE 71

Comparing the lower and upper bounds of
∏

p|H
p and using n+Dj0d >

n+(k−1)d
2 , we get

k > c4(n+ (k − 1)d)
1− 2+ε

D(1− 1
`
) .

We now use n+ (k − 1)d > k` to derive that

c5 > k
`(1− 2+ε

D(1− 1
`
)
)−1

.

Taking ε = 1
2 and putting D = 20, we get

c6 > k
`−1− `2

8(`−1) ≥ k
1
2

since ` ≥ 2. This is a contradiction since k ≥ k0 and k0 is sufficiently large. �
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