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Dedicated to Professor Andrzej Schinzel on his 75th Birthday

Abstract. The conjecture of Masser-Oesterlé, popularly known as abc-conjecture
have many consequences. We use an explicit version due to Baker to solve a number
of conjectures.

1. Introduction

The well known conjecture of Masser-Oesterle states that

Conjecture 1.1. Oesterlé and Masser’s abc-conjecture: For any given ε > 0
there exists a constant cε depending only on ε such that if

a+ b = c(1)

where a, b and c are coprime positive integers, then

c ≤ cε

∏
p|abc

p

1+ε

.

It is known as abc-conjecture; the name derives from the usage of letters a, b, c in
(1). For any positive integer i > 1, let N = N(i) =

∏
p|i p be the radical of i, P (i)

be the greatest prime factor of i and ω(i) be the number of distinct prime factors of
i and we put N(1) = 1, P (1) = 1 and ω(1) = 0. An explicit version of this conjecture
due to Baker [Bak94] is the following:

Conjecture 1.2. Explicit abc-conjecture: Let a, b and c be pairwise coprime
positive integers satisfying (1). Then

c <
6

5
N

(logN)ω

ω!

where N = N(abc) and ω = ω(N).

We observe that N = N(abc) ≥ 2 whenever a, b, c satisfy (1). We shall refer
to Conjecture 1.1 as abc−conjecture and Conjecture 1.2 as explicit abc−conjecture.
Conjecture 1.2 implies the following explicit version of Conjecture 1.1.
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Theorem 1. Assume Conjecture 1.2. Let a, b and c be pairwise coprime positive
integers satisfying (1) and N = N(abc). Then we have

c < N1+ 3
4 .(2)

Further for 0 < ε ≤ 3
4
, there exists ωε depending only ε such that when N = N(abc) ≥

Nε =
∏

p≤pωε
p, we have

c < κεN
1+ε

where

κε =
6

5
√

2πmax(ω, ωε)
≤ 6

5
√

2πωε

with ω = ω(N). Here are some values of ε, ωε and Nε.

ε 3
4

7
12

6
11

1
2

34
71

5
12

1
3

ωε 14 49 72 127 175 548 6460
Nε e37.1101 e204.75 e335.71 e679.585 e1004.763 e3894.57 e63727

Thus c < N2 which was conjectured in Granville and Tucker [GrTu02]. We present
here some consequences of Theorem 1.

Nagell-Ljunggren equation is the equation

yq =
xn − 1

x− 1
(3)

in integers x > 1, y > 1, n > 2, q > 1. It is known that

112 =
35 − 1

3− 1
, 202 =

74 − 1

7− 1
, 73 =

183 − 1

18− 1

which are called the exceptional solutions. Any other solution is termed as non-
exceptional solutions. For an account of results on (3), see Shorey [Sho99] and
Bugeaud and Mignotte [BuMi02]. It is conjectured that there are no non-exceptional
solutions. We prove in Section 4 the following.

Theorem 2. Assume Conjecture 1.2. There are no non-exceptional solutions of
equation (3) in integers x > 1, y > 1, n > 2, q > 1.

Let (p, q, r) ∈ Z≥2 with (p, q, r) 6= (2, 2, 2). The equation

xp + yq = zr, (x, y, z) = 1, x, y, z ∈ Z(4)

is called the Generalized Fermat Equation or Fermat-Catalan Equation with signature
(p, q, r). An integer solution (x, y, z) is said to be non-trivial if xyz 6= 0 and primitive if
x, y, z are coprime. We are interested in finding non-trivial primitive integer solutions
of (4). The case p = q = r is the famous Fermat’s equation which is completely solved
by Wiles [Wil95]. One of known solution 1p + 23 = 32 of (4) comes from Catalan’s
equation. Let χ = 1

p
+ 1

q
+ 1

r
− 1. The parametrization of nontrivial primitive integer

solutions for (p, q, r) with χ ≥ 0 is completely solved ([Beu04], [Coh07]). It was
shown by Darmon and Granville [DaGr95] that (4) has only finitely many solutions
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in x, y, z if χ < 0.When 2 ∈ {p, q, r}, there are some known solutions. So, we consider
p ≥ 3, q ≥ 3, r ≥ 3. An open problem in this direction is the following.

Conjecture 1.3. Tijdeman, Zagier: There are no non-trivial solutions to (4) in
positive integers x, y, z, p, q, r with p ≥ 3, q ≥ 3 and r ≥ 3.

This is also referred to as Beal’s Conjecture or Fermat-Catalan Conjecture. This
conjecture has been established for many signatures (p, q, r), including for several
infinite families of signatures. For exhaustive surveys, see [Beu04], [Coh07, Chapter
14], [Kra99] and [PSS07]. Let [p, q, r] denote all permutations of ordered triples
(p, q, r) and let

Q = {[3, 5, p] : 7 ≤ p ≤ 23, p prime} ∪ {[3, 4, p] : p prime}.
We prove the following in Section 5.

Theorem 3. Assume Conjecture 1.2. There are no non-trivial solutions to (4) in
positive integers x, y, z, p, q, r with p ≥ 3, q ≥ 3 and r ≥ 3 with (p, q, r) 6∈ Q. Further
for (p, q, r) ∈ Q, we have max(xp, yq, zr) < e1758.3353.

Another equation which we will be considering is the equation of Goormaghtigh

xm − 1

x− 1
=
yn − 1

y − 1
integers x > 1, y > 1,m > 2, n > 2 with x 6= y.(5)

We may assume without loss of generality that x > y > 1 and 2 < m < n. It is
known that

31 =
53 − 1

5− 1
=

25 − 1

2− 1
and 8191 =

903 − 1

90− 1
=

213 − 1

2− 1
(6)

are the solutions of (5) and it is conjectured that there are no other solutions. A
weaker conjecture states that there are only finitely many solutions x, y,m, n of (5).
We refer to [Sho99] for a survey of results on (5). We prove in Section 6 that

Theorem 4. Assume Conjecture 1.2. Then equation (5) in integers x > 1, y >
1,m > 2, n > 3 with x > y implies that m ≤ 6 and further 7 ≤ n ≤ 17, n /∈ {11, 16} if
m = 6; moreover there exists an effectively computable absolute constant C such that

max(x, y, n) ≤ C.

Thus, assuming Conjecture 1.2, equation (5) has only finitely many solutions in
integers x > 1, y > 1,m > 2, n > 3 with x 6= y and this improves considerably
Saradha [Sar12, Theorem 1.4].

2. Notation and Preliminaries

For an integer i > 0, let pi denote the i−th prime. For a real x > 0, let Θ(x) =∏
p≤x p and θ(x) = log(Θ(x)). We write log2 i for log(log i). We have

Lemma 2.1. We have
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(i) π(x) ≤ x

log x

(
1 +

1.2762

log x

)
for x > 1.

(ii) pi ≥ i(log i+ log2 i− 1) for i ≥ 1
(iii) θ(pi) ≥ i(log i+ log2 i− 1.076869) for i ≥ 1
(iv) θ(x) < 1.000081x for x > 0

(v)
√

2πk(k
e
)ke

1
12k+1 ≤ k! ≤

√
2πk(k

e
)ke

1
12k .

Here we understand that log2 1 = −∞. The estimates (i) and (ii) are due to Dusart,
see [Dus99b] and [Dus99a], respectively. The estimate (iii) is [Rob83, Theorem 6].
For estimate (iv), see [Dus99b]. The estimate (v) is [Rob55, Theorem 6].

3. Proof of Theorem 1

Let ε > 0 and N ≥ 1 be an integer with ω(N) = ω. Then N ≥ Θ(pω) or logN ≥
θ(pω). Given i, we observe that Mε

(logM)i
is an increasing function for logM ≥ i

ε
. Let

X0(i) = log i+ log2 i− 1.076869.

Then θ(pi) ≥ iX0(i) by Lemma 2.1 (iii). Observe that X0(i) > 1 for i ≥ 5. Let
ω1 ≥ 5 be smallest i such that

εX0(i)− logX0(i) ≥ 1 for all i ≥ ω1.(7)

Note that εX0(i) ≥ 1 for i ≥ ω1 implying logN ≥ θ(pω) ≥ ωX0(ω) ≥ ω
ε

when ω ≥ ω1

by Lemma 2.1 (iii). Therefore

ω!N ε

(logN)ω
≥ ω!Θ(pω)ε

(θ(pω))ω
≥ ω!eεωX0(ω)

(ωX0(ω))ω
>
√

2πω(
ω

e
)ω

eεωX0(ω)

(ωX0(ω))ω
when ω ≥ ω1.

Thus for ω ≥ ω1, we have from (7) that

log

(
ω!eεωX0(ω)

(ωX0(ω))ω

)
> log

√
2πω + ω(log(ω)− 1) + εωX0(ω)− ω(logω + logX0(ω))

> log
√

2πω + ω(εX0(ω)− logX0(ω)− 1) ≥ log
√

2πω

implying

ω!N ε

(logN)ω
≥ ω!Θ(pω)ε

(θ(pω))ω
>
√

2πω when ω ≥ ω1.

Define ωε be the smallest i ≤ ω1 such that

θ(pi) ≥
i

ε
and

i!Θ(pi)
ε

(θ(pi))i
>
√

2πi for all ωε ≤ i ≤ ω1(8)

by taking the exact values of i and θ. Then clearly

ω!N ε

(logN)ω
≥ ω!Θ(pω)ε

(θ(pω))ω
>
√

2πω when ω ≥ ωε.(9)

Here are values of ωε for some ε values.

ε 3
4

7
12

6
11

1
2

34
71

5
12

1
3

ωε 14 49 72 127 175 548 6458
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Let ω < ωε and N ≥ Θ(pωε). Then logN ≥ θ(pωε) ≥ ωε
ε

. Therefore

ω!N ε

(logN)ω
≥ ω!Θ(pωε)

ε

(θ(pωε))
ω

=
ωε!Θ(pωε)

ε

(θ(pωε))
ωε
· ω!

ωε!
(θ(pωε))

ωε−ω >
√

2πωε
ω!ωωε−ωε

ωε!
≥
√

2πωε.

Combining this with (9), we obtain

(logN)ω

ω!
<

N ε√
2πmax(ω, ωε)

≤ N ε

√
2πωε

when N ≥ Θ(pωε).(10)

Further we now prove

(logN)ω

ω!
<

5N
3
4

6
for N ≥ 1.(11)

For that we take ε = 3
4
. Then ωε = 14 and we may assume that N < Θ(p14). Then

ω < 14. Observe that N ≥ Θ(pω) and N
3
4

(logN)ω
is increasing for logN ≥ 4ω

3
. For

4 ≤ ω < 14, we check that

θ(pω) ≥ 4ω

3
and

ω!Θ(pω)
3
4

(θ(pω))ω
>

6

5

implying (11) when 4 ≤ ω < 14. Thus we may assume that ω < 4. We check that

ω!N
3
4

(logN)ω
>

6

5
at N = e

4ω
3(12)

for 1 ≤ ω < 4 implying (11) for N ≥ e
4ω
3 . Thus we may assume that N < e

4ω
3 . Then

N ∈ {2, 3} if ω = 1, N ∈ {6, 10, 12, 14} if ω = 2 and N ∈ {30, 42} if ω = 3. For these
values of N too, we find that (12) is valid implying (11). Clearly (11) is valid when
N = 1.

We now prove Theorem 1. Assume Conjecture 1.2. Let ε > 0 be given. Let
a, b, c be positive integers such that a + b = c and gcd(a, b) = 1. By Conjecture

1.2, c ≤ 6
5
N (logN)ω

ω!
where N = N(abc). Now assertion (2) follows from (11). Let

0 < ε ≤ 3
4

and Nε = Θ(pωε). By (10), we have

c <
6N1+ε

5
√

2πmax(ω, ωε)
.

The table is obtained by taking the table values of ε, ωε given after (9) and computing
Nε for those ε given in the table. Hence the Theorem. �

4. Nagell-Ljungrenn equation: Proof of Theorem 2

Let x > 1, y > 1, n > 2 and q > 1 be a non-exceptional solution of (3). It was
proved by Ljunggren [Lju43] that there are no further solutions of (3) when q = 2.
Thus we may suppose that q ≥ 3. Further it has been proved that 4 - n by Nagell
[Nag20], 3 - n by Ljunggren [Lju43] and 5 - n, 7 - n by Bugeaud, Hanrot and Mignotte
[BHM02]. Therefore n ≥ 11. From (3), we get

1 + (x− 1)yq = xn.
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Then y < x
n
q ≤ x

n
3 since q ≥ 3 implying N = N(x(x− 1)y) < x2y < x2+

n
3 . From (2)

in Theorem 1, we obtain

xn < N
7
4 < x

7
2
+ 7n

12 implying n <
7

2
+

7n

12
.

This gives n ≤ 8 which is a contradiction.

5. Fermat-Catalan Equation

We may assume that each of p, q, r is either 4 or an odd prime. Let [p, q, r] denote
all permutations of ordered triple (p, q, r). The Fermat’s Last Theorem (p, p, p) was
proved by Wiles [Wil95]; [3, p, p], [4, p, p] for p ≥ 7 by Darmon and Merel [DaGr95]
and [3, 5, 5], [4, 5, 5] by Poonen; [4, 4, p] by Bennett, Ellenberg, Ng [BEN10]. The
signatures [3, 3, p] for p ≤ 109 was solved by Chen and Siksek [ChSi09], [3, 4, 5] by
Siksek and Stoll [SiSt12] and [3, 4, 7] by Poonen, Schefer and Stoll [PSS07]. Hence we
may suppose (p, q, r) is different from those values.

We may assume that x > 1, y > 1, z > 1. Then

x < z
r
p , y < z

r
q .

Given ε > 0, by Theorem 1, we have

zr <

{
N

7
4
ε if N(xyz) < Nε

N(xyz)1+ε ≤ (xyz)1+ε if N(xyz) ≥ Nε.
(13)

In particular, taking ε = 3
4
, we get

zr < (xyz)
7
4 < z

7
4
(1+ r

p
+ r
q
)

implying

4

7
<

1

p
+

1

q
+

1

r
.(14)

Thus we need to consider [3, 3, p] for p > 109 and (p, q, r) ∈ Q. Let ε = 34
71

. First
assume that N(xyz) ≥ Nε. Then

zr < (xyz)1+ε < z(1+ε)(1+
r
p
+ r
q
)

implying

1

p
+

1

q
+

1

r
>

1

1 + ε
=

71

105
=

1

3
+

1

5
+

1

7
.

Therefore we may suppose that N(xyz) < N 34
71

. Then from (13) that max(xp, yq, zr) <

N
7
4
34
71

≤ e1758.3353 implying x, y, z, p, q, r are all bounded. This will imply that [3, 3, p]

with p > 109 does not have any solution. Hence the assertion. �
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6. Goormaghtigh Equation

Let d =gcd(x, y). From (5), we have

xm−1 + · · ·+ x = yn−1 + · · ·+ y

implying ordp(x) =ordp(y) for all primes p|d. Further

m−1∑
i=1

(xi − yi) = (x− y)

{
1 +

m−1∑
i=2

xi − yi

x− y

}
= yn−1 + · · ·+ ym

which is

1 +
m−1∑
i=2

xi − yi

x− y
=

ym

x− y
yn−m − 1

y − 1
.

We observe that d is coprime to yn−m−1
y−1 and also to the left hand side. Therefore

ordp(x− y) = m · ordp(x) = m · ordp(y) = m · ordp(d)

for every prime p|d. Let d2 =gcd(y−1, x−1, x−y) and d3 be given by x−y = dmd2d3.
We observe that d2d3 = 1 if n = m+ 1 and d2d3|(y+ 1) if n = m+ 2. We now rewrite
(5) as

(y − 1)xm

dmd2
+ d3 =

(x− 1)yn

dmd2
.(15)

Let

N = N(
xmyn(x− 1)(y − 1)d3

d2md22
) ≤ N(xy(x− 1)(y − 1)d3) ≤

xy(x− 1)(y − 1)d3
2δdd2

where δ = 0 if 2|dd2 and 1 otherwise. Recall that d =gcd(x, y) and d2|(x − 1). Let
ε < 3

4
. We obtain from (15) and Theorem 1 and x− y = dmd2d3 that

max{(y − 1)xmd3
(x− y)

,
(x− 1)ynd3

x− y
} <

{
N

7
4
ε if N < Nε

N1+ε if N ≥ Nε.
(16)

Assume that N ≥ Nε. Then we obtain using (16) that

xm <x2+2εy1+2ε(x− y)
dε3

(2δdd2)1+ε
< x4+5ε(17)

yn <x1+2εy1+ε(y − 1)1+ε(x− y)
dε3

(2δdd2)1+ε
.(18)

since y < x and d3 ≤ x − y < x. We observe that from (5) that xm−1 < 2yn−1

implying x < 2
1

m−1y
n−1
m−1 . This together with (18), d3 ≤ x− y < x and 2δdd2 ≥ 2 gives

yn <2
2+3ε
m−1

−1−εy2+2ε+ n−1
m−1

(2+3ε).(19)

From (17), we obtain m < 4+5ε and further from (19), we get n < 2+2ε+ n−1
m−1(2+3ε)

if m > 3.

Let ε = 3
4

and Nε = 1. Then m ≤ 7 and further 7 ≤ n ≤ 17 if m = 6 and
n ∈ {8, 9} if m = 7. Let m = 7, n = m + 1 = 8. Then d2d3 = 1 and we get from
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the first inequality of (17) and y < x that xm < x4+4ε = x7 implying 7 = m < 7, a
contradiction. Let m = 7, n = m+2 = 9. Then d2d3 ≤ y+1 and we get from (18) with

x < 2
1

m−1y
n−1
m−1 , d3(y − 1) < y2 and 2δdd2 ≥ 2 that yn < 2

2+2ε
m−1

−1−εy2+3ε+ n−1
m−1

(2+2ε) < y9

which is a contradiction again. Let m = 6 and n ∈ {11, 16}. From Nesterenko and
Shorey [NeSh98], we get y ≤ 8, 15 when n = 11, 16, respectively. For 2 ≤ y ≤ 15 and

y + 1 ≤ x ≤ (y
n−1
y−1 ))

1
m−1 , we check that (5) does not hold. Therefore n /∈ {11, 16}

when m = 6. Hence we have the first assertion of Theorem 4.

Now we take ε = 1
18

. Since m ≤ 7 and G < x, we get an explicit bound of x, y,m, n
from (16) if N < N 1

18
, implying Theorem 4 in that case. Thus we may suppose that

N ≥ N 1
18

. Then we obtain from (17) with ε = 1
18

that m < 4+5ε implying m ∈ {3, 4}
and further from (19) that n < 5 if m = 4. This is a contradiction for m = 4 since
n > m and n ∈ Z.

Let m = 3. We rewrite (5) as

(2x+ 1)2 = 4(yn−1 + · · ·+ y) + 1(20)

By [NeSh98], we may assume that n 6= 5. Let n = 4 and denote by f(y) the polyno-

mial on the right hand side of (20). Let f ′(α) = 0. Then α = −1±
√
2i

3
and we check

that f(α) 6= 0. Therefore the roots of f are simple. Now we apply Baker [Bak69] to
conclude that y and hence x are bounded by effectively computable absolute constant.
Let n ≥ 6. Now we rewrite (5) as

4yn = (y − 1)(2x+ 1)2 + (3y + 1).(21)

Let G =gcd(4yn, (y − 1)(2x + 1)2, 3y + 1). Then G = 4, 2, 1 according as 4|(y −
1), 4|(y − 3) and 2|y, respectively and we get from (21) that

4

G
yn =

y − 1

G
(2x+ 1)2 +

3y + 1

G
.(22)

Let

N = N(
4y(y − 1)(2x+ 1)(3y + 1)

G3
) ≤ y(y − 1)(2x+ 1)(3y + 1

G
<

6xy3

G1

.

Let ε = 1
12

. We obtain from Theorem 1 with ε = 1
12

that

4yn

G
<

N
7
4
1
12

if N < N 1
12

N1+ 1
12 if N ≥ N 1

12
.

(23)

If N < N 1
12

, then yn < N
7
4
1
12

implying the assertion of Theorem 4. Hence we may

suppose that N ≥ N 1
12

and further y is sufficiently large. Then we have from x2 <

2yn−1 that

4yn < (6
√

2y
n+5
2 )1+

1
12 .

Therefore

n− 13(n+ 5)

24
<

13
12

log(6
√

2)− log 4

log y
<

1

24
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since y is sufficiently large. This is not possible since n ≥ 6. Hence the assertion �

Remarks

The examples in this paper show that in applications of the abc−conjecture to
diophantine equations, it is sufficient to assume that ε is not very near to 0. Sometimes
it is sufficient to use abc with ε = 1

2
or 3

4
or even larger. See also the paper of Browkin

[Bro08], where the minimal sufficient values of ε are discussed for some diophantine
equations. In general they are large. From this point of view it is probably irrelevant
what the abc−conjecture says in the case of ε near to 0.
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