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Introduction

An old and well known theorem of Sylvester for consecutive integers [56] states that a product
of k consecutive integers each of which exceeds k is divisible by a prime greater than k.

In this thesis, we give refinements, extensions, generalisations and applications of this theorem.
First we give some notation which will be used throughout the thesis.

Let p; denote the ¢ — th prime number. Thus p; = 2,po = 3,---. We always write p for a prime
number. For an integer v > 1, we denote by w(r) and P(r) the number of distinct prime divisors
of v and the greatest prime factor of v, respectively. Further we put w(1l) =0 and P(1) = 1. For
positive real number v and integers [,d with d > 1, ged(l,d) = 1, we denote

m(v) =) 1,

p<v

ma(v) == Z 1,

p<v
ged (p,d)=1

m(v,d,l) == Z 1.

p<v
p=l(mod d)

We say that a number is effectively computable if it can be explicitly determined in terms
of given parameters. We write computable number for an effectively computable number. Let
d>1,k>2n>1and y > 1 be integers with ged(n,d) = 1. We denote by

A=A(n,d,k)=n(n+d)---(n+ (k—1)d)
and we write
A(n, k) = A(n,1,k).
Further for x > k, we write
A =A(z,k)=A(x —k+1,k).
In the above notation, Sylvester’s theorem can be stated as
(1) P(A(n,k)) >k if n > k.

On the other hand, there are infinitely many pairs (n, k) with n < k such that P(A) < k. We
observe that (1) is equivalent to

(2) w(A(n, k) > (k) if n > k.
Here we notice that
w(A(n, k) > n(k)

since k! divides A.
Let d > 1. Sylvester [56] proved that

(3) P(A) > kif n>k+d.
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Note that (3) includes (1). Langevin [24] improved (3) to
P(A) > kif n > k.

Finally Shorey and Tijdeman [52] proved that

(4) P(A) >k unless (n,d, k) =(2,7,3).

We observe that it is necessary to exclude the triple (2,7, 3) in the above result since P(2-9-16) = 3.
The proof of [52] for (4) depends on the results on primes in arithmetic progressions. In Chapter
5, we give a proof of (4) which does not depend on these results and the computations required are
considerably less.

We give a brief description of the results proved in this thesis. In Chapter 1, we prove Sylvester’s
Theorem. The proof is due to Erdds [8] but we have made simplifications. This proof is elementary
and self contained; it does not make use of results from prime number theory. In Chapter 2, we
collect together certain estimates on 7 function and other functions involving primes. In Chapter
3, we give a brief survey on refinements and generalisations of Sylvester’s Theorem. These include
the statements of our new results. We state here two of our following original results (i) and (ii)
appeared in Acta Arith. and Indag. Math., respectively.

(i) Let n > k. Then w(A(n, k) > m(k)+[2m(k)]—1 except when (n, k) belongs to an explicitly
given finite set. (Laishram and Shorey [18])
(ii)) Let d > 1. Then w(A) > w(2k) — 1 except when (n,d,k) = (1,3,10). (Laishram and
Shorey [19])
This is best possible for d = 2 since w(1-3---(2k — 1)) = 7(2k) — 1. The latter result (ii) solves a
conjecture of Moree [29]. Chapter 4 contains a proof of (i). In Chapter 5, we give a proof of (4).
In Chapter 6, we prove (ii).
In 1939, Erdés [9] and Rigge [36], independently, proved that A(n,k) is divisible by a prime
> k to an odd power. As a consequence, we see that product of two or more consecutive positive
integers is never a perfect square. In other words, the equation

nn+1)-- (n+k—1) =y
does not hold. More generally we consider the equation
(5) n(n+d)-- (n+(k—1)d) = by>.

with P(b) < k. The above equation has been completely solved when d = 1 (see Chapter 7).
Therefore we suppose that d > 1. Erdés conjectured that (5) implies that k is bounded by a
computable absolute constant. In Chapter 7, we give a survey of results on Erdds conjecture.
Shorey and Tijdeman [53] showed that (5) implies that k is bounded by an effectively computable
number depending only on w(d). Our aim in Chapter 8 is to give an explicit upper bound ~¢ from
Laishram [20] for k in terms of w(d) whenever (5) holds. We show that k¢ is given by

w(d) | ko(d even) | ko(d odd) || w(d) | ko(d even) | ko(d odd)
2 500 800 7 12.643 x 10° | 1.376 x 10°
3 700 3400 8 [1.172 x 10° | 6.061 x 10°
4 2900 15300 9 [5.151 x 10° | 2.649 x 107
5 13100 69000 10 [2.247 x 107 | 1.149 x 108
6 59000 3.096 x 10° || 11 | 9.73 x 107 | 4.95 x 103

TABLE 1. ko(w(d)

for 2 <w(d) <11
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for 2 < w(d) < 11 and for w(d) > 12,

w @(d) if d is even
© ro(d)) = {2.25 (d)4“@ if d

1w(d)4“ @ if d is odd.
This original result has been submitted for publication in Publ. Math

. Debrecen [20].

111
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CHAPTER 1

Sylvester’s theorem for consecutive integers

In this chapter, we prove the theorem of Sylvester [56] for consecutive integers stated in the
Introduction, see (1).

THEOREM 1.0.1. Let d =1. Then
(1.0.1) P(A) > kif n> k.

Let us now consider n < k. For 1 < n < pr )41 —k where pr ()41 is the smallest prime exceeding
k, we see that P(A) < k since n+k—1 < pr()41. Thus it is necessary to assume n > pr ()41 —k for
the proof of P(A) > k. Then n = pr)41 — k +r for some 1 <r < k and hence prgy1 =n+k—r
is a term in A, giving P(A) > k.

For x > 2k, =n+k — 1 and a prime p > k, we see that p divides (i) if and only if p divides
A = A(n, k). Thus we observe that (1.0.1) is equivalent to the following result.

THEOREM 1.0.2. If © > 2k, then (i) contains a prime divisor greater than k.

Therefore, we shall prove Theorem 1.0.2. The proof is due to Erdés [8] but we have made
simplifications. This proof is elementary and self contained; it does not make use of results from
prime number theory.

1.1. Lemmas for the proof of Theorem 1.0.2

LEMMA 1.1.1. Let X be a positive real number and ko a positive integer. Suppose that p;11—p; <
ko for any two consecutive primes p; < pi+1 < Pr(x)41- Lhen

Plxx—1)---(z—k+1)) >k
for2k <x < X and k > k.

ProoF. Let 2k <z < X. We may assume that none of z,x —1,--- ,x — k + 1 is a prime, since
otherwise the result follows. Thus

Pr(z—k+1) < T — k+l<z< Pr(z—k+1)+1 < Pr(X)+1-
Hence by our assumption, we have
k—1=z- (.CL‘ —k+ 1) < Pr(z—k+1)+1 — Pr(z—k+1) < ko,
which implies £k — 1 < kg — 1, a contradiction. Il ]

LEMMA 1.1.2. Suppose that Theorem 1.0.2 holds for all primes k, then it holds for all k.

PROOF. Assume that Theorem 1.0.2 holds for all primes k. Let k1 < k < ko with kq, ko
consecutive primes. Let x > 2k. Then x > 2k; and z(x — 1)--- (x — k1 + 1) has a prime factor
p > k1 by our assumption. Further we observe that p > ko > k since k1 and kg are consecutive

primes. Hence p divides x"'(x_klH)(kakl)'"(x_kH) = (i) O O

By Lemma 1.1.2, we see that it is enough to prove Theorem 1.0.2 for k£ prime which we assume
from now on. Further we take x > 2k.
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LEMMA 1.1.3. Let p“|(i) Then p® < z.

ProOOF. We observe that

()-S5 2

v=1

Each of the summand is at most 1 if p¥ < z and 0 otherwise. Therefore ordp(i) < s where
p* <z < p*tl. Thus

(1.1.1) pt < pordl’( ) <p’<u. O
]
LEMMA 1.1.4. For k > 1, we have
2k
1.1.2
12 </~c> 2f
and
2k
1.1.
(1.13) () <7
Proor. For k£ > 1, we have
1 _2:44-6 (2k—2)2%
1>11-=
32 (2k: —1)2 32 52 (2k—1)2
. 2’%' 1 /4R (kD2
4 \35--2k—1)) 4k \ (2k)!
implying (1.1.2). Further we have
AV 1 335 (2k — 3)(2k — 1)
22 42 (2k — 2)2 22 (2k — 2)2
o1 (35 2k-1) 2>4k2
2k — 1 2k k!
implying (1.1.3). O

LEMMA 1.1.5. We have
(1.1.4) e IL» J] » - <4
p<z p<x p<Yz
ProOF. We see that for every prime p and a positive integer a with
r < p® <2z,

we have

w () (8) 5] ) >

since
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Let [V—| denote the least integer greater than or equal to v. Let 2™~ < 2 < 2™ and we put

T x x x
ay = |V§—|7 ag = [?]7 o, G = [2_h—|’ ity Am = |72_m—| =1
Then
ayp > ag >+ > Qm
and
T 2z <
ah<2—h+1—w+1_2ah+l+1
implying
ap < 2ap41-

Also, we have 2a3 < 5 + 2 < a; + 2. Therefore
(1.1.6) 2a2 < a; + 1.
Since 2a; > x, we see that
(1,z] C U (an,2ap).

Let p and r be given such that p” < z < p"™+!. Let 1 < i < r. Then p’ < x. It is clear from the
above inclusion that there exists k; such that

ag;, < pi < 2ay,.

We observe that ay, # ag; for 1 < j < ¢ < r since pag; < P < pt < 2ay,. Thus we see from

(1.1.5) that
A1) () o)

2a1\ (2as 2am
[Ir II» IlP»-—= 1l p’"§< >( >< ;
<z 1 1 r<peaprtl aj as Am
P p<z2  p<a3 pr=Esp

Hence we have

r+1

the middle product being taken over all prime powers p” with p” < z < p"™. To complete the proof

of the lemma, we show that

OIOREE

By direct calculation, we check that (1.1.7) holds for < 10. For example, when x = 5, we have

a1 = 3,as = 2,a3 = 1 so that
2 2 2
(‘“)( a2>< a3> — 20 % 6 x 2 < 4.
al a9 a9

Suppose that > 10 and (1.1.7) holds for any integer less than x. Then

(1.1.8) <2a1> <2a2> <2am> < <2a1>42a2—1
aq a9 Ay, aj
which we obtain by applying (1.1.7) with = 2a9 — 1 and seeing that
a2

%(2@ —1)] = as, &(2(12 -1)] = [?] =ag, -
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2z < 495—1
T
for x > 8. Hence we see that

(119) 2(11 2(12 ... 2am < 4a1—1+2a2—1'
a1 a2 A,

Now (1.1.7) follows from (1.1.6) and 2a; < z + 1. O O

We obtain from (1.1.3) that

LEMMA 1.1.6. Assume that

()

holds. Then we have
(i) x < k? for k > 11
(17) = < k3 for k > 37.

Proor. We have

r\ _zz—1 a:—k:+1><£>k

k) kk-1 1 k) -
From (1.1.10) and Lemma 1.1.3, we have (i) < g7k, Comparing the upper and lower bounds for
(1), we derive that

k
(1.1.11) r < kF-m®),
For k£ > 11, we exclude 1 and 9 to see that there are at most [%] — 2 odd primes upto k. Hence

(k) < [%] -1< % for k£ > 11. Further the number of composite integers < k and divisible by 2
or 3 or d is

k k k k k k k kK k k k k k k
b Sl I B RN e R P O - S TN SO T T
[2]+[3]+[5] [6] [10] [15]+[30] 3_2+3+5+30 6 10 15 7
11
—Bk‘—T

Thus we have (k) < k—1— (%k— 7)< % for k > 90. By direct computation, we see that w(k) < %
for 37 < k < 90. Hence

k < 2 for k> 11
k—m(k) — %forkES?
which, together with (1.1.11), proves the assertion of the lemma. ] O

LEMMA 1.1.7. Let z < k2. Assume that (1.1.10) holds. Then

(1.1.12) <£> < 4bHVe,

PRrROOF. We have from Lemma 1.1.3 and (1.1.10) that

<£>= II »<Ilr Il» II» -

pl1(3) p<k  p<Vx p<Yz
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By (1.1.4), we have
(1.1.13) e II2 [ p-<#
Pk p<vEk  p<VE
and taking k =/,
(1.1.14) Hp Hp Hp---<4\/5.
p<vz  p<Vx p<Yz
Since z < k2, we have 23/x <k for | > 2. Hence (1.1.13) and (1.1.14) give
p<k p<yz p<{z
implying (1.1.12). O O
LEMMA 1.1.8. Let k > 11 and z < k3. Assume (1.1.10). Then
(1) x < 4k
(ii) k <103 for 2k < x < 4k
(ii1) k <113 for 2k < x < 2k.
PROOF. We have from (1.1.2) that
(4kz) _ (2kz) 4k(4k—1)---(3k+1) > £2k gk if > A4k

k k 2k(2k—1)---(k:|4-1) [2\/3 T 2vVk
z 5p SEI(|3k|=1)(| 3k |—k+1) E .
(1.1.15) <k> > ¢ (184l) = 2 [34] Ei(gk_l)...(kil) > 2 (5)" i Sk <z <4k
(%) > Sz if 2k <z < 3k,

Let x > 4k. Then 4k < k3 implying k£ > 17. Comparing (8.1.2) with the upper bound of (i)
given by (1.1.12), we see from = < k3 that
(1.1.16) 1> <4k> gmkR=VE > (4]“)2—2’“—2’@% > ﬁr%—%%
k —\ k 2k

implying
2k > 2h- 21

By induction, we see that 2%'“ > 2Vk for k > 23. Thus %k: >k — 2]{:% giving £ < 29. For
k =17,19,23,29, we see that (1.1.16) is not valid, proving (i).
Let 2k < x < 4k. Comparing (8.1.2) with the upper bound of (}) given by (1.1.12), we see that

[3E] kv [3K1N o oneand _ 48 (5\" op
(1.1.17) 1><k>4 z<k>2 >2\/E<4>2
implying
N
(Z) < o2Vk 2WVF,

Also 27 > 2z for 2 > 3 so that 2V* > 2/k for k > 11. Thus

5\F VE
2 o5vk
(i) -
which gives k < 257. Further, we check that (1.1.17) does not hold for 107 < k < 257 with k prime.
Thus (ii) is valid.
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Finally let 2k < z < %k In this case, we see that every prime p with %m < p < k occurs to the
second power in the denominator of ﬁlk), since 2p > %x > k and 2p > 2% =r—g5>r—p>w—Fk
and it cannot occur to third power in the numerator since 3p > z. Thus when p < k and p | (i),
then p < %:13 Therefore we have

<z>= II »#<1Ile II» Il 2

pelI(%) <5 p<vz  p<{z

2
Since %ac > x3 for x > 27, we have 4/ %:13 > 2 for | > 2. Hence

@)g ICRIEEIRITRIEEE

P<E  p<y/T p<Vz  p<VYw
Now we use (1.1.4) with x replaced by %:13 and /z to get

<m> < adeVE < gibrER
i <
Comparing this with the lower bound given by (8.1.2), we obtain

k
(1.1.18) 1> <2k>2—3’f—m > 4o jk-VioE
k Wk

implying
25 < 2v/k 2V10F < oVhHVIOk

since 2Vk < oVE  Therefore
k
3 < VE(1 +V/10)

so that k£ < 151. Further we check that (1.1.18) does not hold for 113 < k£ < 151 with k£ prime,
giving (iii). O O

1.2. Proof of Theorem 1.0.2

Let z > 2k. Assume that P((})) < k. Then P(A'(z,k)) = P(k!(})) < k. We first prove
Theorem 1.0.2 for k£ < 7. We note that k divides exactly one term of A’. Let p < k. Let x — ip be
the term in which p occurs to the highest power in A’. Then we see that

(1.2.1) ordy(z — i) <ordy(x —i — (x —ip)) = ord,(i — ip)

for any 0 <1 <k, i # ip.

Let k = 2. Then z(x — 1) is divisible by an odd prime, a contradiction. Let k = 3. After
removing the term divisible by 3 and then the term in which 2 appears to maximal power, we are
left with one term divisible only by 2, and by (1.2.1), this term must be < 2. Hence z —2 < 2 or
x < 4, which is not possible since > 6. Let k = 5. After removing the terms divisible by 5, 3 and
term in which 2 appears to maximal power, we are left with at least one term divisible by 2 and
the term is < 4 by (1.2.1). Therefore x — 4 < 4, a contradiction since z > 10. Let k = 7. After
removing the terms divisible by 7,5 and terms in which 3 and 2 appears to maximal power, we are
left with at least two terms divisible by 2 or 3 only and we get x — 6 < 4-3 =12 by (1.2.1). Thus
14 < x < 18. Now we check that P(A’) > 7 in all these cases.
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Thus it remains to consider the case £ > 11. From Lemma 1.1.6 and 1.1.8, we have

(1.2.2) k<113; z < k? for 11 <k <3l; x <4k for 37 < k < 113.
We check that
(1.2.3) Pit1 —pi < 15 for Pit1 < 457 = Pr(4x113)+1-

Thus Lemma 1.1.1 with X = 452 k¢ = 15 implies that P(A’(x,k)) > k for x < 452 and k > 15, a
contradiction. Now we consider the case x < k2 with 11 < k < 31. We check that

21 for piy1 <967 = pr(312)41
11 for Di+1 < 173 :pﬂ.(132)+1 with (piapz'—i-l) 75 (113, 127)

We apply Lemma 1.1.1 as follows: for 23 < k < 31, take X = 961,kq = 21; for k£ = 17,19, take
X = 361,ky = 15; for k = 11,13, take X = 169, ky = 11. Now Theorem 1.0.2 follows from (1.2.3)
for k = 17,19 and (1.2.4) except possibly when 113 <z —k+ 1 < & < 127 and k = 13. This gives
x =126 and P(A’(z,k)) > k holds in this case as well. O

(1.2.4) Pi+1 —Pi < {






CHAPTER 2

Results from prime number theory

In this chapter, we give the results from Prime Number Theory which we will be using in the
subsequent chapters. We begin with the bounds for m(v) given by Rosser and Schoenfeld, see [38,
p. 69-71].

LEMMA 2.0.1. For v > 1, we have

(1) m(v) < 10;,, <1 * zljgl/>

(i) w(v) > % for v > 67
logv — 3
(i) ] p* < (2.826)
pe<v
(iv) []» < (2763)"
p<v
(v) p; > ilogi for i > 2.

The following sharper estimates are due to Dusart [4, p.14]. See also [5, p.55], [6, p.414].
LEMMA 2.0.2. For v > 1, we have

v 1.2762
) < 1 =:
() 70) < o (14 e ) =0
(i) w(v) > Togv — 1 =:b(v) for v > 5393.
The following lemma is due to Ramaré and Rumely [35, Theorems 1, 2.
LEMMA 2.0.3. Let k € {3,4,5,7} and
O(x, k1) = Z log p.

p<z
p=l(mod k)

For zo < 10'°, we have

£~ (1 —¢) for z > 10"

(2.0.1) 0(x,k,1) > Z(Lk; (1 B %) for 1010 > & > 2
and
009 Do b ) < ik)(l—i—e’)forle()lO
(2.0.2) (w,k,1) < %(1‘*6%}?) for 1010 > 2 > 2
where € := €(k) and €' := €'(k) are given by

k 3 4 ) 7

e | 1.798158 | 1.780719 | 1.412480 | 1.105822

¢’ 1 0.002238 | 0.002238 | 0.002785 | 0.003248

9
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In the next lemma, we derive estimates for m(x,k,l) and 7(2x,k,l) — 7w(x,k,l) from Lemma

2.0.3.
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LEMMA 2.04. Let k € {3,4,5,7}. Then we have

(2.0.3) m(x, k1) > T ¢+ % for x> xg
log x log 5
and
(2.0.4) 722, k1) — w2, k, 1) < Q,% for z > g
where ¢,,¢,, ¢35 and xg are given by
k 3 4 5 7
¢, | 0.488627 | 0.443688 | 0.22175 | 0.138114
¢, | 0.167712 | 0.145687 | 0.0727974 | 0.043768
¢; | 0.013728 | 0.067974 | 0.0170502 | 0.0114886
xo | 25000 1000 2500 1500
Proor. We have
O(x, k1) = Z logp < m(x,k,l)logx
p<z
p=l(mod k)
so that
0(x, k1)
2.0. k1) > —~—"1"2.
(205) wlok D) > S0
Also,

O(x, k1) < W(g,k’,l) log ; + (ﬂ(az,k:,l) — ﬂ(%,k’,l)) logx = n(x, k,l)logz — ﬂ(g,k‘,l) log 2
giving
m(x,k,l)logx > 0(x, k1) + ﬂ(g, k,1)log 2.

Now we use (2.0.5) for § to derive
0(5,k,1)log2 1 >
log% /)"
Let k = 3,4,5,7 and z¢ := z¢(k) be as given in the statement of the lemma. Since zo < 50000 <
(%(,k))z, we have from (2.0.1) that

>

2.0.
(206) ~ logx

m(x, k1)

x <O(x,k,l) .

X T

z ep(k)
O(x, k) > —— (1 - L) f >
(207) (:I:? ) ) = (k‘) < o > or r = Zo,
o x x ep(k)
(=, k1) > 1-— f > xg.
(27 7)_2¢(k)< ,—%) or r =~ I
This with (2.0.6) implies (2.0.3). Further we also have from (2.0.2) that
2x ed)(kz))
02z, k1) < —— 1+ for x > xg.
( ) ¢ (k) ( V2z0 ’

This with (2.0.7), (2.0.6) and
02z, k, 1) — O0(x, k1) > (w(2x, k1) — w(x,k,1)) logx

implies (2.0.4). O
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The next lemma gives a lower bound for ord,(k — 1)!.

LeEMMA 2.0.5. For a prime p < k, we have

k—p log(k—1)
p—1 log p
PROOF. Let p" <k —1 < p"*!. Then we have

ordy(k — 1)! = [%} +o+ [kl;l] .

7

Now, we note that [k_l] > k1 p-l Z% — 1 for ¢ > 1. Hence

ord,(k —1)! >

P’ pt P’
T
k k 1 k 1 k
ordp(k:—l)!zz —-—1)=—1-—=)—r=————r.
=\ p—1 p p—1 p—1p"
Since p" < k—1 < k < p"t, we have r < % and z% < p, which we use in the estimate for
ord,((k — 1)!) above to get the lemma. O O

We end this chapter with a lemma on Stirling’s formula, see Robbins [37].
LEMMA 2.0.6. For a positive integer v, we have

_ 1 _ 1
2y e VvV e12 T < vl < V2v e Vi eTor .






CHAPTER 3

A survey of refinements and extensions of Sylvester’s theorem

Let n,d and k > 2 be positive integers. For a pair (n,k) and a positive integer h, we write
[n, k, h] for the set of all pairs (n,k),---,(n+h —1,k) and we set [n, k] = [n,k,1] = {(n,k)}.

Let W(A) denote the number of terms in A divisible by a prime > k. We observe that every
prime exceeding k divides at most one term of A. On the other hand, a term may be divisible by
more than one prime exceeding k. Therefore we have

(3.0.1) W(A) < w(A) — mg(k).

If max(n,d) < k, we see that n + (k — 1)d < k? and therefore no term of A is divisible by more
than one prime exceeding k. Thus

(3.0.2) W(A) =w(A) — my(k) if max(n,d) <k.

We are interested in finding lower bounds for P(A), w(A) and W(A). The first result in this
direction is due to Sylvester [56] who proved that

(3.0.3) P(A)>kifn>d+k.
This immediately gives
(3.0.4) w(A) > my(k) if n>d+ k.

We give a survey of several results in this direction.

3.1. Improvements of w(A(n,k)) > w(k)

Let d = 1. A proof of Sylvester’s result is given in Chapter 1. The result of Sylvester was
rediscovered by Schur [48] and Erdés [8]. Let k = 2 and n > 2. We see that w(n(n + 1)) # 1 since
ged(n,n+ 1) = 1. Thus w(n(n + 1)) > 2. Suppose w(n(n + 1)) = 2. Then both n and n + 1 are
prime powers. If either n or n + 1 is a prime, then n + 1 or n is a power of 2, respectively. A prime
of the form 22" 4 1 is called a Fermat prime and a prime of the form 2™ — 1 is called a Mersenne
prime. Thus we see that either n is a Mersenne prime or n+ 1 is a Fermat prime. Now assume that
n =p® n+1=q¢® where p, ¢ are distinct primes and «, 5 > 1. Thus ¢? — p* = 1, which is Catalan
equation. In 1844, Catalan [2] conjectured that 8 and 9 are the only perfect powers that differ by
1. Tijdeman [58] proved in 1976 that there are only finitely many perfect powers that differ by 1.
Catalan’s conjecture has been confirmed recently by Mihailescu [27]. Thus n = 8 is the only other
n for which w(n(n+ 1)) = 2. For all other n, we have w(n(n+ 1)) > 3. Let k > 3. We observe that

(3.1.1) w(A(n, k) =7(2k) if n=k+1.
If £+ 1 is prime and 2k + 1 is composite, then we observe from (3.1.1) by writing
2k +1
Alk+2,k)=Ak+ 1,k
(+2,0) = Ak +1,0) 7
that
(3.1.2) w(Ak+2,k)) =7(2k) — 1.

13
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Let k+ 1 be a prime of the form 3r + 2. Then 2k + 1 = 3(2r 4+ 1) is composite. Since there are
infinitely many primes of the form 3r + 2, we see that there are infinitely many k for which &£+ 1 is
prime and 2k + 1 is composite. Therefore (3.1.2) is valid for infinitely many k. Thus an inequality
sharper than w(A(n,k)) > 7(2k) — 1 for n > k is not valid.

Saradha and Shorey [41, Corollary 3| extended the proof of Erdés [8] given in Chapter 1 to
sharpen (3.0.4) and gave explicit bounds of w(A(n, k)) as

(3.1.3) w(A(n, k) > n(k) + |:%7T(]€):| +2ifn>k>2

unless (n, k) € S1 where S is the union of sets
[4,3],1[6,3,3],[16, 3], [6,4], [6,5,4],[12, 5], [14, 5, 3], [23, 5, 2],
(3.1.4) [7,6,2], [15,6], 8,7, 3], [12, 7], [14,7, 2, [24, 7], [9, 8], [14, 8],
(14,13, 3], [18,13], [20, 13, 2], [24, 13], [15, 14], [20, 14], [20, 17].
Laishram and Shorey [18] improved it to 2. Define
2 if 3<k<6
s(ky=41if T<k<16

0 otherwise

so that
3 1
[Zw(k)} —146(k) > [gw(k)] + 2.
‘We have
THEOREM 3.1.1. Letn >k > 3. Then
(3.1.5) W(An, k) > 7 (k) + [%w(k‘)} 14 6k
unless

(n, k) € S1USy
where S is given by (3.1.4) and So is the union of sets

20,19, 3], [24, 19], [21, 20], [48, 47, 3], [54, 47], [49, 48], [74, 71, 2], [74, 72],
74,73, 3], [84, 73], [75, 74], [84, 79], [84, 83], [90, 83], [108, 83], [110, 83],
90, 89], [102, 89], [104, 89], [108, 103], [110, 103, 2], [114, 103, 2], [110, 104],
[114,104], [108, 107, 12], [109, 108, 10], [110, 109, 9], [111, 110, 7], [112, 111, 5],
(3.1.6) [113,112,3],[114,113, 7], [138,113], [140, 113, 2], [115, 114, 5], [140, 114],

[116,115,3], [117,116], [174, 173], [198, 181], [200, 181, 2], [200, 182],
200, 193, 2], [200, 194], [200, 197], [200, 199, 3], [201, 200], [282, 271, 5],
[282,272], [284, 272, 2], [284, 273], [278, 277, 3], [282, 277, 5], [279, 278,
(282,278, 4], [282, 279, 3], [282, 280], [282, 281, 7], [283, 282, 5],
[284, 283, 5], [294, 283], [285, 284, 3], [286, 285], [294, 293).

We note here that the right hand sides of (3.1.3) and (3.1.5) are identical for 3 < k < 18.
Theorem 3.1.1 is an improvement of (3.1.3) for & > 19. The proof of this theorem uses sharp
bounds of 7 function due to Dusart given by Lemma 2.0.2. We derive the following two results
from Theorem 3.1.1. We check that the exceptions in Theorem 3.1.1 satisfy w(A(n, k)) > 7(2k) — 1.
Hence Theorem 3.1.1 gives
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COROLLARY 3.1.2. Letn > k. Then

(3.1.7) w(A(n,k)) > min <7T(/€) + Ew(k)} — 1+ 0(k), m(2k) — 1) .

Further all the exceptions in Theorem 3.1.1 except (n,k) € {(114,109),(114,113)} satisfy
w(A(n,k)) > 7(k) + [37(k)] — 1. Thus we obtain the following corollary from Theorem 3.1.1.

COROLLARY 3.1.3. Letn > k. Then

(3.1.8) (A, k) > (k) + [%w(k‘)} 1
unless
(3.1.9) (n, k) € {(114,109), (114, 113)}.

The constant ?1 in Theorem 3.1.1 can be replaced by a number close to 1 if n > 1;16

THEOREM 3.1.4. Let k > 3 and (n,k) # (6,4). Then we have

(3.1.10) w(A(n, k) > n(2k) if n > gk

The inequality (3.1.10) is an improvement of (3.1.3) for k > 10. We observe that 12k in Theorem
3.1.4 is optimal since w(A(34,24)) = m(48) —1. Also the assumption (n, k) # (6,4) is necessary since
w(A(6,4)) = w(8) — 1. We recall that there are infinitely many pairs (n, k) = (k + 2, k) satisfying
(3.1.2). Thus there are infinitely many pairs (n, k) with n < 1Tk such that w(A(n,k)) < m(2k).
Let n =k +r with 0 < r < k. We observe that every prime p with k <n—-1<p<n+4+k—1is
a term of A(n, k). Since k > ”T_l, we also see that 2p is a term in A(n, k) for every prime p with
k<p< %’H Further all primes < k divide A(n, k). Thus

wAn, k) =r2k+r—-1)—7m(k+r—1)+m(k+ %1) = m(2k) + F(k,r)

where

F(k,r) = m(2k +7r —1) — 7(2k) — <7r(k:—i—r—1)—7r(k—|—r;1)>.

We use the above formula for finding some pairs (n, k) as given below when k& < 5000 and n < 2k
for which w(A(n, k)) < 7(2k):

w(A(n, k) = 7(2k) — 1if (n, k) = (6,4), (34,24), (33, 25), (80, 57)
w(A(n, k) = 7(2k) — 2 if (n, k) = (74,57), (284, 252), (3943, 3880)
w(A(n, k) = m(2k) — 3 if (n, k) = (3936,3879), (3924, 3880), (3939, 3880)
w(A(n, k) = m(2k) — 4 if (n, k) = (1304, 1239), (1308, 1241), (3932, 3879)
w(A(n, k) = 7(2k) — 5 if (n, k) = (3932, 3880), (3932, 3881), (3932, 3882).

It is also possible to replace 3 7 in Theorem 3.1.1 by a number close to 1 if n > k and k is

sufficiently large. Let kK <n < 17k: Then
w(A(n, k) >n(n+k—1)—n(n—1)+ n(k).
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Let € > 0 and k > kg where kg exceeds a sufficiently large number depending only on e. Using the
estimates (i) and (ii) of Lemma 2.0.2, we get

nt k1 n 1.2762n
k—1)—m(n—1)> logn
F R A v rpray g i R E s v

S n+k—-1 n  12762n
logn logn log® n
k—1 1.2762k

> _

~ logn log? k

> (1 —e)m(k).
Thus w(A(n, k)) > (2 — e)m(k) for k < n < 12k which we combine with Theorem 3.1.4 to conclude
the following result.

THEOREM 3.1.5. Let € > 0 and n > k. Then there exists a computable number kg depending
only on € such that for k > kg, we have

(3.1.11) w(A(n, k) > (2 —e)m(k).

Proofs of Theorems 3.1.1 and 3.1.4 are given in Chapter 4. We end this section with a conjecture
of Grimm [14]:

Suppose n,n + 1,--- ,n +k — 1 are all composile numbers, then there are distinct primes p;;
such that p;,|(n +j) for 0 < j <k.
This conjecture is open. The conjecture implies that if n,n+1,--- ,n+k — 1 are all composite,

then w(A(n,k)) > k which is also open. Let g(n) be the largest integer such that there exist
distinct prime numbers Py, - - - Py(,) with Pj|n +i. A result of Ramachandra, Shorey and Tijdeman

[33] states that
) > er (L8
9 ! loglogn

where ¢; > 0 is a computable absolute constant. Further Ramachandra, Shorey and Tijdeman [34]
showed that

w(A(n+1,k)) > k for 1<k <exp(ca(log n)%)

where ¢y is a computable absolute constant.

3.2. Results on refinement of P(A(n,k)) > k

Hanson [16] improved (1) as P(A(n,k)) > 1.5k — 1 for n > k > 1. The best results in this
direction can be found in Langevin [23], [25]. Sharper estimates have been obtained when k is
sufficiently large. See Shorey and Tijdeman [50, Chapter 7]. Ramachandra and Shorey [32] proved
that

log log k

1
3 .
HA@$D>@M%k< > if n > ko

log log log k
where ¢ > 0 is a computable absolute constant. Further it follows from the work of Jutila [17] and
Shorey [49] that

loglog k

3
—= 2  _ifn>k2
logloglog k nn

P(A(n,k)) > caklogk

where ¢4 is a computable absolute positive constant. If n < k%, it follows from the results on
difference between consecutive primes that A(n, k) has a term which is prime. The proofs are not
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elementary. The proof of the result of Ramachandra and Shorey depends on Sieve method and
the theory of linear forms in logarithms. The proof of the result of Jutila and Shorey depends on
estimates from exponential sums and the theory of linear forms in logarithms. Langevin [21], [22]
proved that for any € > 0,

P(A(n,k)) > (1 —e)kloglogk if n > c5 = c5(k,€)
where c5 is a computable number depending only on k£ and e. For an account of results in this
direction, see Shorey and Tijdeman [50, p. 135].
3.3. Sharpenings of (3.0.3) and (3.0.4)
We first state Schinzel’s Hypothesis H [46]:

Let fi(x), -+, fr(x) be irreducible non constant polynomials with integer coefficients such that
for every prime p, there is an integer a such that the product fi(a)--- fr(a) is not divisible by p.
Then there are infinitely many positive integers m such that fi(m),---, fr(m) are all primes.

We assume Schinzel’s hypothesis. Then 1 4+ d and 1 + 2d are primes for infinitely many d.
Therefore

(3.3.1) wA)=mn(k), k=3

for infinitely many pairs (n,d) = (1,d). Let f.(z) =1+ rz for r = 1,2,3,4. For a given p, we see
that p1 f1(p)f2(p) - - - fa(p). Hence there are infinitely many d such that 1+d,1+2d,1+ 3d, 1+ 4d
are all primes. Thus

(3.3.2) w(A) =7(k)+1, k=45

for infinitely many pairs (n,d) = (1,d).
Langevin [24] sharpened (3.0.3) to

P(A) > kif n > k.
Shorey and Tijdeman [52] improved the above result as
(3.3.3) P(A) >k unless (n,d, k) =(2,7,3).
Further Shorey and Tijdeman [51] proved that
(3.3.4) w(A) > m(k).

Thus (3.3.4) is likely to be best possible when & = 3 by (3.3.1). A proof of (3.3.3) is given in
Chapter 5. Moree [29] sharpened (3.3.4) to

(3.3.5) w(A) > m(k) if k>4 and (n,d, k) # (1,2,5).
We observe that (3.3.5) implies (3.3.3) for k > 4. If k = 4,5, then (3.3.5) is likely to be best possible
by (3.3.2).

Saradha and Shorey [42] showed that for £ > 4, A is divisible by at least 2 distinct primes
exceeding k except when (n,d, k) € {(1,5,4),(2,7,4),(3,5,4), (1,2,5),(2,7,5),(4,7,5), (4,23,5)}.
Further Saradha, Shorey and Tijdeman [45, Theorem 1] improved (3.3.5) to

(3.3.6) w(A) > gﬂ'(k) +1fork>6

unless (n,d, k) € Vy where 1} is
{(17 27 6)7 (17 37 6)7 (17 27 7)7 (17 3’ 7)? (17 47 7)’ (2? 37 7)7 (27 5? 7)7 (37 2’ 7)?
(1,2,8),(1,2,11),(1,3,11),(1,2,13),(3,2,13),(1,2,14)}.



135 Z. [LEOULLS FRUN FRVIE INUMDERV 1 0AEURY
In fact they derived (3.3.6) from

6
(3.3.7) W(A) > gw(k:) —mq(k)+1for k>6

unless (n,d, k) € Vp. It is easy to see that the preceding result is equivalent to [45, Theorem 2].
We have no improvement for (3.3.7) when k& = 6,7 and 8. For k£ > 9, Laishram and Shorey [19]
sharpened (3.3.7) as

THEOREM 3.3.1. Let k> 9 and (n,d, k) ¢ V where V is given by
n=1, d=3, k=9,10,11, 12,19, 22, 24, 31;
(3.3.8) n=2 d=3, k=12, n=4, d=3, k=9,10;
n=2 d=5 k=910 n=1, d=7, k = 10.
Then
(3.3.9) W(A) > n(2k) — mqa(k) — p

where
lifd=2n<k
p=rld) = {O otherwise.
When d = 2 and n = 1, we see that
w(A) =m(2k) — 1
and
W(A) = 7(2k) — mq(k) — 1

by (3.0.2), for every k > 2. This is also true for n = 3,d = 2 and 2k + 1 not a prime. Therefore
(3.3.9) is best possible when d = 2. We see from Theorem 3.3.1 and (3.0.1) that

(3.3.10) w(A) > m(2k) —p if (n,d,k) ¢ V.

For (n,d, k) € V, we see that w(A) = w(2k) — 1 except at (n,d, k) = (1,3,10). This is also the case
for (n,d, k) € Vy with k = 6,7,8. Now, we apply Theorem 3.3.1, (3.3.6) for k = 6,7,8 and (3.3.5)
for k = 4,5 to derive

COROLLARY 3.3.2. Let k> 4. Then
(3.3.11) w(A) > w(2k) —1
except at (n,d, k) = (1,3,10).

This solves a conjecture of Moree [29]. Proof of Theorem 3.3.1 is given in Chapter 6.



CHAPTER 4

Refinement of Sylvester’s theorem for consecutive integers: Proof
of Theorems 3.1.1 and 3.1.4

In this chapter we prove Theorems 3.1.1 and 3.1.4. We give a sketch of the proof. We first show
that it is enough to prove Theorem 3.1.1 for k£ which are primes and Theorem 3.1.4 for k such that
2k — 1 is a prime. The sharp estimates of 7 function due to Dusart given in Lemma 2.0.2 have been
applied to count the number of terms in A’(z, k) which are primes and the number of terms of the
form ap with 2 < a < 6 and p > k. The latter contribution is crucial for keeping the estimates well
under computational range. It has been applied in the interval 2k < x < 7k. In fact this interval
has been partitioned into several subintervals and it has been applied to each of those subintervals.
This leads to sharper estimates. See Lemmas 4.2.6, 4.2.7, 4.2.9. For covering the range x > 7k, the
ideas of Erdés [8] have been applied, see Lemmas 4.2.3, 4.2.5, 4.2.8.

4.1. An Alternative Formulation

As remarked in Chapter 3, we prove Theorem 3.1.1 for k£ > 19 and Theorem 3.1.4 for k£ > 10.
Further we derive these two theorems from the following more general result.

THEOREM 4.1.1. (a) Let k > 19, x > 2k and (x,k) ¢ Ss where S3 is the union of all sets
[z, k, h] such that [x —k + 1,k, h] belongs to Sy given by (3.1.6). Let fi < fo < --- < f, be all the
integers in [0, k) satisfying

(4.1.1) Pl = f1)- (@ — f) < k.
Then

3
(4.1.2) p<k— [Zw(k‘)} + 1.
(b) Let k> 10, x > 2k — 1. Assume (4.1.1). Then we have
(4.1.3) w<k—MC()
where

3

(4.1.4) M (k) = max(m(2k) — w(k), [Zw(k)] —1).

Thus, under the assumptions of the theorem, we see that the number of terms in A’ = z(z —
1)---(x —k+1) divisible by a prime > k is at least k — p. Since each prime > k can divide at most
one term, there are at least k — p primes > k dividing A’. Thus

w(A") > (k) +k — p.
Putting z = n + k — 1, we see that A’ = A and hence
w(A) >n(k)+k—p
and the Theorems 3.1.1 for k£ > 19 and Theorem 3.1.4 for k£ > 10 follow from (4.1.2) and (4.1.3).

19



zU 4. FRUULN Ul 1 NnLURENVIS o9.1.1 AIND o.1.4

4.2. Lemmas

LEMMA 4.2.1. We have

(4.2.1) M(k) = {

|
—~
[\
Dy
~—
[
|
—~
&y
~
o
-
=
D
=
=
5
@

where K, s given by
R, ={19,20,47,48,73,74,83,89,107, 108,109,110, 111,112,113, 114,

4.2.2
( ) 115,116, 173,199, 200,277, 278, 281, 282, 283, 284, 285, 293 }.

PRrROOF. By Lemma 2.0.2 (i) and (ii), we have
3 2k 7 k 1.2762
2k) — w(k) — |-n(k 1> - - 1+ —— 1
m(2k) = m(k) [47T( )] = log(2k) —1 4logk < * log k > *

for £ > 2697. The right hand side of the above inequality is an increasing function of £ and it
is non-negative at k = 2697. Hence 7(2k) — (k) > [37(k)] — 1 for k > 2697 thereby giving
M (k) = m(2k) — w(k) for k > 2697. For k < 2697, we check that (4.2.1) is valid. O

LEMMA 4.2.2. (i) Let k' < k" be consecutive primes. Suppose Theorem 4.1.1 (a) holds at k'.
Then it holds for all k with k' < k < k".
(7i) Let k1 < ko be such that 2k — 1 and 2ks — 1 are consecutive primes. Suppose Theorem 4.1.1
(b) holds at k1. Then Theorem 4.1.1 (b) holds for all k with k1 <k < ko, k ¢ R;.

PROOF. Firstly, we see that (4.1.2) and (4.1.3) are equivalent to

(4.2.3) W(A') > [%w(k)] 1
and

(4.2.4) W (A" > M(k),
respectively.

Suppose that Theorem 4.1.1 (a) holds at k' for k¥’ prime. Let k as in the statement of the
Lemma and 2 > 2k. Then z > 2k; and A’ =z(x —1)--- (z — k' + 1)(x — k') --- (x — k + 1). Thus

4

implying (i). We now prove (ii). Assume that Theorem 4.1.1 (b) holds at k;. Let k be as
in the statement of the lemma. Further let x > %k -1 > %kl — 1. Since k ¢ R,, we have
M (k) = n(2k) — w(k) by Lemma 4.2.1. Also m(2k;) = 7(2k; — 1) = m(2k — 1) = 7(2k). Therefore

WANY>W(@(@—1)--(x — k1 +1)) > M(k1) = 7(2k1) — (k1) > 7n(2k) — 7 (k)
implying (4.2.4). O

WA > W(a(e—1)-(z— K +1)) > Eﬂ(k')] = [%(k)] 1

The next lemma is a generalisation of Lemma 1.1.7. We need some notations. Let Py > 0 and
v > 0 with g1, g2, - - - g, be all the integers in [0, k) such that each of z —g; with 1 <14 < v is divisible
by a prime exceeding Py. Further we write

(4.2.5) (@—g1) - (z—gy) =GH

with ged(G, H) =1, ged(H, H p) = 1. Then we have
p<Fo
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3
LEMMA 4.2.3. If x < P}, then
-1

(4.2.6) (i) < (2.83)P0+\/5$V G H pordo (k)

p>F

PROOF. Let p®||(7). From (1.1.1), we have p‘""d”(i) = p® < x. Therefore

(4.2.7) M@ <<l H H p:

p<Fo Zfﬁ? PSP et peas

From Lemma 2.0.1 (iii) with v = \/z and v = Py, we get

(4.2.8) H H Hp < (2.83)V®

pSwQ pSr4 péwb‘

II» H Hp < (2.83)10

<Py
P p<P? p<p}

and

3 1 1
respectively. Since z < Py, we have P > x2-T for [ > 2 so that the latter inequality implies

(4.2.9) IHIIrIlp - <83

pﬁr%

Combining (4.2.7), (4.2.8) and (4.2.9), we get

(4.2.10) [T ) < (2.83)70+v%,
p<Po

By (4.2.5), we have

4.2.11 ordy (%) _ 3«’—91) (w—gu)'

Further we observe that

(4.2.12) (x—g1) - (r—gv) <z"

Finally, we combine (4.2.10), (4.2.11) and (4.2.12) to conclude (4.2.6). O
Lemma 4.2.3 with G > 1, Py = k and v = k — p implies the following Corollary, see Saradha

and Shorey [41, Lemma 3].

COROLLARY 4.2.4. Let x < k2. Assume that (4.1.1) holds. Then
(2) < (2.83)FHVELR—m

LEMMA 4.2.5. Assume (4.1.1) and
(4.2.13) p>k— M) +1
where M (k) is given by (4.1.4). Then we have
(7) x<ki for k> 171

(¢ )x<k£f0rk225
(iii) x < k% for k > 13
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(v) =z < I for k > 10.
PROOF. Since (z — f1)--- (z — f,) divides (})k!, we observe from (4.1.1) and (1.1.1) that

(4.2.14) (x—f1)-(x—f,) < Hpordp k< | [[z] k' =2"®k

p<k p<k
Also

(= f1) (@ = ) > (@ — f)' > (@ — k4 1) >xu<1_ﬁ>“.

x
Comparing this with (4.2.14), we get

k I
(4.2.15) k! > ghmm(k) (1 — —> :
X

Let k > 71. We assume that = > k2 and we shall arrive at a contradiction. From (4.2.15), we
have

(4.2.16) > 2 (n=m(k) <1 ! )u
and since p < k,
3 (u—m () L)
4.2.17 k! > g2k <1 — —> .
( ) N
We use (4.2.17), (4.2.13), (4.2.1) and Lemmas 2.0.2 (i) and 2.0.6 to derive for k > 294 that
2762 1
1> 2.718k2 Toxze 1 Togar ) (] — —
( \/E)

since exp(w W) > 1. The right hand side of above inequality is an increasing function

of k and it is not valid at £ = 294. Thus k£ < 293. Further we check that (4.2.17) is not valid for
71 < k < 293 except at k = 71,73 by using (4.2.13) with 4 =k — M (k) + 1 and the exact values of
k! and M (k). Let k = 71,73. We check that (4.2.16) is not satisfied if (4.2.13) holds with equality
sign. Thus we may suppose that (4.2.13) holds with strict inequality. Then we find that (4.2.17)
does not hold. This proves (i). For the proofs of (ii), (iii) and (iv), we may assume that = > ki for
25 < k<70, x>k for 13 <k <24 and z > k1 for k = 10,11,12, respectively, and arrive at a
contradiction. g

The next four lemmas show that under the hypothesis of Theorem 4.1.1, k is bounded. Further
we show that Theorem 4.1.1 (a) is valid for primes k if # < 2% — 1 and Theorem 4.1.1 (b) is valid
for all £ € R where

(4.2.18) R =R, U{k|k > 10 and 2k — 1 is a prime}.

LEMMA 4.2.6. (a) Let k > 19 be a prime, 2k < x < 2k —1 and (z,k) ¢ S3. Then Theorem
4.1.1(a) is valid.
(b) Let k > 10,23k — 1 < « < 3k. Then Theorem 4.1.1(b) holds for all k € &.

PRrROOF. Let 2k < x < 3k. We observe that every prime p with £k < x — k < p < z is a term of
A'. Since k > %;k, we also see that 2p is a term in A’ for every prime p with k < p < Z. Thus

(4.2.19) W(A) > n(z) — m(z — k) + 7 (g) — (k).
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The contribution of 7(§) — (k) in the above expression is necessary to get an upper bound for &
which is not very large.

(a) Let 2k < x < Zk — 1 with (z,k) ¢ S3. We will show that (4.2.3) holds. Let (2+t1)k < 2 <
(2+1t2)k with 0 <t) <ty <1landte—t; < %. Then we have from (4.2.19) that

W(A') > 7(2k + t1k) — m(k + tok) + m(k + %) — (k).

Hence it is enough to prove

(4.2.20) T(2 4+ 1)k) = w(1+ £2)R) + (1 + k) — (k) — F ﬂ(k)] +1>0.

Using Lemma 2.0.2 (i), (ii) and

Y Y
logY —1 log(7) and logY _ 1 +log() ’
log Z log Z logZ —1 logZ —1

we see that the left hand side of (4.2.20) is at least

2

;b<2+tlk> —a((1 4 to)k) — Z a(k) +1

?

(4.2.21)

k

7
:w {f(k,tl,tz) - g(k,tl,tg) — Zg<k7tl70)} 41

for k > 5393, where

2
Pl ) = (1561~ o Ylog(2 F1R+Y

log(Zth) 24+ 1.2762log(3LL)
kytste) = (1+te) [ 14+ —20 )(1.2762+1 + sl B
skt =) < log((1 + t2)k) % <1 + tz) log((1 +t2)k)

(24 t1)(1+log1) 1+log i
i ( log((2+t1)k:/z')—1>

and

Then we have

. 2
ke ==t =3 (50 (Gmagim )

=1

We write

1 1
1.5t —to + Z = 0.5t; — (tQ — tl) + Z

to observe that the left hand side is positive unless (t1,%2) = (0, 1) and we shall always assume that
(t1,t2) # (0, 7).

Let kg = ko(t1,t2) be such that kf’(k,t1,ts) is positive at kg. Since kf’(k,t1,t2) is an increasing
function of k, we see that f(k,t1,t2) is also an increasing function of k for k > ko. Also g(k,t1,t2)
is a decreasing function of k. Hence (4.2.21) is an increasing function of k for & > ko. Let
k1 = ki(t1,t2) > ko be such that (4.2.21) is non-negative at k1. Then (4.2.20) is valid for k > k.
For k < k1, we check inequality (4.2.20) by using the exact values of w(r). Again for k not satisfying
(4.2.20), we take x = 2k 4+ r with t1k < r < t2k and check that the right hand side of (4.2.19) is at
least the right hand side of (4.2.3).
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Let 2k <z < %k. Then t1 = 0,15 = i and we find k1 = 5393 by (4.2.21). For k < 5393 and k
prime, we check that (4.2.20) holds except at the following values of k:

19,47,71,73, 83, 89,103,107, 109, 113, 151, 167, 173, 191, 193, 197,
199,269, 271, 277, 281, 283, 293, 449, 463, 467, 491, 503, 683, 709.

Thus (4.2.3) is valid for all primes k except at above values of k. For these values of k, we take

x =2k +r with 0 <7 < £ and show that the right hand side of (4.2.19) is at least the right hand
side of (4.2.3) except at (x,k) ¢ Ss.
We divide the interval [39k, 2Jk) into following subintervals

49 25 25 13 139 9 19 19 29
[ﬂk, Ek> ) [Ek; E’ﬂ) ) |:€k; Zk> 5 |:Zk, §k> and |:§]€, Ek) .

We find k; = 5393 for each of these intervals. For k£ < 5393 and k prime, we check that (4.2.20)
holds except at following values of k£ for the intervals:

@ 25\ . J19,47,67,71,73,79,83,103,107,109,113, 131,151,167, 181, 199,

12477127 ) | 211,263,271, 277,293, 467, 683

(25 17

kg k) {19,71,83,101,103,107,113,179,181,199,257,281,283,467,683

1713

E;k,?;k> : {19,37,47,61,73,89,113,197
139

[?;k;;1k> : {19,43,61,67,83,89,113,139,193,197,199,257,281,283

[gk 19k> [ 19,23,31,43,47,61,79,83,109, 113,139, 151, 167, 193, 197, 199,
4787 ) ) 239,283,359

and there are no exceptions for the subinterval [1879]@ %k) Now we apply similar arguments as in
the case 2k <z < %k to each of the above subintervals to complete the proof.

For the proof of (b), we divide %k — 1 < z < 3k into subintervals (%k -1, %k), [%k, %k‘),
[% k, 1741]{:) and [%k, 3k‘). We apply the arguments of (a) to each of these subintervals to conclude

that the right hand side of (4.2.19) is at least the right hand side of (4.2.4). Infact we have the
inequality

(4.2.22) R(2 + 11)k) = (1 -+ 2)k) + 7((1+ D)R) — (k) — M(k) > 0

analogous to that of (4.2.20). As in (a), using (4.2.1), we derive that k; = 5393 in each of these
intervals. For k < 5393 and k € &, we check that (4.2.22) hold except at the following values of k
for the intervals:

(%k -1, %k:) {54,55,57,73,79,142},

[3k,2k): {12,52,55,70},

(2K, k). {22,27}

[%k, 3k): {10,12,19, 21,22, 24,37, 54, 55,57,59, 70,91, 100, 121, 142, 159}.

Now we proceed as in (a) to get the required result. ]
LEMMA 4.2.7. Let 3k < x < Tk. Then Theorem 4.1.1 (b) holds for k € R.

We prove a stronger result that Theorem 4.1.1 (b) holds for all £ > 29000 and for k£ € R.
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PROOF. Let 3k < z < 7k. We show that (4.2.4) holds. Let (s +t1)k < x < (s + t2)k with

integers 3 < s < 6 and t1,t2 € {0, %, %, %, 1} such that to — t; = %. Then A’ contains a term equal

to ip with # < p < 7 for each 7 with 1 <7 < s and a term equal to sp for k < p < 7. Therefore

(4.2.23) W(A) > é <7r (%) o <x ; k)) . (g) — (k).

Since > (s +t1)k and © — k < (s — 1 + t2)k, we observe from (4.2.23) that

>Z< (S“l >—w<#k>> +w<8tt1k> — (k).

Hence it is enough to show

s S S — S
(4.2.24) ; <7r < t%) -7 (#k)) +7 < J;%) — (k) — M(k) > 0.

Using (4.2.1) and Lemma 2.0.2 (i), (ii), we see that the left hand side of (4.2.24) is at least

S (y (211, STIAB Y (SR ek
1(<+“> () ) o ()
=1

{F ]€ S, tl,tg ZG k‘ S tl,tg, ) G(l{?,s,tl,l,g)}

(4.2.25)

(log 5+ tl
for k > 5393, where

s—1
1+t -t t
F(k,s,t1,t2) = ( < ti 2>+;1—1> (log(s +t1)k) +
1

1=

(s+t1) 1+logz) <1 1+logi )
log((s +t1)k/i) — 1

i=1
and
1 (s4t1)i
G(k,s,t1,t2,1) <8 -1 +t2> . og (=L
787 9 72 f— - - = 108 (5= ).
1502 7 log (S_l+t2k)
(s+t1)i
1.2762 + log ( (s +t1)i > 1.2762log (Silié)
: 0
s— 1419 log(s—lT-ﬁ-bk,)
Then

s—1
, _ 14+t —to t
kF (k‘,s,tl,tg)— ( E <f + ; -

=1

Z(s—i—tl)( 1+ logi )2
— i log((s+t1)k/i) — 1) °

If s = 2, we note that F' and G are functions similar to f and g appearing in Lemma 4.2.6. As
in Lemma 4.2.6, we find K; := K;(s,t1,t2) such that (4.2.25) is non negative at k = K and it is
increasing for k > K;. Hence (4.2.24) is valid for k > K. For k < K, we check inequality (4.2.24)
by using the exact values of 7w function in (4.2.24) for k& with 2k — 1 prime or primes k given by
(4.2.2). Again for k not satisfying (4.2.24), we take x = sk + r with t;k < r < t2k and check that
the right hand side of (4.2.23) is at least the right hand side of (4.2.4).
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Let 3k <z < %k. Here t1 = 0, to = i and and we find K7 = 29000. We check that (4.2.24)
holds for 3 < k < 29000 except at £ = 10,12, 19, 22,40, 42, 52,55,57,100, 101, 126,127,142. For
these values of k, putting x = 3k +r with 0 <r < %k , we show that the right hand side of (4.2.23)
is at least the right hand side of (4.2.4). Hence the assertion follows in 3k < x < 1743141. For x > 1743141,
we apply similar arguments to intervals (s +t1)k < x < (s + t2)k with integers 3 < s < 6 and
t1,ts € {0, %, %, %, 1} such that to —t; = %. We find K7 = 5393 for each of these intervals except for
6k <z < 22k where K; = 5500. O

In view of Lemmas 4.2.6 and 4.2.7, it remains to prove Theorem 4.1.1 for x > 7k which we
assume. Further we may also suppose (4.2.13). Otherwise (4.1.3) follows. Now we derive from

Lemma 4.2.5 that z < k1. On the other hand, we prove x > k4. This is a contradiction. We split
9
the proof of x > k4 in the following two lemmas.

©

LEMMA 4.2.8. Assume (4.1.1), (4.2.13) with x > Tk. Then x > ks fork € R.

PRrROOF. We prove it by contradiction. We assume (4.1.1), (4.2.13) and 7k < z < k3. Then
k > 50. Further by Corollary 4.2.4 and (i) > (7kk), we have

(4.2.26) <7lf> < @83y 2wy
since = < k3. We observe from Lemma 2.0.6 that
<7k> _ (7k)! - Y 147Tkexp_7k(7k)7kexpwl+1
k kl(6k)! "~y 27Tkexp—kkkexpﬁ \/127Tkexp_6k(6]c)6kexp7z%c
0.4309

11 k
> exp®ik+1 72k (17.65)".

Vk

Combining this with (4.2.26), we get

1 7 k ki —3M (k)
4.2.2 1 1 A4 - — ] (17. 2. .
( 7) >exp<og(0 309k)+84/~c—|—1 72/~c> (17.65)"(2.83) k™2
Using (4.2.1), Lemma 1(i), (ii) and exp(log(oésogk) + 84k12+k = 72—22) > 1, we derive for £ > 5393
that

1> 6‘2367(2.83)_]67%k_log32k(1+ Tom 3k )+ 5o A=)

3 3 -1 3 1.2762
6.2367 Sy )1(283)F o o (I Tog2r )
~ eXp<2+210gk—2>( ) * *

1.2762

B S )
> 27.95(2.83) k Tog2k T log2k ) = h(k)

since exp( 52— ) > 1 for k > 3. We see that h(k) is an increasing function of k and h(k) > 1 at
21lo, g

g k—2
k = 5393. Therefore k < 5393. By using the exact values of M (k), we now check that (4.2.27) does
not hold for 50 < k£ < 5393 and k € K. O

LEMMA 4.2.9. If (4.1.1) and (4.2.13) holds and x > k‘%, then z > k1 for k € R.

PRrROOF. We prove by contradiction. Assume (4.1.1), (4.2.13) and k3 <z < k1. We derive from
Lemma 4.2.5 that £ < 70. Let k£ = 10,11,12,13. By Lemmas 4.2.5, 4.2.7 and 4.2.8, we can take
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max(?k,k%) <z <kifork= 10,11,12 and max(?k,k:%) <z < k? for k = 13. For these values of
x and k, we find that

6
—k
W (A) > (f) (2 > M(k
@23 (x(5) = ("57)) 2 v
contradicting (4.2.13).
Therefore we assume that k& > 14. Let k> <z < k5. By Lemma 4.2.7 and 4.2.8, we can take

x > max(7k, k%) so that we can assume k > 32. Then

@) . <max(7l;; [k%]))

where 1] denotes the least integer > v. From (1.1.1), we have ord,((})) < [}22 ;] < [%igg ﬂ and

hence

k 7 7
=1 i=1

W(k) [2j log k] ﬂ-(k) |:2j log k]
<$> < H ! 16 log p; xk—p, < H ! 16 log p; ]6'16 (M(k) )
by (4.2.13). Combining the above estimates for (i), we get

3 (k) log k
max(7k, [kg]) [25- oy Z] 25 _
( ) < Hpiwlgp LB (M(k)—1)

i=1
which is not poss1ble for 32 < k <70. By sumlar arguments we arrive at a contradlctlon for
max(?k kw) <z<kiin23<k< 70, max(7k, k16) <z <kiin 17 <k <70 and max(7k, k16) <

¢ < ki in 14 < k <70 except at k = 16. Let k = 16 and max(?k,kle) <z< ki. Then we observe
that

W () 2}%@(%) —w(m_ilﬁ)) > 5= M(16)

contradicting (4.2.13).

Now we consider z > kg We observe that kg > Tk since k > 14. Further we derive from
Lemma 4.2.5 that k£ < 24. We apply similar arguments for 14 < k < 24 as above to arrive at a
contradiction in the intervals ki <z< 53 except at k = 16, ks <z< k% and ks <z < k2
The case £ = 16 and kg <z< kLSS is excluded as earlier. O

4.3. Proof of Theorem 4.1.1

Suppose that the hypothesis of Theorem 4.1.1 (b) is valid and k£ > 10. By Lemmas 4.2.6 (b),
4.2.7, 4.2.8 and 4.2.9, we see that Theorem 4.1.1 (b) is valid for all ¥ € & Thus (4.2.4) holds for
all k € R and z > %gk — 1. Let k ¢ 8 and k; < k be the largest integer with 2k; — 1 prime. Then
ki > 10. For x > 2k —1> 2k — 1, we see that (4.2.4) is valid at (z,k;). By Lemma 4.2.2 (ii),
(4.2.4) is valid at (.CE k) too. Hence Theorem 4.1.1 (b) is valid for all k.

Suppose that the hypothesis of Theorem 4.1.1 are satisfied and k > 19. We have from Lemma
4.2.6 (a) that (4.2.3) holds for (z,k) with k prime, z < Zk — 1 and (v,k) ¢ S3. By Theorem
4.1.1(b), (4.2.4) and hence (4.2.3) is valid for all k and z > 2k — 1. Thus (4.2.3) holds for (z, k)
with & prime and (x, k) ¢ S3. Let k be a composite number and k' < k be the greatest prime. Then
k' >19. Suppose (z,k') ¢ S3. Then (4.2.3) is valid at (z,k’) and hence valid at (z, k) by Lemma
4.2.2 (i). Suppose now that (x,k’) € Ss. Then we check the validity of (4.2.3) at (z,k). We see
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that (4.2.3) does not hold only if (z,k) € S3. We explain this with two examples. Let k& = 20.
Then k' = 19. Since (42,19) € S3, we check the validity of (4.2.3) at (42,20) which is true. Hence
(42,20) ¢ Ss. Again let k = 72. Then k' = 71. Since (145, 71) € S3, we check the validity of (4.2.3)
at (145,72) and see that (4.2.3) does not hold at (145, 72) which is an element of S3. This completes
the proof. O

4.4. Corollary 3.1.3 revisited

We remark here that Corollary 3.1.3 can also be obtained by imitating the proof of Theorem
3.1.1 and using the weaker bounds for prime function given by Lemma 2.0.1 instead of that given
by Lemma 2.0.2. We present here few details. By (3.1.3), it is enough to prove Corollary 3.1.3 for
k > 19. Assume (4.1.1). Now as in Lemma 4.2.5, if we have p > k — [37(k)], then

(4.4.1) T < k:g for £>62; v < k‘% for k>25; z< k? for k> 19.

As in Lemmas 4.2.8 and 4.2.9, we see that if z > 7k, then x > k2. This contradicts (4.4.1). Thus
from now on, we consider only z < 7k. Analogous to Lemma 4.2.6 (a), we have

(4.4.2) W(A) > [%w(k)] —1

for all k prime, 2k < 2 < 3k except when (z, k) = (222,109), (226, 113). Infact we split [2k, 3k) into
13 subintervals

2k,§k ) 4—9k:,3—7k: , 3—7k,2—5k ) §k,gk , Bk,ljk ) El~1:,£k: )
24 24 718 18 12 1279 9 7 75

11,9 9 7 7 29 29 5 5. 21 21 11 11
0. (20 T0). [T 20) [25) 2 2), 2 ). [

and bound £ < 150000 and we check that (4.4.2) holds at all primes k. We note here that the
equation analogous to (4.2.20) is taken as

©(2k) — 7 <§k> _ E ﬂ(k)] 120

while using the bounds of 7 function given by Lemma 2.0.1. This is necessary to reduce the bound
for k. Next we take k prime and 3k < x < 7k. Here we split this interval into subintervals of length

% and arguing as in Lemma 4.2.7, we bound k& < 60000. We also note here that when t; = 0, we

take the equation
s—1 1
143 2
Z (77 <§k) -7 <878k:>> — [— ﬂ(k)] +1>0
P i 1 3
analogous to (4.2.24) while applying the bounds of 7 function given by Lemma 2.0.1. We observe
here that this bound can be reduced further by taking subintervals of smaller lengths than %. We
check that (4.4.2) holds for all primes k£ < 60000. Now as in Lemma 4.2.2 (i), we see that (4.4.2) is
valid for all &. 0



CHAPTER 5

An analogue of Sylvester’s theorem for arithmetic progressions:
Proofs of (3.3.5) and (3.3.3)

In this chapter, we prove (3.3.5) viz,
w(A) > m(k) if k>4 and (n,d, k) # (1,2,5)
and derive (3.3.3) i.e.,
P(A) >k if k>3 and (n,d, k) # (2,7,3).

The proof depends on the combinatorial arguments of Sylvester and Erdés. In particular it depends
on their fundamental inequality which we shall explain below. We sharpen this inequality. Further
we use the estimates of m function due to Dusart given in Lemma 2.0.2. The proof of (3.3.3) for
k = 3 depends on solving some special cases of Catalan equation.

5.1. Fundamental inequality of Sylvester and Erdds
For 0 <i <k, let
(5.1.1) n+id = B;B,

where B; and B are positive integers such that P(B;) < k and ged(B,, Hp) =1 Let S C
p<k

{Bo, -+ ,Bg—1}. Let p < k be such that p { d and p divides at least one element of S. Choose B;, € S

such that p does not appear to a higher power in the factorisation of any other element of S. Let Sy

be the subset of S obtained by deleting from S all such B;,. Let 3 be the product of all the elements

of §;. For any ¢ # i), we have ord,(B;) =ord,(n + id) <ord,((n + id) — (n + i,d)) =ord,(i — ip).

Therefore

(5.1.2) ord,(PB) < ord, H (1 —1p) | <ordp(ip!(k—1—1p)!) <ordy((k—1)!).
1€ST
Hence
(5.1.3) P < Hpordp((k—l)!)
ptd
which is the fundamental inequality of Sylvester and Erdés. O

5.2. Refinement of fundamental inequality of Sylvester and Erdés
The following lemma is a refinement of a fundamental inequality (5.1.3) of Sylvester and Erdés.

LEMMA 5.2.1. Let S,81,B be as in Section 5.1 and let a’ be the number of terms in Sy divisible
by 2. Also we denote

ng = ged(n, k — 1)

29
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and
1if 2
(5.2.1) g Lt 2o
0 otherwise.
Then
(5.2.2) L < nOHpordp((k—ml)'
pid
Further for d odd, we have
(5.2.3) T < 2—€n02a/+ord2([%}!)Hpordp((k—2)!)'
pf2d

We shall use only (5.2.2) in the proof of (3.3.5).

PROOF. Let p < k, p { d be such that p divides at least one element of S. Let r, > 0 be the
smallest integer such that p | n + rpd. Write n + rp,d = pny. Then

k—1-—
n+rpd,n +rpd+ pd, - - ,n+rpd+p[7rp]d

are all the terms in A divisible by p. Let B, i, be such that p does not divide any other term
of § to a higher power. Let a, be the number of terms in S; divisible by p. We note here that

a, < [HT_T"] For any B, ipi € S1, we have ord,(B;,4pi) =ord,(n + rpd + pid) <ord,((n + rpd +

pid)) — (n + rpd + pipd)) = 14-ord, (i —ip). Therefore

[k—l—rp}
- k—1-—
(5.2.4) ord,(P) < ap + ord, H (t—1ip) | <ap+ordy, (ip![Trp — Z'p]!>
i

Thus

k—1-r,
(5.2.5) ord,(B) < a, + ordp([T]!).

Let p{n. Then r, > 1 and hence a), < [%] From (5.2.5), we have
k—2 k—2
(5.2.6) ord,(P) < [T] + ordp([T]!) = ord,((k — 2)!).
Let p = 2. Then ay = d’ so that
k—2
(5.2.7) orda(P) < a’ + ordy(| 5 ).
Let p|n. Then r, = 0. Assume that p{ (k —1). Then from (5.2.5), we have
k—2
(5.2.8) ord, (P) < a, + ord,(] .
Assume p|(k—1) and let ig € {0, %} with 4o # i, be such that ord,(n+piod) =min (ord,(n),ord,(k—
1)). If ord,(n) =ord,(k — 1), we take ig = 0 if i, # 0 and iy = % otherwise. From (5.2.4), we have
k=1
p
ord,(P) < min(ordy(n),ord,(k —1)) +ap — 1+ ord, H (i —1p)
=0
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Thus

(5.2.9) ord, () < min(ord,(n),ord,(k —1)) +a, —1+ ord,,((*)!).

From (5.2.8) and (5.2.9), we conclude

ord,(P) < min(ord,(n),ord,(k — 1)) + [%] + ordp([k —2

1Y)
since a, < [%] Thus
(5.2.10) ord,(P) < min(ord,(n),ord,(k — 1)) + ord,((k — 2)!).

Now (5.2.2) follows from (5.2.6) and (5.2.10). Let p = 2. By (5.2.8) and (5.2.9), we have in case of
even n that

ords () < min(ords(n),ords(k — 1)) — 0 +a' + ordg([k 5 "
which, together with (5.2.6), (5.2.7) and (5.2.10), implies (5.2.7). O
5.3. Lemmas

The following Lemma is a consequence of Lemma 5.2.1.

LEMMA 5.3.1. Let « > 0 and m > 0. Suppose W(A) < m. Then there exists a set T =
{n+ipd|0 <h <t, ig <iy <--- <z} such that 1 +t:=|%| >k —m — myq(k) satisfying

Hpordp((k—2)!)

5.3.1 gt < o __ vt if 1= ad
(5.3.1) S lati) - (atd) T
and

pf2d
where a is the number of even elements in ¥.

We shall use only (5.3.1) in the proof of (3.3.5).

PrROOF. Let a > 0 be given by n = ad. Let & be the set of all terms of A composed of primes
not exceeding k. Then |G| > k — m. For every p dividing an element of &, we delete an f(p) € &
such that

ordy(f(p)) = max ord,(s).

Then we are left with a set ¥ with 14+t := || > k — m — 7y4(k) elements of &. Let

t
P =[] (n+id) > (n+iod)(a+ir) - (o +ir)d"
v=0
We now apply Lemma 5.2.1 with S = & and §; = T so that 8 = P. Thus the estimates (5.2.2) and

(5.2.3) are valid for P. Comparing the upper and lower bounds of P, we have (5.3.1) and further
(5.3.2) for d odd. O

The next lemma is an analogue of Lemma 1.1.2 for d > 1.

LEMMA 5.3.2. Let k1 < ko be such that k1 and ko are consecutive primes. Suppose (3.3.5) holds
at k1. Then it holds for all k with k1 < k < ko.
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PROOF. Assume that (3.3.5) holds at k;. Let k be as in the statement of the lemma. From
A(n,d,k) =nn+d)---(n+ (k1 — 1)d)(n + k1d) - - - (n + (k — 1)d), we have

w(A(n,d, k) > w(A(n,d, k) > (k) = 7(k)

since k1 < ko are consecutive primes. O

Suppose w(A) < w(k). Then W(A) < 7w(k) — mg(k). Thus m = 7w(k) — wq(k) so that ¢t >
k — m(k) — 1 in Lemma 5.3.1. Let o > 0 be given by n = ad. From (5.3.1) and since ng < n, we
have
(](I - 2)!Hp—ordp((k—2)!)

(k) ol
(5.4.1) A PRI P Sy Mo S

5.4. Proof of (3.3.5) for k =4 and primes k > 5
e

Since o > 0, this gives

(](I _ 2)!Hp—ordp((k:—2)!)

(5.4.2) b=t < G ol CEE 2)7 (-1 porde (=20,
— T — !
pld
Hence
7(k)—
(5.4.3) d < (k — 2)F=t7-T,

Using Lemma 2.0.2 (i), we derive that

10g(k—2)(1 i 1.2762) _ log(k-2)
(5.4.4) d< exp |—%f T lOg]1€.2762 kl
1 - logk(l + log 2k ) Tk

We see that the right hand side of the above inequality is a non increasing function of & and < 2
at k = 43. Thus d < 2 for k > 43. Hence we need to consider only k < 43. By using exact values
of w(k), we get from (5.4.3) that d = 2, k = 5,7. Taking d = 2,k = 5,7 in the first inequality of
(5.4.2), we get d =2, k =5. Let d =2,k =5 and n > 4. Then o > 2 and we get from (5.4.1)
that 2 < 1, a contradiction. For d = 2,k = 5 and n = 1,3, we check that (3.3.5) holds except at
(1,2,5). O

5.5. Proof of (3.3.5)

By the preceding Section and Lemma 5.3.2, we see that (3.3.5) is valid for all k£ > 4, (n,d, k) #
(1,2,5) except possibly at (1,2,6). We check that (3.3.5) is valid at (1,2, 6). O

5.6. Proof of (3.3.3)

Let (n,d,k) = (1,2,5). Then we see that (3.3.3) holds. For (n,d,k) # (1,2,5), we have by
(3.3.5) and Lemma 5.3.2 that there is a prime > k dividing A for £ > 4. Thus (3.3.3) is valid for
all k > 4. Let k = 3 and assume that P(n(n+d)(n+2d)) < 3. If d is even, then n,n+d,n+ 2d are
all odd and 3 does not divide all of them. Hence there is a prime p > 3 dividing n(n + d)(n + 2d).
Assume d is odd. Then we have the following possibilities.

n = 2a7n +d= Sb and n + 2d = 2¢ lmplylng 3b — 2(1—1(20—11 + 1)

where a, b, c are positive integers. In the first case, we see that a > 1,b > 1 since d > 1. Thus we
have 3” = —1(mod 8). This is not possible since 3° = 1,3(mod 8). In the second case, we get a = 1

(5.6.1)
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giving 3° = 271 + 1. Since d > 1, we have b > 1,¢ > 3 so that b is even since 3° = 1(mod 4). Hence
9¢=1 = (33 — 1)(33 + 1) which implies 33 — 1 = 2,33 + 1 = 2¢~2 giving b = 2, ¢ = 4. Hence we see
that P(n(n + d)(n + 2d)) > 3 except at (n,d, k) = (2,7,3). O






CHAPTER 6

Refinement of an analogue of Sylvester’s theorem for arithmetic
progressions: Proof of Theorem 3.3.1

In this chapter, we prove Theorem 3.3.1. We give a sketch of the proof. The proof of Theorem
3.3.1 depends on the sharpening of the upper bound for 9§ in the fundamental inequality (5.1.3)
of Sylvester and Erdos which we described in Lemma 5.2.1. Further we also give a better lower
bound for B, see (6.2.12). Comparing the upper and lower bounds for 8, we bound n,d and k.
When d < 7, we also need to use estimates on primes in arithmetic progression due to Ramaré and
Rumely given in Lemma 2.0.4. We apply these estimates to count the number of terms of A which
are of the form ap where 1 < a < d, ged(a,d) = 1 and p > k, see Lemma 6.1.3. For the finitely
many values of n,d, k thus obtained, we check the validity of (3.3.9) on a computer.

6.1. Lemmas for the proof of Theorem 3.3.1
The following lemma is analogue of Lemma 4.2.2 (ii) for d > 1.

LEMMA 6.1.1. Let k1 < ko be such that 2k1 — 1 and 2ko — 1 are consecutive primes. Suppose
(3.3.9) holds at ky. Then it holds for all k with k1 < k < ks.

PROOF. Assume that (3.3.9) holds at k;. Let k be as in the statement of the lemma. Then
w(2k1) = w(2k). From A(n,d, k) =n(n+d)--- (n+ (k1 — 1)d)(n + kid) - -- (n + (k — 1)d), we have

W (A(n,d, k) > W(A(n,d, k1)) > 7(2k1) — (k1) — p > w(2k) — mq(k) — p
since mq(k) > mwq(k1). O
LEMMA 6.1.2. Let max(n,d) < k. Let 1 <r <k with gcd(r,d) =1 be such that
W(A(r,d, k) > 7(2k) — p.
Then for each n with r <n <k and n = r(mod d), we have
W (A(n,d, k)) > w(2k) — p.
ProOF. For r < n < k, we write
r(r+d)---(r+(k—1d)(r+kd)-- (n+ (k—1)d)
r(r+d)---(n—d)
(r+kd)---(n+ (k—1)d)
r(r+d)---(n—d)
We observe that p | A(n,d, k) for every prime p > k dividing A(r, d, k).

LEMMA 6.1.3. Let d < k. For each 1 < r < d with ged(r,d) = 1, let r’ be such that rr’ =
1(mod d). Then
(a) For a given n with 1 <n <k, Theorem 3.5.1 holds if

A(n,d, k) =

= A(r,d, k)

O

k—1)d
(6.1.1) Z Y (%, d, nr’) —7(2k)+p>0
gcld%:j)ill

35
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15 valid.
(b) For a given n with k < n < 1.5k, Theorem 3.3.1 holds if

1) — 1
(6.1.2) g v (k(d +—d+ ,d, nr’) —7(2k) + w(k,d,n) — w(1.5k,d,n) >0
1<r<d "
ged(r,d)=1

1s valid.
(¢) For a given n with k < n < 2k, Theorem 3.3.1 holds if

k(d+1)—d+1
(6.1.3) 3 w< d+1)-d+ ,d,nr’>—7r(2k)—|—7r(k:,d,n)—W(Qk,d,n)20
1<r<d "
ged(r,d)=1
is valid.

PROOF. Let 1 < r < d < k, ged(r,d) = 1. Then for each prime p = nr’/(mod d) with

max(k, ”7_1) <p< w, there is a term rp = n + id in A(n,d, k). Therefore
k—1)d -
(6.1.4) W(A(n,d, k)) > Z <7T <M,d, nr') — m(max(k, n—),d, nr')).
1<r<d "
ged(r,d)=1
Since
(6.1.5) > wkodynr') = ma(k),
1<r<d
ged(r,d)=1

it is enough to prove (6.1.1) for deriving (3.3.9) for 1 < n < k. This gives (a).
Let k <n < k' where k' = 1.5k or 2k + 1. Then from (6.1.4) and (6.1.5), we have

W(AMmd k)= Y (W <k:+ 1+ (k — 1)d,d,nr'> * (max(k. $)’dw,)>

T
1<r<d
ged(r,d)=1
1) — 1 /
> Z 7T <k(d+ )—d+ ,d,m”) —7n(k —1,d,n) — mq(k) + n(k,d,n)
1<r<d "
ged(r,d)=1

since ' = 1 for r = 1. Hence it suffices to show (6.1.2) for proving (3.3.9) for £k < n < 1.5k or
(6.1.3) for proving (3.3.9) for k£ < n < 2k. Hence (b) and (c) are valid. O

6.2. Proof of Theorem 3.3.1 for k with 2k — 1 prime

Let
.
min | 1, %H pordp(k=1) | ¢ 9 In
(6.2.1) X = x(n) = iz
min | 2071, % p o de(E=D ) if 9 | n
pld
and

k—1
n

pld



0.z, FrRUUIr Url 10A0VURKIVE 9.0.1 FURNRV K VWllll 2F8 — 1 IV 90

We observe that x is non increasing function of n even and n odd separately. Further x; is a non
increasing function of n. We also check that

(6.2.3) P <x <

n
and x(1) = 1, x(2) = 201,

We take (n,d, k) ¢ V, n > k when d = 2 so that p = 0. We assume that (3.3.9) is not valid
and we shall arrive at a contradiction. We take m = 7(2k) — m4(k) — 1 in Lemma 5.3.1. Then
t > k —m(2k) in Lemma 5.3.1 and we have from (5.3.1) and (6.2.3) that

k— 2)!Hp—ordp((k—2)!)

6.2.4 dF—m(2k) < pld
(6:2:4) <) T @ E @)
where n = ad which is also the same as
k—m(2k
(6.2.5) H n+ id) < x1(n)(k — 2)!I] [por (2!
i=1 pld

From (6.2.4), we have

x1(ad)[a]l(k—2) - -- ([oz]+k—7r(2k:)—|—1)Hp_°rdP(k_2)! if [a] < 7(2k) —
pld
(6.2.6) ") < xa(ad) ! [p~ o4 *2" if (o] = 7(2k) —
N pld
a]! —ordp(k—2)! -
X1(ad) (k—1)k(k+1)~[~(}[a]+k—7r(2k))Hp W2 if [a] > m(2k) —
pld

We observe that the right hand sides of (6.2.4), (6.2.5) and (6.2.6) are non-increasing functions
of n = ad when d and k are fixed. Thus (6.2.6) and hence (6.2.4) and (6.2.5) are not valid for
n > ng whenever it is not valid at ng = agd for given d and k. This will be used without reference
throughout this chapter. We obtain from (6.2.4) and x; < 1 that

(6.2.7) A TR < (k= 2) - (k= w(2k) + D] [porr )
pld

which implies that

(6.2.8) JE-m(2) < (k—2)-- (k—m(2k) + 1)27°92(k=2)" if 7 is even,
| (k—=2)---(k—7(2k)+ 1) if d is odd
and
w(2k)— —ordp (k—2)!
(6.2.9) d < (k= 2)f e [[p v
pld
Using Lemmas 2.0.2 (i) and 2.0.5, we derive from (6.2.9) that
(6.2.10)
2log(k—2) 1.2762 2log(k—2) _
d< exp log 2k ( + log 2k )1 - % Hp_ maX{O»(k;in—logl’éz;Q))/(k 10g2k(1+ %02;26]3 ))}
L - log2k(1+ long) pld
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which implies

2log(k—2) 1.2762\_ 2log(k—2) 3 log(k—2)
Tog 2k (1+10g2k)_ k _<(1_E)10g2_ k )

2 1.2762
1- Tog 2k (1+ Tog 2k )

exp

] for d even,
(6.2.11) d<

2log(k—2) 1.2762 )_2log(k72)

> (I35
exp [ ! g”;_%(gij_khggs) k for d odd.
We use the inequalities (6.2.5)-(6.2.11) at several places.

Let d be odd. Then for n even, 2 | n+ id if and only if i is even and for n odd, 2 | n + id if and
only if i is odd. Let b=k — 7(2k) + 1 — a and ag = min(k — 7(2k) + 1, [2=22]). We note here that
a< [k_TM] where 6 is given by (5.2.1). Let ne,de, n, and d, be positive integers with n. even and
n, odd. Let n > n, and d < d, for n even, and n > n, and d < d, for n odd. Assume (5.3.2). The
left hand side of (5.3.2) is greater than

a—1 b
%dk_”(%)l:[l <2ndee + z> H <Z—: + 25 — 1> = gdk_”(%)F(a) if n is even
(6.2.12) =

a b—1
H o . 1 H 0 . _ e
ndk—ﬂ(2k) <2T; 4+ — 5) <Z_ + 2]) = ndk 7l12]6)(;(@) if n is odd.
o j=1 o

i=1

Let A, := min <a0, [2(k —m(2k)) + s T %D and A, := min <a0, {%(k —m(2k)) + g2 — %D By
considering the ratios F}a(z)l) and Ggg)l), we see that the functions F'(a) and G(a) take minimal

values at A. and A,, respectively. Thus (5.3.2) with (6.2.3) implies that

(6.2.13) dFmCRp(A,) < 2_6+1x(ne)20rd2([%“)Hpordp(k_Q)! for n even
p2d

since x(n) < x(ne) and

(6.2.14) AR G4,) < X(no)ZordQ([%mHpord”((k_Q)!) for n odd
pf2d
since x(n) < x(n,). In the following two lemmas, we bound d if (3.3.9) does not hold.

LEMMA 6.2.1. Let d be even. Assume that (3.3.9) does not hold. Then d < 4.

PROOF. Let d be even. By (6.2.11), d < 6 for £ > 860. For k£ < 860, we use (6.2.8) to derive
that
d<12for k> 9; d <10 for k =100; d < 8 for k > 57;

d < 6 for k > 255, k # 262,310,331, 332, 342.

Let d be a multiple of 6. Then we see from (6.2.10) that £ < 100. Again for £ < 100, (6.2.7) does
not hold. Let d be a multiple of 10. Then we see from (6.2.15) that £ = 100 and k < 57. Again,
(6.2.7) does not hold at these values of k.

Let d = 8. By (6.2.15), we may assume that & < 255 and k& = 262, 310, 331, 332, 342. Let n < k.
From Lemma 6.1.2, we need to consider only n = 1,3,5,7 and (3.3.9) is valid for these values of
n. Let n = k + 1. Then, we see that (6.2.5) does not hold. Thus (6.2.5) is not valid for all n > k.
Hence d < 4. O

LEMMA 6.2.2. Let d be odd. Assume that (3.3.9) does not hold. Then d < 53 and d is prime.

(6.2.15)

PROOF. Let d be odd. We may assume that d > 53 whenever d is prime. Firstly we use (6.2.11)
and then (6.2.8) to derive that d < 15 for k > 2164, d < 59 for k > 9 except at k£ = 10,12, and
d < 141 for k = 10,12.
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We further bring down the values of d and k by using (6.2.13) and (6.2.14). We shall be using
(6.2.13) with n. = 2, x(ne) = 2°~1 and (6.2.14) with n, = 1, x(n,) = 1 unless otherwise specified.
Let k < 2164. We take d. = d, = 59 when k # 10,12 and d. = d, = 141 for k = 10,12. Let n be
even. From (6.2.13), we derive that

d <27 for k > 9,k # 10,12, 16,22, 24, 31, 37, 40, 42, 54, 55, 57;
d < 57 for k = 10,12, 16,22, 24, 31, 37, 40, 42, 54, 55, 57;
(6.2.16) d < 21 for k > 100, k # 106,117,121, 136, 139, 141, 142, 147, 159;
d < 17 for k > 387,k # 415, 420, 432, 442, 444;
d < 15 for k > 957,k # 1072,1077, 1081.

Further we check that (6.2.16) holds for n odd using (6.2.14). Let d > 3 with 3 | d. Then k < 1600
by (6.2.10) and k£ < 850 by (6.2.7). Further we apply (6.2.13) and (6.2.14) with d. = d, = 57 to
conclude that d =9, k <147, k = 157,159, 232,234 and d = 15, k = 10. The latter case is excluded
by applying (6.2.13) and (6.2.14) with d. = d, = 15. Let d = 9. Suppose n < k. We check that
(3.3.9) is valid for 1 < n < 9 and ged(n,3) = 1. Now we apply Lemma 6.1.2 to find that (3.3.9) is
valid for all n < k. Let n > k. Taking n, = 2[%],% = 2[%1 +1,de = d, =9, we see that (6.2.13)
and (6.2.14) are not valid for n > k.

Let d > 15 with 5 | d and 3 1 d. Then k < 159 by (6.2.16). Now, by taking d. = d, = 55,
we see that (6.2.13) and (6.2.14) do not hold unless £ = 10,d = 25 and n odd. We observe that
(6.2.14) with n, = 3 and d, = 25 is not valid at £ = 10. Thus (n,d, k) = (1,25,10) and we
check that (3.3.9) holds. Let d > 7 and 3 { d,5 1 d. Then we see from (6.2.16) that d = 49 and
k = 10,12,16,22, 24,31, 37,40, 42, 54, 55,57. Taking d, = d, = 49, we see that both (6.2.13) and
(6.2.14) do not hold. Thus d < 57 and the least prime divisor of d when d ¢ {3,5,7} is at least 11.
Hence d is prime and d < 53. ]

In view of Lemmas 6.2.1 and 6.2.2, it suffices to consider d = 2,4 and primes d < 53. We now
consider some small values of d.

LEMMA 6.2.3. Letd =2,3,4,5 and 7. Assume thatn < k and (n,d,k) ¢ V. Then (3.3.9) holds.

PRrROOF. First, we consider the case 1 < n < k and (n,d,k) ¢ V. By Lemma 6.1.2, we may
assume that 1 <n < d and ged(n,d) = 1. Let d = 2. Then

mn+2(k—1),2,1) —7(2k)+1=7n(n+2k—-2)—1—-7(2k—1)+1>0.

Now the assertion follows from Lemma 6.1.3. Let d = 3,4,5 or 7. We may assume that k is different
from those given by (n,d, k) € V, otherwise the assertion follows by direct computations. By using
the bounds for 7(x,d,l) and 7(z) from Lemmas 2.0.4 and 2.0.2, we see that the left hand side of
(6.1.1) is at least

d-1 «d _ d—1
(4 — 41 ¢ 2 1.2762
(6217) kf { Zidzk—d Cy + dh—d — 1 +
~ log Hf log HT log 2k log 2k
for k > ©L(1 +20) at d = 3,5,7 and
(3-2) ¢, 2 1.2762
2.1 k Lt — 1

for k > 3(1 + z0) at d = 4. Here g is as given in Lemma 2.0.4. We see that (6.2.17) and (6.2.18)
are increasing functions of k& and (6.2.17) is non negative at k£ = 20000, 2200, 1500 for d = 3,5 and
7, respectively, and (6.2.18) is non negative at k = 751. Therefore, by Lemma 6.1.3, we conclude
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that k is less than 20000, 751, 2200 and 1500 according as d = 3,4,5 and 7, respectively. Further
we recall that n < d. For these values of n and k, we check directly that (3.3.9) is valid. O

Therefore, by Lemma 6.2.3, we conclude that n > k when d = 2,3,4,5 and 7.

LEMMA 6.2.4. Let d = 2,3,4,5 and 7. Assume that k <n < 2k if d # 2 and k < n < 1.5k if
d=2. Then (3.3.9) holds.

PROOF. Let d = 2 and k < n < 1.5k. By Lemma 6.1.3, it suffices to prove (6.1.2). By using
the bounds for 7(k) from Lemma 2.0.2, we see that the left hand side of (6.1.2) is at least

3 1 2 1.2762 1.5 1.2762
k + - 1+ - 1+ -1
{logSk—l logk —1 log2k < log2k> log 1.5k < log1.5k>}
for k > 5393 since w(3k — 1,2,1) = m(3k) — 1. We see that the above expression is an increasing
function of k and it is non negative at k = 5393. Thus (6.1.2) is valid for & > 5393. For k < 5393,
we check using exact values of 7 function that (6.1.2) is valid except at k& = 9,10,12. For these
values of k, we check directly that (3.3.9) is valid since k < n < 1.5k.

Let d = 3,4,5,7 and k < n < 2k. By Lemma 6.1.3, it suffices to prove (6.1.3). By using the
bounds for 7(x,d,l), 7(2x,d,l) — w(x,d,l) and 7(k) from Lemmas 2.0.4 and 2.0.2, respectively, we
see that (6.1.3) is valid for &£ > 20000,4000, 2500, 1500 at d = 3,4,5 and 7, respectively. Thus
we need to consider only k£ < 20000, 4000, 2500,1500 for d = 3,4,5 and 7, respectively. Taking
ne =2[54],n, =2[5] + 1,d. = dy = d for d = 3,5,7 in (6.2.13) and (6.2.14), and n = k + 1 for
d=41n (6.2.5), we see that

k < 3226 or k = 3501,3510,3522 when d = 3

k<12 or k =16,22,24,31,37,40,42,52, 54, 55,57, 100, 142 when d = 4
k<901 or k=940 when d =5

k <342 when d = 7.

For these values of k, we check that (3.3.9) holds whenever k < n < 1.5k. Hence we may assume
that n > 1.5k. Taking n = 2[12%] n, = 2[L2=] +1.d, = d, = d for d = 3,5,7 in (6.2.13) and
(6.2.14), and n = [1.5k]| for d = 4 in (6.2.5), we see that

k € {54,55,57} when d = 3
k € {10,22,24,40, 42, 54,55, 57,70, 99, 100, 142} when d = 5
k € {10,12,24,37, 40,42, 54, 55,57, 100} when d = 7.

For these values of k, we check directly that (3.3.9) holds for 1.5k < n < 2k. O

LEMMA 6.2.5. Let d = 2,3,4,5 and 7. Assume n > 2k if d # 2 and n > 1.5k if d = 2. Then
(3.3.9) holds.

PRrROOF. Let d = 2 and n > 1.5k. Then we take o = % so that n > ad. Further we observe
that o > 7(2k) — 1. Then we see from (6.2.6) and (6.2.2) that

(6.2.19) ok—m(2k) < [75k]! g—orda(k—1)!
= 1.5k2(k+1)--- ([.75k| + k — 7(2k))
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Now we apply Lemmas 2.0.6, 2.0.5 and 2.0.2 (i) in (6.2.19) to derive that

kz(k + 1).75k—7r(2k)

2log 2(k+1) 1.2762 1 1.25log(k+1)—2log k+1.54017
Tog 9% (1+ 1Og2k)—.75+.7510g.75+9?+ =

1
) (%\/271’ exp(—.75k)(.75(k + 1)) PE+D+3 exp(ﬁ)Z”(%)> 20— 160D

< exp 9 _ log(k—1)

klog?2
for k > 9. This does not hold for ¥ > 700. Thus k < 700. Further using (6.2.5) with n = [1.5k],
we get k € {16,24,54,55,57,100,142}. For these values of k, taking n = 2k + 1, we see that (6.2.5)
is not valid. Thus n < 2k. Now we check that (3.3.9) holds for these values of k£ and 1.5 < n < 2k.
Let d =3,4,5 and 7 and n > 2k. Then we take a = %jl so that n > ad. We proceed as in the
case d = 2 to derive from (6.2.5) that k£ < 70,69,162 and 1515 for d = 3,4,5 and 7, respectively.
Let d = 3,5 and 7. We use (6.2.13) and (6.2.14) with n, = 2k +2,n, = 2k + 1 and d. = d, = d if
d = 3,5,7, respectively to get d = 5,k = 10 and n even. Let £k = 10,d = 5 and n even. We take
ne = 2k +6,d. = 5 to see that (6.2.13) holds. Hence n < 2k +4. Now we check directly that (3.3.9)
is valid for n = 2k + 2,2k 4+ 4. Finally we consider d = 4 and k < 69. Taking n = 2k + 1, we see
that (6.2.5) is not valid. Thus (3.3.9) holds for all n > 2k. O

By Lemmas 6.2.1, 6.2.2, 6.2.3, 6.2.4, and 6.2.5, it remains to consider
11 < d <53, d prime.

We prove Theorem 3.3.1 for these cases in the next section.

6.2.1. The Case d> 11 with d prime. Our strategy is as follows. Let Uy, Uy, - be sets of
positive integers. For any two sets U and V, we denote U — V = {u € Ulu ¢ V}. Let d be given.
We take d. = d, = d always unless otherwise specified. We apply steps 1 — 5 as given below.

1. Let d =11, 13. We first use (6.2.10) to bound k. We reduce this bound considerably using
(6.2.7). For d > 13, we use (6.2.16) to bound k. Then we apply (6.2.13) and (6.2.14) with
Ne = ngo) =2,n, = nE,O) = 1 to bring down the values of k still further. Let Uy be these
finite set of values of k.

2. For each k € Uy, we check that (3.3.9) is valid for 1 < n < d. Hence by Lemma 6.1.2, we
get n > k.

3. For k € Uy, we apply (6.2.5) with n =k + 1 to find a subset U(/) C Up.

4. For k € U(;, we apply (6.2.13) and (6.2.14) with n, = ngl) = 2[%],710 = ngl) = 2[%1 +1
to get a subset U; C U(l).

5. Let i > 2. For k € U;_1, we apply (6.2.13) and (6.2.14) with suitable values of n, = nt” and
Ny = nﬁf) to get a subset U; C U;_1. Thus for k € U;_1—U;, we have k < n < max(ng),n((f))
and we check that (3.3.9) is valid for these values of n and k. We stop as soon as U; = ¢.

We explain the above strategy for d = 11. From (6.2.10), we get k < 11500 which is reduced to
k < 5589 by (6.2.7). By taking ngo) = 2,n§0) =1, we get

Up = {k|k <2977,k = 3181, 3184, 3187, 3190, 3195, 3199}.

We now check that (3.3.9) is valid for 1 < n < 11 for each k € Uy so that we conclude n > k. By
Step 3, we get Ué = {k|k < 252}. Further by step 4, we find

Uy = {9,10,12,16,21, 22, 24,27, 31, 37,40, 42, 45, 52, 54, 55, 57, 70, 91, 99, 100, 121, 142}.
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Now we take

1.5k 1.5k -1

2 2

n® =2[==], ) =2[-——]+1
to get U = {10,22,37,42,54,55,57}. Then we have

(6.2.20) k <n <15k for k€ Uy — Us.

Next we take n'>) = 2k + 2, n$ = 2k +1 to get Us = {10,22,55} and we have
(6.2.21) k<n<2kforkeUs—Us.

Finally we take n£4) = 4k, ng4) =4k + 1 to get U4 = ¢ and hence
(6.2.22) k <mn <4k for k € Us

and our procedure stops here since Uy = ¢. Now we check that (3.3.9) holds for k£ and n as given
by (6.2.20), (6.2.21) and (6.2.22).

We follow steps 1 — 5 with the same parameters as for d = 11 in the cases d = 13,17,19 and
23. Let 23 < d < 53, d prime. We modify our steps 1 — 5 slightly to cover all these values of d
simultaneously. For each of k € Uy, we check that (3.3.9) is valid for 1 < n < min(d, k) and coprime
to d. Thus n > k. Now we apply step 4 with d. = d, = 53 to get U; = {10,12, 16,24, 37,55,57}.
In step 5, we take ng) = 2{%1,7@(}2) = 2[3—2]"’] +1,d. = d, = 53 to see that that Uy = ¢. Thus

(6.2.23) k <n < 3k for k € Uy.
Now we check that (3.3.9) holds for k and n as given by (6.2.23) for every d with 23 < d < 53 and
d prime. Il

6.3. Proof of Theorem 3.3.1

By the preceding section, Theorem 3.3.1 is valid for all k£ such that 2k — 1 is prime. Let k be
any integer and k; < k < ko be such that 2k; — 1,2ky — 1 are consecutive primes. By Lemma
6.1.3, we see that (3.3.9) is valid except possibly for those triples (n,d, k) with (n,d, k1) € V. We
check the validity of (3.3.9) at those (n,d, k). For instance, let £ = 11. Then k; = 10. We see
that (1,3,10), (4,3,10),(2,5,10),(1,7,10) € V. We check that (3.3.9) does not hold at (1,3,11)
and (3.3.9) holds at (4,3,11),(2,5,11) and (1,7,11). Thus (1,3,11) € V. We find that all the
exceptions to Theorem 3.3.1 are given by V. (]



CHAPTER 7

Squares in arithmetic progression, a prelude

7.1. Introduction

Let n,d, k,b,y be positive integers such that b is square free, d > 1, k > 2, P(b) < k and
ged(n,d) = 1. We consider the equation

(7.1.1) A(n,d,k) =n(n+d)--- (n+ (k—1)d) = by>.

If k = 2, we observe that (7.1.1) has infinitely many solutions. Therefore we always suppose that
k > 3. Let p > k,p|(n +id). Then p{ (n + jd) for j # ¢ otherwise p|(i — j) and |i — j| < k, a
contradiction. Equating powers of p on both sides of (7.1.1), we see that ord,(n +id) is even. From
(7.1.1), we have

(7.1.2) n+id = a;z? = A X?

with a; squarefree and P(a;) <k, P(4;) <k and (X;, ][, p) =1 for 0 <i < k. Since ged(n,d) =
1, we also have

We call (ag—1,ax—2,--- ,a1,a0) as the mirror image of (ag,a1,as, -+ ,ak_1).

Let d = 1. We recall that A(n,1,k) = A(n, k). A conjecture in the folklore says that a product
of two or more consecutive positive integers is never a square. Several particular cases have been
treated by many mathematicians. We refer to Dickson [3] for a history. It is a consequence of some
old diophantine results that (7.1.1) with k& = 3 is possible only when n = 1,2,48. Let k > 4. As
mentioned in Chapter 1 after (1.0.1), there are infinitely many pairs (n, k) such that P(A(n, k)) < k.
Then (7.1.1) is satisfied with P(y) < k for these infinitely many pairs. Therefore we consider (7.1.1)
with P(A(n,k)) > k. This assumption is satisfied when n > k by (1.0.1). Developing on the
earlier work of Erdés [9] and Rigge [36], it was shown by Erdés and Selfridge [11] that (7.1.1) with
n > k% and P(b) < k does not hold. Suppose P := P(A(n,k)) > k. Then there is a unique i with
0 < i < k such that n + i is divisible by P. Hence by (7.1.1), n + i is divisible by P? showing
that n +1i > (k + 1)? giving n > k2. Thus it follows from the result of Erdds and Selfridge [11]
that (7.1.1) with P > k and P(b) < k does not hold. The assumption P(b) < k has been relaxed
to P(b) < k in Saradha [40]. In Section 7.3, we show that (7.1.1) with P > k implies that k is
bounded by an absolute constant.

Let d > 1. Let k = 3. Then for r,s with 7, s of opposite parity, r > s and ged(r,s) = 1, we
see that n = (r?2 — s2 — 2rs)2,d = 4rs(r? — s?) give infinitely many solutions of (7.1.1). Therefore
we assume from now onward that k > 4. Fermat (see Mordell [28, p.21]) showed that there are
no four squares in an arithmetic progression. Euler proved a more general result that a product of
four terms in arithmetic progression can never be a square. In the next Section we prove this result
using elliptic curves. Euler’s result was extended to k = 5 by Obléth [31] and to 6 < k < 32 by
Hirata-Kohno, Shorey and Tijdeman [55]. This was also proved, independently, by Bennett, Gyéry
and Hajdu [1] for 6 < k < 11. On the other hand, we shall show in Section 7.2 that (7.1.1) with
k =4 and b = 6 has infinitely many solutions. We state a conjecture in this regard.

CONJECTURE 7.1.1. Equation (7.1.1) with P(b) < k implies that k = 4.

43
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Mukhopadhyay and Shorey [30] showed that (7.1.1) with & = 5 and P(b) < k does not hold.
Further Hirata-Kohno, Shorey and Tijdeman [55] showed that (7.1.1) with 6 < k < 20 and P(b) < k
does not hold except in the cases

k= 67 (ao’al"" 7a5) = (172a3717576)
k= 87 (ao’al" o 7a7) = (273a 175767 7727 1)a (1)2737 17576) 77 2)
k= 9, (ao’al"" 7a8) = (172a37175767772a 1)
or their mirror images. A version of the preceding result was proved, independently, by Bennett,
Gyéry and Hajdu [1] when 6 < k < 11 and P(b) < 5.
Marszalek [26] proved that (7.1.1) with b = 1 implies that k < 2 exp (d(d + 1)%) Thus if d
is fixed, then k is bounded by an absolute constant. Equation (7.1.1) was completely solved for

1 < d <104 in Saradha and Shorey [43]. For earlier results, see Saradha [39] and Filakovszky and
Hajdu [12]. The result of Marszalek was refined by Shorey and Tijdeman [53]. They showed that

k < C1(w(d))

where C1(w(d)) is a computable number depending only on w(d). Thus if w(d) is fixed, then k is
bounded by an absolute constant.

Let w(d) =1 i.e, d = p®, p-prime and a > 0. It was shown in Saradha and Shorey [43] that
(7.1.1) with b = 1 and k > 4 has no solution. In fact the condition ged(n,d) = 1 is not necessary
in the preceding result. Thus a product of four or more terms in an arithmetic progression with
common difference a prime power can never be a square. This was the first instance where (7.1.1)
was completely solved for an infinite set of values of d. Let b > 1. Then it follows from the
works of Saradha and Shorey [43] and Mukhopadhyay and Shorey [30] that (7.1.1) implies either
(n,d, k,b,y) = (75,23,4,6,4620) or k =5, P(b) = 5.

We now take w(d) > 2. Our aim in the next chapter is to give an explicit expression for C'i (w(d)).
Let ko = ko(w(d)) be given by Table 1 and (6). We prove the following result of Laishram [20].

THEOREM 7.1.2. Equation (7.1.1) implies that
(7.1.4) k < Kp.

7.2. A proof of Euler’s result

Let k = 4. We show that (7.1.1) with b =1 does not hold. In fact we prove more.
(7.1.1) with b=1,2,3 does not hold and there are infinitely many solutions with b=6.
Assume that n(n + d)(n + 2d)(n + 3d) = by? where b € {1,2,3,6}. Then

2 2
2
<6b—2y> :6b<1+§>3b<1+—d>2b<1+%>.
n n n n

Putting X = 2b+ % and Y = %% we obtain the elliptic equation

n2
Y?=X(X +b)(X +4b) in X,Y €Q.

We check using MAGMA that the above curves have rank 0 except when b = 6 in which case the
rank is 1. Let b # 6. Then the torsion points are given by

b=1:(X,Y)=(0,0),(~1,0),(2,6), (2,—6), (—2,2), (2, —2), (—4,0),
b=2:(X,Y)=(0,0),(-2,0),(-8,0),
b=3:(X,Y)=(0,0),(~3,0),(~12,0).
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We observe that X > 0. Thus it suffices to consider the torsion points (X,Y) = (2,6) and (2, —6).
Then 2 = 2 4 6% implying d = 0. This is a contradiction. Therefore the above torsion points do
not give any solution for (7.1.1).

Next we consider b = 6 where we refer to Mordell [28, p.68] and Tijdeman [57]. Suppose
(ng, do,yo) is a solution of (7.1.1). Then

ng 6yo
7.2.1 X, = -2 _ 25
( ) 0 d()’ 0 d(g)
is a solution of
(7.2.2) Y2 =6X(X +1)(X +2)(X +3) with X,Y €Q.

Putting X =z + X with = # 0, we consider a new equation
(7.2.3) 2% =6(z+ Xo)(z + Xo + 1)(z + Xo + 2)(z + Xo + 3) = apz* + a12® + apx? + azz + a4
in z,2 € Q. Then (z,2) = (0,Yp) is a solution of (7.2.3) and as = Y. Let A and B be given by
2YpA + B? = a9, 2YyB = a3. Then we see that
—2AB
T = (117, z= A2z’ + Bz +Y)
A2 — ag
is a solution of (7.2.3). This implies that
al — 2AB
A2 — ap

is a new value of X satisfying (7.2.2). This gives rise to a new solution (n,d,y) of (7.1.1).

Since (n,d,y) = (1,1,2) satisfies (7.1.1), we see that Xo = 1,Yp = 12 is a solution of (7.2.2).
Thus (7.2.3) becomes

22 = 6(x +1)(z +2)(z + 3)(z + 4) = 62 + 6023 + 21022 + 300z + 144.

r+ Xo= + Xo

215 36960
Hence A = 52, B = 5 S and z = 5o - Thus

27889
v Xo= "5

is a new value of X satisfying (7.2.2). Thus

144041508 \ 2 27889 - 18818 - 9747 - 676
90712 B 90714
giving n = 676,d = 9071,y = 24006918 as a solution of (7.1.1). With these value of (n,d,y), we

continue as in the case (n,d,y) = (1,1,2) to get another new solution (n,d,y) of (7.1.1). We get
infinitely many values of n and d satisfying (7.1.1). O

7.3. k is bounded when d =1

Let d = 1 and k& > 1900. As mentioned in Section 7.1 above, we may assume that n > k2. First
we show that ag, a1, - ,ai—1 are all distinct where a;’s are given by (7.1.2). Let a; = a; with i > j.
Then

l\')lH

k>i—j=aj(x}— a:?) aj(z; — xj)(x; + x5) > 20525 > 2(a;x )% > 2n2 > 2k,

a contradiction.
Let s; denote the i—the square free integer. In any set of 36 consecutive integers, after deleting
multiples of 4 and 9, we see that there are at most 24 squarefree integers. Thus the number of
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square free integers < s; which is equal to i < 24([3§] + 1) giving s; > 1.5(i — 24). Since a;’s are
squarefree and distinct, we have

(7.3.1) apay - - - ap_q > H s; > (1.5)F"24(k — 24)!.

Let p < k. We see that there are at most [%] + 1 terms divisible by p. Since a;’s are squarefree,
we see that

k—1
ordy(apa - - ak—1) < [T] +1 <ordy((k—1)!) + 1.

Therefore

agar -+ ag—1|(k Hp

p<k
Thus using Lemma 2.0.1 (iii), we have
(7.3.2) apay - - ap—1 < (k —1)1(2.7205)%

This is not sufficient to contradict (7.3.1). We improve (7.3.2) by counting the power of 2 and 3 in
(k—1)! and apa; - - - ag—1 as follows. We see that 2|a; if and only if 2 divides n+ ¢ to an odd power.
After removing a term n + ¢ to which 2 appears to a maximum power, the number of terms in the
remaining set divisible by 2 to an odd power is at most

k—1 k—1 1) + k: — 1 k-1 1) +
2 22 24
Y Lt B Ll O i NPV it
- 2 22 25
since the remaining expression is dominated by kQ— Further since a;’s are square free, we have

el 5 () BB

It is known that

k—1 k—1 k—1
ordy [ (K —1)! Hp)>1+[2+[22} +[?]
<k
Thus
(k= 1)! (Hp<kp) k-1 k-1
d — >2 —-2>-k—-10
ore apal - ag-—1 - [ 22 ] [ 2 }
Similarly
(k—l)!<Hp<kp) k—1 k-1 20
d — > 2 2 2>—k-10
PN T warany | T [ 32 ] [ 34 ] = 81
Therefore
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giving

k
apay - - ap—1 < (k—1)! Hp (2%3%) 6.
p<k

Now we compare this upperbound with the (7.3.1) and using Lemma 2.0.1 (iii) to get

(1~5)2%3% ’ 2310 24

ie.,
23log k 4 27.65
k

implying k < 1900. O

Remark: The argument in the proof of Section 7.3 can be improved considerably. We may
use more primes in addition to 2 and 3. See Lemma 8.3.12. Also we may use the exact values of
s;. These improvements enable us to show that & < 14. The cases k < 14 are excluded by using a
counting argument. For instance, let k¥ = 14. Then the number of a;’s composed of only 2 and 3 is
at least 5. This is a contradiction since there are only 4 distinct squarefree integers composed of 2
and 3, viz, 1, 2, 3, 6.

0.1091 <






CHAPTER 8

An explicit bound for the number of terms of an arithmetic
progression whose product is almost square: Proof of Theorem
7.1.2

8.1. Two Propositions

Let kg be given by Table 1 and (6). We prove the following two propositions in this chapter.
Theorem 7.1.2 is a direct consequence of the these two propositions.

PROPOSITION 8.1.1. Let k > kg. Then (7.1.1) implies that

(8.1.1) d < 4ci(k—1)%
(8.1.2) n<eci(k—1)3
and hence
(8.1.3) n+ (k—1)d < 5¢(k —1)3
where

% if d is odd

c = % if ordy(d) =1
1 if orda(d) > 2.

PROPOSITION 8.1.2. Let k > kg. Then (7.1.1) implies that
(8.1.4) n+(k—1)d> 261%’“3
where

0 = min{ords(d), 3}.

Since 5cq §25%, Theorem 7.1.2 follows immediately from (8.1.3) and (8.1.4). O

In the remaining part of this chapter we shall prove Propositions 8.1.1 and 8.1.2.
8.2. Notations and Preliminaries

First we recall that
(8.2.1) n+id = a;x? = A X?
with a; squarefree, P(4;) < k and (X;,[[,<,p) =1 for 0 <i < k. Let

T={i |0<i<k, X;=1}, Th={i |0<i<k, X;#1}.

Note that X; > k for ¢ € T}. For 0 < i < k, denote
(8:2.2) v(d) ={j € Th,A; = A;}|.

49
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We always suppose that there exist 19 > i1 > -+ > i,(4,)—1 such that 4;; = 4;, =--- = A;

i (Ap—1°
Similarly we define

R:{ai |0§Z<k}

and
(8.2.3) via)) =[{j10<j <k,a=aj}
Define
1if 31d
8.2.4 = o(d) =
(8.2.4) pi= p(d) {MW

Let P; < P, < --- be all the odd prime divisors of d. Let r := r(d) > 0 be the unique integer such
that

(8.2.5) PPy P, < (4¢1)3(k — 1)3 but PPy~ Prq > (4¢1)3(k — 1)3.

If » = 0, we understand that the product P; --- P. = 1.
Let d'|d and d' = % be such that ged(d',d") = 1. We write

win

1if ordy(d")

" S 1
d' = didy, ged(dr, dz) = {2 if ordy(d") > 2

and we always suppose that d; is odd if ordy(d’) = 1. We call such pairs (d;,ds) as partitions of

d .

We observe that the number of partitions of d” is 2¢(@ )=01 where
1if ordy(d’) = 1,2
0 otherwise

91 = Hl(d”) = {

and we write 6 for 01(d). In particular, by taking d’ =1 and d" = d, the number of partitions of d
is 2¢(d)=0,

Let A; = Aj,i> j. Then from (8.2.1) and (7.1.3), we have
(8.2.6) (i — j)d = A(X7 — X3) = Ai(X; — X;)(X; + X;)

such that ged(d, X; — X, X;+X;) = 1 if dis odd and 2 if d is even. Hence for any divisor d" of d, we
have a partition (dy,dz) of d corresponding to A; = A; such that dy | (X; — X;) and da | (X; + X)
and it is the unique partition of d” corresponding to pair (,7). Similarly, we have unique partition
of d" corresponding to every pair (i,7) whenever a; = a;.

8.3. Lemmas

LEMMA 8.3.1. Let my(k) < (k) —1. Then
(k—2)log (k—1)

8.3.1 T; k— —x(k).
( ) Tl > log (n+ (k —1)d) — log 2 m(k)
PROOF. We first prove that
k—2)log (k—1
Ty > kB Dlos k=) gy

log (k—2)+1log d

k—2)log (k—2

|T1|>k:—( )1og ( )—wd(k)—lfornZZ
log n

(8.3.2)
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We have |T1| = k — |T|. We may assume that |T'| > mg(k) for a proof of (8.3.2). We follow an
argument of Erdds. Let S = {n + id = A;|i € T'}. For each prime p < k and p { d, we remove a
term from St such that p does not divide any other term of St to a higher power. Let S; be the
remaining set and we have |S;| = |T'| — m4(k). Then by Lemma 5.2.1, we have

(8.3.3) H (n+1id) < nOHpordP((k_2)!) <n(k— 2)!Hp_°rd”((k_2)!).
n+ideS; pld pld
Again
|T|—7a(k)—1 |T|—7a(k)—1

(8.3.4) [[ w+idy> T[] (n+id)=n-m®aT=m®=1 T]  (a+1i)

n+ideS1 1=0 i=1
where o = 5. Comparing the upper and lower bounds and using Hp_ordp((k_2)!) <1, we get

pld

(8.3.5) dTI=maB)=1 (7| — (k) — 1) < (k — 2)!
and
(8.3.6) plTl=malk)=1 < ( — 2)1.
Therefore

(IT] = ma(k) — 1) log d <log((k —2) - (|T| — ma(k)))
<(k —|T| 4+ mq(k) — 1) log(k — 1).
The latter relation holds with strict inequality since |T'| < k — 7(2k) + 74(k) for k > 4 by Theorem
3.3.1. This shows that
(k—2)log(k —1)

T k 1
Tl < logd + log(k — 1) +malk) +
implying (8.3.2). By (8.3.6), we have
k—2)log(k —2
< B 2loeth =) L oy 4

logn

for n > 2 which yields (8.3.2).

Now we use 7g(k) < m(k) — 1. Let n > (k — 1)d. Then logn > log(n + (k — 1)d) — log 2. This
gives (8.3.1). For n < (k—1)d, we have log(k —1)+logd > log(n+ (k—1)d) —log 2 implying (8.3.1)
again. O

LEMMA 8.3.2. Letd=dd with ged(d ,d") = 1. Let ig € Ty be such that Ay, > d . Then
(8.3.7) V(Ayp) < 290 )=01d"),

PROOF. For simplicity, we write 6; = 61(d"). Assume that v(A;) > 9¢(d")=61 Then there

exists 19 > 91 > - > 14 such that A;, = A;; =+ = A; " e For each pair (ig,i.),r =

11
gw(d")—01 qw(d)—01

1,2,---2¢(@ )=01 e have a unique partition corresponding to the pair. But there are at most
2¢(d)=01 partitions of d . Since (i — i,)d = Agy (Xs, — X3, )( Xy + X;,) and A;, > d', we have

iy ([ Xig — Xi,\ [ Xig + X Xio — Xi\ [ Xio + X
]{j . .r _ 7;0 10 r 20 ir > 20 28 0 ir
Somn = (Be) () = () ()

where (dy,d2) IS the partition of d” corresponding to pair (49, ). This shows that we cannot have

the partition ( 291) corresponding to any pair. Hence there can be at most 2¢(¢ - _ 1 partitions

201
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of d’ with respect to 2“’(d//)_01 pairs of (ig,i,),r = 1,--- 2W(d”)_91. By Box Principle, there exist
pairs (ig, i), (ip,is) with 1 <r < s < 2@(d )=01 anq a partition (dy,dsy) of d" corresponding to these
pairs. Thus

dy | (Xig — X)), da | (Xig + X)) and dy | (Xiy — X)), da | (Xip + X,

so that d1|(Xz'0 — Xzs) — (Xz'o — er) = Xz'r — Xis and d2|(Xz'0 + er) — (Xz'o + Xzs) = Xz',« — Xis-
Therefore lem(dy, ds) | (X;, — X;,). Since 4;, = A;, = A;, and ged(dy, d2) < 2, we have

/

d _ (X, —Xi) Xo + X)) (X + X)) 2k
Aio N lcm(dl,dg) ng(dl,dg) 2 2

This is a contradiction. O

=k.

k> (ip —is) > (iy — is)

By taking d = 1andd = d, the following result is immediate from Lemma 8.3.2 since 01 (d) = 6.
COROLLARY 8.3.3. Forig € Ty, we have v(4;,) < 29(d)-0

LEMMA 8.3.4. Let k > 17. Suppose n > c1(k —1)3 or d > 4ci(k —1)2. Then for 0 <ig < k, we
have

(8.3.8) v(ag,) < 290

PROOF. Suppose that v(a;,) > 2@(d)=0 We note that both x; +x; and x; — x; are even when

d is even. Continuing as in the proof of (8.3.7) with d" = d, we see that there exists 4, j with i > j
and

aio(Ti + T5)

k> 5
where 2‘ — xp) if d is even and d| — x¢) if d is odd. We have x; > x; + g so that & >
1
Tai (v + x5) > <a] ) +4> nz + ¢ and hence
1+ci(k—1)2 if d > 4cq(k—1)2,
1+ (e)z(k—1)2 ifn>e(k—1)3
which is not true for k > 17. O

LEMMA 8.3.5. The equation (7.1.1) implies that either
d > 4ci(k —1)?

or
r> [_w(d)} .
- 3
PROOF. If r + 1 <[] then w(d) > 3(r + 1) giving d > 4¢1(k — 1)2 by (8.2.5). 0
LEMMA 8.3.6. Let S C {4;|0 <i <k} and frlninSAh >U. Lett > 1. Assume that
XS
P -1 P -1
(8.3.9) |S|>Qt< . >< . >
where Q¢ > 1 is an integer. Then
(8.3.10) maxAh >200Q,P - P+ U.

Ap€S
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PRrROOF. For an odd p|d, we have

(3)-(%%)-()
p p p
where (%) is Legendre symbol. We observe that Aj, belongs to at most p—gl distinct residue classes

modulo p for each 0 < h < k. If d is even, then A}, also belongs to a unique residue class modulo 2°
for each 0 < h < k. Hence, by Chinese remainder theorem, A} belongs to at most (%) e <Pj2_ 1)

distinct residue classes modulo 2°P - -+ Pj for each j, 1 < j < t. Assume that (8.3.10) does not
hold. Then

max Ay — (U —1) < 2°Q,P; --- P;.

ApeS
Therefore
2°QP,---P, (P —1 P -1
5] < QiPr (P (B
2P - P, 2 2
contradicting (8.3.9). O
COROLLARY 8.3.7. Let S and U be as in Lemma 8.3.6. Let |S| > s > (%) (%) Then
3 ot+s
9. > — .
(8.3.11) Xi%}éAh_ZIQ s+ U

PrOOF. Tet (f — 1) (550) -+ (B971) < s = Qu (B50) - (B51) < f(B5Y) - (P57
where @y > 1 and 1 < f < % is an integer. To see this, write s = @ (%) (%) +
Q' (Plz_l) (Pt‘g_l) + R where 0 < Q' < % and 0 < R < (P12_1) <Pt‘21_1). If R > 0, then
take Q; = Q, f—1=Q';if R=0and Q' > 0, then take Q; = Q, f = Q’; and if R = Q" = 0, then
take Q; = Q —1and f = %. We arrange the elements of S in increasing order and let S C S be

the first (f — 1) (&2) - % +1 elements and S” consist of the remaining set. Then we see

from Lemma 8.3.6 with t =t —1 and Q; = f — 1 that

max Ay > 2°(f —1)PPy---P_1+U =U .
AhES/

Now we apply Lemma 8.3.6 with U = U'in " to derive

max Ay > 2PQiP\Py--- P +2°(f —1)P\Py--- Py + U.
hE

Hence to derive (8.3.11), it is enough to prove
3
Qtpl"'P13+(f_1)P1"'Pt—1ZZ{Qt(Pl_1)"'(Pt_1)+2f(P1_1)"'(Pt—1_1)}'
By observing that
Qu(PL—1)-(P—1)<QiPr-- P, — QP+ Py,
2f(Ph—=1)-- (P —1)<2fP1--- P —2fP1 - Po,

it suffices to show that

Qi —1)—(2f+1) 6f
2 T, Y

which is true since @y > 1 and 1 < f < %. O

3
Q¢ +
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Let t; denote the i—th odd squarefree positive integer. We recall here s; is the i-th squarefree
positive integer. The next lemma gives a bound for s; and ¢;.

LEMMA 8.3.8. We have

(8.3.12) 8; > 1.6i for 1>178
and
(8.3.13) ti>24i for i>51.

Further we have

(8.3.14) Hsz_ (1.6)'1! for 1> 286
and
l
(8.3.15) [t =o't for 1> 200.
=1

PRrROOF. The proof is similar to that of [43, (6.9)]. For (8.3.12) and (8.3.13), we check that
s; > 1.67 for 78 < i < 286 and t; > 2.4¢ for 51 < ¢ < 132, respectively. Further we observe that
in a given set of 144 consecutive integers, there are at most 90 squarefree integers and at most 60
odd squarefree integers by deleting multiples of 4,9, 25,49,121 and 2,9, 25,49, respectively. Then
we continue as in the proof of [43, (6.9)] to get (8.3.12) and (8.3.13). Further we check that (8.3.14)
holds at [ = 286 and (8.3.15) holds at [ = 200. Then we use (8.3.12) and (8.3.13) to obtain (8.3.14)
and (8.3.15), respectively. a

LEMMA 8.3.9. Let X > 1 be a positive integer. Then

X—

(8.3.16) D 240 < (X)X log X
where

1 if X =1

X—

w (1)

(8.3.17) 0= n(X) = ZQ

;ng if 1< X <248

0.75 if X > 248.

PRrOOF. We check that (8.3.16) holds for 1 < X < 11500. Thus we may assume X > 11500.
Let s; be the largest squarefree integer < X. Then ¢ > 78 and hence by Lemma 8.3.8, we have
1.65 < s; < X so that j < [ =]. We have 2¢() = > _ei ln(€)]. Therefore

X1 X1 [%]
S0 =SS e < 3 [Xe‘l] pol<x-n Y Ml xy L
i=1 i=1 eli 1<e<X 1<e<X i=1 "
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We check that there are 6990 squarefree integers upto 11500. By using (8.3.12), we have

6990 6990

[%5]
1 1 1 <1
2“”<X - — 5=

3 41.1658 4 1
< -XlogX<- - —
=308 {3logX+3 6}
implying (8.3.16). O
LEMMA 8.3.10. Let ¢ > 0 be such that 293 > 1, > 2 and
A (A = A PEE
<, = {Ai | v(A) = p, A > m}
Then
(8.3.18) c=Y B2 s |¢ | < n(czw@ 3)94(d) (9(d) =0 _ 1) (log c2+(?)=3),
u>2
PROOF. Let i1 > ip--- > i, be such that A;; = A;, =--- = A;,. These give rise to @ pairs

of (i,7),7 > j with A; = A;. Therefore the total number of pairs (4, j) with i > j and A; = A; is €.

We know that there is a unique partition of d corresponding to each pair (i,j),i > j such
that A; = A;. Hence by Box Principle, there exists at least W pairs of (i,7),i > j with
A; = A; and a partition (dq,dz) of d corresponding to these pairs. For every such pair (i,j), we
write X; — X; = dirij, X; +X; = das;j. Then ged(X; — X;, X; + X;) = 2 and 24|(X? — X;) Let

7350 8i; be such that ri;rij, si;|siz, ged(ri;, si;) = 1 and 75585 = 2245 7i;8;;- Then
2 .
rosl = p2 X XF i P2k ouas
WS T g VU T o g 24 A; 24 Ay
cow(d)=3_1
since A; > = 2W(d) There are at most Z 2¢0) possible pairs of (r] T ;J), and hence an equal
i=1
number of possible pairs of (7, si;). By Lemma 8.3.9, we estimate
c2w(d)—3_1
Z 2w(z) < n(CQuJ(d)—S)CZw(d)—3(log 62w(d)—3)'
i=1

Thus if we have

I > n(c2w(d)—3)62w(d)—3(log C2w(d)—3)’

then there exist distinct pairs (4,j) # (g,h),i > j,g > h with A; = A;;A; = Aj, such that
Tij = Tgh,Sij = Sgh giving
Xi— X;=diryj = Xy — Xp and X; + X = das;j = Xg + X
Thus X; = X4, X; = X, implying (4,5) = (g, h), a contradiction. Hence
¢
qu(d)—b _ 1
implying (8.3.18). O

< (2 @=3)20(d=3(]og 29(d)=3)
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The following Lemma is a refinement of [53, Lemma 2].

LEMMA 8.3.11. Leti > j,g > h,0<1,7,9,h < k be such that

(8.3.19) a; = aj, ag = a
and
(8.3.20) T — Xj = diry, x; + Tj = dara, Tg— Tp = dis1, Tg+xp = doSo

where (dy,d2) is a partition of d; r1 = si(mod 2), ro = sa(mod 2) when d is even; and either
r1 = s1(mod 2), a; = ag(mod 4) or 2|ged(ry, s1) when d is odd. Then we have either

(8.3.21) a; = Qg,T1 = 81 OF Q; = Qg,T2 = S
or (8.1.1) and (8.1.2) hold.
ProoF. We follow the proof of [53, Lemma 2|. Suppose that (8.3.21) does not hold. Then
(8.3.22) air} — agst #0, a;rs —ags3 # 0.
We proceed as in [53, Lemma 2] to conclude from d | (a;z} — aga?) that
(8.3.23) didy =d | % {(air? — ags?)d; + (a;r3 — ags3)ds + 2d(a;rirs — agsiss)} .

Thus we have

(aiT% - agsf)d% = ai(z; — mj)2 —ag(zg — xh)Q #0

and
(airs — ags3)d3 = ay(xi + 17)° — ag(zg +wn)* # 0.
Since
n < ajm§ < ariv; < a? <n+(k—1)d
and
n < apzi < agreTh < agazg <n+ (k—-1)d,
we have
(8.3.24) !aixixj — agazgazh‘ < (k—1)d.
Also
2 2 ~
a;x; —agry| =t —gld < (k—1)d,
(8.3.25) | % g2| | | d < (k—1)
lajx — apzy| = |j — hld < (k—1)d
and
1 2 1 2
(8.3.26) n < min Zai(aji + z;) ,Zag(ajg +xp) ¢
Hence we derive from (8.3.24), (8.3.25) and (8.3.26) that
(8.3.27) ((air3 — ays3)d3| < 4(k — 1)d,
1
(8.3.28) n|(a;ir? — ays3)d3| < Z(k —1)%d?

and further considering the cases {a;r? > agzs?,a;73 > ays3}, {air? > ays%,a;r3 < ay83}, {air? <
2 .2 2 2 2 .2 2 :
agsT,airy > agsyt and {a;r7 < agsy, a;r; < agss}, we derive

(8.3.29) G(i,g) = |air} — agsi|di + |airs — ags3|d3 < 4(k — 1)d.
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Let d = dydy be odd, ged(dy,dz) = 1. We have either r1,s; are even and hence 71,79, 1, S2 are
even, or a; = ag(mod 4) and r; = s1(mod 2) and hence 7y = sy(mod 2). Then reading modulo d;
and da separately in (8.3.23), we have

(8.3.30) dy i(airg —a,s3) and dy i(air% — ays?).
Therefore

(8.3.31) 4ddy = 4dyd3 < |a;irs — a,s3|d3

and

(8.3.32) 4ddy = Ad3dy < |a;r? — a,s3|d3.

From (8.3.29), we have
1d(dy + d) < Gli, g) < A(k — 1)d

2 2
d:d1d2§<d1;d2> < 41).

This gives (8.1.1). Again from (8.3.32) and (8.3.28), we see that 4ndd; < (k — 1)2d® ie. n <
E(k —1)2dy. From (8.3.31) and (8.3.27), we have 4ddy < 4(k — 1)d i.e. do < (k —1). Thus (8.1.2)
is also valid.

Let d = dyds be even with ords(d) = 1 and d; odd. Then z;’s are odd and therefore both rq
and s; are even. We see from (8.3.23) that

9. 1aZr — Qg8 an 2lla;r] — ags .
8.3.33 4d 3 —ays3)d} and 4d 2 —ayst)ds

so that

Since 1 = s1(mod 2), rg = so(mod 2), ged(dy,dy) =1 and dy odd, we derive that

2d1‘(a2r2 — ay83), 4d2‘(air% — ay8?).

Therefore
2ddy = 2d1d3 < |a;rs — ays3|d3, 4ddy = 4didy < |a;r? — ays?|d3.
Now we argue as above to conclude (8.1.1) and (8.1.2).
Let d = dydy be even with orda(d) > 2, ged(dy,d2) = 2. Then we see from (8.3.23) that (8.3.33)
holds. Since ged(dy,ds) = 2, r1 = s1(mod 2) and ry = sy(mod 2), we derive that
2d1 |(air3 — ays3), 2da|(air? — ays?).
Therefore
2ddy = 2d1d3 < |a;rs — ays3|d3, 2ddy = 2didy < |a;r? — ays?|d3.
Now we argue as above to conclude (8.1.1) and (8.1.2). O
LEMMA 8.3.12. For a prime p < k, let

vp = ord, H ai |, v, =1+ ord,((k —1)!).
a;€ER

Let m > 1 by any real number. Then

(8.3.34) H pPT T < fLom(m H pr ] 29 H pPQTl

2<p<m 2<p<m 2<p<m

—k
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where (z1,22) = (2%,2%) if d is odd and (z1,22) = (4,2) if d is even.

PROOF. The proof is the refinement of inequality [43, (6.4)]. Let p" < k —1 < p"*! where h is
a positive integer. Then

- 7;)_1:[k}—)l}+[kp—21}+,,.+[k&1].

Let p{d. Then we see that -y, is the number of terms in {n,n +d,--- ,n+ (k — 1)d} divisible by p
to an odd power. After removing a term to which p appears to a maximum power, the number of
terms in the remaining set divisible by p to an odd power is at most

k—1 k—1 k—1 k—1 k-1

. —1)+ — — 1)+ (1) + (=1)°

[p}qp?] >[p3}<{p4] > ()qph]())
where € = 1 or 0 according as h is even or odd, respectively. We note that the above expression is

always positive. This with (8.3.35) and [k 4] > k -1+ 1% = Z% — 1, we have

k-1 F—17)  h—1+e
w5 AL

k k h—1 h—1
§—2{—+---+ - +6}+ e

p2 ph—H—e 2 2
2k 1
= — 1-— + 1.5(h —1+¢).
p2(1— %)( ph—l+e) ( €)
: h< k log k
Since p* > I and h < 1g§p, we get
2k 1.5logk 2p>~€ 2k 1.5log k 2p
- < = 1.5e — 1.5 < — .
T p?—1 log p +p2—1+ ¢ - p2-1 log p +p2—1
When d is even, we have 73 — v, = —1—orda(k — 1) < —k + }gig +2 by Lemma 2.0.5. Now (8.3.34)
follows immediately. O

LEMMA 8.3.13. Suppose that n > c1(k — 1)% or d > 4c1(k —1)%. Let 1 < o < 299 pe the
greatest integer such that R, = {ai‘y(ai) = o} # ¢. For k > ko, we have

40(2¢@ — 1) if dis odd

v=|{(i,5)]|ai = aj,i > j}| > glo) == {29(2w(d)—6’ ~ 1) if dis even.

Proor. We have
4 4
k:Zum and |R’:Z7°u
p=1 p=1

where r, = |R,, = {a;|v(a;) = p}|. Each R, give rise to & ( D

a; = aj. Then

ry, pairs of 4, j with ¢ > j such that

4
Z“ D, — k- |Ry+z D=2

p=1

Suppose that the assertion of the Lemma 8.3.13 does not hold. Then g(p) > k—|R|+>.%_, WW
We have

-3 Wm < g(o) - le-Be-2 _ go(e)-

p=1 2
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We see that go(p) is an increasing function of p. Since p < 20(d)=0 e find that
— |R| < go(29@D=0) = (29 D=0 _ 1) (z429(D=0 4 1) .= ¢,

where z3 = % if d is odd and % if d is even. Thus |R| > k — g1. Since a;’s are squarefree, we have
by Lemma 8.3.8 that

II @ =2 (k - g)!

a;€ER
where z4 = 1.6 if d is odd and 2.4 if d is even. Also, we have

[ 6=t TTo) TT

a;€ER p<k 2<p<m

where 7,,7, and m are as in Lemma 8.3.12. This with (8.3.34) and Lemma 2.0.2 (iv) gives

—k
2
k'kl Sr(m)—1 = 22 71

I ai< A 1 37205 11 77

a;€ER 2<p<m 2<p<m
Comparing the lower and upper bounds, we have

—1 k
29 k! 2z

8.3.36 4 ]C 1. 57r m)+1 —
(8:3:50) (k= g1)! a I v 57205 L P”

2<p<m 2<p<m

By Lemma 2.0.6, we have

L

291 Ll k—g1+3
A M R < d > i
(k—g1)! k—ag1 eT2(h—g 1

Since k > kg, we find that g1 < g for w(d) > 12 where z5 = 37, 18 for d odd and d even, respectively.
Thus

2! (Z‘*(":gl))gl (kfgl)“% if w(d) <11
FE ™ () (22) w2

z5—1 zZ5e

Hence we derive from (8.3.36) that

_2
klog | 22 T »* ' | +(k+3)log(1 — %)
2<p<m

g1 > a
log(k — —1+1
(8.3.37) & 91) P
2p
(L5m(m) — ) logk +1log |z [] p¥—
2<p<m
log(k —g1) — 1 + log 24
for w(d) <11 and
2 72
klog | =-t25e ] p7 | — (L5m(m) — Dlogk —log | /5272 [] »7—

2<p<m 2<p<m

(8.3.38) g1 > logk —14log z4(25 — 1) — log 25
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for w(d) > 12.

Let w(d) < 11. Taking m = min(1000, \/kg) in (8.3.37), we observe that the right hand side of
(8.3.37) is an increasing function of £ and the inequality does not hold at k = k(. Hence (8.3.37) is
not valid for all k& > k¢. For instance, when w(d) = 4, d odd, we have k¢ = 15700 and g; = 855. With
these values, we see that the right hand side of (8.3.37) exceeds 855 at k = 15700, a contradiction.
Hence (8.3.37) is not valid for all £ > 16000.

Let w(d) > 12. Taking m = 1000 in (8.3.38), we derive that

0.63104 k7 if d is odd
SRR It 18310’§k if d is even,
For d odd, we see that

w(d)
0.63104—"— > 0.63104 _ 0.63104 x 11w(d)4

log k log ko  w(d)log4+log 1l + logw(d)
7
> 420 > gy,
a contradiction. Similarly we get a contradiction for d even. O

LEMMA 8.3.14. Let k > kg. Assume that d < 4ci(k —1)2. Let Ty = {0 < i < k|X; > 1} defined
in Section 8.2 be such that

IT1| > Cy = 02+12+Cg+2“ if w(d) =3,4,5
CQ+12+9 if w(d)>6
where Cy < 2%k3 and C3 = 39,42,195,806 for w(d) = 2,3,4,5, respectively. Then
k 1 if w(d) =
8.3.39 A; > 2°Cy— where Cy = Cy(w(d)) = o
( ) I}éé}}f 2 002 where Cy o(w(d)) {%2[(;0] if w(d) >3

PRrROOF. We see that for w(d) > 6,

Ko (4ey(k — 1)2) 7D > gsin
20 go@ = Uk = 1) > 47,

where ¢ is given by Proposition 8.1.1. Hence there exists a partition d = d1ds of d with

dl < W with u)(dl) > 1 and u)(dg) < Cd(d) —1.
Therefore
(8.3.40) v(Ay) < 2908) < 90@=1 for 4; > >__k
20 - 2+(d)
by Lemma 8.3.2.
Let
20 pk;
(8.3.41) Ty = {i € Ty|4; > —" ) =T - T
3c Qw(d
where ¢ =16 if w(d) =2, c=4 if w(d) = 3,4,5 and ¢ = 2 if w(d) > 6. Further let
(8.3.42) Sy = {A;|i € To}, S3={A;]i € T3}

and |S3| = s. Then considering residue classes modulo 2°p, we derive that

20 pk
7'02 max A; > 2p(s — 1)+ 1
3c - 2@(d) — A;eS;
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so that [S3] = s < W = 71) +1< 302% + % We see from Corollary 8.3.3, (8.3.40), (8.3.41) and
(8.3.42) that
k k k 2
<% 9w _ “ w(d)—1
Bl @2 <6-2w<d> 20 2@ 3> :

k k k 2 k k k k
< = T ool fowd-l o 2 My o2
_20+<6 20) T3 ST ex2 S0

if w(d) > 6 and

T3] < (48 2w @ 3 )Qw(d) 48 +3 . if w(d) =2
- (12 e@ T3 3299 =& + 2“)( fw(d) =3,4,5
Therefore
k .
£+ C3 if w(d) =2,3,4,5
Ty > Cy — |T3| > Cy = C];z—i-kg 1 w(d)
[} + 12 if w(d) > 6

Let €, €, be as in Lemma 8.3.10 with ¢ = 16 if w(d) = 2, ¢ = 4 if w(d) = 3,4,5 and ¢ = 2
if w(d) = 6. Then Cy < |Tp| = [S2| + 3 ,50(k — 1)|€y]. Now we apply Lemma 8.3.10 and use
k> ko > 1n(2¢@=2)(log 29(4)=2)22(d) (2w(D)=0 _ 1) for w(d) > 6 to get
|SQ| +C3 if2< w(d) <5
Cy < k .
‘SQ‘"FE if w(d) 26

Thus
k
Cy’

Let w(d) = 2. Then considering modulo 2%, we see that

k 20k k
A; > 20 § 2
nax &t ex12% g

giving (8.3.39). Now we take w(d) > 3. Since d < 4c1(k — 1)2, we have r > [“’—d)] by Lemma 8.3.5.

(
(%

|SQ| > —

C~I>—'

By (8.2.5), we have C% > k;’ 3 (der (k —1)?)

>. We now apply Corollary 8.3.7
withs:[c%—kl] and U =1 to get

3 k 3 je@is k

A; > Sortd 1] > Sol55 10—

pax iz 2l t= 20 g

giving (8.3.39). O

8.4. Proof of Proposition 8.1.1

We assume that either n > ¢;(k — 1) or d > 4¢;(k — 1)2. Then v(a;,) < 29@D=9 for 0 < iy < k
by Lemma 8.3.4. Let g be as defined in the statement of Lemma 8.3.13. Then v(a;,) < 0. By
Lemma 8.3.13, there are at least zo(2¢(9) — 1) distinct pairs (i, ) with i > j and a; = aj, where
z=4if dis odd and 2 if d is even. Since there can be at most 29 —f —1 possible partitions of d, by
Box principle, there exists a partition (di,dz) of d and at least zp pairs of (i,j) with a; = a;,7 > j
corresponding to this partition. We write

T; —Tj = dl’l"l(i,j) and x; +x; = dQTQ(’i,j).
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Let d be odd. Suppose there are at least o distinct pairs (i1,71), -, (ip,Jp), - Wwith the
corresponding ri (4, ) even. Then |{i1,--- ,ip,j1, -+ ,Jo}| > 0. Hence we can find 1 < I,m < o
with (i, 5i) # (im,Jm)s @i, = aj,, @i, = ai,, and a;, # a;,, from amongst the pairs. Now the result
follows by Lemma 8.3.11. Thus we may assume that there are at most o — 1 pairs of (4, j) with even
r1(%,7). Then there are at least 3p + 1 distinct pairs of (4,7) with rq(¢,j) odd. Since a; = 1,2,3(
mod 4), we can find at least p pairs with a; = a4( mod 4) for any two such pairs (4, j), (g, ). Then
there exists two distinct pairs (7, j), (g, h) with a; = a;,a4 = a and a; # a4 from these pairs. Also
r1(i,7) = r1(g,h)( mod 2). This gives (8.1.1) and (8.1.2) by Lemma 8.3.11 which is a contradiction.

Let d be even. We observe that 8|(z? — 333) and ged(x; — x4, 2; + xj) = 2. We claim that there
are at least o pairs with r1(7,5) = r1(g, h)(mod 2) and 72(7, j) = r2(g, h)( mod 2) for any two such
distinct pairs (i,7) and (g,h). If the claim is true, then there are two pairs (i,7) # (g,h) with
i> 7,9 > h,a; = aj,ay = ap and a; # ay from amongst such pairs since v(a;) < p. This implies
(8.1.1) and (8.1.2) by Lemma 8.3.11, contradicting our assumption. Let ords(d) = 1. Then d; is
odd implying 71 (7, 7) is even. We choose at least ¢ pairs whose ry’s of the same parity. Thus the
claim is true in this case. Let orda(d) > 3. Then we have either ords(d;) = 1 implying all ry’s are
odd, or ordy(dz2) = 1 implying all r9’s are odd. Thus the claim follows. Finally let ords(d) = 2.
Then 2||d; and 2||dg so that 71 and r9 are of the opposite parity for any pair and hence the claim
holds. g

8.5. Proof of Proposition 8.1.2

In this section, we assume that & > kg. In view of Proposition 8.1.1, we may assume that
d < 4c1(k —1)2. We may also assume that X; is a prime for each i € Ty in the proof of Proposition
8.1.2. Otherwise n + (k — 1)d > (k + 1)* implying the assertion.

We see that d has at least one prime divisor < k otherwise d > k¥4 > k2 > 4¢i(k — 1)?, a
contradiction. Thus 74(k) < m(k) — 1. Let n+ (k — 1)d > L for some L > 0. By Lemma 8.3.1 and
Lemma 2.0.2 (i), we have

(k—1)log(k — 1) k 1.5
(85.1) ITi] > & log L — log 2 log k L+ logk )"

We see from Theorem 3.3.9 that n(n +d) --- (n + (k — 1)d) is divisible by at least 7(2k) — m4(k) >
7(2k) — 7(k) + 1 primes exceeding k. Hence we have n + (k — 1)d > 4k%. Thus by taking L = 4k?
in (8.5.1), we get

\T1\>k—(k_1)10g(k_1) k <1 1.5>'

log(2k?) logk log k

The right hand side of the above inequality is an increasing function of k£ and

E+E+C+3 if w(d) =

k k 16 :

T4+ 4+C3+ 7 if w(d) =3
(8.5.2) |Ty| > %k12k PP ()

ok + 15+ Cs+ 25 if w(d) =4,5

2kt 4k if w(d) >6

Now we see from Lemma 8.3.14 that (8.3.39) holds with

5 if w(d) =2
)6 ifuwd) =3
2=z (d) = 4,5

(d) > 6.
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This gives n + (k — 1)d > %gk?’. Hence (8.1.4) is valid for w(d) > 4. Now we take w(d)

2,3.
Putting L = %kg’ in (8.5.1), we derive that

Sk 4 48 + O+ 2 g (d) 2
|T].| > 5k’ 2w(d)+1
We apply Lemma 8.3.14 again to get mz:LFXA > 20 k so that n+ (k—1)d >
(IS A}
This completes the proof.

% k3 implying (8.1.4).
]






CHAPTER 9

Cubes and higher powers in arithmetic progression, a survey

9.1. Introduction

We end the thesis with a survey on cubes and higher powers in arithmetic progression. We
consider the equation

(9.1.1) A=A(n,d k) =n(n+d)-- (n+ (k—1)d) = by

in positive integers n,d, k,b,y and ¢ with d > 1,k > 2,/ > 3, P(b) < k, ged(n,d) = 1 and b is
¢—th power free. We have already considered (9.1.1) with £ = 2 in Chapter 7. Therefore it suffices
to consider (9.1.1) when ¢ is divisible by an odd prime. Except for Section 9.4, we shall always
suppose that £ is divisible by an odd prime. Further we always suppose that k& > 3 otherwise (9.1.1)
has infinitely many solutions. Let d = 1. We also assume that P(A) > k which is necessary as
explained in Chapter 7. Then (9.1.1) has been completely solved by Erdds and Selfridge [11] for
P(b) < k. Saradha [40] extended this result for P(b) = k with k£ > 4 and Gyéry [15] completed the
result for P(b) = k with k = 3.

From now on we assume (9.1.1) with d > 1. Then we always suppose that (n,d, k) # (2,7,3)
so that P(A) > k by (3.3.3). Thus P(A) > k is not an assumption in the case d > 1. Erd6s
conjectured that k is bounded by a computable absolute constant whenever (7.1.1) or (9.1.1) holds.
We shall call this Erdés conjecture. Marszalek [26] showed that

max (c1,5 exp (3d(d +2)(d+1)1/3)) if £=3

k < ¢ max (c1, 3d(d + 2)(d + 1)'/?) if (=4
max (c1, 5(d + 1)) if ¢>5
where ¢; = 3-10%. Thus when d is fixed, the result of Marszalek confirms Erdds conjecture.

Shorey [54] showed that k is bounded by an effectively computable number depending only on
P(d). Further Shorey and Tijdeman [53] proved that k is bounded by an effectively computable
number depending only on ¢ and w(d). They improved Marszalek’s result as d > k¢11°818% where
c1 is an effectively computable constant. We state here the Oesterlé and Masser’s abe-conjecture.

CONJECTURE 9.1.1. Oesterlé and Masser’s abc-conjecture: For any given € > 0 there
exists a computable constant ke depending only on € such that if

at+b=c

where a,b and c are coprime positive integers, then

1+e€

It has been shown in Elkies [7] and Granville and Tucker [13, (13)] that abc-conjecture is
equivalent to the following:

65
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CONJECTURE 9.1.2. Let F(z,y) € Z[z,y] be a homogenous polynomial. Assume that F has
pairwise non-proportional linear factors in its factorisation over C. Given € > 0, there exists a
computable constant k.. depending only on F and e such that if m and n are coprime integers, then

I » = &l (max{jml, |} =2<
p|F(m,n)

Shorey [54] showed that abc-conjecture implies Erdés conjecture for £ > 4 using d > k¢11oslosk,
Granville (unpublished) gave a proof of the preceding result without using the inequality d >
keiloglogk  Fyurthermore his proof is also valid for ¢ = 2, 3. T give his proof in Section 9.4. I thank
Professor A. Granville for allowing me to include his proof in the thesis. A stronger conjecture
states that

CONJECTURE 9.1.3. Equation (9.1.1) implies that (k,¢) = (3, 3).

On the other hand, it is known that (9.1.1) has infinitely many solutions if (k,¢) = (3,3), see
Tijdeman [57] and Mordell [28, p.68]. We give the details of this fact in Section 9.2. Saradha [40]
showed that (9.1.1) does not hold for d < 6,d # 5 and for k£ > 4 when d = 5. Saradha and Shorey
[42] extended this result for an infinite set of values of d of the form 2?3°5¢ > 1 whenever ¢ is an
odd prime. Further they proved in [44] that (9.1.1) implies that d > D for £ > 3 where D is given
by

"

30 if =3

950 if ¢ =4
D=<¢5-10* if¢=5,6

108 if £ =17,8,9,10
10 if £ > 11.

The above result confirms Conjecture 9.1.3 for a large number of values of d.

9.2. The case (k,¢) = (3,3)
We show that

Equation (9.1.1) with (k,€) = (3,3) implies that b = 3,6, 36
in which cases there are infinitely many solutions.
We consider

(9.2.1) n(n+ d)(n + 2d) = by*
where b € {1,2,3,4,6,9,12,18,36}. Then

3
<@> :4b<1+g>2b<1+2—d>:<3b+4id+b> <3b+4id—b>.
n n n n n

Putting X = % and Y =3b+ 4%, we obtain the elliptic equation
(9.2.2) Y2=X34+1* in X,Y €Q.

We check using MAGMA that each of the above elliptic curve has rank 0 except when b = 3,6, 36
where rank is 1. Thus the elliptic equation (9.2.2) has infinitely many solutions when b = 3,6, 36.
Let b # 3,6,36. Then the torsion points are given by (0, 1), (0,—1),(—1,0),(2,3),(2,—3) for b =1
and (0,b),(0,—b) for b # 1. The torsion points (X,Y) with X = 0 implies that y = 0 which
is not possible. Also Y < 0 is not possible since 3n + 4d > 0. Thus it remains to consider
b=1,(X,Y)=(2,3). Then 3 = 3+ % giving d = 0, a contradiction.
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Let b = 3,6,36. Suppose (X,Y) = (Xo,Yp) with Yy > 0 be a solution of (9.2.2). Putting
X =2+ Xo, we have from (9.2.2) that

Y% =23 +3Xo2% + 3X3x + Y7

since Y2 = X3 +b%. Here (z,Y) = (0,Yp) is a solution. We now make the substitution Y = ax + Y}
where x # 0 and « is to be chosen. Then the above equation becomes

2%+ (3Xg — o)z + (3X¢ — 2aYp) = 0.

2
We take a = % Then
9X]
3Xp=a’ = —3%.
x + 0= & 4Y02
Thus
9X¢ 3X3 9X;
X=2+Xo=—"2—-2X,, YV =20(=3%-3X)) +YX
T + Xo e 0 2Y, (41/02 0) + Yo
satisfies (9.2.2). We consider the case Y > 3b. We choose n and d to be the denominator and

numerator of (Y;bgb), respectively. The case Y < 3b follows similarly by considering the mirror

image N(N — d)(N — 2d) = by? with N = n + 2d of n(n + d)(n + 2d). Note that Y = 3b is not
possible otherwise d = 0.

Let b = 3. Since (Xo,Yp) = (—2,1) is a rational point on (9.2.2), we derive that (X,Y) =
(40,253) is a new solution of (9.2.2). This gives (n,d,y) = (3,61,20) as a solution of (9.2.1).
The solution (40,253) in turn gives (65’502085, %) as a solution of (9.2.1). This gives (n,d,y) =
(48582831, 116214272, 80868920) as another solution of (9.2.1). The process is continued indefinitely.

For b = 6, 36, we start with (X, Yy) = (—3,3) and (-8, 28), respectively and we apply the above
process to get infinitely many solutions of (9.2.1).

9.3. k < 500000 when (9.1.1) with d =1 and P(A(n,k) > k holds
Let k£ > 500000. From (9.1.1), we have
n—i—z':aimf for 0 <i<k
where a; is (-th power free and P(a;) < k. Then n+ k — 1 > (k + 1) implying n > k’. First we

prove that the products a;a;,0 <4, j < k are all distinct. Let a;a; = agap = A with i 4 j > g + h.
Then

(n+i)(n+7) = A(ziz;)’, (n+g)(n+h) = A(z,zp)".
If (n+4)(n+j)=(n+g)(n+h), then
n<n(i4+j—g—h)=gh—ij<k?

a contradiction. Thus (n +1i)(n+j) # (n+ g)(n + h). Then (n+i)(n+j) — (n+g)(n+ h) =
(i+j—g—h)n—(gh—ij)>0since n >k’ > k? and gh —ij < k%. Hence x;xj > Texp + 1 giving

2%kn > (n+k—1)>%-n>>n+9)n+j)—(n+g)n+h) > A((zgzp + 1) — (azga:h)f)

> 0A(zgap) ™ > ¢ (A(xgxh)f) T > 2T > 303,

a contradiction since n > k. Thus a;a; are all distinct. We now prove a graph theoretic lemma
due to Erdés and Selfridge [11] which is applied to get a lower bound for a;’s.
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9.3.1. A graph theoretic lemma. A Bipartite Graph is a set of graph vertices decomposed
into two disjoint sets such that no two graph vertices within the same set are adjacent.

A subgraph of a graph is a Rectangle if it is comprised of two parts of vertices with each member
of one pair joined to each member of the other pair.

LEMMA 9.3.1. Let G be a bipartite graph of s white and t black vertices which contain no
rectangles. Then the number of edges of G is at most s + (é)

PROOF. Let s; be the number of white vertices having ¢ edges, ¢ > 0. Then Z 8; = 8.
i>0
Since there are no rectangles, any two black vertices cannot connect more than one white vertex.
Hence the number of V —diagrams is at most (S) Further from a white vertex of valency i, we can

have (;) number of V —diagrams. Therefore

The total number of V — diagrams = Z Si <;>
i>2

] t
Hence Z S; (;) < <2> Therefore the number of edges of G is
i>2

ZZSZ—Zz—lsZ—I—ZSZ<ZsZ<>+S§ <;>—|—s.

1>2 i>2

This proves the Lemma. U

Given z, let N(z) denote the maximum number of integers 1 < by < by < --- < by < z such
that b;b;,1 <14,j < s are all different. We prove that

LEMMA 9.3.2. For any real number x > 1, we have

270
9.3.1 N(z) < — 1832.
(93.1) (0) < s+
In fact Erdés [10] proved a stronger result when z is sufficiently large. He proved
2
N(z) < m(x) +30% 4223 <
log x

whenever x > xy where xq is a computable absolute constant.

PROOF. of Lemma 9.3.2: Let U = {293%5¢|0 < a < 4,0 < b < 3,0 < ¢ < 2}. Thus |U| = 60.
We take V to be the set of all integer v < x such that every integer n < x can be written as n = uv
with u € U,v € V. We observe that v € V is of the form 2573%5%m in r > 0,5 > 0,t >0, m > 1
with ged(m, 30) = 1. Thus

V] < (x(l—%)(l—é)(l_%)Jrl) <1+215+210+ ) (H314+ ) <1+ s )

270
<0 4
9617 T

We now take (U, V') to be bipartite graph G with black vertices as elements of U and white vertices
as elements of V. Let {by,--- ,bN(x)} be the set of positive integers < x with the property that b;b;
for 1 <i,j < N(x) are all distinct. We say that there is an edge between an element u € U and
v € V if uv = b; for some i. Then the distinctness of b;b;’s imply that G has no rectangles. Thus
by Lemma 9.3.1, we see that N(z) < |V|+ (‘g'). Hence N(z) < 28242+ (60) <20y +1832. O
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9.3.2. Proof of k£ < 500000 (continued). By using (5.1.3), we can find a sequence 0 < i1 <
Qg < --- < iy with t > k — (k) such that

(9.3.2) Haz < (k—1)!

By arranging these a;;,1 < j <{in increasmg order, we get a sequence by < by < --- < by such that
b;b;’s are distinct. We put b; = z and use Lemma 9.3.2 to get

70
—b; + 1832
- 961 *
giving b; > 3.559(i — 1832). Then we have
t

t t
[Te, = JI o> [] 3559 — 1832) > (3.559)" 1832 (¢ — 1832)!.

i=1833 =69
Since t > k — (k) and (k) < (1 + 113g7?€2) by Lemma 2.0.2 (i), we have
(3.559)*

(3.559)8 1832 (1 —1832)1 > k

B 1832 O1 1}1.5762) k
(3.559]{:)18324_“@—k!<3.559(3.559k) b Tosn (o k ) >kl

since 3.559(3.550k) & ok (1 ik )

is an increasing function of k and is > 1 at k = 500000. Thus

t
[, >#
j=1

contradicting (9.3.2). O

9.4. abc-conjecture implies Erd6s conjecture

Assume (7.1.1) and (9.1.1). We show that k is bounded by a computable absolute constant.
Let k > ky where kg is a sufficiently large computable absolute constant. Let ¢ > 0. Let c¢q1,co,---
be positive computable constants depending only on e. From (7.1.1) and (9.1.1), we write

n+id = A; X}
with P(4;) < k and (X;, [[,<,p) =1 for 0 <i < k. We may assume that (n,d, k) # (2,7,3). Then
P(A(n,d,k)) > k by (3.3.3). Thus
n+(k—1)d > k.
For each p < k with p { d, let n +i,d be the term to which p divides to the maximal power and we
put
I = {iplp <k and p{d}.

Let & = H A;. Now we refer to Section 5.1. Taking S = {A;|i € I or [g] <4 < k}, we get from

i>[%]

i¢l

the first inequality of (5.1.2) that

ip = [51)(ip — [51)!) if 4p > [5],

) otherwise.

ord, ((k—[3] —1—
i>[4] 2 .

igl
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Since ord,(r!s!) <ord,((r + s)!) and k — [5] = [EEL], we see that

k—1—1
d P
or p(( [k-%—l] ))pordp([k+l

(@) < 21 < (k= 1)por D),

The latter inequality follows from Lemma 1.1.3. Therefore we get

E+1

P < (k- )P (S =] < Kecrk

by using Lemmas 2.0.2 and 2.0.6.
Let D be a fixed positive integer and let

2D D
We shall choose D = 20. Let 7,5’ € J be such that 7 # j'. ThenDj—l—i;éDj +i for1 <49 <D
otherwise D(j — j') = (i — ') and |¢/ — i|] < D. Further we also see that [ | <Dj+i<k-—1for

k—1 k—1
J:{—Sjé —1:{Dj+1,Dj+2,~~-,Dj+D}ﬂI=¢}.

D
1 <i < D and consequently |J| > % — m(k). For each j € J, let ®&; = l_IADJJrZ Then [[,c; @,
i=1
divides ® implying
[]2 <@ <kzectt
Jj€J
Thus there exists jo € J such that
1 S N
o, < (kgeclk)) 1 <k§ec1k> n—(k) < cPKP.
Let
D
H :=[](n+ (Djo + i)d).
i=1
. k—1)d\1
Since AD]-OHXf)jOH <n+ (k—1)d, we have Xpj,+i < (%)l. Thus
D D 1
[Ir =11 %Xpjo+i < (n+ (k= 1)a) 7 ()7
p|H =1
p>k
Therefore
_1 D(1-1% _1 D
[Ir=|IIr| [IIr| < @un+ = DD 7 @0 F <&’ kP D+ (k= 1)) ?
plH plH p|H
p<k p>k
On the other hand, we have H = F'(n + Djod, d) where
D
F(z,y) = [J(= +iy)
i=1

is a binary form in  and y of degree D such that F' has distinct linear factors. From Conjecture
9.1.2, we have

11> cs(n+ Djod)” >
p|lH
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Comparing the lower and upper bounds of Hp and using n + Djod > w

plH

, we get

_ 2+¢€

k>cs(n+ (k—1)d) P00,
We now use n + (k — 1)d > k* to derive that

__24e
cs > ke(l Ba-])
Taking € = % and putting D = 20, we get
g_l_i 1
cg >k 8(0-1 > k2

since £ > 2. This is a contradiction since k > kg and kg is sufficiently large. O
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