THE EQUATION $n(n+d)\cdots(n+(k-1)d) = by^2$ WITH $\omega(d) \le 6$ OR $d \le 10^{10}$

SHANTA LAISHRAM AND T. N. SHOREY

ABSTRACT. For relatively prime positive integers n and d, a well-known Conjecture states that $n(n + d) \cdots (n + (k-1)d)$ with $k \ge 4$ is never a square. The first result is due to Euler for k = 4. We confirm the conjecture when $d \le 10^{10}$ or d has at most five prime divisors.

1. INTRODUCTION

For an integer x > 1, we denote by P(x) and $\omega(x)$ the greatest prime factor of x and the number of distinct prime divisors of x, respectively. Further we put P(1) = 1 and $\omega(1) = 0$. The letter p always denote a prime number and p_i the i-th prime number. Let n, d, k, b and y be positive integers such that b is square free, $k \ge 2$, $P(b) \le k$ and gcd(n, d) = 1. We consider the equation

(1.1)
$$n(n+d)\cdots(n+(k-1)d) = by^2 \text{ in } n, d, k, b, y.$$

If d = 1, then (1.1) has been completely solved for P(b) < k by Erdős and Selfridge [ErSe75] and for P(b) = kby Saradha [Sar97]. Therefore we always suppose that d > 1. We observe that (1.1) has infinitely many solutions if k = 2,3 and b = 1. Also (1.1) with k = 4 implies that b = 6. Therefore we always suppose that $k \ge 5$ if we consider (1.1) and $k \ge 4$ if we consider (1.1) with b = 1. It has been conjectured that (1.1) with $k \ge 5$ does not hold. A weaker version due to Erdős states that (1.1) implies that k is bounded by an absolute constant. This has been confirmed by Marszalek [Mar85] when d is fixed and by Shorey and Tijdeman [ShTi90] when $\omega(d)$ is fixed. In fact Shorey and Tijdeman [ShTi90] proved that (1.1) implies that

(1.2)
$$2^{\omega(d)} > c_1 \frac{k}{\log k}$$

which gives

$$d > k^{c_2 \log \log k}$$

where $c_1 > 0$ and $c_2 > 0$ are absolute constants. Laishram [Lai06] gave an explicit version of (1.2) by showing

(1.3)
$$k < 11\omega(d)4^{\omega(d)} \text{ if } \omega(d) \ge 12$$

and we improve

(1.4)
$$k < 2\omega(d)2^{\omega(d)},$$

see Corollary 8.7 when $\omega(d) \ge 5$ and Theorem 3 when $\omega(d) < 5$ for a precise formulation. Equation (1.1) has been completely solved in Saradha and Shorey [SaSh03a] for $d \le 104$ and $k \ge 4$. We prove

Theorem 1. Equation (1.1) with $k \ge 6$ implies that

$$d > \max(10^{10}, k^{\log \log k}).$$

²⁰⁰⁰ Mathematics Subject Classification Primary 11D61

Keywords: Diophantine equations, Arithmetic Progressions, Squares, Legendre symbol, squarefree integers, Congruences.

For a given value of d, we observe that (1.1) with $k \in \{4, 5\}$ can be solved via finding all the integral points on elliptic curves by MAGMA or SIMATH as in [FiHa01] and [SaSh03a]. Analogous results on higher powers for (1.1) with $k \ge 4$ and y^2 replaced by y^{ℓ} where $\ell > 2$ is prime are proved in Saradha and Shorey [SaSh05]; they showed that $d > 30, 5 \cdot 10^4, 10^8$ and 10^{15} according as $\ell = 3, 5, 7$ and ≥ 11 , respectively. For Theorem 1, we prove several results on (1.1) which are of independent interest. For example, we solve (1.1) when $\omega(d) \le 5, b = 1$ or $\omega(d) \le 4$. We prove

Theorem 2. Equation (1.1) with b = 1 and $\omega(d) \leq 5$ does not hold.

Theorem 2 contains the case $\omega(d) = 1$ already proved by Saradha and Shorey [SaSh03a]. In fact they proved it without the assumption gcd(n, d) = 1. We show that this is also not required when $\omega(d) = 2$ and $k \ge 8$, see Section . We derive Theorem 2 from a more general result and we turn to introducing some notation for it.

From (1.1), we have

(1.5)
$$n + id = a_i x_i^2 \text{ for } 0 \le i < k$$

where a_i 's are square free such that $P(a_i) \leq \max(P(b), k-1) \leq k$. Thus (1.1) with b as the squarefree part of $a_0a_1 \cdots a_{k-1}$ is determined by the k-tuple $(a_0, a_1, \cdots, a_{k-1})$. We rewrite (1.1) as

(1.6)
$$N(N-d)\cdots(N-(k-1)d) = by^2, \ N = n + (k-1)d.$$

We call (1.6) as the mirror image of (1.1). It is completely determined by (a_{k-1}, \dots, a_0) which we call as the mirror image of (a_0, \dots, a_{k-1}) . Let \mathfrak{S}_1 be the set of tuples (a_0, \dots, a_{k-1}) given by

k = 8: (2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10);

k = 9: (2, 3, 1, 5, 6, 7, 2, 1, 10);

k = 13: (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15), (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1)

and their mirror images. Further \mathfrak{S}_2 be the set of tuples $(a_0, a_1, \cdots, a_{k-1})$ given by

k = 14: (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 19: (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22);

k = 23: (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7);

k = 24: (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7)

and their mirror images.

Equation (1.1) with k = 6 is not possible by Bennett, Bruin, Győry and Hajdu [BBGH06]. Also (1.1) with $k \in \{5,7\}$ and P(b) < k does not hold by Mukhopadhyay and Shorey [MuSh03] for k = 5 and Hirata-Kohno, Laishram, Shorey and Tijdeman [HiLaShTi06] for k = 7. We do not have any contribution for the cases $k \in \{5,7\}$ and P(b) = k in the next result where we solve all the equations (1.1) other than the ones given by $\mathfrak{S}_1 \cup \mathfrak{S}_2$ whenever $\omega(d) \leq 4$ and therefore we assume $k \geq 8$ in Theorem 3 (a). More precisely, we prove

Theorem 3. (a) Equation (1.1) with $k \ge 8$ and $\omega(d) \le 4$ implies that either $\omega(d) = 2, k = 8, (a_0, a_1, \dots, a_7) \in \{(3, 1, 5, 6, 7, 2, 1, 10), (10, 1, 2, 7, 6, 5, 1, 3)\}$ or $\omega(d) = 3, (a_0, a_1, \dots, a_{k-1}) \in \mathfrak{S}_1$ or $\omega(d) = 4, (a_0, a_1, \dots, a_{k-1}) \in \mathfrak{S}_1 \cup \mathfrak{S}_2$.

(b) Equation (1.1) with $\omega(d) \in \{5, 6\}$ and d even does not hold.

Theorem 3 contains already proved case $\omega(d) = 1$ where it has been shown in [SaSh03a] for k > 29and [MuSh03] for $4 \le k \le 29$ that (1.1) implies that either k = 4, (n, d, b, y) = (75, 23, 6, 140) or k = 5, P(b) = k. The next result shows that it suffices to prove our Theorems 1 and 3 for $k \ge 101$ unless (1.1) is given by \mathfrak{S} which is the union of $\mathfrak{S}_1, \mathfrak{S}_2$ and set of tuples given by $k = 7, (a_0, a_1, \cdots, a_{k-1}) \in$ $\{(2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10)\}$ and their mirror images.

Theorem A. (a) Equation (1.1) with $7 \le k \le 100$ is not possible unless $(a_0, a_1, \dots, a_{k-1}) \in \mathfrak{S}$. (b) Equation (1.1) with $4 \le k \le 109$ and b = 1 does not hold.

This is due to Hirata-Kohno, Laishram, Shorey and Tijdeman [HiLaShTi06]. For a survey of related results, see [Sho02].

2. NOTATIONS AND PRELIMINARIES

Let $k \ge 4$ and $\gamma_1 < \gamma_2 < \cdots < \gamma_t$ be integers with $0 \le \gamma_i < k$ for $1 \le i \le t$. We consider a more general equation

(2.1)
$$(n+\gamma_1 d)\cdots(n+\gamma_t d) = by^2$$

in positive integers n, d, k, b, y, t with b squarefree, $P(b) \leq k$ and gcd(n, d) = 1. If t = k, we observe that $\gamma_i = i - 1$ and (2.1) coincides with (1.1). It is of interest to consider more general equation (2.1) because of possible applications. Assume that (2.1) holds. Then we have

(2.2)
$$n + \gamma_i d = a_{\gamma_i} x_{\gamma_i}^2 \text{ for } 1 \le i \le t$$

with a_{γ_i} squarefree such that $P(a_{\gamma_i}) \leq k$. Also

(2.3)
$$n + \gamma_i d = A_{\gamma_i} X_{\gamma_i}^2 \text{ for } 1 \le i \le t$$

 $P(A_{\gamma_i}) \leq k$ and $gcd(X_{\gamma_i}, \prod_{p < k} p) = 1$. Further we write

$$b_i = a_{\gamma_i}, \ B_i = A_{\gamma_i}, \ y_i = x_{\gamma_i}, \ Y_i = X_{\gamma_i}$$

Since gcd(n, d) = 1, we see from (2.2) and (2.3) that

$$(2.4) (b_i, d) = (B_i, d) = (y_i, d) = (Y_i, d) = 1 \text{ for } 1 \le i \le t.$$

Let

$$R = \{b_i : 1 \le i \le t\}.$$

For $b_i \in R$, let $\nu(b_i) = |\{j : 1 \le j \le t, b_j = b_i\}|$ and

$$\nu_o(b_i) = |\{j : 1 \le j \le t, b_j = b_i, 2 \nmid y_j\}|, \ \nu_e(b_i) = |\{j : 1 \le j \le t, b_j = b_i, 2|y_j\}|.$$

We define

$$R_{\mu} = \{ b_i \in R : \nu(b_i) = \mu \}, \ r_{\mu} = |R_{\mu}|, \ \mathfrak{r} = \left| \{ (i,j) : b_i = b_j, i > j \} \right|.$$

Let

$$T = \{1 \le i \le t : Y_i = 1\}, \ T_1 = \{1 \le i \le t : Y_i > 1\}, \ S_1 = \{B_i : i \in T_1\}.$$

Note that $Y_i > k$ for $i \in T_1$. For $i \in T_1$, we denote by $\nu(B_i) = |\{j \in T_1 : B_j = B_i\}|$. Let

(2.5)
$$\delta = \min(3, \operatorname{ord}_2(d)), \ \delta' = \min(1, \operatorname{ord}_2(d)),$$

(2.6)
$$\eta = \begin{cases} 1 & \text{if } \operatorname{ord}_2(d) \le 1, \\ 2 & \text{if } \operatorname{ord}_2(d) \ge 2 \end{cases}$$

and

(2.7)
$$\rho = \begin{cases} 3 & \text{if } 3|d, \\ 1 & \text{if } 3 \nmid d. \end{cases}$$

Let $d' \mid d$ and $d'' = \frac{d}{d'}$ be such that gcd(d', d'') = 1. We write

$$d^{''} = d_1 d_2, \ \gcd(d_1, d_2) = \begin{cases} 1 & \text{if } \operatorname{ord}_2(d^{''}) \le 1\\ 2 & \text{if } \operatorname{ord}_2(d^{''}) \ge 2 \end{cases}$$

and we always suppose that d_1 is odd if $\operatorname{ord}_2(d'') = 1$. We call such pairs (d_1, d_2) as partitions of d''. We observe that the number of partitions of d'' is $2^{\omega(d'')-\theta_1}$ where

$$\theta_1 := \theta_1(d^{''}) = \begin{cases} 1 & \text{if } \operatorname{ord}_2(d^{''}) = 1, 2\\ 0 & \text{otherwise} \end{cases}$$

and we write θ for $\theta_1(d)$. In particular, by taking d' = 1 and d'' = d, the number of partitions of d is $2^{\omega(d)-\theta}$.

Let $b_i = b_j$, i > j. Then from (2.2) and (2.4), we have

(2.8)
$$\frac{(\gamma_i - \gamma_j)}{b_i} d' = \frac{y_i^2 - y_j^2}{d''} = \frac{(y_i - y_j)(y_i + y_j)}{d''}$$

such that $gcd(d'', y_i - y_j, y_i + y_j) = 1$ if d'' is odd and 2 if d'' is even. Thus a pair (i, j) with i > j and $b_i = b_j$ corresponds to a partition (d_1, d_2) of d'' such that $d_1 | (y_i - y_j), d_2 | (y_i + y_j)$ and it is unique. Similarly, we have unique partition of d'' corresponding to every pair (i, j) whenever $B_i = B_j, i, j \in T_1$.

Let $\mathfrak{p}_1 < \mathfrak{p}_2 < \cdots$ be the odd primes dividing d. Let

$$l = \begin{cases} 2^{\delta} \mathfrak{q}_1 \mathfrak{q}_2 \cdots \mathfrak{q}_{\omega(d)-1} & \text{if } \delta = 1, 2\\ \mathfrak{q}_1 \mathfrak{q}_2 \cdots \mathfrak{q}_{\omega(d)} & \text{otherwise} \end{cases}$$

where $\mathfrak{q}_1 < \mathfrak{q}_2 < \cdots \mathfrak{q}_{\omega(d)-\theta}$ are prime powers dividing $\frac{d}{2^{\delta\theta}}$. By induction, we have

(2.9)
$$\mathfrak{p}_1\mathfrak{p}_2\cdots\mathfrak{p}_h \le \mathfrak{q}_1\mathfrak{q}_2\cdots\mathfrak{q}_h \le \left(\frac{d}{2^{\delta\theta}}\right)^{\frac{h}{\omega(d)-1}}$$

for any h with $1 \le h \le \omega(d) - \theta$. Further we define

(2.10)
$$\mathcal{A}_h = \{ B_i \in T_1 : B_i < \mathfrak{q}_1 \mathfrak{q}_2 \cdots \mathfrak{q}_h \}, \quad \lambda_h = |\mathcal{A}_h|.$$

for any h with $1 \le h \le \omega(d) - \theta$.

3. Upper bound for n + (k-1)d

In this section, we assume that (2.1) holds. Let $i > j, g > h, 0 \le i, j, g, h < k$ be such that

$$(3.1) b_i = b_j, \ b_g = b_h, \ \gamma_i + \gamma_j \ge \gamma_g + \gamma_h$$

and

(3.2)
$$y_i - y_j = d_1 r_1, \ y_i + y_j = d_2 r_2, \ y_g - y_h = d_1 s_1, \ y_g + y_h = d_2 s_2$$

where (d_1, d_2) is a partition of d. We write $V(i, j, g, h, d_1, d_2)$ for such double pairs. We call $V(i, j, g, h, d_1, d_2)$ degenerate if

(3.3)
$$b_i = b_g, r_1 = s_1 \text{ or } b_i = b_g, r_2 = s_2$$

Otherwise we call it non-degenerate. Let q_1 and q_2 be given by

(3.4)
$$|b_i r_1^2 - b_g s_1^2| = q_1 d_2 \text{ and } |b_i r_2^2 - b_g s_2^2| = q_2 d_1.$$

We shall also write $V(i, j, g, h, d_1, d_2) = V(i, j, g, h, d_1, d_2, q_1, q_2).$

Let Ω be a set of pairs (i, j) with i > j such that $b_i = b_j$. Then we say that Ω has *Property ND* if the the following holds: For any two distinct pairs (i, j) and (g, h) in Ω corresponding to a partition (d_1, d_2) of d, the double pair $V(i, j, g, h, d_1, d_2)$ is non-degenerate.

In this section, we give upper bound for n + (k - 1)d whenever it is possible to find a non-degenerate double pair. The next section gives lower bound for n + (k - 1)d. As in [ShTi90], the proof of our theorems depend on showing that the upper bound and lower bound for n + (k - 1)d are not consistent whenever it is possible to find a non-degenerate double pair. Further we show in this section that this is always the case whenever $k - |R| \ge 2^{\omega(d)-\theta}$. If we do not have this, we use Lemmas 5.4 and 7.6 depending on an idea of Erdős to give an upper bound for k. Thus there are only finitely many possibilities for k and we use counting arguments given in Section 6 to exclude these possibilities. For example, we show in Lemma 7.5 that k is large whenever d is divisible by two small primes. This is very useful in our proofs and increases considerably a lower bound for d in Theorem 1. The computations in this paper were carried out using MATHEMATICA.

We begin with the following result.

Lemma 3.1. Let $d = \theta_1(k-1)^2$, $n = \theta_2(k-1)^3$ with $\theta_1 > 0$ and $\theta_2 > 0$. Let $V(i, j, g, h, d_1, d_2, q_1, q_2)$ be a non-degenerate double pair. Then

(3.5)
$$\theta_2 < \frac{1}{2} \left\{ \frac{1}{q_1 q_2} - \theta_1 + \sqrt{\frac{1}{(q_1 q_2)^2} + \frac{\theta_1}{q_1 q_2}} \right\}$$

and

(3.6)
$$d_1 < \frac{\theta_1(k-1)}{q_1(2\theta_2 + \theta_1)}, \ d_2 < \frac{4(k-1)}{q_2}.$$

Proof. We have from (3.2) that $y_i = \frac{d_1r_1+d_2r_2}{2}$ and $y_g = \frac{d_1s_1+d_2s_2}{2}$. Further from (2.2) and (3.1), we get

$$(\gamma_i - \gamma_g)d = b_i y_i^2 - b_g y_g^2 = \frac{1}{4} \left\{ (b_i r_1^2 - b_g s_1^2)d_1^2 + (b_i r_2^2 - b_g s_2^2)d_2^2 + 2d(b_i r_1 r_2 - b_g s_1 s_2) \right\}.$$

We observe from (3.2), (3.1) and (2.2) that $b_i r_1 r_2 = \gamma_i - \gamma_j$, $b_g s_1 s_2 = \gamma_g - \gamma_h$. Therefore

(3.7)
$$2(\gamma_i + \gamma_j - \gamma_g - \gamma_h)d = (b_i r_1^2 - b_g s_1^2)d_1^2 + (b_i r_2^2 - b_g s_2^2)d_2^2.$$

Then reading modulo d_1, d_2 separately in (3.7), we have

(3.8)
$$\begin{aligned} d_2 \Big| (b_i r_1^2 - b_g s_1^2), \ d_1 \Big| (b_i r_2^2 - b_g s_2^2) \text{ if } \operatorname{ord}_2(d) \leq 1 \\ \frac{d_2}{2} \Big| (b_i r_1^2 - b_g s_1^2), \ \frac{d_1}{2} \Big| (b_i r_2^2 - b_g s_2^2) \text{ if } \operatorname{ord}_2(d) \geq 2. \end{aligned}$$

Hence $2q_1, 2q_2$ are non-negative integers. We see that $q_1 \neq 0$ and $q_2 \neq 0$ since $V(i, j, g, h, d_1, d_2, q_1, q_2)$ is non-degenerate. Further we see from (2.2) that

(3.9)
$$b_i y_i^2 - b_g y_g^2 = (\gamma_i - \gamma_g) d, \ b_j y_j^2 - b_h y_h^2 = (\gamma_j - \gamma_h) d.$$

Therefore, by (3.2), we have

(3.10)
$$0 \neq F_1 := (b_i r_1^2 - b_g s_1^2) d_1^2 = b_i (y_i - y_j)^2 - b_g (y_g - y_h)^2 = (\gamma_i + \gamma_j - \gamma_g - \gamma_h) d - 2(b_i y_i y_j - b_g y_g y_h)$$

and

(3.11)

$$0 \neq F_2 := (b_i r_2^2 - b_g s_2^2) d_2^2 = b_i (y_i + y_j)^2 - b_g (y_g + y_h)^2$$
$$= (\gamma_i + \gamma_j - \gamma_g - \gamma_h) d + 2(b_i y_i y_j - b_g y_g y_h).$$

We note here that $F_1 < 0, F_2 < 0$ is not possible since $\gamma_i + \gamma_j \ge \gamma_g + \gamma_h$.

Let a and b be positive real numbers with $a \neq b$. We have $2\sqrt{ab} = (a+b)(1-(\frac{a-b}{a+b})^2)^{\frac{1}{2}}$. By using $1-x < (1-x)^{\frac{1}{2}} < 1-\frac{x}{2}$ for 0 < x < 1, we get $a+b-\frac{(a-b)^2}{a+b} < 2\sqrt{ab} < a+b-\frac{(a-b)^2}{2(a+b)}$. We use it with $a = n + \gamma_i d$ and $b = n + \gamma_j d$ so that $\sqrt{ab} = b_i y_i y_j$ by (2.2) and (3.1). We obtain

$$(3.12) 2n + (\gamma_i + \gamma_j)d - \frac{(\gamma_i - \gamma_j)^2 d^2}{2n + (\gamma_i + \gamma_j)d} < 2b_i y_i y_j < 2n + (\gamma_i + \gamma_j)d - \frac{(\gamma_i - \gamma_j)^2 d^2}{4n + 2(\gamma_i + \gamma_j)d}$$

Similarly we get

$$(3.13) 2n + (\gamma_g + \gamma_h)d - \frac{(\gamma_g - \gamma_h)^2 d^2}{2n + (\gamma_g + \gamma_h)d} < 2b_g y_g y_h < 2n + (\gamma_g + \gamma_h)d - \frac{(\gamma_g - \gamma_h)^2 d^2}{4n + 2(\gamma_g + \gamma_h)d}$$

Therefore we have from (3.4), (3.10), (3.12) and (3.13) that

$$q_{1}dd_{1} < (\gamma_{i} + \gamma_{j} - \gamma_{g} - \gamma_{h})d - (2n + (\gamma_{i} + \gamma_{j})d) + \frac{(\gamma_{i} - \gamma_{j})^{2}d^{2}}{2n + (\gamma_{i} + \gamma_{j})d} + (2n + (\gamma_{g} + \gamma_{h})d) - \frac{(\gamma_{g} - \gamma_{h})^{2}d^{2}}{4n + 2(\gamma_{g} + \gamma_{h})d} \text{ if } F_{1} > 0$$

and

$$q_{1}dd_{1} < (2n + (\gamma_{i} + \gamma_{j})d) - \frac{(\gamma_{i} - \gamma_{j})^{2}d^{2}}{4n + 2(\gamma_{i} + \gamma_{j})d} - (2n + (\gamma_{g} + \gamma_{h})d) + \frac{(\gamma_{g} - \gamma_{h})^{2}d^{2}}{2n + (\gamma_{g} + \gamma_{h})d} - (\gamma_{i} + \gamma_{j} - \gamma_{g} - \gamma_{h})d \text{ if } F_{1} < 0.$$

Thus

(3.14)
$$q_1 d_1 < \begin{cases} \frac{(\gamma_i - \gamma_j)^2 d}{2n + (\gamma_i + \gamma_j)d} = \frac{\theta_1(\gamma_i - \gamma_j)^2}{2\theta_2(k-1) + \theta_1(\gamma_i + \gamma_j)} & \text{if } F_1 > 0, \\ \frac{(\gamma_g - \gamma_h)^2 d}{2n + (\gamma_g + \gamma_h)d} = \frac{\theta_1(\gamma_g - \gamma_h)^2}{2\theta_2(k-1) + \theta_1(\gamma_g + \gamma_h)} & \text{if } F_1 < 0. \end{cases}$$

Similarly from (3.4), (3.11), (3.12) and (3.13), we have

(3.15)
$$q_2 d_2 < \begin{cases} 2(\gamma_i + \gamma_j - \gamma_g - \gamma_h) + \frac{\theta_1(\gamma_g - \gamma_h)^2}{2\theta_2(k-1) + \theta_1(\gamma_g + \gamma_h)} & \text{if } F_2 > 0\\ \frac{\theta_1(\gamma_i - \gamma_j)^2}{2\theta_2(k-1) + \theta_1(\gamma_i + \gamma_j)} - 2(\gamma_i + \gamma_j - \gamma_g - \gamma_h) & \text{if } F_2 < 0. \end{cases}$$

Let

$$n_{i,j} := (k-1)^2 \left\{ \theta_2(k-1) + \frac{\theta_1(\gamma_i + \gamma_j)}{2} - \frac{\theta_1^2(\gamma_i - \gamma_j)^2}{2(2\theta_2(k-1) + \theta_1(\gamma_i + \gamma_j))} \right\}$$

and

$$n_{g,h} := (k-1)^2 \left\{ \theta_2(k-1) + \frac{\theta_1(\gamma_g + \gamma_h)}{2} - \frac{\theta_1^2(\gamma_g - \gamma_h)^2}{2(2\theta_2(k-1) + \theta_1(\gamma_g + \gamma_h))} \right\}$$

Then we see from (3.12) and (3.13) that $n_{i,j} < b_i y_i y_j < \frac{1}{4} b_i (y_i + y_j)^2$ and $n_{g,h} < b_g y_g y_h < \frac{1}{4} b_g (y_g + y_h)^2$, respectively. Assume $F_1 > 0$. Then from (3.4), (3.11) and (3.2), we have

$$n_{i,j}q_1d_2d_1^2 < \frac{1}{4}b_i(y_i + y_j)^2b_i(y_i - y_j)^2 = \frac{1}{4}(\gamma_i - \gamma_j)^2d^2$$

implying

(3.16)
$$\theta_1 + \theta_2 = \frac{n_{i,j}}{(k-1)^3} + \frac{\theta_1}{k-1} \left(k - 1 - \frac{\gamma_i + \gamma_j}{2} + \frac{\theta_1(\gamma_i - \gamma_j)^2}{2(2\theta_2(k-1) + \theta_1(\gamma_i + \gamma_j))} \right) \\ < \frac{(\gamma_i - \gamma_j)^2}{4q_1(k-1)^3} d_2 + \theta_1 \le \frac{d_2}{4q_1(k-1)} + \theta_1 \text{ if } F_1 > 0$$

by estimating $\frac{\theta_1(\gamma_i - \gamma_j)^2}{2(2\theta_2(k-1) + \theta_1(\gamma_i + \gamma_j))} \leq \frac{(\gamma_i - \gamma_j)^2}{2(\gamma_i + \gamma_j)} < \frac{\gamma_i + \gamma_j}{2}$. Similarly

(3.17)
$$\theta_1 + \theta_2 < \frac{d_2}{4q_1(k-1)} + \theta_1 \text{ if } F_1 < 0$$

We separate the possible cases:

Case I: Let $F_1 > 0, F_2 > 0$. From (3.14) and (3.15), we have

$$q_{1}q_{2}\theta_{1}(k-1)^{2} < \frac{\theta_{1}(\gamma_{i}-\gamma_{j})^{2}}{2\theta_{2}(k-1)+\theta_{1}(\gamma_{i}+\gamma_{j})} \left\{ 2(\gamma_{i}+\gamma_{j}-\gamma_{g}-\gamma_{h}) + \frac{\theta_{1}(\gamma_{g}-\gamma_{h})^{2}}{2\theta_{2}(k-1)+\theta_{1}(\gamma_{g}+\gamma_{h})} \right\}$$
$$< \frac{\theta_{1}(\gamma_{i}-\gamma_{j})^{2}}{2\theta_{2}(k-1)+\theta_{1}(\gamma_{i}+\gamma_{j})} \left\{ 2(\gamma_{i}+\gamma_{j}) - 2(\gamma_{g}+\gamma_{h}) + \gamma_{g}-\gamma_{h} \right\}$$
$$< \frac{2\theta_{1}(\gamma_{i}-\gamma_{j})^{2}(\gamma_{i}+\gamma_{j})}{2\theta_{2}(k-1)+\theta_{1}(\gamma_{i}+\gamma_{j})} \le \frac{2\theta_{1}\gamma_{i}^{3}}{2\theta_{2}(k-1)+\theta_{1}(k-1)} \le \frac{2\theta_{1}(k-1)^{3}}{2\theta_{2}(k-1)+\theta_{1}(k-1)}$$

since $\frac{2\theta_1\gamma_i^3}{2\theta_2(k-1)+\theta_1\gamma_i^3}$ is an increasing function of γ_i . Therefore $2\theta_2 + \theta_1 < \frac{2}{q_1q_2}$ which gives (3.5). Further from (3.14) and (3.15), we have

$$d_1 < \frac{\theta_1(\gamma_i - \gamma_j)^2}{q_1(2\theta_2(k-1) + \theta_1(\gamma_i + \gamma_j))} < \frac{\theta_1\gamma_i^2}{q_1(2\theta_2(k-1) + \theta_1\gamma_i)} \le \frac{\theta_1(k-1)}{q_1(2\theta_2 + \theta_1)}$$

and

$$d_2 < \frac{1}{q_2} \left\{ 2(\gamma_i + \gamma_j) - 2(\gamma_g + \gamma_h) + \gamma_g - \gamma_h \right\} < \frac{2(\gamma_i + \gamma_j)}{q_2} < \frac{4(k-1)}{q_2}$$

giving (3.6).

Case II: Let $F_1 > 0, F_2 < 0$. From (3.14), we have

$$d_1 < \frac{\theta_1(\gamma_i - \gamma_j)^2}{q_1(2\theta_2(k-1) + \theta_1(\gamma_i + \gamma_j))} < \frac{\theta_1(k-1)}{q_1(2\theta_2 + \theta_1)}$$

Similarly $d_2 < \frac{1}{q_2} \frac{\theta_1(k-1)}{2\theta_2 + \theta_1} < \frac{k-1}{q_2}$ from (3.15) and $\gamma_i + \gamma_j \ge \gamma_g + \gamma_h$. Therefore (3.6) follows. Further

$$\theta_1(k-1)^2 = d = d_1 d_2 < \frac{\theta_1^2 (k-1)^2}{q_1 q_2 (2\theta_2 + \theta_1)^2}$$

implying $(2\theta_2 + \theta_1)^2 < \frac{\theta_1}{q_1q_2}$. Hence (3.5) follows. **Case III:** Let $F_1 < 0, F_2 > 0$. From (3.14) and (3.15), we have

$$\theta_1(k-1)^2 < \frac{\theta_1 \gamma_g^2}{q_1 q_2 (2\theta_2(k-1) + \theta_1 \gamma_g)} \left\{ 2(\gamma_i + \gamma_j - \gamma_g) + \frac{\theta_1 \gamma_g^2}{2\theta_2(k-1) + \theta_1 \gamma_g} \right\}.$$

Let $\chi(\gamma_g) = 1 - \frac{2\theta_2(k-1)}{2\theta_2(k-1) + \theta_1\gamma_g}$ so that $\gamma_g\chi(\gamma_g) = \frac{\theta_1\gamma_g^2}{2\theta_2(k-1) + \theta_1\gamma_g} \leq \frac{\theta_1(k-1)}{2\theta_2 + \theta_1}$ and both $\chi(\gamma_g)$ and $\gamma_g\chi(\gamma_g)$ are increasing functions of γ_g . Since $\gamma_i + \gamma_j \leq 2(k-1)$, we have

$$\theta_1(k-1)^2 < \frac{\gamma_g \chi(\gamma_g)}{q_1 q_2} \left\{ 2(2(k-1) - \gamma_g) + \gamma_g \chi(\gamma_g) \right\} < \frac{\chi(\gamma_g)}{q_1 q_2} \left\{ 2\gamma_g(2(k-1) - \gamma_g) + \gamma_g^2 \chi(\gamma_g) \right\}$$

We see that $\gamma_g(2(k-1) - \gamma_g)$ is an increasing function of γ_g since $\gamma_g \leq k-1$. Therefore the right hand side of the above inequality is an increasing function of γ_g . Hence we obtain

$$\theta_1 < \frac{\theta_1/(k-1)^2}{q_1q_2(2\theta_2 + \theta_1)} \left\{ 2(k-1)^2 + \frac{\theta_1(k-1)^2}{2\theta_2 + \theta_1} \right\} = \frac{\theta_1}{q_1q_2(2\theta_2 + \theta_1)} \left\{ 2 + \frac{\theta_1}{2\theta_2 + \theta_1} \right\}.$$

Thus $(2\theta_2 + \theta_1)^2 < \frac{3\theta_1 + 4\theta_2}{q_1 q_2}$. Then we derive

$$(2\theta_2 + \theta_1 - \frac{1}{q_1q_2})^2 < \frac{1}{(q_1q_2)^2} + \frac{\theta_1}{q_1q_2}$$

Thus we get either $2\theta_2 + \theta_1 < \frac{1}{q_1q_2}$ or $2\theta_2 + \theta_1 - \frac{1}{q_1q_2} < \sqrt{\frac{1}{(q_1q_2)^2} + \frac{\theta_1}{q_1q_2}}$ giving (3.5). Further from (3.14), we have

$$d_1 < \frac{\theta_1(\gamma_g - \gamma_h)^2}{q_1(2\theta_2(k-1) + \theta_1(\gamma_g + \gamma_h))} < \frac{\theta_1(k-1)}{q_1(2\theta_2 + \theta_1)}.$$

As in Case I, we have $d_2 < \frac{4(k-1)}{q_2}$. Thus (3.6) follows.

Let θ_1, θ_2 be as in as the statement of Lemma 3.1.

Corollary 3.2. We have

(3.18)
$$\theta_1 < \frac{3}{q_1 q_2}, \ \theta_1 + \theta_2 < \theta_1 + 2\theta_2 < \frac{3}{q_1 q_2}$$

Proof. Since $\theta_2 > 0$, we see from (3.5) that either $\theta_1 < \frac{1}{q_1q_2}$ or $(\theta_1 - \frac{1}{q_1q_2})^2 < \frac{1}{(q_1q_2)^2} + \frac{\theta_1}{q_1q_2}$ giving $\theta_1 < \frac{3}{q_1q_2}$. Hence we get from (3.5) that

$$\theta_1 + 2\theta_2 < \frac{1}{q_1q_2} + \sqrt{\frac{1}{(q_1q_2)^2} + \frac{\theta_1}{q_1q_2}} < \frac{3}{q_1q_2}.$$

Thus (3.18) is valid.

Lemma 3.3. Let $b_i = b_j, b_g = b_h$ and $(d_1, d_2) \neq (\eta, \frac{d}{\eta})$ be a partition of d. Suppose that (i, j) and (g, h) correspond to the partitions (d_1, d_2) and (d_2, d_1) , respectively. Then

(3.19)
$$d_1 < \eta (k-1)^2, \ d_2 < \eta (k-1)^2.$$

Proof. We write

$$y_i - y_j = d_1 r_1, \ y_i + y_j = d_2 r_2, \ y_g - y_h = d_2 s_2, \ y_g + y_h = d_1 s_1.$$

with

$$(3.20) b_i r_1 r_2 = \gamma_i - \gamma_j, b_g s_1 s_2 = \gamma_g - \gamma_h.$$

Then as in the proof of Lemma 3.1, we get (3.7) and (3.8). If both $b_i r_1^2 - b_g s_1^2 \neq 0$ and $b_i r_2^2 - b_g s_2^2 \neq 0$, we obtain $\max(d_1, d_2) < \eta \max(b_i r_1^2, b_g s_1^2, b_i r_2^2, b_g s_2^2) \le \eta(k-1)^2$ by (3.20). Thus we may assume that either $b_i r_1^2 - b_g s_1^2 = 0$ or $b_i r_2^2 - b_g s_2^2 = 0$. Note that $b_i r_1^2 - b_g s_1^2 = b_i r_2^2 - b_g s_2^2 = 0$ is not possible. Suppose

 $b_i r_1^2 - b_g s_1^2 = b_i r_2^2 - b_g s_2^2 = 0$. Then $b_i = b_g, r_1 = s_1, r_2 = s_2$ implying $y_i = y_g, y_j = y_h$. Hence we get $\gamma_i = \gamma_g, \gamma_j = \gamma_h$ from (2.2) implying (i, j) = (g, h) which is a contradiction. Now we consider the case $b_i r_1^2 - b_g s_1^2 = 0$ and the proof for the other is similar. From $b_i r_2^2 - b_g s_2^2 \neq 0$ and (3.7), we obtain $2(\gamma_i + \gamma_j - \gamma_g - \gamma_h)d_1 = (b_i r_2^2 - b_g s_2^2)d_2$ implying $d_1 | \eta(b_i r_2^2 - b_g s_2^2)$ and $d_2 | 2\eta(\gamma_i + \gamma_j - \gamma_g - \gamma_h)$. Hence by (3.20), $d_1 < \eta(k-1)^2, d_2 < 2\eta(k-1+k-2-1) \leq \eta(k-1)^2$ implying (3.19).

For two pairs (a, b), (c, d) with positive rationals a, b, c, d, we write $(a, b) \ge (c, d)$ if $a \ge c, b \ge d$.

Lemma 3.4. Let (d_1, d_2) be a partition of d. Suppose that there is a set \mathfrak{G} of at least z_0 distinct pairs corresponding to the partition (d_1, d_2) such that $V(i, j, g, h, d_1, d_2)$ is non-degenerate for any (i, j) and (g, h) in \mathfrak{G} . Then (3.5), (3.6) and (3.18) hold with $(q_1, q_2) \ge (Q_1, Q_2)$ where (Q_1, Q_2) is given by the following table.

z_0	d odd	2 d	d	8 d
2	(1,1)	(2,1)	$(\frac{1}{2}, \frac{1}{2})$	$(1,\frac{1}{2}) if 2 d_1, (\frac{1}{2},1) if 2 d_2 $
3	(2,2)	$(4,4) \ or \ (8,2)$	(2,2)	(2,2)
5	(4, 4)	(8, 4)	$(2,8) \ or \ (8,2)$	$(2,8) if 2 d_1, (8,2) if 2 d_2$
			Table 1	

For example, $(Q_1, Q_2) = (1, 1)$ if $z_0 = 2, d$ odd and $(Q_1, Q_2) = (2, 2)$ if $z_0 = 3, 4 || d$. If there exists a non-degenerate double pair $V(i, j, g, h, d_1, d_2)$, then we can apply Lemma 3.4 with $z_0 = 2$.

Proof. For any pair $(i, j) \in \mathfrak{G}$, we write

(3.21)
$$y_i - y_j = r_1(i, j)d_1$$
 and $y_i + y_j = r_2(i, j)d_2$

where $r_1 = r_1(i, j)$ and $r_2 = r_2(i, j)$ are integers.

Let d be odd. Then $r_1 \equiv r_2 \pmod{2}$ for any pair (i, j) by (3.21) and we shall use it in this paragraph without reference. We observe that $q_1 \geq 1, q_2 \geq 1$ by (3.8), (3.4) and the assertion follows for $z_0 = 2$. Let $z_0 = 3$. If there are two distinct pairs (i, j) with $b_i r_1$ even, then $q_1 \geq 2, q_2 \geq 2$ by (3.8). Thus we may assume that there is at most one pair (i, j) for which $b_i r_1$ is even. Therefore, for the remaining two pairs, we see that both $b_i r_1$'s are odd and the assertion follows again by (3.8). Let $z_0 = 5$. We may suppose that there is at most one (i, j) for which r_1 is even otherwise the result follows from (3.8). Now we consider remaining four pairs (i, j) for which $r_1^2 \equiv 1 \pmod{4}$. Out of these pairs, there are (i_1, j_1) and (i_2, j_2) such that $b_{i_1} \equiv b_{i_2} \pmod{4}$ since b's are square free. Now the assertion follows from (3.8).

Let d be even. We observe that

(3.22)
$$8|(y_i^2 - y_j^2) \text{ and } \gcd(y_i - y_j, y_i + y_j) = 2$$

for any pair (i, j). Let 2||d. Then d_1 is odd and d_2 is even implying r_1 is even by (3.22). Further from (3.22), we have either $4|r_1, 2 \nmid r_2$ or $2||r_1, 2|r_2$. Therefore $(q_1, q_2) \ge (2, 1)$ by (3.8) since r_1 is even and the assertion follows for $z_0 = 2$. Let $z_0 = 3$. Then there are two pairs (i_1, j_1) and (i_2, j_2) such that $r_2(i_1, j_1) \equiv r_2(i_2, j_2) \pmod{2}$. Assume that r_2 is odd. Then $4|r_1$ which implies $8|q_1$ and $2|q_2$ by (3.8). Now we suppose that r_2 is even. Then $2||r_1$. We write $r_1 = 2r'_1$ and

$$b_{i_1}r_1^2(i_1,j_1) - b_{i_2}r_1^2(i_2,j_2) = 4(b_{i_1}r_1'^2(i_1,j_1) - b_{i_2}r_1'^2(i_2,j_2)) \equiv 0 \pmod{8}.$$

Hence $4|q_1, 4|q_2$ by (3.8). Let $z_0 = 5$. We choose three pairs (i, j) for which all b_i 's $\equiv 1 \pmod{4}$ or all b_i 's $\equiv 3 \pmod{4}$. Out of these, we choose two pairs both of which satisfy either $4|r_1, 2 \nmid r_2$ or $2||r_1, 2|r_2$. Now we argue as above and use $b_{i_1} \equiv b_{i_2} \pmod{4}$ to get the result.

Let 4||d. Then both d_1 and d_2 are even. From (3.22), we have either $2|r_1, 2 \nmid r_2$ or $2 \nmid r_1, 2|r_2$. Since $(q_1, q_2) \ge (\frac{1}{2}, \frac{1}{2})$ by (3.8), the the assertion follows for $z_0 = 2$. Let $z_0 = 3$. Then there are two pairs (i_1, j_1) and (i_2, j_2) such that $r_1(i_1, j_1) \equiv r_1(i_2, j_2) \pmod{2}$ and $r_2(i_1, j_1) \equiv r_2(i_2, j_2) \pmod{2}$. Since $b_i \equiv n \pmod{4}$ for each i, we get from (3.8) and (3.4) that $2|q_1$ and $2|q_2$. Thus $(q_1, q_2) \ge (2, 2)$. Let $z_0 = 5$. Then we get 3 pairs (i, j) for which $2|r_1(i, j), 2 \nmid r_2(i, j)$ or 3 pairs (i, j) for which $2|r_1(i, j), 2 \nmid r_2(i, j)$ and (i_2, j_2) such that $r_1(i_1, j_1) \equiv r_1(i_2, j_2) \pmod{4}$. Assume the first case. Then there are 2 pairs (i_1, j_1) and (i_2, j_2) such that $r_1(i_1, j_1) \equiv r_1(i_2, j_2) \pmod{4}$. This, with $b_i \equiv n \pmod{4}$ and (3.4), implies that $16|q_1d_2$ and $4|q_2d_1$. Hence $(q_1, q_2) \ge (8, 2)$. In the latter case, we get $(q_1, q_2) \ge (2, 8)$ similarly.

Let 8|d. Then we have from (3.21) and (3.22) that either $2||d_1|$ implying all r_1 's are odd, or $2||d_2|$ implying all r_2 's are odd. Also $b_i \equiv n \pmod{8}$ for all *i*. We prove the result for $2||d_1|$ and the proof for the other case is similar. From (3.7), we derive

$$(3.23) 2(\gamma_{i_1} + \gamma_{j_1} - \gamma_{i_2} - \gamma_{j_2})\frac{d_1}{2}\frac{d_2}{2} = (b_{i_1}r_1^2 - b_{i_2}s_1^2)\left(\frac{d_1}{2}\right)^2 + (b_{i_1}r_2^2 - b_{i_2}s_2^2)\left(\frac{d_2}{2}\right)^2$$

where $r_1 = r_1(i_1, j_1), s_1 = r_1(i_2, j_2), r_2 = r_2(i_1, j_1)$ and $s_2 = r_2(i_2, j_2)$. Noting that $4d_2|d_2^2$ and taking modulo d_2 , we get $(q_1, q_2) \ge (1, \frac{1}{2})$ implying the assertion for $z_0 = 2$. Let $z_0 = 3$. Then there are 2 pairs (i_1, j_1) and (i_2, j_2) such that $r_2(i_1, j_1) \equiv r_2(i_2, j_2) \pmod{2}$. Using this and (3.4), we get $4|q_2d_1$. Further from $b_i r_1 r_2 = \gamma_i - \gamma_j$, we see that $\gamma_{i_1} - \gamma_{j_1} \equiv \gamma_{i_2} - \gamma_{j_2} \pmod{2}$ implying $\gamma_{i_1} + \gamma_{j_1} \equiv \gamma_{i_2} + \gamma_{j_2} \pmod{2}$. Now we see from (3.23) that $4\frac{d_2}{2}|q_1d_2$. Thus $(q_1, q_2) \ge (2, 2)$. Let $z_0 = 5$. We see that $b_i \equiv n$ or n + 8 modulo 16 so that $b_i r_2^2 \pmod{16}$ is equal to 0 if $4|r_2$, 4n if $2||r_2$ and n, n + 8 if $2 \nmid r_2$. Now we can find 2 pairs (i_1, j_1) and (i_2, j_2) such that $b_{i_1} r_2^2(i_1, j_1) \equiv b_{i_2} r_2^2(i_2, j_2) \pmod{16}$. This gives $16|q_2d_1$ by (3.4). Further again $2|(\gamma_{i_1} + \gamma_{j_1} - \gamma_{i_2} - \gamma_{j_2})$ and hence $4\frac{d_2}{2}|q_1d_2$ from (3.23). Therefore $(q_1, q_2) \ge (2, 8)$.

Lemma 3.5. (i) Assume that

$$(3.24) n + \gamma_t d > \eta^2 \gamma_t^2$$

Then for any pair (i, j) with $b_i = b_j$, the partition $(d\eta^{-1}, \eta)$ is not possible. (ii) Let d = d'd'' with gcd(d', d'') = 1. Then for any pair (i, j) with $B_i = B_j \ge d'$, $i, j \in T_1$, the partition $(d''\eta^{-1}, \eta)$ is not possible. In particular, the partition $(d\eta^{-1}, \eta)$ is not possible.

Proof. (i) Suppose the pair (i, j) with $b_i = b_j$ correspond to the partition $(d\eta^{-1}, \eta)$. From $\frac{n+\gamma_i d}{n+\gamma_t d} > \frac{\gamma_i}{\gamma_t}$ and (3.24), we get $n + \gamma_i d > \eta^2 \gamma_i \gamma_t$. Then from (2.8), we have

$$\gamma_{i} - \gamma_{j} \ge \frac{b_{i}(y_{i} + y_{j})}{\eta} \ge \frac{(b_{i}y_{i}^{2})^{\frac{1}{2}} + (b_{j}y_{j}^{2})^{\frac{1}{2}}}{\eta} > \frac{\eta(\sqrt{\gamma_{i}\gamma_{t}} + \sqrt{\gamma_{j}\gamma_{t}})}{\eta} \ge \gamma_{i} + \gamma_{j},$$

a contradiction.

(ii) Suppose the pair (i, j) with $B_i = B_j \ge d'$ correspond to the partition $(d'' \eta^{-1}, \eta)$. As in (2.8), we have

$$\gamma_i - \gamma_j \ge (\gamma_i - \gamma_j) \frac{d}{B_i} \ge \frac{Y_i + Y_j}{\eta} > \frac{2k}{2}$$

since $Y_i \ge Y_j > k$. This is a contradiction. The latter assertion follows by taking d' = 1, d'' = d.

Lemma 3.6. (i) Assume (3.24). Let $1 \le i_0 \le t$ and $\nu(b_{i_0}) = \mu$. Let (d_1, d_2) be any partition of d. Then the number of pairs (i, j) with $b_i = b_j = b_{i_0}, i > j$ corresponding to (d_1, d_2) is at most $[\frac{\mu}{2}]$.

(ii) Let d = d'd'' with gcd(d', d'') = 1. Let $i_0 \in T_1$, $B_{i_0} \ge d'$ and $\nu(B_{i_0}) = \mu$. Let (d_1, d_2) be any partition of d''. Then the number of pairs (i, j) with $B_i = B_j = B_{i_0}, i > j$ corresponding to (d_1, d_2) is at most $[\frac{\mu}{2}]$.

Proof. (i) Suppose there are $\mu' = \left[\frac{\mu}{2}\right] + 1$ pairs (i_l, j_l) with $i_l > j_l, 0 \le l < \mu'$ and $b_{i_l} = b_{j_l} = b_{i_0}$ corresponding to (d_1, d_2) . We consider the sets $I = \{i_l | 0 \le l < \mu'\}$ and $J = \{j_l | 0 \le l < \mu'\}$. If $|I| < \mu'$ or $|J| < \mu'$ or $I \cap J \neq \phi$, then there are $l \neq m$ such that

$$\begin{aligned} &d_1|(y_{j_l} - y_{j_m}), \ d_2|(y_{j_l} - y_{j_m}) \text{ if } i_l = i_m \\ &d_1|(y_{i_l} - y_{i_m}), \ d_2|(y_{i_l} - y_{i_m}) \text{ if } j_l = j_m \\ &d_1|(y_{j_l} - y_{i_m}), \ d_2|(y_{j_l} - y_{i_m}) \text{ if } i_l = j_m. \end{aligned}$$

We exclude the first possibility and proofs for the others are similar. Without loss of generality, we may assume that $j_l > j_m$. Then $\operatorname{lcm}(d_1, d_2)|(y_{j_l} - y_{j_m})$ so that the pair (j_l, j_m) correspond to the partition $(d\eta^{-1}, \eta)$. This is not possible by Lemma 3.5 (i). Thus $|I| = \mu'$, $|J| = \mu'$ and $I \cap J = \phi$. Now we see that $|I \cup J| = |I| + |J| = 2\mu' > \mu$ and $b_i = b_{i_0}$ for every $i \in I \cup J$. This contradicts $\nu(b_{i_0}) = \mu$.

(ii) The proof is similar to that of (i) and we use Lemma 3.5 (ii).

As a corollary, we have

Corollary 3.7. (i) Assume (3.24). For $1 \le i \le t$, we have $\nu(b_i) \le 2^{\omega(d)-\theta}$. (ii) Let d = d'd'' with gcd(d', d'') = 1. For $B_i \ge d'$, we have $\nu(B_i) \le 2^{\omega(d'')-\theta_1}$. In particular, $\nu(B_i) \le 2^{\omega(d)-\theta}$.

Proof. (i) Let $\nu(b_i) = \mu$. Then there are $\frac{\mu(\mu-1)}{2}$ pairs (g,h) with g > h and $b_g = b_h = b_i$. Since there are at most $2^{\omega(d)-\theta} - 1$ permissible partitions of d, we see from Lemma 3.6 (i) that $\frac{\mu(\mu-1)}{2} \leq \frac{\mu}{2}(2^{\omega(d)-\theta}-1)$. Hence the assertion follows.

(ii) The proof of the assertion (ii) is similar and we use Lemma 3.6 (ii).

Corollary 3.8. Let $T_{r+1} = \{i \in T_1 : B_i \ge \mathfrak{q}_1 \mathfrak{q}_2 \cdots \mathfrak{q}_r\}$ and $s_{r+1} = |\{B_i : i \in T_{r+1}\}|$. Then

$$s_{r+1} \ge \frac{|T_1|}{2^{\omega(d)-r-\theta}} - \sum_{\mu=1}^{r-1} 2^{r-\mu} \lambda_{\mu} - 2\lambda_r$$

where λ 's are as defined in (2.10).

Proof. We apply Corollary 3.7 (*ii*) with $d' = \mathfrak{q}_1 \mathfrak{q}_2 \cdots \mathfrak{q}_\mu$ to derive that $\nu(B_i) \leq 2^{\omega(d)-\mu-\theta}$ for $B_i \geq \mathfrak{q}_1 \mathfrak{q}_2 \cdots \mathfrak{q}_\mu$, $\mu \geq 1$ since $\theta_1 \geq \theta$. Therefore

$$|T_{r+1}| \ge |T_1| - 2^{\omega(d)-\theta} \lambda_1 - 2^{\omega(d)-1-\theta} (\lambda_2 - \lambda_1) - \dots - 2^{\omega(d)-r+1-\theta} (\lambda_r - \lambda_{r-1}).$$

Since $\nu(B_i) \leq 2^{\omega(d)-r-\theta}$ for $i \in T_{r+1}$, we have $s_{r+1} \geq \frac{|T_{r+1}|}{2^{\omega(d)-r-\theta}}$ and the assertion follows.

Lemma 3.9. Assume (3.24). There exists a set Ω of at least

$$t - |R| + \sum_{\substack{\mu > 1\\ \mu \text{ odd}}} r_{\mu} \ge t - |R|$$

pairs (i, j) having Property ND.

Proof. We have

$$t = \sum_{\mu} \mu r_{\mu}$$
 and $|R| = \sum_{\mu} r_{\mu}$

Each $b_{i_0} \in R_{\mu}$ gives rise to $\frac{\mu(\mu-1)}{2}$ pairs (i,j) with i > j such that $b_i = b_j = b_{i_0}$ and each pair corresponds to a partition of d. By Lemma 3.6, we know that there are at most $[\frac{\mu}{2}]$ pairs corresponding to any partition of d. For each $1 \le j \le [\frac{\mu}{2}] = \mu_1$, let v_j be the number of partitions of d for which there are j pairs out of the ones given by $b_{i_0} \in R_{\mu}$ corresponding to that partition. Then

(3.25)
$$\frac{\mu(\mu-1)}{2} = \sum_{j=1}^{\mu_1} j v_j.$$

For each partition having j pairs with $v_j > 0$, we remove j - 1 pairs. Then we remove in all $\sum_{j=1}^{\mu_1} (j-1)v_j$ pairs. Rewriting (3.25) as

$$\frac{\mu(\mu-1)}{2} = \mu_1 \sum_{j=1}^{\mu_1} v_j - \sum_{j=1}^{\mu_1} (\mu_1 - j) v_j,$$

we see that we are left with at least

$$\sum_{j=1}^{\mu_1} v_j = \frac{\mu(\mu-1)}{2\mu_1} + \sum_{j=1}^{\mu_1} (1-\frac{j}{\mu_1}) v_j \ge \frac{\mu(\mu-1)}{2\mu_1} = \begin{cases} \mu-1 & \text{if } \mu \text{ is even} \\ \mu & \text{if } \mu \text{ is odd} \end{cases}$$

pairs. Let Ω be the union of all such pairs taken over all $b_{i_0} \in R_{\mu}$ and for all $\mu \geq 2$. Since $|R_{\mu}| = r_{\mu}$, we have

$$|\Omega| \ge \sum_{\mu \text{ even}} (\mu - 1)r_{\mu} + \sum_{\substack{\mu > 1 \\ \mu \text{ odd}}} \mu r_{\mu} = t - |R| + \sum_{\substack{\mu > 1 \\ \mu \text{ odd}}} r_{\mu}.$$

Further we see from the construction of the set Ω that Ω satisfy *Property ND*.

Corollary 3.10. Assume (3.24). Let z be a positive integer and $\mathfrak{h}(z) = (z-1)(2^{\omega(d)-\theta}-1)+1$. Let $z_0 \in \{2,3,5\}$. Suppose that $t - |R| \ge \mathfrak{h}(z_0)$. Then there exists a partition (d_1, d_2) of d such that (3.5), (3.6) and (3.18) hold with $(q_1, q_2) \ge (Q_1, Q_2)$ where (Q_1, Q_2) is given by Table 1.

Proof. By Lemma 3.9, there exists a set Ω with at least $\mathfrak{h}(z_0)$ pairs satisfying Property ND. Since there are at most $2^{\omega(d)-\theta}-1$ permissible partitions of d by Lemma 3.5 (i), we can find a partition (d_1, d_2) of d and a subset $\mathfrak{G} \subset \Omega$ of at least z_0 pairs corresponding to (d_1, d_2) . Now the result follows by Lemma 3.4.

Corollary 3.11. Assume (3.24). Suppose that $t - |R| \ge 2^{\omega(d)-\theta-1} + 1$. Then there exists a partition (d_1, d_2) of d such that (3.19) holds.

Proof. By Lemma 3.9, there exists a set Ω with at least $2^{\omega(d)-\theta-1}+1$ pairs (i,j) satisfying Property ND. We may assume that for each partition (d_1, d_2) of d, there is at most 1 pair corresponding to (d_1, d_2) otherwise the assertion follows by $z_0 = 2$ in Lemma 3.4. We see that there are $2^{\omega(d)-\theta-1}-1$ partitions (d_1, d_2) with $d_1 > d_2$, $2^{\omega(d)-\theta-1}-1$ partitions (d_1, d_2) with $\eta < d_1 < d_2$ and the partition $(\eta, d\eta^{-1})$. Since there are at least $2^{\omega(d)-\theta-1}+1$ pairs, we can find two pairs (i, j) and (g, h) corresponding to the partitions (d_1, d_2) and (d_2, d_1) , respectively. Now the assertion follows by Lemma 3.3.

Lemma 3.12. Assume (3.24).

(i) Let $|S_1| \leq |T_1| - \mathfrak{h}(3)$. Then (3.18) is valid with

(3.26)
$$q_1 q_2 \ge \begin{cases} 144\rho^{-1} & \text{if } 2 \nmid d \\ 16 & \text{if } 2 \mid | d \\ 4 & \text{if } 4 \mid d. \end{cases}$$

(ii) Let d be even and $|S_1| \leq |T_1| - \mathfrak{h}(5)$. Then (3.18) is valid with

(3.27)
$$q_1 q_2 \ge \begin{cases} 144\rho^{-1} & \text{if } 2||d\\ 36 & \text{if } 4|d \text{ and } 3 \nmid d\\ 16 & \text{if } 4|d \text{ and } 3|d. \end{cases}$$

Proof. Let $B_i = B_j$ with i > j and $i, j \in T_1$. Then there is a partition (d_1, d_2) of d such that $Y_i - Y_j = d_1 r'_1$, $Y_i + Y_j = d_2 r'_2$ with r'_1, r'_2 even, $24\rho^{-1}|r'_1r'_2$ if d is odd and r'_1 even, $12\rho^{-1}|r'_1r'_2$ if 2||d and $3\rho^{-1}|r'_1r'_2$ if 4|d. Since $B_i Y_i^2 = b_i y_i^2$ and b_i is squarefree, we see that $p|b_i$ if and only if $p|B_i$ with $\operatorname{ord}_p(B_i)$ odd. Therefore $b_i = b_j$ implying $b^2 = \frac{B_i}{b_i} = \frac{B_j}{b_j}$ and $y_i = bY_i, y_j = bY_j$. Hence

$$y_i - y_j = d_1 br'_1 = d_1 r_1(i,j) = d_1 r_1, \ y_i + y_j = d_2 br'_2 = d_2 r_2(i,j) = d_2 r_2$$

with $r_1 = br'_1, r_2 = br'_2$ even, $24\rho^{-1}|r_1r_2$ if d is odd; r_1 even, $12\rho^{-1}|r_1r_2$ if 2||d and $3\rho^{-1}|r_1r_2$ if 4|d. Let $z \in \{3,5\}$ and $|S_1| \leq |T_1| - \mathfrak{h}(z)$. We argue as in Lemma 3.9 and Corollary 3.10 with t and |R| replaced by $|T_1|$ and $|S_1|$. There exists a partition (d_1, d_2) of d and z pairs corresponding to (d_1, d_2) such that $V(i, j, g, h, d_1, d_2)$ is non-degenerate for any two such distinct pairs (i, j) and (g, h). Let z = 3. By Lemma 3.4 with $z_0 = 3$, we may suppose that d is odd. Let $3 \nmid d$. Then we can find two distinct pairs (i_1, j_1) and (i_2, j_2) both of which satisfy either $3|r_1(i_1, j_1), 3|r_1(i_2, j_2)$ or $3|r_2(i_1, j_1), 3|r_2(i_2, j_2)$. Now (3.26) follows from (3.8) and (3.4) since r_1, r_2 are even. Assume that 3|d. Let $3|d_1$. Then we can find two distinct pairs (i_1, j_1) and (i_2, j_2) both of which satisfy either $3|r_1(i_1, j_1), 3|r_1(i_2, j_2)$ or $3 \nmid r_1(i_1, j_1), 3 \nmid r_1(i_2, j_2)$. Since $b_i \equiv n \pmod{3}$ and $r^2 \equiv 1 \pmod{3}$ for $3 \nmid r$, the assertion follows from (3.8) and (3.4) since r_1, r_2 are even. The same assertion hold for $3|d_2$ in which case r_1 is replaced by r_2 . This proves (3.26) and we turn to the proof of (3.27). Let d be even and z = 5. Let $3 \nmid d$. Out of these five pairs, we can find three distinct pairs (i, j) for which either $r_1(i, j)$'s are all divisible by 3 or $r_2(i, j)$'s are all divisible by 3. As in the proof of Lemma 3.4 with d even and $z_0 = 3$, we find two distinct pairs (i_1, j_1) and (i_2, j_2) such that $16|q_1q_2|$ if 2||d|and $4|q_1q_2|$ if 4|d. Further $9|q_1q_2|$ since either $r_1(i,j)$'s are all divisible by 3 or $r_2(i,j)$'s are all divisible by 3 and hence the assertion. Assume now that 3|d. By Lemma 3.4 with $z_0 = 5$, we may suppose that 2||d. Let $3|d_1$. Then we can find three pairs (i, j) for which either 3 divides all $r_1(i, j)$'s or 3 does not divide any $r_1(i,j)$. Then for any two such pairs (i_1,j_1) and (i_2,j_2) , we have $3|(b_{i_1}r_1^2(i_1,j_1)-b_{i_2}r_1^2(i_2,j_2)))$. Therefore by the proof of Lemma 3.4 with d even and $z_0 = 3$, we get $3 \cdot 16 |q_1q_2$. The other case $3|d_2$ is similar.

4. Lower bound for n + (k-1)d

We observe that $|S_1| \ge \frac{|T_1|}{2^{\omega(d)-\theta}}$ and $n + (k-1)d \ge |S_1|k^2$. We give lower bound for $|T_1|$. We have

Lemma 4.1. Let $k \ge 4$. Then

(4.1)
$$|T_1| > t - \frac{(k-1)\log(k-1) - \sum_{p|d,p \le k} \max\left(0, \frac{(k-1-p)\log p}{p-1} - \log(k-2)\right)}{\log(n+(k-1)d)} - \pi_d(k) - 1.$$

Proof. The proof depends on an idea of Sylvester and Erdős and it is similar to [SaSh03a, Lemma 3]. Since $|T_1| = t - |T|$, we may assume that $|T| > \pi_d(k)$. For a prime q with $q \le k$ and $q \nmid d$, let i_q be a term such that $\operatorname{ord}_q(B_{i_q})$ is maximal. Let $T' = T \setminus \{i_q : q \le k, q \nmid d\}$. Thus $|T'| \ge |T| - \pi_d(k)$. Let $i \in T'$. Then $n + \gamma_i d = B_i$ and $\operatorname{ord}_q(n + \gamma_i d) \le \operatorname{ord}_q(\gamma_i - \gamma_{i_q})$ since $\operatorname{gcd}(n, d) = 1$. Therefore

$$\operatorname{ord}_q(\prod_{i\in T'} (n+\gamma_i d)) \le \operatorname{ord}_q((\gamma_{i_q})!(k-1-\gamma_{i_q})!) \le \operatorname{ord}_q(k-1)!.$$

This, with $n + id \ge \frac{i}{k-1}(n + (k-1)d)$ for i > 0, gives

$$(|T'|-1)! \left(\frac{n+(k-1)d}{k-1}\right)^{|T'|-1} < \prod_{i \in T'} (n+\gamma_i d) \le (k-1)! \psi^{-1}$$

where $\psi = \prod_{q|d} q^{\operatorname{ord}_q(k-1)!}$. Therefore

$$(|T| - \pi_d(k) - 1)\log(n + (k - 1)d)$$

<(|T'| - 1) log(k - 1) + log((k - 1) \cdots |T'|) - log \psi \le (k - 1) log(k - 1) - log \psi.

Now the assertion (4.1) follows from Lemma 5.1 (iv).

The following result is an immediate consequence of Laishram and Shorey [LaSh06, Theorem 1].

Lemma 4.2. Let $n \ge 1, d > 2$ and $k \ge 5$. Then

(4.2)
$$P(n(n+d)\cdots(n+(k-1)d)) > 2k$$

unless (n, d, k) = (1, 3, 10).

Lemma 4.3. Let t = k. Then we have

(4.3)

$$|T_1| > \alpha k$$
 for $k \ge K_{\alpha}$

where α and K_{α} are given by

Proof. Let $k \ge K_{\alpha}$. Thus $k \ge 101$. From Lemma 4.2, we have $n + (k-1)d > 4k^2$. We see from (4.1) that

$$|T_1| + \pi_d(k) > k - 1 - \frac{(k-1)\log k}{2\log 2k} = \frac{k}{2} + \frac{1}{2} \left\{ \frac{(k-1)\log 2}{\log 2k} - 1 \right\} > \frac{k}{2}.$$

Therefore $n + (k - 1)d > (\frac{k}{2} \log \frac{k}{2})^2$ by Lemma 5.1 (ii).

For $0 < \beta < 1$, let

(4.4)
$$n + (k-1)d > (\beta k \log \beta k)^2$$

We may assume that $\beta \geq \frac{1}{2}$. Put $X_{\beta} = X_{\beta}(k) = \beta \log(\beta k)$. Then $\log(n + (k - 1)d) > 2 \log X_{\beta} + 2 \log k$. From (4.1), we see that

(4.5)
$$|T_1| + \pi_d(k) > k - 1 - \frac{(k-1)\log k}{2\log X_\beta + 2\log k} = \frac{k}{2} \left(1 - \frac{1}{k}\right) \left(1 + \frac{\log X_\beta}{\log X_\beta + \log k}\right)$$
$$= \frac{k}{2} \left(1 - \frac{1}{k}\right) \left(1 + \frac{1}{1 + \frac{\log k}{\log X_\beta}}\right) =: g_\beta(k)k =: g_\beta k.$$

By using $\pi_d(k) \leq \pi(k)$ and Lemma 5.1 (i), we get from (4.5) that

(4.6)
$$|T_1| > g_\beta k - \frac{k}{\log k} \left(1 + \frac{1.2762}{\log k} \right)$$

Let $\beta = \frac{1}{2}$. We observe that

$$\frac{14}{13}\log k - \left(1 + \frac{\log k}{\log X_{\beta}}\right) \left(1 + \frac{1.2762}{\log k}\right) \\ = \left(\frac{14}{13} - \frac{1}{\log X_{\beta}}\right)\log k - \left(\frac{1.2762}{\log k} + \frac{1.2762}{\log X_{\beta}}\right) - 1$$

is an increasing function of k and it is positive at k = 2500. Therefore

$$\frac{1}{1 + \frac{\log k}{\log X_{\beta}}} > \frac{13}{14} \frac{1}{\log k} \left(1 + \frac{1.2762}{\log k}\right) \text{ for } k \ge 2500$$

which, together with (4.6) and (4.5), implies

$$\frac{|T_1|}{k} > \frac{1}{2} - \frac{1}{2k} - \frac{1}{28\log k} \left(1 + \frac{1.2762}{\log k}\right) \left(15 + \frac{13}{k}\right) > 0.42 \text{ for } k \ge 2500$$

since the middle expression is an increasing function of k. Thus we may suppose that k < 2500. From (4.5), we get $|T_1| + \pi_d(k) > g_{\frac{1}{2}}k =: \beta_1 k$. Then (4.4) is valid with β replaced by β_1 and we get from (4.5) that $|T_1| + \pi_d(k) > g_{\beta_1}k =: \beta_2 k$. We iterate this process with β replaced by β_2 to get $g_{\beta_2} =: \beta_3$ and further with β_3 to get $|T_1| + \pi_d(k) > g_{\beta_3}k =: \beta_4 k$. Finally we see that $|T_1| > \beta_4 k - \pi(k) \ge \alpha k$ for $k \ge K_{\alpha}$.

Lemma 4.4. Let $S \subseteq \{B_i : 1 \le i \le t\}$. Let $h \ge 1$ and $P_1 < P_2 < \cdots < P_h$ be a subset of odd primes dividing d. For $|S| > (\frac{P_1-1}{2}) \cdots (\frac{P_h-1}{2})$, we have

(4.7)
$$\max_{B_i \in S} B_i \ge \begin{cases} \frac{3}{4} 2^{h+\delta} |S| & \text{if } 3 \nmid d\\ \frac{9}{8} 2^{h+\delta} |S| & \text{if } 3 |d. \end{cases}$$

Proof. The assertion (4.7) for $3 \nmid d$ is [Lai06, Corollary 2] with A_i replaced by B_i and s = |S|. Let 3|d. As in [Lai06, Corollary 2], let $Q_h \geq 1$ and $1 \leq f \leq \frac{P_h - 1}{2}$ be integers such that $(f - 1)\left(\frac{P_1 - 1}{2}\right)\cdots\left(\frac{P_{h-1} - 1}{2}\right) < |S| - Q_h\left(\frac{P_1 - 1}{2}\right)\cdots\left(\frac{P_h - 1}{2}\right) \leq f\left(\frac{P_1 - 1}{2}\right)\cdots\left(\frac{P_{t-1} - 1}{2}\right)$. Then we continue the proof as in [Lai06, Corollary 2] to get

$$\max_{B_i \in S} B_i \ge 2^{\delta} Q_h P_1 P_2 \cdots P_h + 2^{\delta} (f-1) P_1 P_2 \cdots P_{h-1}$$

Since $P_1 = 3$, it suffices to show

$$Q_h P_2 \cdots P_h + (f-1)P_2 \cdots P_{h-1} \ge \frac{3}{4} \{Q_h(P_2-1)\cdots(P_h-1) + 2f(P_2-1)\cdots(P_{h-1}-1)\}$$

for getting the the assertion (4.7). For h = 2, we see from

$$\frac{1}{4}Q_h(P_2+3) - 1 - \frac{f}{2} \ge \frac{1}{4}P_2 - \frac{1}{4} - \frac{P_2 - 1}{4} = 0$$

that the above inequality is valid. For $h \ge 3$, by observing that

$$Q_h(P_2 - 1) \cdots (P_h - 1) \le Q_h P_2 \cdots P_h - Q_h P_2 \cdots P_{h-1},$$

$$2f(P_2 - 1) \cdots (P_{h-1} - 1) \le 2f P_2 \cdots P_{h-1} - 2f P_2 \cdots P_{h-2},$$

it suffices to show that

$$Q_h + \frac{3(Q_h - 1) - (2f + 1)}{P_h} + \frac{6f}{P_h P_{h-1}} \ge 0$$

which is true since $Q_h \ge 1$ and $1 \le f \le \frac{P_h - 1}{2}$.

15

Corollary 4.5. We have $\lambda_1 < \frac{2}{3}\mathfrak{q}_1$ if $2 \nmid d, 3 \nmid d$ and $\lambda_1 < \frac{\mathfrak{q}_1}{\rho^{2\delta}} + 1$ otherwise. For $r \geq 2$, we have

$$\lambda_r < \begin{cases} \frac{q_1 q_2 \cdots q_r}{3 \cdot 2^{r-2}} & \text{if } 2 \nmid d, 3 \nmid d \\ \frac{q_1 \cdots q_r}{9 \cdot 2^{r-3}} & \text{if } 2 \nmid d, 3 \mid d \\ \frac{q_1 \cdots q_r}{3 \cdot 2^{\delta+r-3}} & \text{if } 2 \mid d, 3 \nmid d \\ \min(\frac{q_1 \cdots q_r}{3 \cdot 2^{\delta}} + 1, \frac{q_1 \cdots q_r}{9 \cdot 2^{r-2}}) & \text{if } 6 \mid d. \end{cases}$$

Proof. Let $2 \nmid d$ and $3 \nmid d$. If $\lambda_r \geq \frac{\mathfrak{q}_1 \cdots \mathfrak{q}_r}{3 \cdot 2^{r-2}}$, then $\lambda_r > \frac{\mathfrak{q}_1 - 1}{2} \cdots \frac{\mathfrak{q}_r - 1}{2} \geq \frac{\mathfrak{p}_1 - 1}{2} \cdots \frac{\mathfrak{p}_r - 1}{2}$ giving $\mathfrak{q}_1 \cdots \mathfrak{q}_r > \max_{B_i \in \mathcal{A}_r} B_i \geq \frac{3}{4} 2^r \lambda_r$ by (4.7) with $S = \mathcal{A}_r$. This is a contradiction.

Let 2|d or 3|d. Then we derive from Chinese remainder theorem that $\lambda_r < \frac{q_1 \cdots q_r}{\rho^{2\delta}} + 1$. Thus we may suppose that $r \ge 2$. Further we may also assume that $r \ge \delta + 1$ when 6|d.

Let $2 \nmid d$ and $3 \mid d$. Suppose $\lambda_r \geq \frac{\mathfrak{q}_1 \cdots \mathfrak{q}_r}{9 \cdot 2^{r-3}}$. Then $\mathfrak{q}_1 \geq \mathfrak{p}_1 = 3$ implying $\lambda_r > \frac{\mathfrak{q}_2 - 1}{2} \cdots \frac{\mathfrak{q}_r - 1}{2} \geq \frac{\mathfrak{p}_1 - 1}{2} \frac{\mathfrak{p}_2 - 1}{2} \cdots \frac{\mathfrak{p}_r - 1}{2}$. Therefore $\mathfrak{q}_1 \cdots \mathfrak{q}_r > \frac{9}{4} 2^{r-1} \lambda_r$ by (4.7) with $S = \mathcal{A}_r$. This is a contradiction.

Let 2|d and $3 \nmid d$. Suppose $\lambda_r \geq \frac{\mathfrak{q}_1 \cdots \mathfrak{q}_r}{3 \cdot 2^{\delta+r-3}}$. Then $\mathfrak{q}_r \geq 7$ since $r \geq 2$ implying $\mathfrak{q}' := \max(\mathfrak{q}_r, 2^{\delta}) \geq 7$ implying

$$\lambda_r \ge \frac{2^{r-1} \mathfrak{q}'}{3 \cdot 2^{\delta+r-3}} \frac{\mathfrak{p}_1 - 1}{2} \cdots \frac{\mathfrak{p}_{r-1} - 1}{2} \ge \frac{\mathfrak{q}'}{6} \frac{\mathfrak{p}_1 - 1}{2} \cdots \frac{\mathfrak{p}_{r-1} - 1}{2} > \frac{\mathfrak{p}_1 - 1}{2} \cdots \frac{\mathfrak{p}_{r-1} - 1}{2}$$

Now we apply (4.7) with $S = A_r$ to get a contradiction.

Let 6|d. Suppose $\lambda_r \geq \frac{\mathfrak{q}_1 \cdots \mathfrak{q}_r}{9 \cdot 2^{r-2}}$. Let 2||d or 4||d. Then $\lambda_r > \frac{\mathfrak{q}_{2-1}}{2} \cdots \frac{\mathfrak{q}_{r-1}-1}{2} \geq \frac{\mathfrak{p}_1-1}{2} \frac{\mathfrak{p}_2-1}{2} \cdots \frac{\mathfrak{p}_{r-2}-1}{2}$ since $\mathfrak{q}_1\mathfrak{q}_r \geq 9$ and $\mathfrak{p}_1 = 3$. Now we apply (4.7) with $S = \mathcal{A}_r$ to get a contradiction. Thus it remains to consider 8|d. Then $\lambda_r > \frac{\mathfrak{q}_2-1}{2} \cdots \frac{\mathfrak{q}_{r-1}-1}{2} \geq \frac{\mathfrak{p}_1-1}{2} \frac{\mathfrak{p}_2-1}{2} \cdots \frac{\mathfrak{p}_{r-1}-1}{2}$ since

$$\lambda_r \geq \frac{2^{r-2}\mathfrak{q}_1\mathfrak{q}'}{9\cdot 2^{r-2}}\frac{\mathfrak{p}_1-1}{2}\cdots\frac{\mathfrak{p}_{r-2}-1}{2} > \frac{\mathfrak{p}_1-1}{2}\cdots\frac{\mathfrak{p}_{r-2}-1}{2}$$

where $q' := \max(q_r, 8)$. Now we apply (4.7) with $S = A_r$ to get a contradiction.

5. Results from other sources

We now state some lemmas. We begin with some estimates from Prime Number theory.

Lemma 5.1. We have

(i)
$$\pi(x) \leq \frac{x}{\log x} \left(1 + \frac{1.2762}{\log x} \right)$$
 for $x > 1$
(ii) $p_i \geq i \log i$ for $i \geq 2$
(iii) $\prod_{p \leq x} p < 2.71851^x$ for $x > 0$
(iv) $\sum_{p \leq p_i} \log p > i(\log i + \log \log i - 1.076868)$ for $i \geq 2$
(v) $\operatorname{ord}_p(k!) \geq \frac{k-p}{p-1} - \frac{\log(k-1)}{\log p}$ for $p < k$.

The estimates (i) is due to Dusart [Dus98, p.14], [Dus99] and (ii) is proved by Rosser and Schoenfeld [RoSc62]. For estimate (iii) is due to [Dus98, Prop 1.7], [Dus99]. The estimate (iv) is [Rob83, Theorem 6]. For a proof of (iv), see [LaSh04, Lemma 2(i)].

The next lemma is Stirling's formula, see Robbins [Rob55].

Lemma 5.2. For a positive integer ν , we have

$$\sqrt{2\pi\nu} \ e^{-\nu}\nu^{\nu}e^{\frac{1}{12\nu+1}} < \nu! < \sqrt{2\pi\nu} \ e^{-\nu}\nu^{\nu}e^{\frac{1}{12\nu}}.$$

The following lemma is contained in [Lai06, Lemma 8].

Lemma 5.3. Let s_i denote the *i*-th squarefree positive integer. Then

(5.1)
$$\prod_{i=1}^{l} s_i \ge (1.6)^l l! \quad for \quad l \ge 286.$$

Further let t_i be i-th odd squarefree positive integer. Then

(5.2)
$$\prod_{i=1}^{l} t_i \ge (2.4)^l l! \quad for \quad l \ge 200.$$

The next result depends on an idea of Erdős and Rigge.

Lemma 5.4. Let $z_1 > 1$ be a real number, $h_0 > i_0 \ge 0$ be integers such that $\prod_{b_i \in R} b_i \ge z_1^{|R|-i_0}(|R|-i_0)!$ for $|R| \ge h_0$. Suppose that t - |R| < g and let $g_1 = k - t + g - 1 + i_0$. For $k \ge h_0 + g_1$ and for any real number $\mathfrak{m} > 1$, we have

(5.3)
$$g_{1} > \frac{k \log \left(\frac{z_{1} \mathfrak{n}_{0}}{2.71851} \prod_{p \leq \mathfrak{m}} p^{\frac{2}{p^{2}-1}(1-\frac{1}{p^{\mathfrak{n}(k,p)}})}\right) + (k+\frac{1}{2}) \log(1-\frac{g_{1}}{k})}{\log(k-g_{1}) - 1 + \log z_{1}} + \frac{(0.5\ell+1) \log k - \log \left(\mathfrak{n}_{1}^{-1} \prod_{p \leq \mathfrak{m}} p^{1.5\mathfrak{n}(k,p)}\right)}{\log(k-g_{1}) - 1 + \log z_{1}}$$

and

(5.4)
$$g_{1} > \frac{k \log\left(\frac{z_{1}\mathfrak{n}_{0}}{2.71851} \prod_{p \leq \mathfrak{m}} p^{\frac{2}{p^{2}-1}}\right) + (k + \frac{1}{2}) \log(1 - \frac{g_{1}}{k})}{\log(k - g_{1}) - 1 + \log z_{1}} - \frac{(1.5\pi(\mathfrak{m}) - 0.5\ell - 1) \log k + \log\left(\mathfrak{n}_{1}^{-1}\mathfrak{n}_{2} \prod_{p \leq \mathfrak{m}} p^{0.5 + \frac{2}{p^{2}-1}}\right)}{\log(k - g_{1}) - 1 + \log z_{1}}$$

where

$$\mathfrak{n}(k,p) = \begin{cases} \left[\frac{\log(k-1)}{\log p}\right] & \text{if } \left[\frac{\log(k-1)}{\log p}\right] \text{ is even} \\ \left[\frac{\log(k-1)}{\log p}\right] - 1 & \text{if } \left[\frac{\log(k-1)}{\log p}\right] \text{ is odd,} \end{cases}$$

$$\ell = |\{p \le \mathfrak{m} : p|d\}|, \ \mathfrak{n}_0 = \prod_{\substack{p|d\\p\le \mathfrak{m}}} p^{\frac{1}{p+1}}, \ \mathfrak{n}_1 = \prod_{\substack{p|d\\p\le \mathfrak{m}}} p^{\frac{p-1}{2(p+1)}} \text{ and } \mathfrak{n}_2 = \begin{cases} 2^{\frac{1}{6}} & \text{if } 2 \nmid d\\ 1 & \text{otherwise.} \end{cases}$$

Proof. Since $|R| \ge t - g + 1 = k - g_1 + i_0$, we get

(5.5)
$$\prod_{b_i \in R} b_i \ge z_1^{k-g_1} (k-g_1)!.$$

Let

$$\vartheta_p = \operatorname{ord}_p\left(\prod_{b_i \in R} b_i\right), \ \vartheta'_p = 1 + \operatorname{ord}_p((k-1)!)$$

Let h be the positive integer such that $p^h \leq k - 1 < p^{h+1}$ and $\epsilon = 1$ or 0 according as h is even or odd, respectively. Then

(5.6)
$$\vartheta_p' - 1 = \left[\frac{k-1}{p}\right] + \left[\frac{k-1}{p^2}\right] + \dots + \left[\frac{k-1}{p^h}\right]$$

Let $p \nmid d$. We show that

(5.7)
$$\vartheta_p - \vartheta'_p < -\frac{2k}{p^2 - 1} \left(1 - \frac{1}{p^{\mathfrak{n}(k,p)}}\right) + 1.5\mathfrak{n}(k,p)$$

(5.8)
$$< -\frac{2k}{p^2 - 1} + \frac{1.5 \log k}{\log p} + 0.5 + \frac{2}{p^2 - 1} + \mathfrak{n}_3$$

where $\mathbf{n}_3 = \frac{1}{6}$ if p = 2 and 0 otherwise. We see that ϑ_p is the number of elements in $\{n + \gamma_1 d, n + \gamma_2 d, \dots, n + \gamma_t d\}$ divisible by p to an odd power. For a positive integer s with $s \leq h$, let $0 \leq i_{p^s} < p^s$ be such that $p^s | n + i_{p^s} d$. Then we observe that p^s divides exactly $1 + \left[\frac{k-1-i_{p^s}}{p^s}\right]$ elements in $\{n, n + d, \dots, n + (k-1)d\}$. After removing a term to which p appears to a maximal power, the number of remaining elements in $\{n, n + d, \dots, n + (k-1)d\}$ divisible by p to an odd power is at most

$$\left[\frac{k-1-i_p}{p}\right] - \left[\frac{k-1-i_{p^2}}{p^2}\right] + \left[\frac{k-1-i_{p^3}}{p^3}\right] - \dots + (-1)^{\epsilon} \left[\frac{k-1-i_{p^h}}{p^h}\right].$$

$$\left[\frac{k}{p^s}\right] - 1 \le \left[\frac{k-1-i_{p^s}}{p^s}\right] \le \left[\frac{k-1}{p^s}\right], \text{ we obtain}$$

$$\vartheta_p - 1 \le \left[\frac{k-1}{p}\right] - \left[\frac{k}{p^2}\right] + \left[\frac{k-1}{p^3}\right] - \dots + (-1)^{\epsilon} \left[\frac{k-1+\epsilon}{p^h}\right] + \frac{h-1+\epsilon}{2}$$

th (5.6) implies

This with (5.6) implies

Since

(5.9)
$$\vartheta_p - \vartheta'_p \le -\sum_{j=1}^{\frac{h-1+\epsilon}{2}} \left(\left[\frac{k-1}{p^{2j}} \right] + \left[\frac{k}{p^{2j}} \right] \right) + \frac{h-1+\epsilon}{2}.$$

Since $\left[\frac{k}{p^{2j}}\right] \ge \left[\frac{k-1}{p^{2j}}\right] \ge \frac{k-1}{p^{2j}} - 1 + \frac{1}{p^{2j}} = \frac{k}{p^{2j}} - 1$, we obtain

$$\vartheta_p - \vartheta'_p \le -2k \sum_{j=1}^{\frac{h-1+\epsilon}{2}} \frac{1}{p^2} + 1.5(h-1+\epsilon)$$

giving (5.7) since $\mathfrak{n}(k,p) = h - 1 + \epsilon$. Further from (5.7), $k \leq p^{h+1}$ and $h < \frac{\log k}{\log p}$, we get

$$\vartheta_p - \vartheta_p' < -\frac{2k}{p^2 - 1} + \frac{1.5\log k}{\log p} + \frac{2p^{2-\epsilon}}{p^2 - 1} + 1.5(\epsilon - 1)$$

giving (5.8). For p|d, we get $\vartheta_p - \vartheta'_p = -1 - \operatorname{ord}_p(k-1)!$ which together with Lemma 5.1 (v) gives

(5.10)
$$\begin{aligned} \vartheta_p - \vartheta'_p &< -\frac{k}{p-1} + \frac{\log k}{\log p} + \frac{1}{p-1} \\ &< -\frac{2k}{p^2 - 1} + \frac{1.5 \log k}{\log p} + 0.5 + \frac{2}{p^2 - 1} - \frac{k}{p+1} - \frac{0.5 \log k}{\log p} - \frac{p-1}{2(p+1)}. \end{aligned}$$

For $\mathfrak{m} > 1$, we have

$$\prod_{b_i \in R} b_i \mid (k-1)! \left(\prod_{p \le k} p\right) \prod_{p \le \mathfrak{m}} p^{\vartheta_p - \vartheta'_p}$$

Therefore from Lemma 5.1 (iii), (5.10), (5.7) and (5.8), we have

(5.11)
$$\prod_{b_i \in R} b_i < k! k^{-0.5\ell - 1} \left(\mathfrak{n}_1^{-1} \prod_{p \le \mathfrak{m}} p^{1.5\mathfrak{n}(k,p)} \right) \left(\frac{\mathfrak{n}_0}{2.71851} \prod_{p \le \mathfrak{m}} p^{\frac{2}{p^2 - 1}(1 - \frac{1}{p^{\mathfrak{n}(k,p)}})} \right)^{-k}$$

and

(5.12)
$$\prod_{b_i \in R} b_i < k! k^{1.5\pi(\mathfrak{m}) - .5\ell - 1} \left(\mathfrak{n}_1^{-1} \mathfrak{n}_2 \prod_{p \le \mathfrak{m}} p^{0.5 + \frac{2}{p^2 - 1}} \right) \left(\frac{\mathfrak{n}_0}{2.71851} \prod_{p \le \mathfrak{m}} p^{\frac{2}{p^2 - 1}} \right)^{-k}$$

Comparing (5.11) and (5.12) with (5.5), we get

(5.13)
$$\frac{z_1^{g_1}k!}{(k-g_1)!} > k^{0.5\ell+1} \left(\mathfrak{n}_1^{-1} \prod_{p \le \mathfrak{m}} p^{1.5\mathfrak{n}(k,p)} \right)^{-1} \left(\frac{z_1\mathfrak{n}_0}{2.71851} \prod_{p \le \mathfrak{m}} p^{\frac{2}{p^2-1}(1-\frac{1}{p^{\mathfrak{n}(k,p)}})} \right)^k$$

and

(5.14)
$$\frac{z_1^{g_1}k!}{(k-g_1)!} > k^{-1.5\pi(\mathfrak{m})+.5\ell+1} \left(\mathfrak{n}_1^{-1}\mathfrak{n}_2 \prod_{p \le \mathfrak{m}} p^{0.5+\frac{2}{p^2-1}} \right)^{-1} \left(\frac{z_1\mathfrak{n}_0}{2.71851} \prod_{p \le \mathfrak{m}} p^{\frac{2}{p^2-1}} \right)^k.$$

By Lemma 5.2, we have

$$\frac{z_1^{g_1}k!}{(k-g_1)!} < z_1^{g_1}e^{-g_1}(k-g_1)^{g_1}\left(\frac{k}{k-g_1}\right)^{k+\frac{1}{2}} = \left(\frac{z_1(k-g_1)}{e}\right)^{g_1}\left(1-\frac{g_1}{k}\right)^{-k-\frac{1}{2}}.$$

This together with (5.13) and (5.14) imply the assertions (5.3) and (5.4), respectively.

The inequality (5.8) corrects the corresponding inequality in [Lai06, p. 466, line 3 from the bottom] used in [Lai06, Lemma 13] but the proof of [Lai06, Lemma 13] remains unaffected.

We end this section with the following lemma which follow immediately from [Lai06, Lemma 10].

Lemma 5.5. Let t = k. Let c > 0 be such that $c2^{\omega(d)-3} > 248$, $\mu \ge 2$ and

$$\mathfrak{C}_{\mu} = \{A_i : i \in T_1, \ \nu(A_i) = \mu, \ A_i > \frac{\rho 2^{\delta} k}{3c 2^{\omega(d)}} \}.$$

Then

(5.15)
$$\mathfrak{C} := \sum_{\mu \ge 2} \frac{\mu(\mu - 1)}{2} |\mathfrak{C}_{\mu}| \le \frac{3c}{32} 4^{\omega(d)} (\log c 2^{\omega(d) - 3}).$$

6. Some counting functions

Let p be a prime $\leq k$ and coprime to d. Then the number of i's for which b_i are divisible by q is at most

$$\sigma_q = \left\lceil \frac{k}{q} \right\rceil.$$

Let $r \ge 5$ be any positive integer. Define F(k,r) and F'(k,r) as

$$F(k,r) = |\{i : P(b_i) > p_r\}| \text{ and } F'(k,r) = \sum_{i=r+1}^{\pi(k)} \sigma_{p_i}.$$

Then $|\{b_i : P(b_i) > p_r\}| \le F(k,r) \le F'(k,r) - \sum_{p|d,p>p_r} \sigma_p$. Let

$$\mathcal{B}_r = \{b_i : P(b_i) \le p_r\}, \ I_r = \{i : b_i \in \mathcal{B}_r\} \text{ and } \xi_r = |I_r|.$$

We have

(6.1)
$$\xi_r \ge t - F(k,r) \ge t - F'(k,r) + \sum_{p|d,p>p_r} \sigma_p$$

and

(6.2)
$$t - |R| \ge t - |\{b_i : P(b_i) > p_r\}| - |\{b_i : P(b_i) \le p_r\}|$$

(6.3)
$$\geq t - F(k,r) - |\{b_i : P(b_i) \le p_r\}$$

(6.4)
$$\geq t - F'(k,r) + \sum_{p|d,p>p_r} \sigma_p - |\{b_i : P(b_i) \le p_r\}|$$

(6.5)
$$\geq t - F'(k,r) + \sum_{p|d,p>p_r} \sigma_p - 2^r.$$

We write S := S(r) for the set of positive squarefree integers composed of primes $\leq p_r$. Let $\delta = \min\{3, \operatorname{ord}_2(d)\}$. Let $p = q = 2^{\delta}$ or $p \leq q$ be odd primes dividing d. Let $p = q = 2^{\delta}$. Then $b_i \equiv n \pmod{2^{\delta}}$. Considering modulo 2^{δ} for elements of S(r), we see by induction on r that

(6.6)
$$|\{b_i : P(b_i) \le p_r\}| \le 2^{r-\delta} =: g_{2^{\delta}, 2^{\delta}} =: g_{2^{\delta}}$$

For any odd prime p dividing d, all b_i 's are either quadratic residues mod p or non-quadratic residues mod p. For odd primes p, q dividing d with $p \leq q$, we consider four sets:

(6.7)

$$S_{1}(n',r) = S_{1}(\delta,n',p,q,r) = \{s \in S : s \equiv n' (\text{mod } 2^{\delta}), \left(\frac{s}{p}\right) = 1, \left(\frac{s}{q}\right) = 1\},$$

$$S_{2}(n',r) = S_{2}(\delta,n',p,q,r) = \{s \in S : s \equiv n' (\text{mod } 2^{\delta}), \left(\frac{s}{p}\right) = 1, \left(\frac{s}{q}\right) = -1\},$$

$$S_{3}(n',r) = S_{3}(\delta,n',p,q,r) = \{s \in S : s \equiv n' (\text{mod } 2^{\delta}), \left(\frac{s}{p}\right) = -1, \left(\frac{s}{q}\right) = 1\},$$

$$S_{4}(n',r) = S_{4}(\delta,n',p,q,r) = \{s \in S : s \equiv n' (\text{mod } 2^{\delta}), \left(\frac{s}{p}\right) = -1, \left(\frac{s}{q}\right) = -1\},$$

We take n' = 1 if $\delta = 0, 1$; n' = 1, 3 if $\delta = 2$ and n' = 1, 3, 5, 7 if $\delta = 3$. Let

(6.8)
$$g_{p,q} := g_{p,q}(r) = \max_{n'} (|\mathcal{S}_1(n',r)|, |\mathcal{S}_2(n',r)|, |\mathcal{S}_3(n',r)|, |\mathcal{S}_4(n',r)|)$$

and we write $g_p = g_{p,p}$. Then

(6.9)
$$|\{b_i : P(b_i) \le p_r\}| \le g_{p,q}$$

In view of (6.6) and (6.9), the inequality (6.4) is improved as

(6.10)
$$t - |R| \ge t - F'(k,r) + \sum_{p|d,p>p_r} \sigma_p - \min_{p|d,q|d} \{g_{p,q}\}$$

We observe that gcd(s, pq) = 1 for $s \in S_l$, $1 \le l \le 4$. Hence we see that $S_l(n', r+1) = S_l(n', r)$ if $p = p_{r+1}$ or $q = p_{r+1}$ implying

(6.11)
$$g_{p,q}(r+1) = g_{p,q}(r) \text{ if } p = p_{r+1} \text{ or } q = p_{r+1}.$$

Assume that $p_{r+1} \notin \{p,q\}$. Let $1 \leq l \leq 4$. We write $\mathcal{S}'_l(n',r+1) = \{s : s \in \mathcal{S}_l(n',r+1), p_{r+1}|s\}$. Then $s = p_{r+1}s'$ with $P(s') \leq p_r$ whenever $s \in \mathcal{S}'_l(n',r+1)$. Let l = 1. Then $s' \equiv n'p_{r+1}^{-1} \equiv n'' \pmod{2^{\delta}}$ where n'' = 1 if $\delta = 0,1$; n'' = 1,3 if $\delta = 2$ and n'' = 1,3,5,7 if $\delta = 3$. Further $\left(\frac{s'}{p}\right) = \left(\frac{p_{r+1}}{p}\right)$ and $\left(\frac{s'}{q}\right) = \left(\frac{p_{r+1}}{q}\right)$ for $s \in \mathcal{S}'_l(r+1)$. This implies $\mathcal{S}'_1(n',r+1) = p_{r+1}\mathcal{S}_m(n'',r)$ for some $m,1 \leq m \leq 4$. Therefore $|\mathcal{S}'_1(n',r+1)| \leq g_{p,q}(r)$ by (6.8). Similarly $|\mathcal{S}'_l(n',r+1)| \leq g_{p,q}(r)$ for each $l, 1 \leq 1 \leq 4$. Hence we

get from $S_l(n', r+1) = S_l(n', r) \cup S'_l(n', r+1)$ that

(6.12)
$$g_{p,q}(r+1) \le 2g_{p,q}(r).$$

We now use the above assertions to calculate $g_{p,q}$.

i) Let $5 \le r \le 7, p \le 547$ when $\delta = 0, 1; 5 \le r \le 7, p \le 547$ when $\delta = 2$ and $5 \le r \le 7, p \le 89$ when $\delta = 3$. Then

(6.13)
$$g_p(r) = \begin{cases} \max(1, 2^{r-\delta-2}) & \text{if } p \le p_r \\ \max(1, 2^{r-\delta-1}) & \text{if } p > p_r \end{cases}$$

except when $\delta = 0, r = 5, p = 479$ where $g_p = 2^r$; $\delta = 1, r = 5, p \in \{131, 421, 479\}, r = 6, p = 131$ where $g_p = 2^{r-\delta}$; $\delta = 2, r = 5, p \in \{41, 101, 131, 331, 379, 421, 461, 479, 499\}$ where $g_p = 2^{r-\delta}$; $\delta = 2, r = 6, p \in \{101, 131\}, r = 7, p = 101$ where $g_p = 2^{r-\delta}$; $\delta = 3, r = 5, p = 3$ where $g_p = 2^{r-\delta-1}, r = 5, p = 41$ where $g_p = 2^{r-\delta}$. *ii*) Let $5 \le r \le 7, p \le 19, q \le 193, 23 \le p < q \le 97$ when $\delta = 0$ and $r = 5, 6, p < q \le 37$ when $\delta \ge 1$. Then

(6.14)
$$g_{p,q}(r) = \begin{cases} \max(1, 2^{r-\delta-4}) & \text{if } p < q \le p_r \\ \max(1, 2^{r-\delta-3}) & \text{if } p \le p_r < q \\ \max(1, 2^{r-\delta-2}) & \text{if } p_r < p < q \end{cases}$$

except when

$$\begin{split} \delta &= 0 \text{ and } \begin{cases} r = 5, \quad g_{p,q} = 2^{r-2} \text{ for } (p,q) \in \{(5,43), (5,167), (7,113), (7,127), \\ (7,137), (11,61), (11,179), (11,181)\}; \\ r = 5, \quad g_{p,q} = 2^{r-1} \text{ for } (p,q) \in \{(19,139), (23,73), (37,83)\}; \\ r = 6, \quad g_{p,q} = 2^{r-2} \text{ for } (p,q) = (7,137); \\ r = 6, \quad g_{p,q} = 2^{r-1} \text{ for } (p,q) = (37,83); \\ \delta &= 1 \text{ and } \begin{cases} r = 5, \quad g_{p,q} = 2^{r-4} \text{ for } (p,q) \in \{(5,7), (5,11)\}; \\ r = 5, \quad g_{p,q} = 2^{r-3} \text{ for } (p,q) \in \{(13,23), (29,31)\}; \\ r = 6, \quad g_{p,q} = 2^{r-4} \text{ for } (p,q) \in \{(3,19), (5,17), (5,37), (7,13), \\ (7,23), (7,29), (7,31), (11,19), (11,29), (11,31)\}; \\ r = 6, \quad g_{p,q} = 2^{r-3} \text{ for } (p,q) \in \{(13,23), (17,37), (29,31)\}; \\ r = 6, \quad g_{p,q} = 2^{r-5} \text{ for } (p,q) \in \{(5,7), (7,13)\}; \\ r = 6, \quad g_{p,q} = 2^{r-5} \text{ for } (p,q) \in \{(5,7), (7,13)\}; \\ r = 6, \quad g_{p,q} = 2^{r-4} \text{ for } (p,q) \in \{(5,7), (7,13)\}; \\ r = 6, \quad g_{p,q} = 2^{r-4} \text{ for } (p,q) \in \{(7,29), (11,31), (13,23)\}. \end{cases}$$

Now we combine (6.13), (6.14), (6.12) and (6.11). We obtain (6.13) with = replaced by \leq for $r \geq 7$ and $p \leq 89$ and we shall refer it as (6.13, \leq). Further we obtain (6.14) with = replaced by \leq for $r \geq 7$ and either $p < q \leq 97$ when $\delta = 0$ or p = 3, q = 5 when $\delta \geq 1$ and we shall refer it as (6.14, \leq).

7. Computational Lemmas

From now on, we take t = k. Thus $b_j = a_{j-1}, B_j = A_{j-1}, y_j = x_{j-1}$ and $Y_j = X_{j-1}$ for $1 \le j \le k$. Let $\bar{f}(x) = \lfloor x \rfloor - \lfloor \frac{\lfloor x \rfloor}{4} \rfloor$ for x > 0 and $\mathcal{K}_a = \frac{k}{a2^{3-\delta}}$ for $a \in R$. We now state a result which generalises [HiLaShTi06, Lemma 1]. **Lemma 7.1.** Let $a \in R$ and μ be a positive integer. Let p, q be distinct odd primes. (i) Let $f_0(k, a, \delta) = \overline{f}(\mathcal{K}_a)$,

$$f_1(k, a, p, \mu, \delta) = \frac{p-1}{2} \sum_{l=0}^{\mu-1} \bar{f}(\frac{\mathcal{K}_a}{p^{2l+1}}) + \bar{f}(\frac{\mathcal{K}_a}{p^{2\mu}})$$

and

$$f_2(k, a, p, q, \mu, \delta) = \frac{p-1}{2} \sum_{l=0}^{\mu-1} \left(\frac{q-1}{2} \bar{f}(\frac{\mathcal{K}_a}{p^{2l+1}q}) + \bar{f}(\frac{\mathcal{K}_a}{p^{2l+1}q^2}) \right) + \bar{f}(\frac{\mathcal{K}_a}{p^{2\mu}}).$$

Then

(7.1)
$$\nu_o(a) \leq \begin{cases} f_0(k, a, \delta) \\ f_1(k, a, p, \mu, \delta) & \text{if } p \nmid d \\ f_2(k, a, p, q, \mu, \delta) & \text{if } p \nmid d, q \nmid d. \end{cases}$$

(ii) Let d be odd. Let

$$g_0(k, a, \mu) = \sum_{l=1}^{\mu-1} \bar{f}(\frac{\mathcal{K}_a}{2^{2l}}) + \bar{f}(\frac{k}{a2^{2\mu}}),$$

$$g_1(k,a,p,\mu) = \frac{p-1}{2} \sum_{l=0}^{\mu-1} \sum_{j=1}^{2} \bar{f}(\frac{\mathcal{K}_a}{2^j p^{2l+1}}) + \sum_{j=1}^{2} \bar{f}(\frac{\mathcal{K}_a}{2^j p^{2\mu}})$$

and

$$g_2(k,a,p,q,\mu) = \frac{p-1}{2} \sum_{l=0}^{\mu-1} \sum_{j=1}^{2} \left(\frac{q-1}{2} \bar{f}(\frac{\mathcal{K}_a}{2^j p^{2l+1} q}) + \bar{f}(\frac{\mathcal{K}_a}{2^j p^{2l+1} q^2}) \right) + \sum_{j=1}^{2} \bar{f}(\frac{\mathcal{K}_a}{2^j p^{2\mu}}).$$

Then

(7.2)
$$\nu_e(a) \le \begin{cases} g_0(k, a, \mu) \\ g_1(k, a, p, \mu) & \text{if } p \nmid d \\ g_2(k, a, p, q, \mu) & \text{if } p \nmid d, q \nmid d. \end{cases}$$

Proof. Let $\mathcal{I} \subseteq \{i : a_i = a\}$ and $\tau | (i - j)$ whenever $i, j \in \mathcal{I}$. Let τ' be the lcm of all τ_1 such that $\tau_1 | (i - j)$ whenever $i, j \in \mathcal{I}$. Then $\tau | \tau'$ and $a | \tau'$ since a | (i - j) whenever $i, j \in \mathcal{I}$. Let $i_0 = \min_{i \in \mathcal{I}} i, N = \frac{n + i_0 d}{a}$ and $D = \frac{\tau'}{a}d$. Then we see that ax_i^2 with $i \in \mathcal{I}$ come from the squares in the set $\{N, N + D, \cdots, N + (\lceil \frac{k - i_0}{\tau} \rceil - 1)D\}$. Dividing this set into consecutive intervals of length 4 and using Euler's result, we see that there are at most $\lceil \frac{k - i_0}{\tau'} \rceil - \lfloor \frac{\lceil \frac{k - i_0}{\tau'} \rceil}{4} \rfloor \leq \lceil \frac{k}{\tau'} \rceil - \lfloor \frac{\lceil \frac{k}{\tau'} \rceil}{4} \rceil = \bar{f}(\frac{k}{\tau'})$ of them which can be squares. Hence $|\mathcal{I}| \leq \bar{f}(\frac{k}{\tau'}) \leq \bar{f}(\frac{k}{\tau})$ since $\tau | \tau'$.

Let $\mathcal{I}^o = \{i : a_i = a, 2 \nmid x_i\}$ and $\mathcal{I}^e = \{i : a_i = a, 2 \mid x_i\}$. Then $\nu_o(a) = |\mathcal{I}^o|$ and $\nu_e(a) = |\mathcal{I}^e|$.

First we prove (7.1). For $i, j \in \mathcal{I}^o$, we observe from $x_i^2, x_j^2 \equiv 1 \pmod{8}$ and $(i-j)d = a(x_i^2 - x_j^2)$ that $a2^{3-\delta}|(i-j)$. Therefore $|\mathcal{I}^o| \leq \bar{f}(\mathcal{K}_a) = f_0(k, a, \delta)$.

For a prime p', let

$$\mathfrak{Q}_{p'} = \{m : 1 \le m < p', \left(\frac{m}{p'}\right) = 1\}$$

Let $p \nmid d$. Let

$$\mathcal{I}_l^o = \{i \in \mathcal{I}^o : p^l || x_i\} \text{ for } 0 \le l < \mu \text{ and } \mathcal{I}_\mu^o = \{i \in \mathcal{I}^o : p^\mu | x_i\}$$

Then $a2^{3-\delta}p^{2\mu}|(i-j)$ whenever $i, j \in \mathcal{I}^o_{\mu}$ giving $|\mathcal{I}^o_{\mu}| \leq \bar{f}(\frac{\mathcal{K}_a}{p^{2\mu}})$. For each $l, 0 \leq l < \mu$ and for each $m \in \mathfrak{Q}_p$, let

$$\mathcal{I}_{lm}^o = \{i \in \mathcal{I}_l^o: (\frac{x_i}{p^l})^2 \equiv m (\text{mod } p)\}$$

Then $a2^{3-\delta}p^{2l+1}|(i-j)$ whenever $i,j \in \mathcal{I}_{lm}^o$ giving $|\mathcal{I}_{lm}^o| \leq \bar{f}(\frac{\mathcal{K}_a}{p^{2l+1}})$. Therefore $|\mathcal{I}_l^o| = \sum_{m \in \mathfrak{Q}_p} |\mathcal{I}_{lm}^o| \leq \frac{p-1}{2}\bar{f}(\frac{\mathcal{K}_a}{p^{2l+1}})$. Hence $|\mathcal{I}_o^o| = |\mathcal{I}_{\mu}^o| + \sum_{l=0}^{\mu-1} |\mathcal{I}_l^o| \leq f_1(k, a, p, \mu, \delta)$.

Thus we may assume that $p \nmid d$ and $q \nmid d$. For each l with $0 \leq l < \mu$, $m \in \mathfrak{Q}_p$ and for each $u \in \mathfrak{Q}_q$, let

$$\mathcal{I}_{lmu}^{o} = \{i \in \mathcal{I}_{lm}^{o} : x_i^2 \equiv u \pmod{q}\} \text{ and } \mathcal{I}_{lm0}^{o} = \{i \in \mathcal{I}_{lm}^{o} : q | x_i\}\}.$$

Then $a2^{3-\delta}p^{2l+1}q|(i-j)$ for $i, j \in \mathcal{I}_{lmu}^o$ and $a2^{3-\delta}p^{2l+1}q^2|(i-j)$ for $i, j \in \mathcal{I}_{lm0}^o$ implying $|\mathcal{I}_{lmu}^o| \leq \bar{f}(\frac{\mathcal{K}_a}{p^{2l+1}q^2})$ for $u \in \mathfrak{Q}_q$ and $|\mathcal{I}_{lm0}^o| \leq \bar{f}(\frac{\mathcal{K}_a}{p^{2l+1}q^2})$. Now the assertion $\nu_o(a) \leq f_2(k, a, p, q, \mu, \delta)$ follows from

$$|\mathcal{I}_{lm}^o| \leq |\mathcal{I}_{lm0}^o| + \sum_{u \in \mathfrak{Q}_q} |\mathcal{I}_{lmu}^o|, |\mathcal{I}_l^o| = \sum_{m \in \mathfrak{Q}_p} |\mathcal{I}_{lm}^o|, \text{ and } |\mathcal{I}^o| = |\mathcal{I}_{\mu}^o| + \sum_{l=0}^{\mu-1} |\mathcal{I}_l^o|.$$

Now we turn to the proof of (7.2). Let

$$\mathcal{I}^{el} = \{ i \in \mathcal{I}^e : 2^l || x_i \} \text{ for } 1 \le l < \mu \text{ and } \mathcal{I}^{e\mu} = \{ i \in \mathcal{I}^e : 2^\mu | x_i \}.$$

Since $\frac{x_i}{2^l}$ is odd, we get $a2^{2l+3}|(i-j)$ whenever $i, j \in \mathcal{I}^{el}$ implying $|\mathcal{I}^{el}| \leq \bar{f}(\frac{\kappa_a}{2^{2l}})$ for $0 \leq l < \mu$. Further $a2^{2\mu}|(i-j)$ for $i, j \in \mathcal{I}^{e\mu}$ giving $|\mathcal{I}^{e\mu}| \leq \bar{f}(\frac{k}{a2^{2\mu}})$. Now the assertion $\nu_e(a) \leq g_0(k, a, \mu)$ from $|\mathcal{I}^e| = |\mathcal{I}^{e\mu}| + \sum_{l < \mu} |\mathcal{I}^{el}|$.

For the remaining proofs of (7.2), we consider $\mathcal{I}^{e1} = \{i \in \mathcal{I}^e : 2 | |x_i\}, \mathcal{I}^{e2} = \{i \in \mathcal{I}^e : 4 | x_i\}$ so that $|\mathcal{I}^e| = |\mathcal{I}^{e1}| + |\mathcal{I}^{e2}|$. Then 32a|(i-j) for $i, j \in \mathcal{I}^{e1}$ and 16a|(i-j) for $i, j \in \mathcal{I}^{e2}$. We now continue the proof as in that of (7.1) with $\mathcal{I}^{e1}, \mathcal{I}^{e2}$ in place of \mathcal{I}^o to get $\nu_e(a) \leq g_1(k, a, p, \mu)$ when $p \nmid d$ and $\nu_e(a) \leq g_2(k, a, p, q, \mu)$ when $p \nmid d, q \nmid d$.

Lemma 7.2. For $a \in R$, let

$$f_{3}(k,a,\delta) = \begin{cases} 1 & \text{if } k \leq a2^{3-\delta} \\ \bar{f}(\mathcal{K}_{a}) & \text{if } k > a2^{3-\delta}, 3|d, 5|d \\ \bar{f}(\frac{\mathcal{K}_{a}}{3}) + \bar{f}(\frac{\mathcal{K}_{a}}{9}) & \text{if } k > a2^{3-\delta}, 3|d, 5|d \\ \bar{f}(\mathcal{K}_{a}) & \text{if } a2^{3-\delta} < k \leq 2a2^{3-\delta}, 3|d, 5\nmid d \\ 2\bar{f}(\frac{\mathcal{K}_{a}}{5}) + \bar{f}(\frac{\mathcal{K}_{a}}{25}) & \text{if } k > 2a2^{3-\delta}, 3|d, 5\nmid d \\ \bar{f}(\frac{\mathcal{K}_{a}}{3}) + \bar{f}(\frac{\mathcal{K}_{a}}{9}) & \text{if } a2^{3-\delta} < k \leq 24a2^{3-\delta}, 3\nmid d, 5\nmid d \\ 2(\bar{f}(\frac{\mathcal{K}_{a}}{15}) + \bar{f}(\frac{\mathcal{K}_{a}}{135})) + \\ \bar{f}(\frac{\mathcal{K}_{a}}{15}) + \bar{f}(\frac{\mathcal{K}_{a}}{135}) + \bar{f}(\frac{\mathcal{K}_{a}}{1215})) + \\ \bar{f}(\frac{\mathcal{K}_{a}}{15}) + \bar{f}(\frac{\mathcal{K}_{a}}{135}) + \bar{f}(\frac{\mathcal{K}_{a}}{1215})) + \\ \bar{f}(\frac{\mathcal{K}_{a}}{75}) + \bar{f}(\frac{\mathcal{K}_{a}}{675}) + \bar{f}(\frac{\mathcal{K}_{a}}{6075}) + \bar{f}(\frac{\mathcal{K}_{a}}{729}) & \text{if } k > 324a2^{3-\delta}, 3\nmid d, 5\nmid d \end{cases}$$

and

$$g_{3}(k,a) = \begin{cases} 1 & \text{if } k \leq 4a \\ \sum_{j=1}^{2} \bar{f}(\frac{\mathcal{K}_{a}}{2^{j}}) & \text{if } 4a < k \leq 32a \\ \sum_{j=1}^{2} \bar{f}(\frac{\mathcal{K}_{a}}{2^{j}}) & k > 32a, 3|d, 5|d \\ \sum_{j=1}^{2} \left(\bar{f}(\frac{\mathcal{K}_{a}}{2\cdot 3^{j}}) + \bar{f}(\frac{\mathcal{K}_{a}}{4\cdot 3^{j}})\right) & \text{if } k > 32a, 3 \nmid d, 5|d \\ \sum_{j=1}^{2} \bar{f}(\frac{\mathcal{K}_{a}}{2^{j}}) & 32a < k \leq 64a, 3|d, 5 \nmid d \\ 2\sum_{j=1}^{2} \bar{f}(\frac{\mathcal{K}_{a}}{2^{j} \cdot 5}) + \sum_{j=1}^{2} \bar{f}(\frac{\mathcal{K}_{a}}{2^{j} \cdot 25}) & \text{if } k > 64a, 3|d, 5 \nmid d \\ \sum_{j=1}^{2} \sum_{l=1}^{2} \bar{f}(\frac{\mathcal{K}_{a}}{2^{j} \cdot 3^{l}}) & \text{if } 32a < k \leq 576a, 3 \nmid d, 5 \nmid d \\ 2\sum_{j=1}^{2} \sum_{l=1}^{2} \bar{f}(\frac{\mathcal{K}_{a}}{2^{j} \cdot 3^{2l-1} \cdot 5}) + \\ \sum_{j=1}^{2} \sum_{l=1}^{2} \bar{f}(\frac{\mathcal{K}_{a}}{2^{j} \cdot 3^{2l-1} \cdot 25}) + \sum_{j=1}^{2} \bar{f}(\frac{\mathcal{K}_{a}}{2^{j} \cdot 3^{2l}}) & \text{if } k > 576a, 3 \nmid d, 5 \nmid d. \end{cases}$$

Then for $a \in R$, we have

1.

$$\nu_o(a) \leq f_3(k, a, \delta), \ \nu_e(a) \leq g_3(k, a)$$

and

$$\nu(a) \le F_0(k, a, \delta) := \begin{cases} 1 & \text{if } k \le a \\ f_3(k, a, \delta) & \text{if } k > a \text{ and } d \text{ even} \\ f_3(k, a, 0) + g_3(k, a) & \text{if } k > a \text{ and } d \text{ odd.} \end{cases}$$

Proof. Since a|(i-j) whenever $a_i = a_j = a$, we get $\nu(a) \le 1$, $\nu_o(a) \le 1$, $\nu_e(a) \le 1$ for $k \le a$. In fact $\nu_o(a) \le 1$ for $k \leq a 2^{3-\delta}$ and $\nu_e(a) \leq 1$ for $k \leq 4a$. Thus we suppose that k > a. We have $\nu(a) = \nu_o(a) + \nu_e(a)$. It suffices to show $\nu_o(a) \leq f_3(k, a, \delta)$ for $k > a2^{3-\delta}$ and $\nu_e(a) \leq g_3(k, a)$ for k > 4a since $\nu_e(a) = 0$ for d even. From (7.1), we get the assertion $\nu_o(a) \leq f_3(k, a, \delta)$ for $k > a 2^{3-\delta}$ since

$$\nu_o(a) \leq \begin{cases} f_0(k, a, \delta) & \text{if } 15|d \\ f_1(k, a, 3, 1, \delta) & \text{if } 3 \nmid d, 5|d \\ \min(f_0(k, a, \delta), f_1(k, a, 5, 1, \delta)) & \text{if } 3|d, 5 \nmid d \\ \min(f_1(k, a, 3, 1, \delta), f_2(k, a, 3, 5, 2, \delta), \\ f_2(k, a, 3, 5, 3, \delta)) & \text{if } 3 \nmid d, 5 \nmid d. \end{cases}$$

The assertion $\nu_e(a) \leq g_3(k, a)$ for k > 4a follows from (7.2) since $\nu_e(a) \leq g_0(k, a, 2)$ for $4a < k \leq 32a$ and

$$\nu_e(a) \leq \begin{cases} g_0(k, a, 2) & \text{if } 15|d\\ g_1(k, a, 3, 1)) & \text{if } 3 \nmid d, 5|d\\ \min(g_0(k, a, 2), g_1(k, a, 5, 1)) & \text{if } 3|d, 5 \nmid d\\ \min(g_1(k, a, 3, 1), g_2(k, a, 3, 5, 2)) & \text{if } 3 \nmid d, 5 \nmid d \end{cases}$$

for k > 32a.

By applying that there are $\frac{p-1}{2}$ distinct quadratic residues and $\frac{p-1}{2}$ distinct quadratic nonresidues modulo a prime p, we have

Lemma 7.3. Assume (1.1) holds with $k \nmid d$. Then $\nu(a) \leq \frac{k-1}{2}$ for any $a \in R$.

Lemma 7.4. Suppose that (1.1) with $P(b) \leq k$ and $k = p_m$ has no solution. Then (1.1) with $P(b) \leq k$ and $p_m \leq k < p_{m+1}$ has no solution.

Proof. Let $p_m \le k < p_{m+1}$. Suppose (n, d, b, y) is a solution of

$$n(n+d)\cdots(n+(k-1)d) = by^2$$

with $P(b) \leq k$. Then $P(b) \leq p_m$ and by (1.5),

$$n(n+d)\cdots(n+(p_m-1)d) = b'y'^2$$

holds for some b' with $P(b') \leq p_m$ giving a solution of (1.1) at $k = p_m$. This is a contradiction.

Lemma 7.5. Let $k \ge 101$. Assume (1.1).

(a) Let d be odd and p < q be primes such that pq|d with $p \le 19, q \le 47$. Then $k \ge 1733$.

(b) Let d be odd and p < q be primes such that pq|d with $23 \le p < q \le 43, (p,q) \ne (31,41)$. Then $k \ge 1087$.

(c) Let d be even such that p|d with $3 \le p \le 47$. Then $k \ge 1801$.

Proof. We shall use the notation and results of Section 6 without reference. By Lemma 7.4, it suffices to prove Lemma 7.5 when k is a prime. Let P_0 be the largest prime $\leq k$ such that $P_0 \nmid d$. Then (1.1) holds at $k = P_0$. Therefore $P_0 \geq 101$ by Theorem \mathcal{A} with k = 97. Thus there is no loss of generality in assuming that $k \nmid d$ for the proof of Lemma 7.5.

(a) Let d be odd and p,q be as in (a). Assume k < 1733. It suffices to consider 4 cases, viz (i) $5 ; (ii) <math>p = 3, q > 5, 5 \nmid d$; (iii) $p = 5, q > 5, 3 \nmid d$ and (iv) p = 3, q = 5. We take $r \ge 7$. We see that \mathcal{B}_r is contained in one of the four sets $\mathcal{S}_{\mu} = \mathcal{S}_{\mu}(1, r)$ with $1 \le \mu \le 4$. Let $\mathcal{S}'_{\mu} = \{s \in \mathcal{S}_{\mu} : s < 2000\}$ with $1 \le \mu \le 4$. We have $\nu(s) \le F_0(k, s, 0)$ by Lemma 7.2. Further $\nu(s) \le 1$ for $s \ge k$ and hence for $s \in \mathcal{S}_{\mu} \setminus \mathcal{S}'_{\mu}$. Observe that $1 \in \mathcal{S}'_1 \subseteq \mathcal{S}_1$.

Assume that $1 \notin R$ in the case (*iv*). For the case (*i*), we take r = 7 for $101 \leq k < 1087$ and r = 8 for $1087 \leq k < 1733$. For all other cases, we take r = 7 for $101 \leq k < 941$, r = 8 for $941 \leq k < 1297$ and r = 9 for $1297 \leq k < 1733$. Then $\xi_r \leq \max \sum_{s \in S_{\mu}} \nu(s) \leq \max \left(g_{p,q} - |\mathcal{S}'_{\mu}| + \sum_{s \in \mathcal{S}'_{\mu}} F(k,s,0) \right) \leq g_{p,q} + \max \sum_{s \in \mathcal{S}'_{\mu}} (F_0(k,s,0) - 1) =: \tilde{\xi}_r$ where the maximum is taken over $1 \leq \mu \leq 4$ and we remove 1 from $\mathcal{S}'_1 \subseteq \mathcal{S}_1$ when the case (*iv*) holds. We now check that

(7.3)
$$k - F'(k, r) - \tilde{\xi_r} > \begin{cases} 0 & \text{if } p < q \le p_r \\ -\lceil \frac{k}{q} \rceil & \text{if } p \le \mathfrak{p}_r < q \\ -\lceil \frac{k}{p} \rceil - \lceil \frac{k}{q} \rceil & \text{if } \mathfrak{p} < p < q \end{cases}$$

This contradicts (6.1) by using the estimates for $g_{p,q}$ and $\tilde{\xi}_r \geq \xi_r$.

Thus it remains to consider (*iv*) with $1 \in R$. Then $\left(\frac{a_i}{3}\right) = \left(\frac{a_i}{5}\right) = 1$ for all $a_i \in R$. Suppose that $p' \nmid d$ for some prime $p' \in \mathcal{P} = \{7, 11, 13\}$. We take r = 9. We have $\mathcal{B}_r \subseteq \mathcal{S}_1$. Further $|\mathcal{S}_1| = 32$ and $\mathcal{S}'_1 = \{1, 19, 34, 46, 91, 154, 286,$

391, 646, 874, 1309, 1729, 1771}. We get from (7.1) that $\nu_o(a) \leq \min(f_0(k, a, 0))$,

 $f_1(k, a, p', 1, 0)) \leq \min(f_0(k, a, 0), \max_{p' \in \mathcal{P}} \{f_1(k, a, p', 1, 0)\}) := G_1(k, a).$ Similarly we get from (7.2) that $\nu_e(a) \leq \min(g_0(k, a, 2), \max_{p' \in \mathcal{P}} \{g_1(k, a, p', 1, 0)\} := G_2(k, a).$ Let G(k, a) = 1 if $k \leq a$ and $G(k, a) = G_1(k, a) + G_2(k, a)$ if k > a. Then $\nu(a) \leq G(k, a)$ implying $\xi_r \leq 32 + \sum_{s \in S'_1} (G(k, s) - 1) =: \tilde{\xi_r}$ as above. We check that

(7.4)
$$k - F'(k,r) - \xi_r > 0.$$

This contradicts (6.1). Thus p'|d for each prime $p \in \mathcal{P}$. Now we take r = 14. Since $1 \in R$, we have $\left(\frac{a_i}{p}\right) = 1$ for all $a_i \in R$ and for each p with $3 \leq p \leq 13$. Therefore $\mathcal{B}_r \subseteq \{s \in \mathcal{S}(r) : \left(\frac{s}{p}\right) = 1, 3 \leq p \leq 13\} = \{1, 1054\} \cup \mathcal{S}''$ where $|\mathcal{S}''| = 14$ and s > 2000 for each $s \in \mathcal{S}''$. Hence $\xi_r \leq \nu(1) + \nu(1054) + 14 \leq \nu(1) + 16$

since $\nu(1054) \leq 2$ by Lemma 7.2. From (7.1) and (7.2) with $\mu = 3$, we get $\nu(1) \leq f_0(k, 1, 0) + g_0(k, 1, 3)$. Therefore $\xi_r \leq f_0(k, 1, 0) + g_0(k, 1, 3) + 16 =: \tilde{\xi}_r$ and we compute that (7.4) holds contradicting (6.1). (b) Let d be odd and p, q be as in (b). Assume k < 1013. By (a), we may assume that $3 \nmid d, 5 \nmid d$. We continue the proof as above in the case (i) of (a). We take r = 7 and check that $k - F'(k, r) - \tilde{\xi}_r + \lceil \frac{k}{p} \rceil + \lceil \frac{k}{q} \rceil > 0$. This contradicts (6.1).

(c) Let d be even and p be as in (c). Assume k < 1801. For any set W of squarefree integers, let $W' = W'(\delta) = \{s \in W : s < \frac{2000}{2^{3-\delta}}\}$. We consider four cases, viz (i) $p > 5, 3 \nmid d, 5 \nmid d$; (ii) $p = 5, 3 \nmid d$; (iii) $p = 3, 5 \nmid d$ and (iv) 15|d. We take $r \ge 7$. Assume that (i), (ii) or (iii) holds. Then from (6.7) with p = q, we get 2^{δ} sets $U_{\mu}, 1 \le \mu \le 2^{\delta}$ given by $S_1(n', r), S_4(n', r)$. Without loss of generality, we put $S_1(1, r) = U_1$. Further $|U_{\mu}| \le g_p$ for $1 \le \mu \le 2^{\delta}$. Assume (iv). We take p = 3, q = 5 in (6.7). We get $2^{\delta+1}$ sets $V_{\mu}, 1 \le \mu \le 2^{\delta+1}$ given by $S_j(n', r), 1 \le j \le 4$ and we put $S_1(1, r) = V_1$. Further $|V_{\mu}| \le 2^{r-\delta-4}$ for $1 \le \mu \le 2^{\delta+1}$. We define g'by $g' = 2^{r-\delta-4}$ if (iv) holds and $g' = g_p$ otherwise. Further let W_{μ} with $1 \le \mu \le 2^{\delta+1}$ be given by $W_{\mu} = V_{\mu}$ if (iv) holds and $W_{\mu} = U_{\mu}$ for $1 \le \mu \le 2^{\delta}, W_{\mu} = \emptyset$ for $\mu > 2^{\delta}$ if (i), (ii) or (iii) holds. We see from Lemma 7.2 that $\nu(s) \le F_0(k, s, \delta)$ and $\nu(s) \le 1$ for $s \in W_{\mu} \setminus W'_{\mu}$. Observe that $1 \in W'_1 \subseteq W_1$.

Assume that $1 \notin R$ in the cases (ii), (iii) or (iv). We take r = 8 for $101 \leq k \leq 941, r = 9$ for $941 < k \leq 1373$ and r = 10 for 1373 < k < 1801 in the case (i) with 8|d. For all other cases, we take r = 7 for $101 \leq k \leq 941, r = 8$ for $941 < k \leq 1373$ and r = 9 for 1373 < k < 1801. Then $\xi_r \leq \max \sum_{s \in W_{\mu}} F(k, s, \delta) \leq g' + \max \sum_{s \in W'_{\mu}} (F_0(k, s, \delta) - 1) =: \tilde{\xi}_r$ where maximum is taken over $1 \leq \mu \leq 2^{\delta+1}$ and we remove 1 from $W'_1 \subseteq W_1$ when (ii), (iii) or (iv) holds. We check that

$$k - F'(k, r) - \tilde{\xi_r} > \begin{cases} -\lceil \frac{k}{p} \rceil & \text{if } (i) \text{ holds with } p > p_r \\ 0 & \text{otherwise.} \end{cases}$$

This contradicts (6.1).

Thus it remains to consider the cases (ii), (iii) or (iv) and $1 \in R$. Then $a_i \equiv 1 \pmod{2^{\delta}}$ and $\left(\frac{a_i}{p}\right) = 1$ for all p|d whenever $a_i \in R$. Let $P_0 = \{5\}, \{3\}, \{3, 5\}$ when (ii), (iii), (iv) holds, respectively. Then $\left(\frac{a_i}{p}\right) = 1$ for $p \in P_0$.

Assume that $7 \nmid d$ when 8|d, 15|d. Let $\mathcal{P} = \{7\}$ if $8|d, 3|d, 5 \nmid d$; $\mathcal{P} = \{7, 11, 13, 17, 19\}$ if 4||d, 15|d; $\mathcal{P} = \{11, 13, 17, 19\}$ if 8|d, 15|d and $\mathcal{P} = \{7, 11, 13\}$ in all other cases. Suppose that $p' \nmid d$ for some prime $p' \in \mathcal{P}$. Let r be given by the following table:

(ii), (iii), 2 d, 4 d	(ii), (iii), 8 d	(iv), 2 d	(iv), 4 d, 8 d		
	$\int 8 \text{for } k \le 941$	$\int 10 \text{for } k \le 941$	0	11		
	9 for $k > 941$	11 for k > 941	9	11		

We get $\mathcal{B}_r \subseteq W_1$. For $s \in W'_1$, we get from (7.1) that $\nu(s) = \nu_o(s) \leq G(k, s, \delta) := \min(f_0(k, s, \delta), G_1, G_2)$ where

$$(G_1, G_2) = \begin{cases} (f_1(k, s, 3, 2, \delta), \max_{p' \in \mathcal{P}} f_2(k, s, 3, p', 2, \delta)) & \text{when } (ii) \text{ holds, } 8 \nmid d \\ (f_1(k, s, 5, 1, \delta), \max_{p' \in \mathcal{P}} f_2(k, s, 5, p', 1, \delta)) & \text{when } (iii) \text{ holds, } 8 \nmid d \\ (f_1(k, s, 3, 1, 3), \max_{p' \in \mathcal{P}} f_2(k, s, 3, p', 2, 3)) & \text{when } (ii) \text{ holds, } 8 \mid d \\ (f_1(k, s, 5, 1, 3), \max_{p' \in \mathcal{P}} f_2(k, s, 5, p', 2, 3)) & \text{when } (iii) \text{ holds, } 8 \mid d \end{cases}$$

and when (iv) holds, $G_1 = G_2 = \max_{p' \in \mathcal{P}} f_1(k, s, p', 1, \delta)$ if $2||d \text{ or } 4||d, G_1 = G_2 = \max_{p' \in \mathcal{P}} f_2(k, s, 7, p', 1, 3)$ if 8|d. Therefore $\xi_r \leq g' + \sum_{s \in W'_1} (G(k, s, \delta) - 1) =: \tilde{\xi_r}$. Now we check (7.4) contradicting (6.1). Thus p'|d for each prime $p' \in \mathcal{P}$. Let r and g_1 be given by the following table:

Cases:	(ii), (iii), 2 d	(ii), (iii), 4 d	(ii), 8 d	(iv), 2 d	(iv), 8 d
(r,g_1)	(12, 8)	(12, 4)	(15, 16)	(13, 4)	(17, 4)

Suppose that one of the above case hold. Then $\mathcal{B}_r \subseteq \{s \in \mathcal{S}(r) : s \equiv 1 \pmod{2^{\delta}}, \left(\frac{s}{p'}\right) = 1, p' \in \mathcal{P} \cup \mathcal{P}_0\} = \{1\} \cup W'' \text{ with } |W''| = g_1 - 1 \text{ and } s \geq \frac{2000}{2^{3-\delta}} \text{ for } s \in W''. \text{ Therefore } \xi_r \leq \nu(1) + g_1 - 1. \text{ From (7.1), we get } \nu(1) \leq G(k) \text{ where } G(k) = f_1(k, 1, 3, 2, \delta) \text{ if } (ii) \text{ holds; } f_1(k, 1, 5, 2, \delta) \text{ if } (iii) \text{ holds, } 8 \nmid d; G(k) = f_0(k, 1, 1) \text{ if } (iv) \text{ holds with } 2||d \text{ and } G(k) = f_1(k, 1, 7, 2, 3) \text{ if } (iv) \text{ holds with } 8|d. \text{ Therefore } \xi_r \leq G(k) + g_1 - 1 =: \tilde{\xi}_r \text{ and } we \text{ compute that (7.4) holds. This contradicts (6.1). Thus either (A) : (iv) holds, 4||d or (B) : (iii) holds, 8|d. Assume that <math>p' \nmid d \text{ with } p' \in \mathcal{P}_1$ where $\mathcal{P}_1 = \{23, 29, 31, 37\}, \{11, 13, 17, 19\}$ when (A), (B) holds, respectively. In the remaining part of this paragraph, by 'respectively'', we mean "when (A), (B) holds, respectively'. We take r = 18, 11, respectively. Then $\mathcal{B}_r \subseteq \{s \in \mathcal{S}(r) : s \equiv 1 \pmod{2^{\delta}}, \left(\frac{s}{p'}\right) = 1, p' \in \mathcal{P} \cup \mathcal{P}_0\} \subseteq \{1, 1705\} \cup W''$ with $|W''| = g_1$ and $s \geq \frac{2000}{2^{3-\delta}}$ for $s \in W''$ where $g_1 = 3, 14$, respectively. Hence $\xi_r \leq \nu(1) + \nu(1705) + g_1 \leq G(k) + 2 + g_1 =: \tilde{\xi}_r$ where $\nu(1) \leq G(k) = \max_{p' \in \mathcal{P}_1} f_1(k, 1, p', 1, 2), \max_{p' \in \mathcal{P}_1} f_2(k, 1, 5, p', 1, 3),$ respectively by (7.1). We check (7.4), contradicting (6.1). Thus p'|d with $p' \leq 37$ if (A) holds and p'|d with $p' \leq 19, p' \neq 5$ if (B) holds. Now we take r = 22, 16, respectively to get $\mathcal{B}_r \subseteq \{1\} \cup W''$ with $|W''| = g_2$ and $s \geq \frac{2000}{2^{3-\delta}}$ for $s \in W''$ where $g_2 = 0, 3$, respectively. From (7.1), we get $\nu(1) \leq G(k)$ with $G(k) = f_0(k, 1, 2), f_1(k, 1, 5, 2, 3),$ respectively. Hence $\xi_r \leq G(k) + g_2 =: \tilde{\xi}_r$ and we compute that (7.4) holds. This contradicts (6.1).

Thus it remains to consider the case (iv) with 8|d and 7|d. Then

(7.5)
$$a_i \equiv 1 \pmod{8} \text{ and } \left(\frac{a_i}{p}\right) = 1 \text{ for } p = 3, 5, 7$$

whenever $a_i \in R$. Let k < 263. By taking r = 12, we find that $\mathcal{B}_r \subseteq \{s \in \mathcal{S}(r) : s \equiv 1 \pmod{8}, \left(\frac{s}{p_j}\right) = 1, 2 \leq j \leq 4\} = \{1, 6409, 9361, 12121, 214489, j \leq 1, 214489, j < 1, 214489, j$

268801, 4756609, 59994649}. Then by Lemma 7.3, $\nu(1) \leq \frac{k-1}{2}$ since $k \nmid d$ by our assumption. Further $\nu(6409) + \nu(268801) + \nu(4756609) + \nu(59994649) \leq \left\lceil \frac{k}{13 \cdot 29} \right\rceil \leq 1$, $\nu(9361) + \nu(214489) \leq \left\lceil \frac{k}{11 \cdot 37} \right\rceil \leq 1$ and $\nu(12121) \leq 1$. Therefore $\xi_r \leq \frac{k-1}{2} + 3 =: \tilde{\xi}_r$. We check (7.4) contradicting (6.1). Thus $k \geq 263$. By (7.5), we see that a_i is not a prime ≤ 89 . Hence for $a_i \in R$ with $P(a_i) \leq 89$, we have $\omega(a_i) \geq 2$. Further by (7.5), $a_i = p'q'$ with $11 \leq p' \leq 37$ and $41 \leq q' \leq 89$ is not possible. For integers P_1, P_2 with $P_1 < P_2$, let

$$\mathcal{I}(P_1, P_2) = \{ i : p'q' | a_i, P_1 \le p' < q' \le P_2 \}.$$

Then $|\mathcal{I}(P_1, P_2)| \leq \sum_{P_1 \leq p' < q' \leq P_2} \left\lceil \frac{k}{p'q'} \right\rceil$. Suppose that $p_j \nmid d$ for some prime $j \in \{5, 6\}$. Then $\nu(1) \leq G_0(k) := \max_{j=5,6} f_1(k, 1, p_j, 2, 3)$ by (7.1). We take r = 23. For $P_0 \in \{11, 13\}$, let $A(P_0) = \{a_i : a_i = P_0p'$ with $P_0 < p' \leq 37$ or $a_i = P_0p'q'$ with $P_0 < p' \leq 37, 41 \leq q' \leq 83\}$. Then from (7.5), we get $A(11) \subseteq \{6721, 8569, 25201\}$ and $A(13) \subseteq \{17329, 17641, 27001\}$. Therefore we get from

$$I_r \subseteq \{i : a_i = 1\} \cup \mathcal{I}(17, 37) \cup \mathcal{I}(41, 83) \cup$$
$$\{i : a_i \in A(11) \cup A(13)\} \cup \{i : 11 \cdot 13p' | a_i, 17 \le p' \le 37\}$$

that

$$\xi_r \le G_0(k) + \sum_{17 \le p' < q' \le 37} \left\lceil \frac{k}{p'q'} \right\rceil + \left\lceil \frac{k}{41 \cdot 43} \right\rceil + 54 + 3 + 3 + 6 =: \tilde{\xi_r}$$

since p'q' > k for $41 \le p' < q' \le 83$ except when p' = 41, q' = 43. Now we compute that (7.4) holds contradicting (6.1). Thus $p_j | d$ for $j \leq 6$. Assume that $p_j \nmid d$ for some j with $7 \leq j \leq 9$. Then $\nu(1) \leq G_1(k) :=$ $\max_{1 \le j \le 9} f_1(k, 1, p_j, 1, 3)$ by (7.1). We take r = 24. Then $I_r \subseteq \{i : a_i = 1\} \cup \mathcal{I}(17, 37) \cup \mathcal{I}(41, 89)$. Therefore $\xi_r \leq G_1(k) + \sum_{17 \leq p' \leq q' \leq 37} \left\lceil \frac{k}{p'q'} \right\rceil + \left\lceil \frac{k}{41 \cdot 43} \right\rceil + 65 =: \tilde{\xi_r} \text{ and we check (7.4). This contradicts (6.1). Thus } p_j | d \text{ for } j \leq 1 \leq j \leq n-1$ $j \leq 9$. Suppose that $p_j \nmid d$ for some j with $10 \leq j \leq 14$. Then $\nu(1) \leq G_2(k) := \max_{10 \leq j \leq 14} f_1(k, 1, p_j, 1, 3)$ by (7.1). We take r = 21. Then $\mathcal{B}_r \subseteq \{s \in \mathcal{S}(r) : s \equiv 1 \pmod{8} \text{ and } \left(\frac{s}{p_i}\right) = 1, i \leq 9\} = \{1, 241754041\}$ giving $\xi_r \leq G_2(k) + 1 =: \tilde{\xi_r}$. Now we check (7.4) contradicting (6.1). Hence $p_j | d$ for $j \leq 14$. Suppose that $p_j \nmid d$ for some j with $15 \leq j \leq 22$. Then $\nu(1) \leq G_3(k) := \max_{15 \leq j \leq 22} f_1(k, 1, p_j, 1, 3)$ by (7.1). We take r = 26. Then $\mathcal{B}_r \subseteq \{1\}$ as above giving $\xi_r \leq G_2(k) =: \tilde{\xi}_r$. We compute that (7.4) holds contradicting (6.1). Thus $p_j|d$ for $j \leq 22$. Finally we take r = 32. Then $\mathcal{B}_r \subseteq \{1\}$ as above giving $\xi_r \leq \nu(1) \leq \frac{k-1}{2} =: \tilde{\xi_r}$ by Lemma 7.3. We check (7.4). This contradicts (6.1).

Lemma 7.6. We have

where g and $k_0(g)$ are given by

(7.6)
$$k - |R| \ge g \text{ for } k \ge k_0(g)$$

(i)															
	g	9	14	17	29	33	61	65	1	129	256	2^{s}	with $s \ge$	$> 9, s \in$	$\in \mathbb{Z}$
	$k_0(g)$	101	299	308	489	556	996	105	$7 \mid 2$	100	4252		$s2^{s}$	+1	
(ii) d even.	:														
			g	18	29	33	61	64	12	8 2	56	512	1024		
		1	$k_0(g)$	101	223	232	409	430	90	0 18	895 4	4010	8500		
(iii) 4 d:															
			g	26	32	33	61	64	12	8 2	56	512	1024		
		1	$k_0(g)$	101	126	129	286	303	64	0 1;	345 2	2860	6100		
(iv) 8 d:															
				g	33	61	64	128	3 25	66	512	1024]		
				$k_0(g)$	101	209	220) 466	5 99	0 2	110	4480	1		
$(v) \ 3 d:$							-				I		_		
			g	2	26	32	33	64	125	128	256	51	12		
			$k_0($	$g) \mid 1$	01 1	26	129	351	720	735	1550) 33	00		
(vi) $p d$ with $p \in \{5,7\}$:															
						g	33	64	128	25	6				
					k_0	(g)	240	460	930	194	0				
E	1 1.	(100)	100)) :f.		11	< 10		(OF C) 0		۲. ا . ۲.		47	

Further we have $k_0(128) = 1200$ if p|d with $p \le 19$ and $k_0(256) = 2870$ if p|d with $p \le 47$. (vii) Further $k_0(256) = 1115$ if pq|d with $p \in \{5, 7, 11\}$; $k_0(256) = 1040$ if 2p|d with $p \in \{3, 5\}$; $k_0(512) = 1040$ 1400 if 105|d; $k_0(512) = 1440$ if 30|d and $k_0(512) = 1480$ if 8p|d with $p \in \{3, 5\}$.

Proof. (i) Let g be given as in (i). Assume that $k \ge k_0(g)$ and k - |R| < g. We shall arrive at a contradiction.

Let $g \neq 9$. From (5.1), we have $\prod_{a_i \in R} a_i \ge (1.6)^{|R|} (|R|)!$ whenever $|R| \ge 286$. We observe that (5.3) and (5.4) hold with $i_0 = 0, h_0 = 286, z_1 = 1.6, g_1 = g - 1, \mathfrak{m} = \min(89, \sqrt{k_0(g)}), \ell = 0, \mathfrak{n}_0 = 1, \mathfrak{n}_1 = 1 \text{ and } \mathfrak{n}_2 = 2^{\frac{1}{6}}$ for $k \ge g_1 + 286$ and thus for $k \ge k_0(g)$.

Let $g = 2^s$ with $s \ge 9$. Then $\frac{g_1}{k} \le \frac{2^s}{s^{2^{s+1}}} \le \frac{1}{18}$ and we get from (5.4)

(7.7)
$$2^{s} - 1 > \frac{c_{1}k - c_{2}\log k - c_{3}}{\log c_{4}k} = \frac{c_{1}k - c_{3} + c_{2}\log c_{4}}{\log c_{4}k} - c_{2}k$$

where

$$c_{1} = \log\left(\frac{1.6}{2.71851} \prod_{p \le \mathfrak{m}} p^{\frac{2}{p^{2}-1}}\right) + \log(1-\frac{1}{18}), \ c_{2} = 1.5\pi(\mathfrak{m}) - 1$$
$$c_{3} = \log\left(2^{\frac{1}{6}} \prod_{p \le \mathfrak{m}} p^{0.5+\frac{2}{p^{2}-1}}\right) - \frac{1}{2}\log(1-\frac{1}{18}), \ c_{4} = \frac{1.6}{e}$$

Here we check that $c_1k - c_2 \log k - c_3 > 0$ at $k = 9 \cdot 2^{10}$ and hence (7.7) is valid. Further we observe that the right hand side of (7.7) is an increasing function of k. Putting $k = k_0(g) = s2^{s+1}$, we get from (7.7) that

$$2^{s} \left\{ \frac{2c_{1} - \frac{c_{3} - c_{2} \log c_{4}}{s2^{s}}}{\log 2 + \frac{\log(2c_{4}s)}{s}} - \frac{c_{2} - 1}{2^{s}} - 1 \right\} < 0.$$

The expression inside the brackets is an increasing function of s and it is positive at s = 9. Hence (7.7) does not hold for all $k \ge k_0(g)$. Therefore $k - |R| \ge g = 2^s$ whenever $s \ge 9$ and $k \ge s2^{s+1}$.

Let $g \in \{14, 17, 29, 33, 61, 65, 129, 256\}$ and $k_1(g) = 299, 316, 500, 569, 1014,$

1076, 2126, 4295 according as g = 14, 17, 29, 33, 61, 65, 129, 256, respectively. We see that the right hand side of (5.4) is an increasing function of k and we check that it exceeds g_1 at $k = k_1(g)$. Therefore (5.4) is not possible for $k \ge k_1(g)$. Thus $g \ne 14$ and $k < k_1(g)$. For every k with $k_0(g) \le k < k_1(g)$, we compute the right hand side of (5.3) and we find it greater than g_1 . This is not possible.

Thus we may assume that g = 9 and k < 299. By taking r = 4 for $101 \le k \le 181$ and r = 5 for 181 < k < 299 in (6.3) and (6.5), we get $k - |R| \ge k - F'(k, r) - 2^r \ge 9$ for $k \ge 101$ except when $103 \le k \le 120, k \ne 106$ where $k - |R| \ge k - F(k, r) - 2^r \ge k - F'(k, r) - 2^r = 8$. Let $103 \le k \le 120, k \ne 106$. We may assume that k - |R| = 8 and hence F(k, r) = F'(k, r). Thus for each prime $11 \le p \le k$, there are exactly σ_p number of *i*'s for which $p|a_i$ and for any *i*, $pq \nmid a_i$ whenever $11 \le q \le k, q \ne p$. Now we get a contradiction by considering the *i*'s for which a_i 's are divisible by primes 17, 101; 103, 17; 13, 103; 53, 13; 107, 53; 11, 109; 37, 11; 19, 113; 23, 19; 29, 23; 13, 29; 59, 13; 17,

59 when k = 103, 104, 105, 107, 108, 111, 112, 115, 116, 117, 118, 119, 120, respectively; 107, 53, 13, 103, 17 when k = 109, 109, 107, 53 when k = 110; 37, 11, 109, 107 when k = 113 and 113, 37, 11 when k = 114. For instance let k = 113. Then $37|a_i$ for $i \in \{0, 37, 74, 111\}$ or $i \in \{1, 38, 75, 112\}$. We consider the first case and the other case follows similarly. Then $11|a_i$ for $i \in \{2 + 11j : 0 \le j \le 10\}$ and $109|a_i$ for $i \in \{1, 110\}$. Now $\sigma_{107} = 2$ implies that $107|a_ia_{i+107}$ for $i \in \{j : 0 \le j \le 5\}$, a contradiction. The other cases are excluded similarly.

(*ii*) Let *d* be even and *g* be given as in (*ii*). Assume that $k \ge k_0(g)$ and k - |R| < g. From (5.2), we have $\prod_{a_i \in R} a_i \ge (2.4)^{|R|} (|R|)!$ whenever $|R| \ge 200$. By taking $i_0 = 0, h_0 = 200, \mathfrak{m} = \sqrt{k_0(g)}, z_1 = 2.4, \ell = 1, \mathfrak{n}_0 = 2^{\frac{1}{3}}, \mathfrak{n}_1 = 2^{\frac{1}{6}}$ and $\mathfrak{n}_2 = 1$, we observe that (5.3) and (5.4) are valid for $k \ge g - 1 + 200$. Let $g \in \{33, 61, 64, 128, 256, 512, 1024\}$. Thus (5.3) and (5.4) are valid for $k \ge k_0(g)$. Let $k_1(g) = 200$.

232, 414, 435, 904, 1907, 4024, 8521 according as g = 33, 61, 64, 128, 256, 512, 1024, respectively. We see that (5.4) is not possible for $k \ge k_1(g)$. Therefore $g \ne 33$ and $k < k_1(g)$. For every k with $k_0(g) \le k < k_1(g)$, we check that (5.3) is contradicted. Therefore $g \in \{18, 29\}$ and we may assume that k < 232. We take r = 5 for $101 \le k < 200$ and r = 6 for $200 \le k < 232$. From (6.10) and (6.6), we get $k - |R| \ge k - F'(k, r) - 2^{r-1}$. We compute that $k - F'(k, r) - 2^{r-1} \ge 18, 29$ for $k \ge 101, 217$, respectively. Hence the assertion (*ii*) follows. (*iii*), (*iv*) Let g be given as in (*iii*), (*iv*). Suppose that $k \ge k_0(g)$ and k - |R| < g. We have $\prod_{a_i \in R} a_i \ge (2^{\delta})^{|R|-1}(|R|-1)!$ since $a_i \equiv n \pmod{2^{\delta}}$. We take $z_1 = 4$ if 4||d and $z_1 = 8$ if 8|d. We observe that (5.3) and (5.4) are valid for $k \ge k_0(g)$ with $i_0 = 1, h_0 = 1, \mathfrak{m} = \sqrt{k_0(g)}, z_1 = 2^{\cdot}\ell = 1, \mathfrak{n}_0 = 2^{\frac{1}{3}}, \mathfrak{n}_1 = 2^{\frac{1}{6}}$ and $\mathfrak{n}_2 = 1$.

Let 4||d| and $g \in \{61, 64, 128, 256, 512, 1024\}$. Let $k_1(g) = 288, 306, 640, 1350,$ 2870, 6100 according as g = 61, 64, 128, 256, 512, 1024, respectively. We see that (5.4) is not possible for

2870,6100 according as g = 61, 64, 128, 256, 512, 1024, respectively. We see that (5.4) is not possible for $k \ge k_1(g)$. Therefore $g \ne 128, 1024$ and $k < k_1(g)$. For every k with $k_0(g) \le k < k_1(g)$, we check that (5.3) is contradicted.

Let 8|d and $g \in \{61, 64, 128, 256, 512, 1024\}$. Let $k_1(g) = 210, 221, 468, 994$,

2111, 4485 according as g = 61, 64, 128, 256, 512, 1024, respectively. We see that (5.4) is not possible for $k \ge k_1(g)$. Therefore $k < k_1(g)$. For every k with $k_0(g) \le k < k_1(g)$, we check that (5.3) is contradicted.

Thus we may assume that $g \in \{26, 32, 33\}, k < 286$ if 4||d and g = 33, k < 209 if 8|d. By taking r = 6 for $101 \le k < 286$, we get from (6.10) and (6.6) that $k - |R| \ge k - F'(k, r) - 2^{r-\delta} \ge g$ for $k \ge k_0(g)$. Hence the assertions (*iii*) and (*iv*) follows.

(v) Let 3|d. Suppose that $k \ge k_0(g)$ and k - |R| < g. We have $\prod_{a_i \in R} a_i \ge 3^{|R|-1}(|R|-1)!$ since $a_i \equiv n \pmod{3}$. 3). We observe that (5.3) and (5.4) are valid with $i_0 = 1, h_0 = 1, \mathfrak{m} = \sqrt{k_0(g)}, z_1 = 3, \ell = 1, \mathfrak{n}_0 = 3^{\frac{1}{4}}, \mathfrak{n}_1 = 3^{\frac{1}{4}}$ and $\mathfrak{n}_2 = 2^{\frac{1}{6}}$. Let $g \in \{64, 125, 128, 256, 512\}$ and $k_1(g) = 354, 720, 737, 1556, 3300$ according as g = 64, 125, 128, 256, 512, respectively. We see that (5.4) is not possible for $k \ge k_1(g)$. Therefore $g \ne 125, 512$ and $k < k_1(g)$. For every k with $k_0(g) \le k < k_1(g)$, we check that (5.3) is contradicted.

Thus it remains to consider $g \in \{26, 32, 33\}$ and k < 351. We take r = 6 for $101 \le k < 351$. We get from (6.10) and (6.13) with p = 3 that $k - |R| \ge k - F'(k, r) - 2^{r-2} \ge g$ for $k \ge k_0(g)$.

(vi) Suppose $g \in \{33, 64, 128, 256\}, k \geq k_0(g)$ and k - |R| < g. By (ii) and (v), we may assume that $2 \nmid d$ and $3 \nmid d$. We observe that $\prod_{a_i \in R} a_i \geq (\frac{2p}{p-1})^{|R| - \frac{p-1}{2}} (|R| - \frac{p-1}{2})!$ since the number of quadratic residues or quadratic non-residues mod p is $\frac{p-1}{2}$. Let p|d with $p \leq p'$. Then $(\frac{2p}{p-1})^{|R| - \frac{p-1}{2}} (|R| - \frac{p-1}{2})! \geq (\frac{2p'}{p'-1})^{|R| - \frac{p'-1}{2}} (|R| - \frac{p'-1}{2})$. We take p' = 7, 19 and 47 in the first, second and third case, respectively. Then (5.3) and (5.4) are valid with $z_1 = \frac{2p'}{p'-1}, i_0 = h_0 = \frac{p'-1}{2}, \mathfrak{m} = \sqrt{k_0(g)}, \ell = 1, \mathfrak{n}_0 = p'^{\frac{1}{p'+1}}, \mathfrak{n}_1 = 5^{\frac{1}{3}}$ and $\mathfrak{n}_2 = 2^{\frac{1}{6}}$. We find that (5.4) is not possible for $k \geq k_0(g) + 24$ and (5.3) is not possible for each k with $k_0(g) \leq k < k_0(g) + 24$. This is a contradiction.

(vii) Let $(z_1, i_0, \ell', \mathfrak{n}'_0, \mathfrak{n}'_1)$ be given by

	pq d	$2^{\delta}p d$	105 d	30 d
	$p,q \in \{5,7,11\}$	$p{\in}\{3{,}5\}{,}\delta{\in}\{1{,}3\}$		
(z_1, i_0)	$(\frac{77}{15}, 15)$	$(2^{\delta-1}5,2)$	$(\frac{35}{2}, 6)$	(15, 2)
ℓ'	2	2	3	3
\mathfrak{n}_0'	$z_2(7)z_2(11)$	$z_2(2)z_2(5)$	$z_2(3)z_2(5)z_2(7)$	$z_2(2)z_2(3)z_2(5)$
\mathfrak{n}_1'	$z_3(5)z_3(7)$	$z_3(2)z_3(3)$	$z_3(3)z_3(5)z_3(7)$	$z_3(2)z_3(3)z_3(5)$
\mathfrak{n}_2'	$2^{\frac{1}{6}}$	1	$2^{\frac{1}{6}}$	1

where $z_2(p) = p^{\frac{1}{p+1}}, z_3(p) = p^{\frac{p-1}{2(p+1)}}$. We observe that $\prod_{a_i \in R} a_i \geq z_1^{|R|-i_0}(|R|-i_0)!$ with (z_1, i_0) given above. Suppose $g \in \{256, 512\}, k \geq k_0(g)$ and k - |R| < g. We see that (5.3) and (5.4) are valid for $k \geq k_0(g)$ with $h_0 = i_0$, $\mathfrak{m} = \sqrt{k_0(g)}, \ell = \ell'$, $\mathfrak{n}_0 = \mathfrak{n}'_0, \mathfrak{n}_1 = \mathfrak{n}'_1$ and $\mathfrak{n}_2 = \mathfrak{n}'_2$. We find that (5.4) is not possible for $k \geq k_0(g) + 2$ and (5.3) is not possible for each k with $k_0(g) \leq k < k_0(g) + 2$. This is a contradiction. \Box

8. FURTHER LEMMAS

We observe that (3.24) is satisfied when $k \ge 11$ by Lemma 4.2. We shall use it without reference in this section.

Lemma 8.1. Let d be odd and p,q be primes dividing d. Let $\omega(d) \leq 4$ and $k \leq 821$. Assume that $g_{p,q}(r) \leq 2^{r-\omega(d)}$ for r = 5, 6. Then (1.1) with $k \geq 101$ has no solution.

Proof. Suppose equation (1.1) has a solution. Let r = 5 if $101 \le k < 257$ and r = 6 if $257 \le k \le 821$. From (6.9), $\nu(a_i) \le 2^{\omega(d)}$ and (6.1), we get $k - F'(k, r) \le \xi_r \le 2^{\omega(d)}g_{p,q} \le 2^r$. We find $k - F'(k, r) > 2^r$ by computation. This is a contradiction.

Lemma 8.2. Equation (1.1) with $k \ge 101$ and $\omega(d) \le 4$ is not possible.

Proof. We may assume that k is prime by Lemma 7.4. Let d be even. For $k - |R| \ge \mathfrak{h}(5) = 4(2^{\omega(d)-\theta}-1)+1$, we get from Corollary 3.10 with $z_0 = 5$ that $n + (k - 1)d < \frac{3}{Q}k^3$ with Q = 32 if 2||d and 16 if 4|d. Let $\omega(d) \le 3$. Since $k - |R| \ge \mathfrak{h}(5)$ by Lemma 7.6 (*ii*), (*iii*), (*iv*) and $|S_1| \ge \frac{|T_1|}{2^{\omega(d)-\theta}} \ge \frac{0.3k}{2^{3-\theta}}$ by Lemma 4.3, we get $\frac{3}{Q}k^3 > n + (k-1)d > 2^{\delta}(\frac{0.3k}{2^{3-\theta}}-1)k^2$, a contradiction. Thus $\omega(d) = 4$. Let $k \ge 710$. Then $k - |R| \ge \mathfrak{h}(5)$ by Lemma 7.6 and $|S_1| \ge \frac{|T_1|}{2^{\omega(d)-\theta}} \ge \frac{0.4k}{2^{4-\theta}}$ by Lemma 4.3. Hence we get $\frac{3}{Q} > n + (k-1)d > 2^{\delta}(\frac{0.4k}{2^{4-\theta}}-1)k^2$, a contradiction again. Therefore k < 710. By Lemma 7.6, we get $k - |R| \ge \mathfrak{h}(3)$ implying $d < \frac{3}{16}k^2$ if 2||d and $d < \frac{3}{4}k^2$ if 4|d by Corollary 3.10 with $z_0 = 3$. However $d \ge 2^{\delta} \cdot 53 \cdot 59 \cdot 61$ by Lemma 7.5 (c). This is a contradiction.

Thus d is odd. Suppose $|S_1| \leq |T_1| - \mathfrak{h}(3)$. By Lemma 3.12, we have

(8.1)
$$d < \frac{\rho}{48}k^2, \ n + (k-1)d < \frac{\rho}{48}k^3.$$

Let $k \ge 710$. Since $\nu(a_i) \le 2^{\omega(d)}$, we derive from Lemma 4.3 that $|S_1| \ge \frac{|T_1|}{2^{\omega(d)}} > \frac{0.4k}{16} = 0.025k$. Therefore $\max_{A_i \in S_1} A_i > \rho(0.025k - 1)$ giving $n + (k - 1)d > \rho(0.025k - 1)k^2$ which contradicts (8.1). Thus k < 710. We see from Lemma 4.3 that $|T_1| > 0.3k$. For $\omega(d) \le 3$, we have $\max_{A_i \in S_1} A_i > \rho(\frac{0.3k}{8} - 1)$ giving $n + (k - 1)d > \rho(\frac{0.3k}{8} - 1)k^2$ which contradicts (8.1). Let $\omega(d) = 4$. By Lemma 7.5 (a), we see that $d \ge \min(3 \cdot 53 \cdot 59 \cdot 61, 23 \cdot 29 \cdot 31 \cdot 37) > \frac{3}{48}k^2$ contradicting (8.1).

Hence $|S_1| \ge |T_1| - \mathfrak{h}(3) + 1$. Therefore

(8.2)
$$n + (k-1)d \ge \rho(|T_1| - \mathfrak{h}(3))k^2.$$

Let $k - |R| \ge \mathfrak{h}(5)$. By Corollary 3.10 with $z_0 = 5$, we get $n + (k-1)d < \frac{3}{16}k^3$ which, together with $|T_1| \ge 0.3k$ by Lemma 4.3, contradicts (8.2) when $\omega(d) \le 2$. Further $k \le 133,275$ when $\omega(d) = 3,4$, respectively. Thus either

$$(8.3) k - |R| < \mathfrak{h}(5)$$

or

(8.4)
$$\omega(d) > 2; \ k \le 131 \text{ if } \omega(d) = 3; \ k \le 271 \text{ if } \omega(d) = 4.$$

We now apply Lemma 7.6 (i) to get $\omega(d) \ge 2$ and $k \le 293, 487, 991$ for $\omega(d) = 2, 3, 4$, respectively.

Let 3|d. Then we have from Lemma 7.6 (v) that $\omega(d) > 2$ and $k \le 131, 350$ when $\omega(d) = 3, 4$, respectively. By Lemma 7.5, we get $\mathfrak{p}_2 \ge 53$ and hence $53 \le \mathfrak{p}_2 \le \left(\frac{d}{3}\right)^{\frac{1}{\omega(d)-1}}$. By Corollary 3.10 with $z_0 = 3$ if $\omega(d) = 3$, $z_0 = 2$ if $\omega(d) = 4$ and Lemma 7.6 (v), we get $d < \frac{3}{4}k^2$ if $\omega(d) = 3$ and $< 3k^2$ if $\omega(d) = 4$. Therefore $53 \le \mathfrak{p}_2 < \frac{k}{2} < 67$ if $\omega(d) = 3$ and $53 \le \mathfrak{p}_2 < k^{\frac{2}{3}} \le 350^{\frac{2}{3}} < 53$ if $\omega(d) = 4$. Therefore $\omega(d) = 3$ and $53 \le \mathfrak{p}_2 \le 61$. Now we get a contradiction from Lemma 8.1 with $(p, q) = (3, \mathfrak{p}_2)$ and (6.14).

Thus we may assume that $3 \nmid d$. Therefore $k \leq 293, 487, 991$ for $\omega(d) = 2, 3, 4$, respectively, as stated above. Let $\omega(d) = 4$ and k < 308. From $k - |R| \geq 9$ by Lemma 7.6 (i) and by Corollary 3.11, there exists a partition (d_1, d_2) of d such that $\max(d_1, d_2) < (k-1)^2$. Thus $\mathfrak{p}_1\mathfrak{p}_2 \leq \max(d_1, d_2) < (k-1)^2$ giving $\mathfrak{p}_1 < k-1$. By taking r = 5 for $101 \leq k < 251$, r = 6 for $251 \leq k < 308$, we get from (6.10) and $g_{\mathfrak{p}_1} \leq 2^{r-1}$ by (6.13) with $p = \mathfrak{p}_1$ that $k - |R| \geq k - F'(k, r) - 2^{r-1} \geq 16$. Now we return to $\omega(d) = 2, 3, 4$. By Lemma 7.6 (i), we get $k - |R| \geq 2^{\omega(d)}$. Then we see from Corollary 3.10 with $z_0 = 2$ that there is a partition (d_1, d_2) of d with $d_1 < k - 1, d_2 < 4(k-1)$. Thus $\mathfrak{p}_1 < k$. We take r = 5 for $101 \leq k < 211$ and r = 6 for $211 \leq k < 556$ for the next computation and we use Lemma 7.6 (i) for $k \geq 556$. From (6.10) with $p = q = \mathfrak{p}_1$ and (6.13) with $p = \mathfrak{p}_1$, and since $\sum_{p|d,p>p_r} \sigma_p - g_{\mathfrak{p}_1} \geq 2 - 2^{r-1}$ if $\mathfrak{p}_1 > p_r$ and $\geq -2^{r-2}$ if $\mathfrak{p}_1 \leq p_r$, we get

(8.5)
$$k - |R| \ge k - F'(k, r) + 2 - 2^{r-1} \ge \begin{cases} 20 & \text{for } k \ge 101\\ 29 & \text{for } k \ge 211\\ 33 & \text{for } k \ge 251. \end{cases}$$

Therefore we get from (8.3), (8.4) that $\omega(d) > 2$ and $k \leq 199,991$ when $\omega(d) = 3, 4$, respectively.

Let $\omega(d) = 3$. By Corollary 3.10 with $z_0 = 3$, there is a partition (d_1, d_2) with $d_1 < \frac{k-1}{2}$ and $d_2 < 2(k-1)$. Thus $\mathfrak{p}_1\mathfrak{p}_2 \leq \max(d_1, d_2) < 2(k-1)$ giving $\mathfrak{p}_1 < \sqrt{2(k-1)} \leq \sqrt{2 \cdot 198}$ and hence $p_1 \leq 19$. Further the possibility $p_1 = 19$ is excluded since $19 \cdot 23 > 2(k-1)$. Also $\mathfrak{p}_2 \leq 79, 53, 31, 29, 23$ for $\mathfrak{p}_1 = 5, 7, 11, 13, 17$, respectively. Now we apply Lemma 7.5 (a) to derive that either $\mathfrak{p}_1 = 5, 53 \leq \mathfrak{p}_2 \leq 79$ or $\mathfrak{p}_1 = 7, \mathfrak{p}_2 = 53$. Further from $5 \cdot 53 < 2(k-1)$, we get $k \geq 134$. Thus $k - |R| \leq 28$ by (8.3) and (8.4). Now we take r = 6 for $134 \leq k \leq 199$ in the next computation. We get from (6.10) and (6.14) with $(p,q) = (\mathfrak{p}_1,\mathfrak{p}_2)$ that $k - |R| \geq k - F'(k, r) - 2^{r-2} \geq 29$. This is a contradiction.

Let $\omega(d) = 4$. By Lemma 7.5 (a), (b), we get $d \ge \min(5 \cdot 53 \cdot 59 \cdot 61, 23 \cdot 47 \cdot 53 \cdot 59, 31 \cdot 41 \cdot 47 \cdot 53) = 953735$. Further by Corollary 3.10 with $z_0 = 2$ if k < 251, $z_0 = 3$ if $k \ge 251$ and (8.5), we obtain $d < 3k^2$ if k < 251 and $d < \frac{3}{4}k^2$ for $k \ge 251$. This is a contradiction since $k \le 991$.

Lemma 8.3. Assume (1.1) with $\omega(d) \ge 12$. Suppose that

(8.6)
$$d < \frac{3}{16}k^2, n + (k-1)d < \frac{3}{16}k^3.$$

Then $k < \omega(d) 4^{\omega(d)}$.

Proof. Assume that $k \ge \omega(d)4^{\omega(d)}$. Then from $40 \cdot \left(\frac{3}{16}\right)^{\frac{2}{11}} < (12)^{\frac{7}{11}}2^{\frac{36}{11}}$ and $\omega(d) \ge 12$, we get $\left(\frac{3k^2}{16}\right)^{\frac{2}{11}} \le \frac{k}{40\cdot 2^{\omega(d)}}$. This together with $\mathfrak{q}_1\mathfrak{q}_2 \le \left(\frac{d}{2^{\delta\theta}}\right)^{\frac{2}{\omega(d)-\theta}} < \left(\frac{3k^2}{16}\right)^{\frac{2}{11}}$ by (2.9) and (8.6) gives $\mathfrak{q}_1\mathfrak{q}_2 < \frac{k}{40\cdot 2^{\omega(d)}}$. Hence

we derive from Corollary 3.7 (*ii*) with $d' = q_1 q_2$ that

(8.7)
$$\nu(A_i) \le 2^{\omega(d)-2-\theta} \text{ whenever } A_i \ge \frac{k}{40 \cdot 2^{\omega(d)}}$$

Let

(8.8)
$$T^{(1)} = \{i \in T_1 : A_i > \frac{2^{\delta} \rho k}{6 \cdot 2^{\omega(d)}}\}, \ T^{(2)} = T_1 \setminus T^{(1)}$$

and

(8.9)
$$S^{(1)} = \{A_i : i \in T^{(1)}\}, \ S^{(2)} = \{A_i : i \in T^{(2)}\}.$$

Then considering residue classes modulo $2^{\delta}\rho$, we derive that

$$\frac{2^{\delta}\rho k}{6 \cdot 2^{\omega(d)}} \ge \max_{A_i \in S^{(2)}} A_i \ge 2^{\delta}\rho(|S^{(2)}| - 1) + 1$$

so that $|S^{(2)}| \leq \frac{k}{6 \cdot 2^{\omega(d)}} + 1 \leq \frac{k}{6 \cdot 2^{\omega(d)}} + 1$. We have from (8.8), (8.9) and (8.7) together with $\nu(A_i) \leq 2^{\omega(d)}$ by Corollary 3.7 (*ii*) that

$$T^{(2)}| \le \frac{k}{40 \cdot 2^{\omega(d)}} 2^{\omega(d)} + \left(\frac{k}{6 \cdot 2^{\omega(d)}} - \frac{k}{40 \cdot 2^{\omega(d)}} + 1\right) 2^{\omega(d)-2}$$
$$\le \frac{k}{40} + \frac{1}{4} \left(\frac{k}{6} - \frac{k}{40}\right) + 2^{\omega(d)-2} \le \frac{k}{24} + \frac{3k}{160} + \frac{k}{480} = \frac{k}{160}$$

since $k \ge \omega(d) 4^{\omega(d)}$ and $\omega(d) \ge 12$. By Lemma 4.3 and k > 1639, we have

$$|T^{(1)}| > |T_1| - |T^{(2)}| \ge 0.42k - \frac{k}{16} = 0.3575k.$$

Let \mathfrak{C} , \mathfrak{C}_{μ} be as in Lemma 5.5 with c = 2. Then $.3575k < |T^{(1)}| = |S^{(1)}| + \sum_{\mu \ge 2} (\mu - 1)|\mathfrak{C}_{\mu}| \le |S^{(1)}| + \mathfrak{C} \le |S^{(1)}| + \frac{3\log 2}{16}\omega(d)4^{\omega(d)}$ by Lemma 5.5. Now we use $\frac{3\log 2}{16} < \frac{1}{7.6}$ to get $0.3575k < |S^{(1)}| + \frac{k}{7.6}$ implying $|S^{(1)}| > 0.2259k$. Therefore $n + (k - 1)d \ge (\max_{A_i \in S^{(1)}} A_i)k^2 \ge 0.2259k^3$ contradicting (8.6).

Lemma 8.4. Assume (1.1) with $\omega(d) \geq 5$. Then there is no non-degenerate double pair.

Proof. Assume (1.1) with $\omega(d) \ge 5$. Further we suppose that there exists a non-degenerate double pair. Then we derive from Lemma 3.4 with $z_0 = 2$ that

(8.10)
$$d < \mathcal{X}_0 k^2, \ n + (k-1)d < \mathcal{X}_0 k^3$$

where

(8.11)
$$\mathcal{X}_0 = 3, \frac{3}{2}, 12, 6 \text{ if } 2 \nmid d, 2 \mid \mid d, 8 \mid d, \text{ respectively}$$

This with $d \ge 2^{\delta} \prod_{i=2}^{\omega(d)+1-\delta'} p_i$ implies $k^2 > \frac{1}{6} \prod_{i=1}^{\omega(d)} p_i$. Therefore we get from Lemma 5.1 (ii), (iv) that

$$\log(\frac{k}{\omega(d)2^{\omega(d)}}) \ge \omega(d) \left\{ \frac{\log \omega(d) + \log \log \omega(d) - 1.076868}{2} - \log 2 - \frac{\log \omega(d)}{\omega(d)} \right\} - \frac{\log 6}{2}.$$

The right side of the above inequality is an increasing function of $\omega(d)$ and hence $k > 9\omega(d)2^{\omega(d)}$ for $\omega(d) \ge 12$. We find from $\mathcal{X}_0 k^2 > d \ge 2^{\delta} \prod_{i=2}^{\omega(d)+1-\delta'} p_i$ that $k > 3.2\omega(d)2^{\omega(d)}$ if $\omega(d) = 10, 11$. Further $k > 2.97\omega(d)2^{\omega(d)}$ if $\omega(d) = 8, 9$ when d is odd. Also k > 2542, 12195 when $\omega(d) = 8, 9$, respectively if 2||d or 8|d and k > 1271, 6097 when $\omega(d) = 8, 9$, respectively if 4||d.

Suppose k < 1733. Then $\omega(d) \le 8$ if 4||d and $\omega(d) < 8$ otherwise. By Lemma 7.5 (a), (c), we get $d \ge \min(3 \cdot 53 \cdot 59 \cdot 61 \cdot 67, 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41)$ if d is odd and $d \ge 2^{\delta} \cdot 53 \cdot 59 \cdot 61 \cdot 67$ if d is even. This is not possible since $d < \chi_0 k^2$. Hence $k \ge 1733$.

Let d be even and $\omega(d) = 8, 9$. Since $k \ge 1733$, we get $k - |R| \ge \mathfrak{h}(3)$ by Lemma 7.6 (ii), (iii), (iv)implying $d < \frac{3}{16}k^2, \frac{3}{4}k^2$ if 2||d, 4|d, respectively, by Corollary 3.10 with $z_0 = 3$. Therefore $k \ge 2.48\omega(d)2^{\omega(d)}$ if 4||d and $k \ge 3.2\omega(d)2^{\omega(d)}$ otherwise.

Therefore for $\omega(d) \geq 8$, we have

(8.12)
$$k \ge \begin{cases} 2.48\omega(d)2^{\omega(d)} & \text{if } 4||d\\ 2.97\omega(d)2^{\omega(d)} & \text{if } d \text{ is odd, } \omega(d) = 8,9\\ 3.2\omega(d)2^{\omega(d)} & \text{otherwise} \end{cases}$$

Suppose that $|S_1| \leq |T_1| - \mathfrak{h}(3)$ if d is odd and $|S_1| \leq |T_1| - \mathfrak{h}(5)$ if d is even. We put

$$\mathcal{X} := \begin{cases} \frac{\rho}{48} & \text{if } \operatorname{ord}_2(d) \le 1\\ \frac{1}{12} & \text{if } \operatorname{ord}_2(d) \ge 2, 3 \nmid d\\ \frac{3}{16} & \text{if } \operatorname{ord}_2(d) \ge 2, 3 | d. \end{cases}$$

Then

$$(8.13) d < \mathcal{X}k^2, n + (k-1)d < \mathcal{X}k^3$$

by Lemma 3.12. Therefore $k < \omega(d) 4^{\omega(d)}$ for $\omega(d) \ge 12$ by Lemma 8.3.

Let
$$\omega(d) \ge 19$$
. Then

$$\left(2^{\delta} \prod_{i=2}^{9} p_i\right) (29)^{\omega(d)-8-\delta'} \le d < \mathcal{X}k^2 < W := \begin{cases} \frac{3}{48} \omega(d)^2 (16)^{\omega(d)} & \text{if } \operatorname{ord}_2(d) \le 1\\ \frac{3}{16} \omega(d)^2 (16)^{\omega(d)} & \text{if } \operatorname{ord}_2(d) \ge 2. \end{cases}$$

Therefore

$$\frac{29}{16} < \left(\left(64 \prod_{i=3}^{9} p_i \right)^{-1} 29^9 \omega(d)^2 \right)^{\frac{1}{\omega(d)}}$$

We see that the right hand side of the above inequality is a non-increasing function of $\omega(d)$ and the inequality does not hold at $\omega(d) = 26$. Thus $\omega(d) \le 25$. Further we get a contradiction from $2^{\delta} \prod_{i=2}^{\omega(d)+1-\delta'} p_i \le d < W$ since $\omega(d) \ge 19$.

Thus $\omega(d) \leq 18$. We get from (2.9) and $d < \mathcal{X}k^2$ that

$$\mathbf{q}_{1}\cdots\mathbf{q}_{h} < \mathcal{X}_{1}^{h} := \begin{cases} \left(\frac{\rho}{48}\right)^{\frac{h}{\omega(d)}} k^{\frac{2h}{\omega(d)}} & \text{if } d \text{ is odd} \\ \left(\frac{\rho}{96}\right)^{\frac{h}{\omega(d)-1}} k^{\frac{2h}{\omega(d)-1}} & \text{if } 2||d \\ \left(\frac{1}{12\cdot4^{\theta}}\right)^{\frac{h}{\omega(d)-\theta}} k^{\frac{2h}{\omega(d)-\theta}} & \text{if } 4|d,3 \nmid d \\ \left(\frac{3}{16\cdot4^{\theta}}\right)^{\frac{h}{\omega(d)-\theta}} k^{\frac{2h}{\omega(d)-\theta}} & \text{if } 4|d,3|d \end{cases}$$

for $1 \leq h \leq \omega(d) - \theta$. Further from $\mathcal{X}k^2 > d \geq 2^{\delta}\mathfrak{p}_1 \cdots \mathfrak{p}_{\omega(d)-\delta'}$, we get

$$k > k_1 := \begin{cases} \sqrt{\frac{2^{\delta}}{\mathcal{X}} \prod_{i=2}^{\omega(d)+1-\delta'} p_i} & \text{if } 3 | d \\ \sqrt{\frac{2^{\delta}}{\mathcal{X}} \prod_{i=3}^{\omega(d)+2-\delta'} p_i} & \text{if } 3 \nmid d. \end{cases}$$

Thus

$$(8.14) k > k_2 := \max(1733, k_1)$$

Further we derive from (8.13) that

$$\frac{\mathfrak{p}_1 - 1}{2} \cdots \frac{\mathfrak{p}_h - 1}{2} < \mathcal{X}_2^h := \begin{cases} \frac{1}{2^{h-1}} \left(\frac{\mathcal{X}k^2}{3 \cdot 2^\delta}\right)^{\frac{h-1}{\omega(d)-1-\delta'}} & \text{if } 3 \mid d\\ \frac{1}{2^h} \left(\frac{\mathcal{X}k^2}{2^\delta}\right)^{\frac{h}{\omega(d)-\delta'}} & \text{if } 3 \nmid d \end{cases}$$

for $1 \le h \le \omega(d) - \delta'$.

We take $r = \left[\frac{\omega(d)-1}{2}\right]$ if d is odd and $r = \left[\frac{\omega(d)}{2}\right] - 1$ if d is even. By Corollary 3.8 and $|T_1| > 0.42k$ by Lemma 4.3, we have

(8.15)
$$s_{r+1} \ge \frac{0.42k}{2^{\omega(d)-r-\theta}} - 2\lambda_r - 2^{r-1}\lambda_1 - \sum_{\mu=2}^{r-1} 2^{r-\mu}\lambda_\mu$$

This with Corollary 4.5 and $\mathfrak{q}_1\mathfrak{q}_2\cdots\mathfrak{q}_h < \mathcal{X}_1^h$ gives (8.13) gives

$$s_{r+1} \geq \mathcal{X}_3 := \begin{cases} \frac{0.42k}{2^{\omega(d)-r}} - \frac{\mathcal{X}_1^r}{3 \cdot 2^{r-3}} - \sum_{\mu=1}^{r-1} \frac{2^{r+2}}{3} \frac{\mathcal{X}_1^{\mu}}{2^{2\mu}} & \text{if } 2 \nmid d, 3 \nmid d \\ \frac{0.42k}{2^{\omega(d)-\theta-r}} - \frac{\mathcal{X}_1^r}{3 \cdot 2^{r-4+\delta}} - 2^{r-1} (\frac{\mathcal{X}_1}{2^{\delta}} + 1) - \sum_{\mu=2}^{r-1} \frac{2^{r+3-\delta}}{3} \frac{\mathcal{X}_1^{\mu}}{2^{2\mu}} & \text{if } 2 \mid d, 3 \nmid d \\ \frac{0.42k}{2^{\omega(d)-\theta-r}} - \frac{\mathcal{X}_1^r}{9 \cdot 2^{r-4+\delta'}} - 2^{r-1} (\frac{\mathcal{X}_1}{3 \cdot 2^{\delta}} + 1) - \sum_{\mu=2}^{r-1} \frac{2^{r+3-\delta'}}{9} \frac{\mathcal{X}_1^{\mu}}{2^{2\mu}} & \text{if } 3 \mid d, 8 \nmid d \\ \frac{0.42k}{2^{\omega(d)-r}} - 2(\frac{\mathcal{X}_1^r}{2^{4}} + 1) - \sum_{\mu=1}^{r-1} 2^{r-\mu} (\frac{\mathcal{X}_1^{\mu}}{2^{4}} + 1) & \text{if } 8 \mid d, 3 \mid d, r \leq 3 \\ \frac{0.42k}{2^{\omega(d)-r}} - \frac{\mathcal{X}_1^r}{9 \cdot 2^{r-3}} - \sum_{\mu=1}^3 2^{r-\mu} (\frac{\mathcal{X}_1^{\mu}}{2^{4}} + 1) - \sum_{\mu=4}^{r-1} \frac{2^{r+2}}{9} \frac{\mathcal{X}_1^{\mu}}{2^{2\mu}} & \text{if } 8 \mid d, 3 \mid d, r \geq 4. \end{cases}$$

By observing that $\frac{\mathcal{X}_3 - \mathcal{X}_2^r}{k}$ is an increasing function of k and is positive at $k = k_2$ except when $\omega(d) = 7, d$ odd and 3|d in which case it is positive at k = 11500. Let $k \ge 25500$ when $\omega(d) = 7, d$ odd and 3|d. Then $s_{r+1} \ge \mathcal{X}_3 > \mathcal{X}_2^r > \frac{\mathfrak{p}_1 - 1}{2} \cdots \frac{\mathfrak{p}_r - 1}{2}$. Therefore by Lemma 4.4 with $S = \{A_i : i \in T_{r+1}\}, |S| = s_{r+1}, h = r$ and (8.13), we get

$$\mathcal{X}k^{3} > n + (k-1)d \ge \mathcal{X}_{4}k^{2} := \begin{cases} \frac{3}{4}2^{r+\delta}\mathcal{X}_{3}k^{2} & \text{if } 3 \nmid d\\ \frac{9}{4}2^{r+\delta-1}\mathcal{X}_{3}k^{2} & \text{if } 3|d. \end{cases}$$

This is a contradiction by checking that $\frac{\chi_4}{k} - \chi > 0$ except when d odd, 3|d and $\omega(d) = 6, 8, 9$. Thus we may assume that d is odd, $3|d, 6 \leq \omega(d) \leq 9$ and k < 25500 if $\omega(d) = 7$. Also we check that $\frac{\chi_4}{k} - \chi > 0$ for k = 5000, 62000, 350000 according as $\omega(d) = 6, 8, 9$, respectively. Thus we may assume that k < 5000, 25500, 62000, 350000 whenever $\omega(d) = 6, 7, 8, 9$, respectively. If $\mathfrak{q}_1 \geq 7$, then we get a contradiction from $d < \chi k^2 = \frac{1}{16}k^2$ and $\frac{d}{7\cdot 9\cdot 11\cdot 13\cdot 17\cdot 19} \geq 1, 23, 23 \cdot 25, 23 \cdot 25 \cdot 29$ for $\omega(d) = 6, 7, 8, 9$, respectively. Thus $\mathfrak{q}_1 \in \{3, 5\}$. Further we get $\mathfrak{q}_1 \leq 5, \mathfrak{q}_2 \leq 7$ if $\omega(d) = 6, \mathfrak{q}_1 \leq 5, \mathfrak{q}_2 \leq 7, \mathfrak{q}_3 \leq 11$ if $\omega(d) = 7, 8$ and $\mathfrak{q}_1 = 3, \mathfrak{q}_2 = 5, \mathfrak{q}_3 = 7$ if $\omega(d) = 9$. Thus $\mathfrak{p}_1 = 3$ and $\mathfrak{p}_2 \in \{5, 7\}$ if $\omega(d) = 6, \mathfrak{p}_2, \mathfrak{p}_3 \in \{5, 7, 11\}$ if $\omega(d) > 6$. Since $\left(\frac{a_i}{p}\right) = \left(\frac{n}{p}\right)$ for p|d, we consider Legendre symbols modulo $3, \mathfrak{q}_1, \mathfrak{q}_2$ to all squarefree positive integers $\leq \mathfrak{q}_1$ and $\leq \mathfrak{q}_1\mathfrak{q}_2$ to obtain $\lambda_1 \leq 1, \lambda_2 \leq 3$. Further for $\omega(d) > 6$, we consider Legendre symbols modulo $3, \mathfrak{q}_1, \mathfrak{q}_2$ and \mathfrak{q}_3 if $\mathfrak{q}_3 \neq 9$ to all squarefree positive integers $\leq \mathfrak{q}_1\mathfrak{q}_2\mathfrak{q}_3$ to get $\lambda_3 \leq 17$. Therefore we get from (8.15) and Corollary 4.5 that

$$s_{r+1} \ge \mathcal{X}_5 := \begin{cases} \frac{0.42k}{2^4} - 8 & \text{if } \omega(d) = 6\\ \frac{0.42k}{2^{\omega(d)-3}} - 44 & \text{if } \omega(d) = 7, 8\\ \frac{0.42k}{2^5} - \frac{1}{9} \left(\frac{1}{16}\right)^{\frac{4}{9}} k^{\frac{8}{9}} - 54 & \text{if } \omega(d) = 9. \end{cases}$$

We check that $s_{r+1} \ge \mathcal{X}_5 > \mathcal{X}_2^r > \frac{\mathfrak{p}_1 - 1}{2} \cdots \frac{\mathfrak{p}_r - 1}{2}$ by observing $\frac{\mathcal{X}_5 - \mathcal{X}_2^r}{k}$ is an increasing function of k and is positive at $k = \max(1733, k_1)$. Therefore by Lemma 4.4 with h = r and (8.13), we get $\frac{1}{16}k^3 > n + (k-1)d \ge \frac{9}{8}2^r\mathcal{X}_5k^2$. This is a contradiction since $\frac{\mathcal{X}_5}{k} - \frac{1}{18\cdot 2^r} > 0$.

Thus $|S_1| \ge \mathcal{X}_6$ using $|T_1| > 0.42k$ by Lemma 4.3 where $\mathcal{X}_6 = 0.42k - \mathfrak{h}(3) + 1$ if d is odd and $\mathcal{X}_6 = 0.42k - \mathfrak{h}(5) + 1$ if d is even. Since there exists a non-degenerate double pair, we apply Lemma 3.4 with

 $z_0 = 2$ to get a partition (d_1, d_2) of d with

$$\begin{cases} \mathfrak{p}_1 \mathfrak{p}_2 \cdots \mathfrak{p}_{\left[\frac{\omega(d)+1}{2}\right]} \leq \max(d_1, d_2) < 4k & \text{if } 2 \nmid d \\ \mathfrak{p}_1 \mathfrak{p}_2 \cdots \mathfrak{p}_{\left[\frac{\omega(d)}{2}\right]} \leq \max(d_1, d_2) < 4k & \text{if } 2 || d \\ 2\mathfrak{p}_1 \mathfrak{p}_2 \cdots \mathfrak{p}_{\left[\frac{\omega(d)}{2}\right]} \leq \max(d_1, d_2) < 8k & \text{if } 4 | d. \end{cases}$$

Let $\omega(d) \ge 7 + \delta'$. Then we see from (8.12) that $|S_1| \ge \mathcal{X}_6 > \frac{k}{4} > \frac{\mathfrak{p}_1 - 1}{2} \cdots \frac{\mathfrak{p}_4 - 1}{2}$. We now apply Lemma 4.4 with h = 4 to get $\mathcal{X}_0 k > n + (k-1)d \ge \frac{3}{4}2^{4+\delta}\mathcal{X}_6 k^2 > 3 \cdot 2^{\delta}k^3$ since $\mathcal{X}_6 > \frac{k}{4}$. This contradicts (8.11). Thus $\omega(d) \le 6 + \delta'$ and $k \ge 1733$ by (8.12).

Assume that $k - |R| \ge \mathfrak{h}(3)$. Then from Corollary 3.10 with $z_0 = 3$, we get $n + (k-1)d < \mathcal{X}_7 k^3$ where $\mathcal{X}_7 = \frac{3}{16}$ if 2||d and $\frac{3}{4}$ otherwise. If 2|d or 3|d, then $n + (k-1)d \ge 3(\mathcal{X}_6 - 1)k^2$ if 3|d and $n + (k-1)d \ge 2^{\delta}(\mathcal{X}_6 - 1)k^2$ if 2|d contradicting $n + (k-1)d < \mathcal{X}_7 k^3$. Thus d is odd, $3 \nmid d$ and $\omega(d) = 5, 6$. By Corollary 3.10 with $z_0 = 3$, there is a partition (d_1, d_2) of d with $\mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3 \le \max(d_1, d_2) < 2(k-1)$. Now we get $\frac{k}{4} > \frac{\mathfrak{p}_1 - 1}{2} \frac{\mathfrak{p}_2 - 1}{2} \frac{\mathfrak{p}_3 - 1}{2}$. Further we check $\mathcal{X}_6 > \frac{k}{4}$ implying $|S_1| \ge \mathcal{X}_6 > \frac{\mathfrak{p}_1 - 1}{2} \frac{\mathfrak{p}_2 - 1}{2} \frac{\mathfrak{p}_3 - 1}{2}$. Therefore we derive from Lemma 4.4 with h = 3 that $\frac{3}{4}k^3 = \mathcal{X}_7k^3 > n + (k-1)d \ge 6\mathcal{X}_6k^2 > \frac{3}{2}k^3$, a contradiction. Hence $k - |R| < \mathfrak{h}(3)$. By Lemma 7.6 (i) - (iv), we get d odd, $\omega(d) = 6$ and $1733 \le k < 2082$. Further from Lemma 7.6 (v), (vi), we get $\mathfrak{p}_1 \ge 11$. Now $11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \le d < 3k^2$ by (8.10) and (8.11). This is a contradiction.

Corollary 8.5. Equation (1.1) with $\omega(d) \ge 5$ implies that $k - |R| < 2^{\omega(d) - \theta}$.

Proof. Assume (1.1) with $\omega(d) \geq 5$ and $k - |R| \geq 2^{\omega(d)-\theta}$. By Lemma 3.9, there exists a set Ω with at least $2^{\omega(d)-\theta}$ pairs satisfying Property ND. Since there are at most $2^{\omega(d)-\theta} - 1$ permissible partitions of d by Lemma 3.5 (i), we can find a partition (d_1, d_2) of d and a non-degenerate double pair with respect to (d_1, d_2) . This contradicts Lemma 8.4.

Lemma 8.6. Equation (1.1) with d odd, $k \ge 101$ and $5 \le \omega(d) \le 7$ implies that $k - |R| \le 2^{\omega(d)-1}$.

Proof. Let d be odd. Assume (1.1) with $5 \le \omega(d) \le 7$ and $k - |R| \ge 2^{\omega(d)-1} + 1$. By Corollary 8.5, we may suppose that $k - |R| < 2^{\omega(d)}$. Further by Lemma 7.6 (i), we obtain $k \le 555, 1056, 2099$ when $\omega(d) = 5, 6, 7$, respectively. Since $k - |R| \ge 2^{\omega(d)-1} + 1$, we derive from Corollary 3.11 that there exists a partition (d_1, d_2) of d such that $\mathfrak{D}_{12} := \max(d_1, d_2) < (k - 1)^2$.

Let $\omega(d) = 5$. Then $\mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3 \leq \mathfrak{D}_{12} < (k-1)^2$ implying $\mathfrak{p}_1 \leq 61$ since $67 \cdot 71 \cdot 73 > 555^2$. Also $\mathfrak{p}_2 < \frac{k-1}{\sqrt{\mathfrak{p}_1}}$. By taking r = 6 for $208 < k \leq 547$, we get from (6.10) and (6.13) with $p = \mathfrak{p}_1$ that $k - |R| \geq k - F'(k, r) + \min(-2^{r-2}, \sigma_{61} - 2^{r-1}) \geq 32$ if k > 208. Thus $k \leq 208$. Further $\mathfrak{p}_1 \leq 29$ since $31 \cdot 37 \cdot 41 > 208^2$. If $\mathfrak{p}_1 \geq 17$, then we obtain from Lemma 7.5 (a), (b) that $207^2 > \mathfrak{D}_{12} \geq \min(17 \cdot 53 \cdot 59, 23 \cdot 47 \cdot 53)$, a contradiction. Therefore $\mathfrak{p}_1 \leq 13$ and hence $53 \leq \mathfrak{p}_2 < k$ by Lemma 7.5 (a). By taking r = 6, we get from (6.14) with $(p,q) = (\mathfrak{p}_1,\mathfrak{p}_2)$ that $g_{\mathfrak{p}_1,\mathfrak{p}_2} = 2^{r-3}$ if $k \leq 127$ and $g_{\mathfrak{p}_1} = 2^{r-2}$ if k > 127 by (6.13) with $p = \mathfrak{p}_1$. From (6.10) and $\sigma_{\mathfrak{p}_2} \geq 2$, we have $k - |R| \geq k - F'(k, r) + 2 - 2^{r-3}$ if $k \leq 127$ and $k - |R| \geq k - F'(k, r) + 2 - 2^{r-2}$ if k > 127 giving $k - |R| \geq 32$, a contradiction.

Let $\omega(d) = 6$. Then $\mathfrak{p}_2\mathfrak{p}_3\mathfrak{p}_4 \leq \mathfrak{D}_{12} < (k-1)^2$ implying $\mathfrak{p}_1 < \mathfrak{p}_2 \leq 97$ since $101 \cdot 103 \cdot 107 > 1055^2$. By taking r = 7 for $384 < k \leq 1039$, we get from (6.10) and (6.14) with $(p,q) = (\mathfrak{p}_1,\mathfrak{p}_2)$ that $k - |R| \geq k - F'(k,r) - 2^{r-2} \geq 64$ if k > 384. Thus $k \leq 384$. Further $\mathfrak{p}_2 \leq 43$ since $47 \cdot 53 \cdot 59 > 383^2$. Then we derive from Lemma 7.5 (a), (b) that $\mathfrak{p}_1 = 31, \mathfrak{p}_2 = 41, \mathfrak{p}_3 \geq 47$. Also k > 319 since $41 \cdot 47 \cdot 53 > 319^2$. By taking r = 7 for $319 < k \le 384$, we obtain from (6.10) and (6.14) with (p,q) = (31,41) that $k - |R| \ge k - F'(k,r) + \sigma_{31} + \sigma_{41} - 2^{r-2} \ge 64$. This is a contradiction.

Let $\omega(d) = 7$. Suppose $\mathfrak{p}_1 \leq 19$. By Lemma 7.6 (v), (vi), vii), we get k < 735, 930, 1200 according as $\mathfrak{p}_1 = 3, \mathfrak{p}_1 \in \{5,7\}, \mathfrak{p}_1 \geq 11$, respectively. By Lemma 7.5 (a), we obtain $\mathfrak{p}_2 \geq 53$. Now $53 \cdot 59 \cdot 61 \leq \frac{\mathfrak{D}_{12}}{\mathfrak{p}_1} < \frac{735^2}{3}, \frac{930^2}{5}, \frac{1200^2}{11}$ according as $\mathfrak{p}_1 = 3, \mathfrak{p}_1 \in \{5,7\}, \mathfrak{p}_1 \geq 11$, respectively. This is not possible. Thus $\mathfrak{p}_1 \geq 23$. Further $\mathfrak{p}_1 \leq 41, \mathfrak{p}_2 \leq 53$ from $\mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3\mathfrak{p}_4 \leq \mathfrak{D}_{12} < (k-1)^2 \leq 2098^2$. By taking r = 9, we get from (6.10) and (6.14) with $(p,q) = (\mathfrak{p}_1, \mathfrak{p}_2)$ that $k - |R| \geq k - F'(k, r) + \min(-2^{r-3} + \sigma_{53}, -2^{r-2} + \sigma_{41} + \sigma_{53}) \geq 128$ for k > 1007. Therefore $k \leq 1007$. Now $1007^2 > \mathfrak{D}_{12} \geq \min(23 \cdot 47 \cdot 53 \cdot 59, 31 \cdot 41 \cdot 47 \cdot 53)$ by Lemma 7.5 (b). This is not possible.

Corollary 8.7. Assume (1.1) with $\omega(d) \geq 5$. Then k < 308, 556, 1057, 2870 and $2(\omega(d) - \theta)2^{\omega(d)-\theta}$ for $\omega(d) = 5, 6, 7, 8$ and ≥ 9 , respectively. In particular $k < 2\omega(d)2^{\omega(d)}$.

Proof. By Corollary 8.5 and Lemma 8.6, we derive that $k - |R| < 2^{\omega(d)-\theta}$ and $k - |R| \leq 2^{\omega(d)-1}$ if d is odd, $5 \leq \omega(d) \leq 7$. By Lemma 7.6 (i), (ii), we get $k < 2(\omega(d) - \theta)2^{\omega(d)-\theta}$ for $\omega(d) \geq 9 + \theta$, k < 4252 if $\omega(d) = 8$ and k < 308,556,1057 according as $\omega(d) = 5,6,7$, respectively. Now it remains to consider $\omega(d) = 9$ if 2||d, 4||d and $\omega(d) = 8$. By Lemma 7.6 (ii), it suffices to consider d odd and $\omega(d) = 8$. Further k < 4252 and k - |R| < 256. Suppose $k \geq 2870$. Then $k - |R| \geq 129$ by Lemma 7.6 (i) and we derive from Corollary 3.11 that there exists a partition (d_1, d_2) of d with $\max(d_1, d_2) < (k - 1)^2$. Let $\mathfrak{p}_1 \geq 53$. Then $4252^4 > d \geq 53 \cdot 59 \cdot 61 \cdot 67 \cdot 71 \cdot 73 \cdot 79 \cdot 83$, a contradiction. Thus $\mathfrak{p}_1 \leq 47$. Now we obtain from Lemma 7.6 (vi) that $k - |R| \geq 256$, a contradiction.

Lemma 8.8. (i) Let d be odd and $\omega(d) = 5, 6$. Suppose that d is divisible by a prime $\leq k$ when $\omega(d) = 5$. Further assume that there exist distinct primes p and q with pq|d, $p \leq 19, q \leq k$ when $\omega(d) = 6$. Then (1.1) with $k \geq 101$ has no solution.

(ii) Let d be even and $5 \le \omega(d) \le 6 + \theta$. Assume that p|d with $p \le 47$ when $\omega(d) = 7$. Then (1.1) with $k \ge 101$ has no solution.

Proof. By Lemma 8.5, we may suppose that $k - |R| < 2^{\omega(d) - \theta}$.

(i) Let d be odd. From Corollary 8.7, we get k < 308, 556 when $\omega(d) = 5, 6$, respectively. Let $\omega(d) = 5$. By taking r = 5 for $101 \le k < 308$, we get from (6.10) and (6.13) with $p = \mathfrak{p}_1$ that $k - |R| \ge k - F'(k, r) - 2^{r-1} \ge 17$ which is not possible by Lemma 8.6.

Let $\omega(d) = 6$. Then $53 \leq \mathfrak{p}_2 \leq k$ by Lemma 7.5 (a). We take r = 6. Let $\mathfrak{p}_1 \leq 13$. Then we get from (6.14) with $(p,q) = (\mathfrak{p}_1,\mathfrak{p}_2)$ that $g_{\mathfrak{p}_1,\mathfrak{p}_2} = 2^{r-3}$ if $k \leq 127$ and $g_{\mathfrak{p}_1} = 2^{r-2}$ if k > 127 by (6.13) with $p = \mathfrak{p}_1$. From (6.10) and $\sigma_{\mathfrak{p}_2} \geq 1$, we have $k - |R| \geq k - F'(k,r) + 1 - 2^{r-3}$ if $k \leq 127$ and $k - |R| \geq k - F'(k,r) + 1 - 2^{r-2}$ if k > 127 giving $k - |R| \geq 33$. This contradicts Lemma 8.6. Thus $\mathfrak{p}_1 \in \{17, 19\}$. We get from (6.14) with $(p,q) = (\mathfrak{p}_1,\mathfrak{p}_2)$ that $g_{\mathfrak{p}_1,\mathfrak{p}_2} = 2^{r-2}$ if $k \leq 193$ and $g_{\mathfrak{p}_1} = 2^{r-1}$ if k > 193 by (6.13) with $p = \mathfrak{p}_1$. From (6.10) and $\sigma_{\mathfrak{p}_1} + \sigma_{\mathfrak{p}_2} \geq \sigma_{19} + 1$, we get $k - |R| \geq 33$, a contradiction.

(*ii*) Let *d* be even. Then from Lemma 7.6 (*ii*), (*ivi*), (*iv*), we get $\omega(d) = 6, k < 252$ and $\omega(d) = 7, k < 430$ if $2||d; \omega(d) = 6, k < 127$ and $\omega(d) = 7, k < 303$ if $4||d; \omega(d) = 6, k < 220$ if 8|d. By Lemma 7.5, we obtain $\omega(d) = 6, k < 252$ and $\mathfrak{p}_1 \ge 53$. Further by Lemma 7.6, we get $k - |R| \ge 2^{\omega(d) - \theta - 1} + 1$. This with Corollary 3.11 gives $\max(d_1, d_2) < (k-1)^2$ for some partition (d_1, d_2) of d. Since $\max(d_1, d_2) \ge \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3 \ge 53^3 > 430^2$, we get a contradiction.

Lemma 8.9. Equation (1.1) with $k \ge 101$ implies that $d > 10^{10}$.

Proof. Assume (1.1) with $k \ge 101$ and $d \le 10^{10}$. By Lemma 8.2, we have $\omega(d) \ge 5$. Further we obtain from Corollary 8.5 that $k - |R| < 2^{\omega(d)-\theta}$ which we use without reference in the proof.

Let d be odd. Then $\omega(d) \leq 9$ otherwise $d \geq \prod_{i=2}^{11} p_i > 10^{10}$. By Lemma 8.8 (i), we see that $d > k^5 > 10^{10}$ if $\omega(d) = 5$. Thus $\omega(d) \geq 6$.

Let $\omega(d) = 6$. If $\mathfrak{p}_1 \leq 19$, then $d > k^5 > 10^{10}$ by Lemma 8.8 (i). Therefore $\mathfrak{p}_1 \geq 23$. Also $\mathfrak{p}_1 \leq 37$ otherwise $d \geq 41 \cdot 43 \cdot 47 \cdot 53 \cdot 59 \cdot 61 > 10^{10}$. Further k < 556 by Corollary 8.7. Therefore by Lemma 7.5 (b), we obtain $d \geq \min(23 \cdot 47 \cdot 53 \cdot 59 \cdot 61 \cdot 67, 31 \cdot 41 \cdot 47 \cdot 53 \cdot 59 \cdot 61) > 10^{10}$.

Thus $\omega(d) \ge 7$. Then $\mathfrak{p}_1 \le 13$ otherwise $d \ge \prod_{j=7}^{13} p_i > 10^{10}$. Further $k \ge 1733$ otherwise $d \ge 3 \cdot 53^6 > 10^{10}$ by Lemma 7.5 (a). By Corollary 8.7, we obtain $\omega(d) \ge 8$.

Let $\omega(d) = 8$. Then $\mathfrak{p}_1 \leq 7$. Now Lemma 7.6 (v), (vi) gives $\mathfrak{p}_1 \in \{5,7\}$. Further $\mathfrak{p}_2 \leq 11$ since $5 \prod_{i=6}^{12} p_i > 10^{10}$. This is not possible by Lemma 7.6 (vii) since $k \geq 1733$.

Let $\omega(d) = 9$. Then $\mathfrak{p}_1 = 3$, $\mathfrak{p}_2 = 5$ and $\mathfrak{p}_3 = 7$. This is not possible by Lemma 7.6 (vii) since $k \ge 1733$.

Let d be even. Then $\omega(d) \leq 10$ otherwise $d \geq \prod_{i=1}^{11} p_i > 10^{10}$. Further $\omega(d) \leq 9$ for 4|d since $4 \prod_{i=2}^{10} p_i > 10^{10}$. By Lemma 8.8 (*ii*), we have $\omega(d) \geq 7$. Further $k \geq 1801$ by Lemma 7.5 (*c*) since $2 \prod_{i=16}^{21} p_i > 10^{10}$. Now we use Lemma 7.6 (*ii*), (*iii*), (*iv*) to obtain either $2||d, \omega(d) = 9, 10$ or $8|d, \omega(d) = 9$.

Let 2||d. Let $\omega(d) = 9$. Then $\mathfrak{p}_1 \leq 5$ otherwise $d \geq 2 \prod_{i=4}^{11} p_i > 10^{10}$. Then $k - |R| \geq 256$ by Lemma 7.6 (*vii*), a contradiction. Let $\omega(d) = 10$. Then $\mathfrak{p}_1 = 3$, $\mathfrak{p}_2 = 5$ and hence $k - |R| \geq 512$ by Lemma 7.6 (*vii*). This is not possible.

Let 8|d and $\omega(d) = 9$. Then $\mathfrak{p}_1 \leq 5$ since $8 \prod_{i=4}^{11} p_i > 10^{10}$. By Lemma 7.6, we get $k - |R| \geq 512$ which is a contradiction.

9. Proof of Theorem 2

Suppose that (1.1) with b = 1 has a solution. By Theorem \mathcal{A} (b), Lemmas 8.2, 8.6 and Corollary 8.7, we get $\omega(d) = 5, d$ odd, $k - |R| \leq 16$ and $110 \leq k < 308$. We observe that $\operatorname{ord}_p(a_0a_1 \cdots a_{k-1})$ is even for each prime p. Therefore the number of i's for which a_i are divisible by p is at most $\sigma'_p = \left\lceil \frac{k}{p} \right\rceil$ or $\left\lceil \frac{k}{p} \right\rceil - 1$ according as $\left\lceil \frac{k}{p} \right\rceil$ is even or odd, respectively. Let r = 4. Then from (6.3), we get $k - |R| \geq k - F(k, r) - 2^r \geq k - \sum_{p > p_r} \sigma'_p - 2^r$ which is ≥ 17 except at k = 110, 112, 114, 116, 118, 120, 122, 124 where $k - |R| \geq 16$. Therefore k = 110, 112, 114, 116, 118, 120, 122, 124 and k - |R| = 16. Further we may assume that for each prime $11 \leq p \leq k$, there are exactly σ'_p number of i's for which $p|a_i$ and for any i, $pq \nmid a_i$ whenever $11 \leq q \leq k, q \neq p$. By considering the i's for which a_i 's are divisible by primes 109, 107 when k = 110; 37, 109, 107 when k = 112; 113, 37, 109, 107 when k = 120; 11, 17, 13, 23, 113, 37, 109, 107 when k = 122 and 41, 11, 17, 13, 23, 113, 37, 109, 107 when k = 124, we get $P(a_{\varsigma_k}a_{\varsigma_k+1}\cdots a_{\varsigma_k+105}) \leq 103$ where $\varsigma_k = 2 + \frac{k-110}{2}$. This is excluded. For instance let k = 124. Then $P(a_9a_{10}\cdots a_{114}) \leq 103$. This gives $103^2|a_ja_{j+103}$ for $j \in \{9, 10, 11\}$. Let $103^2|a_9a_{112}$. Then $101^2|a_ja_{j+101}$ for $j \in \{10, 12, 13\}$ so that

 $P(a_{14}a_{15}\cdots a_{110}) \leq 97$. This is excluded by considering by Theorem \mathcal{A} with k = 97. If $103^2|a_1a_{114}$, we obtain similarly that $P(a_{13}a_{14}\cdots a_{109}) \leq 97$ and it is excluded. Thus $103^2|a_{10}a_{113}$. If $101^2|a_ja_{j+101}$ for $j \in \{11, 13\}$, we get $P(a_{14}a_{15}\cdots a_{110}) \leq 97$ and is excluded. Hence $101^2|a_9a_{110}$ implying $P(a_{11}a_{12}\cdots a_{107}) \leq 97$ and it is excluded again.

10. Proof of Theorem 3

By Theorem $\mathcal{A}(a)$ and Lemmas 8.2, 8.8 (*ii*), we may suppose that d is odd, either $\omega(d) = 3, (a_0, a_1, \cdots, a_{k-1}) \in \mathfrak{S}_2$ or $\omega(d) \leq 2, (a_0, a_1, \cdots, a_{k-1}) \in \mathfrak{S}_1 \cup \mathfrak{S}_2, (a_0, a_1, \cdots, a_7) \neq (3, 1, 5, 6, 7, 2, 1, 10)$ or its mirror image when $k = 8, \omega(d) = 2$. For p|d, we observe from $\left(\frac{q}{p}\right) = 1$ for $q \in \{2, 3, 5, 7\}$ that $p \geq 311$ and therefore $d \geq 311^{\omega(d)}$. Further we observe from Lemma 4.2 that (3.24) is valid.

Let $\omega(d) = 1$. If $k - |R| \ge 2$, we get $d = d_2 < 4(k - 1)$ by Corollary 3.10 with $z_0 = 2$, a contradiction since $d \ge 311$. Therefore it remains to consider k = 8 and $(a_0, \dots, a_7) = (3, 1, 5, 6, 7, 2, 1, 10)$ or its mirror image. We exclude the possibility $(a_0, \dots, a_7) = (3, 1, 5, 6, 7, 2, 1, 10)$ and the proof for excluding its mirror image is similar. We write

$$n = 3x_0^2, \ n + d = x_1^2, \ n + 2d = 5x_2^2, \ n + 3d = 6x_3^2,$$

$$n + 4d = 7x_4^2, \ n + 5d = 2x_5^2, \ n + 6d = x_6^2, \ n + 7d = 10x_7^2.$$

Then we get $5d = x_6^2 - x_1^2 = (x_6 - x_1)(x_6 + x_1)$ implying either $x_6 - x_1 = 1, x_6 + x_1 = 5d$ or $x_6 - x_1 = 5, x_6 + x_1 = d$. We apply Runge's method to arrive at a contradiction. Suppose $x_6 - x_1 = 1, x_6 + x_1 = 5d$. Then $5d = 2x_1 + 1$ and $x_1 \ge 14$. We obtain $(125 \cdot 6x_0 x_3 x_5)^2 = (25(n+d) - 25d)(25(n+d) + 50d)(25(n+d) + 100d) = (25x_1^2 - 10x_1 - 5)(25x_1^2 + 20x_1 + 10)(25x_1^2 + 40x_1 + 20) = 15625x_1^6 + 31250x_1^5 + 20625x_1^4 - 3000x_1^3 - 10750x_1^2 - 6000x_1 - 1000 =: \psi(x_1)$. We see that

$$(125x_1^3 + 125x_1^2 + 20x_1 - 32)^2 > \psi(x_1) > (125x_1^3 + 125x_1^2 + 20x_1 - 33)^2.$$

This is a contradiction. Let $x_6 - x_1 = 5, x_6 + x_1 = d$. Then we argue as above to conclude that $d = 2x_1 + 5, x_1 \ge 66$ and

$$(x_1^3 + 5x_1^2 + 4x_1 - 32)^2 > \psi_1(x_1) > (x_1^3 + 5x_1^2 + 4x_1 - 33)^2$$

where $\psi_1(x_1) = x_1^6 + 10x_1^5 + 33x_1^4 - 24x_1^3 - 430x_1^2 - 1200x_1 - 1000$ is a square. This is again not possible. Thus $\omega(d) \ge 2$. Let $k \ge 13$ and $(a_0, a_1, \dots, a_{12}) \ne (3, 1, 5, 6, 7, 2, 1, 10, 11, 10, 10)$

3, 13, 14, 15) or its mirror image when k = 13. Let $\mathfrak{g} = 3, 4, 5$ if $k = 13, 14, \geq 19$, respectively. Then from $\nu(1) = 3$ and Lemma 3.9, we get a set Ω of pairs (i, j) with $|\Omega| \geq k - |R| + r_3 \geq \mathfrak{g}$ having *Property ND*. Therefore there exists a non-degenerate double pair for $k \geq 14$ when $\omega(d) = 2$. Further there are distinct pairs corresponding to partitions $(d_1, d_2), (d_2, d_1)$ for some divisor d_1 of d for $k \geq 13$ when $\omega(d) = 2$ and for $k \geq 19$ when $\omega(d) = 3$.

Suppose that there is a non-degenerate double pair. Then we get from Lemma 3.4 with $z_0 = 2$ that $d < 3k^2 \leq 3 \cdot 24^2$ contradicting $d \geq 311^2$. Thus there is no non-degenerate double pair corresponding to any partition. Again, if there are pairs (i, j), (g, h) corresponding to partitions $(d_1, d_2), (d_2, d_1)$ for some divisor d_1 of d, then we derive from Lemma 3.3 that $d < (k - 1)^4$. This is not possible since $311^2 \leq d < 12^4$ when $\omega(d) = 2$ and $311^3 \leq d < 23^4$ when $\omega(d) = 3$. Therefore there are no distinct pairs corresponding to

partitions $(d_1, d_2), (d_2, d_1)$ for any divisor d_1 of d. Thus it remains to consider k = 14 when $\omega(d) = 3$ and either k = 8, 9 or $k = 13, (a_0, a_1, \dots, a_{12}) = (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15)$ or its mirror image when $\omega(d) = 2$. Also we may suppose that there is a pair (i, j) with $a_i = a_j$ corresponding to the partition (1, d)for each of these possibilities.

Let k = 8 and $\omega(d) = 2$. We exclude the possibility $(a_0, a_1, \dots, a_7) = (2, 3, 1, 5, 6, 7, 2, 1)$ and the proof for excluding its mirror image is similar. We see that either the pair (0, 6) or (2, 7) corresponds to (1, d) and we arrive at a contradiction as in the case $k = 8, \omega(d) = 1$ and $(a_0, \dots, a_7) = (3, 1, 5, 6, 7, 2, 1, 10)$. Let the pair (0, 6) corresponds to (1, d). Then either $x_6 - x_0 = 1, x_6 + x_0 = 3d$ or $x_6 - x_0 = 3, x_6 + x_0 = d$. Suppose $x_6 - x_0 = 1, x_6 + x_0 = 3d$. Then we obtain $3d = 2x_0 + 1, x_0 \ge 100$ and $(3x_2x_7)^2 = (3n + 6d)(3n + 21d) =$ $(6x_0^2 + 4x_0 + 2)(6x_0^2 + 14x_0 + 7) = 36x_0^4 + 108x_0^3 + 110x_0^2 + 56x_0 + 14 := \psi_2(x_0)$ is a square. This is a contradiction since $(6x_0^2 + 9x_0 + 3)^2 > \psi_2(x_0) > (6x_0^2 + 9x_0 + 2)^2$. Let $x_6 - x_0 = 3, x_6 + x_0 = d$. Then we argue as above to conclude that $d = 2x_0 + 3, x_0 \ge 100$ and $4x_0^4 + 36x_0^3 + 11x_0^2 + 168x_0 + 126 := \psi_3(x_0)$ is a square. This is again not possible since $(2x_0^2 + 9x_0 + 8)^2 > \psi_3(x_0) > (2x_0^2 + 9x_0 + 7)^2$. The other possibility of the pair (2, 7) corresponding to (1, d) is excluded similarly.

Let k = 9 and $\omega(d) = 2$. Then (1.1) holds with k = 8 and $(a_0, \dots, a_7) = (2, 3, 1, 5, 6, 7, 2, 1)$ or its mirror image. This is already excluded. The case $k = 13, \omega(d) = 2$ and $(a_0, \dots, a_{12}) = (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15)$ or its mirror image is excluded as above in the case k = 8.

Let k = 14 and $\omega(d) = 3$. Let $(a_0, \dots, a_{13}) = (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1)$. Then one of the pairs (0, 9), (1, 6), (1, 13), (6, 13) corresponds to the partition (1, d). This is excluded as above in the case $k = 8, \omega(d) = 2$. The proof for excluding the mirror image (1, 15, 14, 13, 3, 11, 10, 1, 2, 7, 6, 5, 1, 3) is similar.

11. Proof of Theorem 1

First we show that $d > 10^{10}$. By Lemma 8.9 and Theorem $\mathcal{A}(a)$, it suffices to consider the case k = 7and (a_0, a_1, \dots, a_6) given by

$$(11.1) (2,3,1,5,6,7,2), (3,1,5,6,7,2,1), (1,5,6,7,2,1,10)$$

or their mirror images. Then for p|d, we have $\left(\frac{q}{p}\right) = 1$ for $q \in \{2, 3, 5, 7\}$. Suppose that $d \leq 10^{10}$. Since $\omega(d) \geq 2$, we have $\mathfrak{p}_1 \leq 10^5$. For X > 0, let

$$\mathcal{P}_0 = \mathcal{P}_0(X) = \{ p \le X : \left(\frac{q}{p}\right) = 1, \ q = 2, 3, 5, 7 \}.$$

We find that that $\mathcal{P}_0(10^5) = \{311, 479, 719, 839, 1009, \cdots\}$. Thus $\mathfrak{p}_1 \geq 311$ by $\mathfrak{p}_1 \in \mathcal{P}_0(10^5)$. Since $311 \cdot 479 \cdot 719 \cdot 839 > 10^{10}$, we have $\omega(d) \leq 3$. Further from $311^2 \cdot 479^2 > 10^{10}$, we get either $\omega(d) = 2, d = \mathfrak{p}_1\mathfrak{p}_2, \mathfrak{p}_1^2\mathfrak{p}_2, \mathfrak{p}_1\mathfrak{p}_2^2$ or $\omega(d) = 3, d = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$.

Consider $(a_0, a_1, \dots, a_6) = (2, 3, 1, 5, 6, 7, 2)$. From $d = n + d - n = 3x_1^2 - 2x_0^2$, $3 \nmid x_0, 4 \nmid x_0x_1$, we get $d \equiv -2 \equiv 1 \pmod{3}$ and $d \equiv 3 - 2 \equiv 1 \pmod{8}$ giving $d \equiv 1 \pmod{24}$. Again from $2(x_6^2 - x_0^2) = n + 6d - n = 1 \pmod{3}$.

 $6d = 6d_1d_2$, we get $x_6 - x_0 = r_1d_1$, $x_6 + x_0 = r_2d_2$ with $r_1r_2 = 3$, $r_1d_1 < r_2d_2$ and $(r_1d_1, r_2d_2) \in \mathfrak{D}_3$ with

$$\mathfrak{D}_{3} = \begin{cases} \{(1, 3\mathfrak{q}_{1}\mathfrak{q}_{2}), (3, \mathfrak{q}_{1}\mathfrak{q}_{2}), (\mathfrak{q}_{1}, 3\mathfrak{q}_{2}), (3\mathfrak{q}_{1}, \mathfrak{q}_{2}), (\mathfrak{q}_{2}, 3\mathfrak{q}_{1})\} & \text{if } \omega(d) = 2\\ \{(1, 3\mathfrak{p}_{1}\mathfrak{p}_{2}\mathfrak{p}_{3}), (3, \mathfrak{p}_{1}\mathfrak{p}_{2}\mathfrak{p}_{3}), (\mathfrak{p}_{1}, 3\mathfrak{p}_{2}\mathfrak{p}_{3}), (3\mathfrak{p}_{1}, \mathfrak{p}_{2}\mathfrak{p}_{3}), \\ (\mathfrak{p}_{2}, 3\mathfrak{p}_{1}\mathfrak{p}_{3}), (3\mathfrak{p}_{2}, \mathfrak{p}_{1}\mathfrak{p}_{3}), (\mathfrak{p}_{3}, 3\mathfrak{p}_{1}\mathfrak{p}_{2}), (3\mathfrak{p}_{3}, \mathfrak{p}_{1}\mathfrak{p}_{2})\} & \text{if } \omega(d) = 3. \end{cases}$$

Then $x_0 = \frac{r_2 d_2 - r_1 d_1}{2}$ giving $x_2^2 = n + 2d = 2x_0^2 + 2d_1 d_2 = \frac{1}{2}\{(r_1 d_1)^2 + (r_2 d_2)^2 - 2d_1 d_2\}$ a square. Now we see from $3x_1^2 = n + d = 2x_0^2 + d = \frac{1}{2}\{(r_1 d_1)^2 + (r_2 d_2)^2 - 4d_1 d_2\}$ that $\frac{1}{6}\{(r_1 d_1)^2 + (r_2 d_2)^2 - 4d_1 d_2\}$ is an square. For each $d = \mathfrak{q}_1\mathfrak{q}_2$, we first check for $d \equiv 1 \pmod{24}$ and restrict to such d. Further for each possibility of $(r_1 d_1, r_2 d_2) \in \mathfrak{D}_3$ with $r_1 d_1 < r_2 d_2$, we check for $\frac{1}{2}\{(r_1 d_1)^2 + (r_2 d_2)^2 - 2d_1 d_2\}$ being a square and restrict to such pairs $(r_1 d_1, r_2 d_2)$. Finally we check that $\frac{1}{6}\{(r_1 d_1)^2 + (r_2 d_2)^2 - 4d_1 d_2\}$ is not a square. For example, let $d = 1319 \cdot 4919$. Then $\mathfrak{q}_1 = 1319, \mathfrak{q}_2 = 4919$. We check that $d \equiv 1 \pmod{24}$. For each choice $(r_1 d_1, r_2 d_2) \in \mathfrak{D}_3$ with $r_1 d_1 < r_2 d_2$, we check for $\frac{1}{2}\{(r_1 d_1)^2 + (r_2 d_2)^2 - 2d_1 d_2\}$ being a square which is possible only for $(r_1 d_1, r_2 d_2) = (1319, 3 \cdot 4919)$. However we find that $\frac{1}{6}\{(r_1 d_1)^2 + (r_2 d_2)^2 - 4d_1 d_2\}$ is not a square of $(r_1 d_1, r_2 d_2) = (1319, 3 \cdot 4919)$.

Next we consider $(a_0, a_1, \dots, a_6) = (3, 1, 5, 6, 7, 2, 1)$. From $d = n + 6d - (n + 5d) = x_6^2 - 2x_5^2$, $3 \nmid x_5, 3 \mid x_6^2$ and $2 \nmid x_6, 4 \mid x_5^2$, we get $d \equiv 1 \pmod{24}$. Again from $x_6^2 - x_1^2 = n + 6d - (n + d) = 5d = 5d_1d_2$ we get $x_6 - x_1 = r_1d_1, x_6 + x_1 = r_2d_2$ with $r_1r_2 = 5, r_1d_1 < r_2d_2$ and

$$\mathfrak{D}_{5} = \begin{cases} \{(1, 5\mathfrak{q}_{1}\mathfrak{q}_{2}), (5, \mathfrak{q}_{1}\mathfrak{q}_{2}), (\mathfrak{q}_{1}, 5\mathfrak{q}_{2}), (5\mathfrak{q}_{1}, \mathfrak{q}_{2}), (\mathfrak{q}_{2}, 5\mathfrak{q}_{1})\} & \text{if } \omega(d) = 2\\ \{(1, 5\mathfrak{p}_{1}\mathfrak{p}_{2}\mathfrak{p}_{3}), (5, \mathfrak{p}_{1}\mathfrak{p}_{2}\mathfrak{p}_{3}), (\mathfrak{p}_{1}, 5\mathfrak{p}_{2}\mathfrak{p}_{3}), (5\mathfrak{p}_{1}, \mathfrak{p}_{2}\mathfrak{p}_{3}), (\mathfrak{p}_{2}, 5\mathfrak{p}_{1}\mathfrak{p}_{2}), (\mathfrak{p}_{3}, \mathfrak{p}_{1}\mathfrak{p}_{2}), (\mathfrak{p}_{3}, \mathfrak{p}_{1}\mathfrak{p}_{2})\} & \text{if } \omega(d) = 3. \end{cases}$$

Thus $x_6 = \frac{r_2 d_2 + r_1 d_1}{2}$ giving $2x_5^2 = n + 5d = x_6^2 - d = \frac{1}{4}\{(r_1 d_1)^2 + (r_2 d_2)^2 + 6d\}$ implying $\frac{1}{2}\{(r_1 d_1)^2 + (r_2 d_2)^2 + 6d\}$ is a square. Further from $7x_4^2 = n + 4d = n + 6d - 2d = x_6^2 - 2d = \frac{1}{4}\{(r_1 d_1)^2 + (r_2 d_2)^2 + 2d_1 d_2\}$, we get $\frac{1}{7}\{(r_1 d_1)^2 + (r_2 d_2)^2 + 2d_1 d_2\}$ is a square. For each $d = \mathfrak{q}_1\mathfrak{q}_2$, we first check for $d \equiv 1 \pmod{24}$ and restrict to such d. Further for each possibility of $(r_1 d_1, r_2 d_2) \in \mathfrak{D}_5$ with $r_1 d_1 < r_2 d_2$, we check for $\frac{1}{2}\{(r_1 d_1)^2 + (r_2 d_2)^2 + 6d\}$ being a square and restrict to such pairs $(r_1 d_1, r_2 d_2)$. Finally we check that $\frac{1}{7}\{(r_1 d_1)^2 + (r_2 d_2)^2 + 2d\}$ is not a square. Further the case $(a_0, a_1, \cdots, a_6) = (1, 5, 6, 7, 2, 1, 10)$ is excluded by the preceding test.

The case $(a_0, a_1, \dots, a_6) = (2, 7, 6, 5, 1, 3, 2)$ is similar to $(a_0, a_1, \dots, a_6) = (2, 3, 1, 5, 6, 7, 2)$ and we obtain $d \equiv -1 \pmod{24}$, $\frac{1}{2} \{ (r_1d_1)^2 + (r_2d_2)^2 + 2d \}$ and $\frac{1}{6} \{ (r_1d_1)^2 + (r_2d_2)^2 + 4d \}$ are squares for each possibility of $(r_1d_1, r_2d_2) \in \mathfrak{D}_3$ with $r_1d_1 < r_2d_2$. This is excluded. The cases $(a_0, a_1, \dots, a_6) = (1, 2, 7, 6, 5, 1, 3), (10, 1, 2, 7, 6, 5, 1)$ are also similar to that of $(a_0, a_1, \dots, a_6) = (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10)$ and is excluded. Thus $d > 10^{10}$.

Now we show that $d > k^{\log \log k}$. Since $k^{\log \log k} < 10^{10}$ for k < 22027, we may assume that $k \ge 22027$. By Corollary 8.7, we obtain $\omega(d) \ge 9$ and $k < 2(\omega(d) - \theta)2^{\omega(d)-\theta} =: \Psi_0(\omega(d) - \theta)$. Further we derive from $22027 \le k < 2\omega(d)2^{\omega(d)}$ that $\omega(d) \ge 11$. It suffices to show that $\log d > (\log \Psi_0(\omega(d) - \theta))(\log \log \Psi_0(\omega(d) - \theta)) =: \Psi_1(\omega(d) - \theta)$. Let $\Psi_2(l) = l(\log l + \log \log l - 1.076868)$ for l > 1. From $d \ge 2^{\delta} \prod_{i=2}^{\omega(d)+1-\delta'} p_i$ and Lemma 5.1 (iv), we get $\log d > \Psi_2(\omega(d) + 1) - \log 2, \Psi_2(\omega(d)) + (\delta - 1) \log 2$ when $2 \nmid d, 2 \mid d$, respectively. It suffices to check for $\omega(d) \ge 11$ that $\Psi_2(\omega(d) + 1) - \log 2 - \Psi_1(\omega(d)) > 0$ if $2 \nmid d, \Psi_2(\omega(d)) - \Psi_1(\omega(d) - 1) > 0$ if $2 \mid d, 4 \mid d$ and $\Psi_2(\omega(d)) + \log 4 - \Psi_1(\omega(d)) > 0$ if $8 \mid d$. This is the case. 12. Theorem 2 with $\omega(d) = 2$ and $gcd(n, d) \ge 1$

As stated in Section 1, we prove

Theorem 4. A product of eight or more terms in arithmetic progression with common difference d satisfying $\omega(d) = 2$ is not a square.

Proof. Suppose Theorem 4 is not true. Then (1.1) is valid with $k \ge 8, b = 1$ and $\omega(d) = 2$ but n and d not necessarily coprime. Let $n' = \frac{n}{\gcd(n,d)}$ and $d' = \frac{d}{\gcd(n,d)}$. Now, by dividing $\gcd(n,d)^k$ on both sides of (1.1), we have

(12.1)
$$n'(n'+d')\cdots(n'+(k-1)d') = \mathfrak{p}_1^{\delta_1}\mathfrak{p}_2^{\delta_2}y_1^2$$

where $y_1 > 0$ is an integer and $\delta_1, \delta_2 \in \{0, 1\}$. We may assume that k is odd and $(\delta_1, \delta_2) \neq (0, 0)$ by Theorem 2 with $\omega(d) = 2$. Let d' = 1. Then we see from [SaSh03b, Corollary 3] that the left hand side of (12.1) is divisible by at least three primes > k. Therefore there exists a prime p with $p \neq \mathfrak{p}_1, p \neq \mathfrak{p}_2, p > k$ such that it divides a term on the left hand side of (12.1) to power at least 2. This implies $n' > k^2$. Now we see from [MuSh04b, Theorem 2] that the left hand side of (12.1) is divisible by at least three primes > k to odd powers. This contradicts (12.1). Thus d' > 1 implying $(\delta_1, \delta_2) \neq (1, 1)$ by gcd(n', d') = 1. Now we may assume that $(\delta_1, \delta_2) = (1, 0)$. Then d' is a power of \mathfrak{p}_2 . Further we may suppose that $\mathfrak{p}_1 \ge k$ by the results stated in Section 1. Let $n + i_0 d$ with $0 \le i_0 < k$ be the term divisible by \mathfrak{p}_1 on the left hand side of (12.1). Then

$$n'\cdots(n'+(i_0-1)d')(n'+(i_0+1)d')\cdots(n'+(k-1)d')=b'y_2^2$$

where P(b') < k and $y_2 > 0$ is an integer. Now k = 8 by [MuSh04a, Theorem 1]. This is not possible since k is odd.

References

- [BBGH06] M. Bennett, N. Bruin, K. Győry and L. Hajdu, Powers from products of consecutive terms in arithmetic progression, Proc. London Math. Soc. 92 (2006), 273-306.
- [Dus98] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D thesis, Université de Limoges, 1998.
- [Dus99] P. Dusart, Inégalitiés explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Rep. Acad. Sci. Canada **21(1)**(1999), 53-59, 55.
- [ErSe75] P. Erdős and J.L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
- [FiHa01] P. Filakovszky and L. Hajdu, The resolution of the Diophantine equation $x(x+d)\cdots(x+(k-1)d) = by^2$ for fixed d, Acta Arith., **98** (2001), 151-154.
- [HiLaShTi06] N. Hirata-Kohno, S. Laishram, T. N. Shorey and R. Tijdeman, An extension of a theorem of Euler, Acta Arith., to appear.
- [Lai06] S. Laishram, An estimate for the length of an arithmetic progression the product of whose terms is almost square, Pub. Math. Debrecen, 68(3) (2006), 451-475.
- [LaSh06] S. Laishram and T. N. Shorey, The greatest prime divisor of a product of terms in an arithmetic progression, Indag. Math., 17(3) (2006), 425-436.
- [LaSh04] S. Laishram and T. N. Shorey, Number of prime divisors in a product of terms of an arithmetic progression, Indag. Math., 15(4) (2004), 505-521.
- [Mar85] R. Marszalek, On the product of consecutive elements of an arithmetic progression, Monatsh. für. Math. 100 (1985), 215-222.
- [MuSh03] A. Mukhopadhyay and T. N. Shorey Almost squares in arithmetic progression (II), Acta Arith., 110 (2003), 1-14.
- [MuSh04a] A. Mukhopadhyay and T. N. Shorey Almost squares in arithmetic progression (III), Indag. Math., 15 (2004), 523-533.
- [MuSh04b] A. Mukhopadhyay and T. N. Shorey Square free part of products of consecutive integers, Publ. Math. Debrecen, 64 (2004), 79-99.

- [Rob83] G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction $\omega(n)$ nombre de diviseurs premiers de n, Acta Arith., **42** (1983), 367-389.
- [Rob55] H. Robbins, A remark on stirling's formula, Amer. Math. Monthly 62, (1955). 26-29.
- [RoSc62] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois Jour. Math 6(1962), 64-94.
- [Sar97] N. Saradha, On perfect powers in products with terms from arithmetic progressins, Acta Arith., 82, (1997), 147-172.
- [SaSh03a] N. Saradha and T. N. Shorey, Almost squares in arithmetic progression, Compositio Math. 138 (2003), 73-111.
- [SaSh03b] N. Saradha and T. N. Shorey, Almost squares and factorisations in consecutive integers, Compositio Math. 138 (2003), 113-124.
- [SaSh05] N. Saradha and T. N. Shorey, Contributions towards a conjecture of Erdos on perfect powers in arithmetic progressions, Compositio Math., 141 (2005), 541-560.
- [Sho02] T. N. Shorey, Powers in arithmetic progression, A Panorama in Number Theory or The View from Baker's Garden, edited by G.Wustholz, Cambridge University Press (2002), 341-353.
- [ShTi90] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. **75** (1990), 307-344.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India *E-mail address:* shanta@math.tifr.res.in

E-mail address: shorey@math.tifr.res.in