THE EQUATION n(n+d)--(n+ (k—1)d) = by> WITH w(d) <6 OR d < 101°
SHANTA LAISHRAM AND T. N. SHOREY

ABSTRACT. For relatively prime positive integers n and d, a well-known Conjecture states that n(n +
d)- - (n+ (k—1)d) with k > 4 is never a square. The first result is due to Euler for k¥ = 4. We confirm the
conjecture when d < 1010 or d has at most five prime divisors.

1. INTRODUCTION

For an integer > 1, we denote by P(x) and w(z) the greatest prime factor of z and the number of
distinct prime divisors of x, respectively. Further we put P(1) = 1 and w(1) = 0. The letter p always denote
a prime number and p; the i—th prime number. Let n,d, k,b and y be positive integers such that b is square
free, k > 2, P(b) < k and ged(n,d) = 1. We consider the equation
(1.1) nn+d)---(n+(k—1)d) =by* inn,d,k,b,y.

If d = 1, then (1.1) has been completely solved for P(b) < k by Erdés and Selfridge [ErSe75] and for P(b) = k
by Saradha [Sar97]. Therefore we always suppose that d > 1. We observe that (1.1) has infinitely many
solutions if £k = 2,3 and b= 1. Also (1.1) with k£ = 4 implies that b = 6. Therefore we always suppose that
k > 5 if we consider (1.1) and k > 4 if we consider (1.1) with b = 1. It has been conjectured that (1.1)
with £ > 5 does not hold. A weaker version due to Erdés states that (1.1) implies that & is bounded by
an absolute constant. This has been confirmed by Marszalek [Mar85] when d is fixed and by Shorey and
Tijdeman [ShTi90] when w(d) is fixed. In fact Shorey and Tijdeman [ShTi90] proved that (1.1) implies that

(1.2) 2¢(d) > ok
which gives

d > kezloglogk
where ¢; > 0 and ¢y > 0 are absolute constants. Laishram [Lai06] gave an explicit version of (1.2) by showing
(1.3) k < 11w(d)4% @D if w(d) > 12
and we improve
(1.4) k< 2w(d)2*@,
see Corollary 8.7 when w(d) > 5 and Theorem 3 when w(d) < 5 for a precise formulation. Equation (1.1)
has been completely solved in Saradha and Shorey [SaSh03a] for d < 104 and k > 4. We prove
Theorem 1. Equation (1.1) with k > 6 implies that

d > max (1010, glosloek),
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For a given value of d, we observe that (1.1) with k& € {4,5} can be solved via finding all the integral
points on elliptic curves by MAGMA or SIMATH as in [FiHa01] and [SaSh03a]. Analogous results on higher
powers for (1.1) with & > 4 and y? replaced by y* where ¢ > 2 is prime are proved in Saradha and Shorey
[SaSh05]; they showed that d > 30,5 - 10%, 108 and 10'® according as ¢ = 3,5,7 and > 11, respectively. For
Theorem 1, we prove several results on (1.1) which are of independent interest. For example, we solve (1.1)

when w(d) < 5,b =1 or w(d) < 4. We prove
Theorem 2. Equation (1.1) with b =1 and w(d) <5 does not hold.

Theorem 2 contains the case w(d) = 1 already proved by Saradha and Shorey [SaSh03a]. In fact they
proved it without the assumption ged(n,d) = 1. We show that this is also not required when w(d) = 2 and
k > 8, see Section . We derive Theorem 2 from a more general result and we turn to introducing some
notation for it.

From (1.1), we have
(1.5) n+id = a;x? for 0 <i <k
where a;’s are square free such that P(a;) <max(P(b),k — 1) < k. Thus (1.1) with b as the squarefree part
of apay - - - ax—1 is determined by the k—tuple (ag, a1, - ,ar—1). We rewrite (1.1) as
(1.6) N(N —d)--- (N —=(k—1)d) =by*>, N=n+ (k—1)d.
We call (1.6) as the mirror image of (1.1). It is completely determined by (ax—_1,- - ,a9) which we call as
the mirror image of (ag,- - ,ar—1). Let &1 be the set of tuples (ag,-- ,ax_1) given by
k=8:(231,56,721),(3,156,7,21,10);
k=9:(23,15,6721,10);
k=13:(3,1,5,6,7,2,1,10,11,3,13, 14, 15), (1,5,6,7,2, 1,10, 11, 3,13, 14, 15, 1)
and their mirror images. Further G5 be the set of tuples (ag, a1, ,ax—1) given by
k=14:(3,1,5,6,7,2,1,10,11,3,13,14,15,1);
k=19:(1,5,6,7,2,1,10,11,3,13,14,15,1,17,2, 19, 5, 21, 22);
6,7,2,1,10,11,3,13,14,15,1,17, 2, 19, 5,21, 22, 23,6, 1, 26, 3, 7);
k=24

and their mirror images.

Equation (1.1) with k& = 6 is not possible by Bennett, Bruin, Gydry and Hajdu [BBGHO06]. Also (1.1) with
k € {5,7} and P(b) < k does not hold by Mukhopadhyay and Shorey [MuSh03] for k£ = 5 and Hirata-Kohno,
Laishram, Shorey and Tijdeman [HiLaShTi06] for k = 7. We do not have any contribution for the cases

(
k=23:(5,6,7,2,1,10,11,3,13,14,15,1,17,2,19,5,21,22, 23,6, 1, 26, 3),
(
(

5,6,7,2,1,10,11,3,13,14,15,1,17,2,19,5, 21,22, 23,6, 1, 26, 3, 7)

k € {5,7} and P(b) = k in the next result where we solve all the equations (1.1) other than the ones given

by &1 U &5 whenever w(d) < 4 and therefore we assume k > 8 in Theorem 3 (a). More precisely, we prove
Theorem 3. (a) Equation (1.1) with k > 8 and w(d) < 4 implies that either w(d) = 2,k =8, (ag, a1, -+ ,a7) €

{(3,1,5,6,7,2,1,10),(10,1,2,7,6,5,1,3)} orw(d) = 3, (ag, a1, - ,ax—1) € &1 orw(d) =4, (ag,a1, - ,ax—1) €
S, U Gs.
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(b) Equation (1.1) with w(d) € {5,6} and d even does not hold.

Theorem 3 contains already proved case w(d) = 1 where it has been shown in [SaSh03a] for & > 29
and [MuSh03] for 4 < k < 29 that (1.1) implies that either k = 4,(n,d,b,y) = (75,23,6,140) or k =
5, P(b) = k. The next result shows that it suffices to prove our Theorems 1 and 3 for £ > 101 unless
(1.1) is given by & which is the union of &1,8, and set of tuples given by k = 7, (ag,a1, - ,ax—1) €
{(2,3,1,5,6,7,2),(3,1,5,6,7,2,1),(1,5,6,7,2,1,10)} and their mirror images.

Theorem A. (a) Equation (1.1) with 7 < k < 100 is not possible unless (ag,a1,--- ,ax—1) € 6.
(b) Equation (1.1) with 4 < k <109 and b =1 does not hold.

This is due to Hirata-Kohno, Laishram, Shorey and Tijdeman [HiLaShTi06]. For a survey of related
results, see [Sho02].

2. NOTATIONS AND PRELIMINARIES

Let k>4 and v1 < 72 < -+ < be integers with 0 <~; < k for 1 < i <t. We consider a more general

equation
(2.1) (n+md) - (n+ vd) = by?

in positive integers n,d, k,b,y,t with b squarefree, P(b) < k and ged(n,d) = 1. If t = k, we observe that
~vi =1 —1 and (2.1) coincides with (1.1). It is of interest to consider more general equation (2.1) because of

possible applications. Assume that (2.1) holds. Then we have
(2.2) n+yd= a%x?ﬁ for1<i<t
with a., squarefree such that P(a.,) < k. Also
(2.3) n+id=A, X for1<i<t
P(A,,) <k and ged(X;, [[,<, p) = 1. Further we write
bi=ay, Bi=A,, yi=z,, Yi=X,.
Since ged(n, d) = 1, we see from (2.2) and (2.3) that
(2.4) (bi,d) = (Bi,d) = (yi,d) = (Yi,d) =1 for 1 <i <t
Let
R={b:1<i<t}.
For b; € R, let v(b;) = |[{j : 1 <j <t,b; =b;}| and
Vo(bi) = [{j: 1 <J <t,b; =bi, 24y}, ve(bs) = [{j:1<j <t,b; =bi,2[y;}].
We define
Ry={bi € R:v(b;) =p}, ru=IRul, v=I[{(i,4):b;=b;,i>j}
Let

TZ{ISZStY;ZI}, le{lglgtYl>l}, Slz{BlZETl}



4 SHANTA LAISHRAM AND T. N. SHOREY

Note that Y; > k for ¢ € Ty. For i € T1, we denote by v(B;) = |{j € T1 : B; = B;}|.
Let

(2.5) § = min(3,ordz(d)), & = min(1, ordy(d)),
1 if <1
(2.6) T i e
2 if orda(d) > 2
and
3 if 3/d,
2.7 =
27 p {1 if 31d.

Let d |d and d” = di, be such that ged(d ,d") = 1. We write

1 if ordy(d")

1" S 1
d = didz, ged(dy, dz) = {2 if ordy(d”) > 2

and we always suppose that d; is odd if ords (d”) = 1. We call such pairs (di,d2) as partitions of d’. We
observe that the number of partitions of d’ is 2“(‘1”)_‘91 where
moidy={y o) T
and we write 6 for 6;(d). In particular, by taking d’ = 1 and d’ = d, the number of partitions of d is 2«(@ ¢
Let b; = b;,i > j. Then from (2.2) and (2.4), we have

(2.8) i=) g _ ¥ iy it y)

bz d// d//
such that ged(d, y; —y;,Yi+y;) =1if d" is odd and 2 if " is even. Thus a pair (4, ) with i > j and b; = b;

corresponds to a partition (dy,dy) of d such that dy | (yi — y;), d2 | (y; +y;) and it is unique. Similarly, we
have unique partition of d” corresponding to every pair (i, j) whenever B; = B, i,j €Th.

Let p; < ps < --- be the odd primes dividing d. Let

d = 290192 - Clu(dy—1 if0=1,2
q1q2 -+ Gu(d) otherwise

where g1 < g2 < ---dy(4)—¢ are prime powers dividing 2%. By induction, we have

4\ s
(2.9) Pib2- P S quq2- - qn < (250>
for any h with 1 < h < w(d) — 0. Further we define
(2.10) Ap ={B; €T1 : B; <qiaz2---dn}t, An = |[Anl-
for any h with 1 < h < w(d) — 6.
3. UPPER BOUND FOR n + (k — 1)d

In this section, we assume that (2.1) holds. Let ¢ > j,g > h,0 < i,7,9,h < k be such that
(3.1) b =bj, by ="bp, Vi +7 =Yg+
and

(3.2) Vi —y; = dir1, yi +y; = dar2, Yy — Yn = d181, Yg + yn = da2S2
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where (dy, d2) is a partition of d. We write V' (4, j, g, h, d1, d2) for such double pairs. We call V (i, j, g, h,d1, d2)

degenerate if

(33) bi:bg,’l"l = 81 Or bi:bg,r2:52.
Otherwise we call it non-degenerate. Let ¢; and g be given by

(3.4) |bir? — byst| = qida and |bir3 — bys3| = gad;.

We shall also write V' (i, 7,9, h,d1,d2) = V(i,4,9,h,d1,d2,q1,q2).

Let © be a set of pairs (i,7) with ¢ > j such that b; = b;. Then we say that Q has Property ND if the
the following holds: For any two distinct pairs (4, j) and (g, h) in 2 corresponding to a partition (di,ds) of
d, the double pair V (4, j, g, h,d1,ds) is non-degenerate.

In this section, we give upper bound for n + (k — 1)d whenever it is possible to find a non-degenerate
double pair. The next section gives lower bound for n + (k — 1)d. As in [ShTi90], the proof of our theorems
depend on showing that the upper bound and lower bound for n 4+ (k — 1)d are not consistent whenever
it is possible to find a non-degenerate double pair. Further we show in this section that this is always the
case whenever k — |R| > 2¢(D=% If we do not have this, we use Lemmas 5.4 and 7.6 depending on an idea
of Erdds to give an upper bound for k. Thus there are only finitely many possibilities for & and we use
counting arguments given in Section 6 to exclude these possibilities. For example, we show in Lemma 7.5
that k is large whenever d is divisible by two small primes. This is very useful in our proofs and increases
considerably a lower bound for d in Theorem 1. The computations in this paper were carried out using
MATHEMATICA.

We begin with the following result.

Lemma 3.1. Let d = 01(k — 1)%2,n = 0(k — 1)3 with 61 > 0 and 65 > 0. Let V(i,3,g,h,d1,da,q1,q2) be a

non-degenerate double pair. Then

1 1 1 01
3.5 Oy <= — =01+ ) — + —L
(3:5) 272 {qwz ! (q192)? 111(12}
and
ok — 1) Ak — 1)
3.6 d < —————, dy < ———=.
(3:6) ! q1(202 + 61) 2 G2

Proof. We have from (3.2) that y; = 9r1dd2r2 ang y, = 9siddesz  Fyrther from (2.2) and (3.1), we get

1
(vi —g)d = biy? — bgyg =1 {(birf — bgsf)d% + (birs — bgsg)dg + 2d(b;rire — bgslsg)} .

We observe from (3.2), (3.1) and (2.2) that b;rire = v; — 7v;,b95152 = g — Y. Therefore
(3.7) 2(vi + Vi — Y9 — Yn)d = (bﬂ"% - ng%)d% + (bﬂ"% - bgsg)d%
Then reading modulo dy, ds separately in (3.7), we have

dg‘(bir% — bys?), dll(birg ~ bys2) if ordy(d) < 1
(3.8)

d d
;‘(bir% — bys?), é’(bﬂ‘% — bys3) if orda(d) > 2.
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Hence 2q1,2¢2 are non-negative integers. We see that ¢; # 0 and ¢o # 0 since V (3,4, 9, h,d1,ds, q1,q2) is
non-degenerate. Further we see from (2.2) that
(3.9) biy; — beys = (vi — vg)d,  bjyF — bayi = (v; — n)d.
Therefore, by (3.2), we have
0% Fy:= (birf — bysT)dT = bi(yi — ;) = bg(yg — yn)”

(3.10)

= (Vi + 7 =Yg — m)d = 2(bi%iiy; — bgygyn)
and
(3.11) 0 # Fy o= (bir3 — bys3)d3 = bi(yi +1;)* = by(yy + yn)?

= (Vi 7% — Y9 —m)d + 2(biyiy; — baygyn)-
We note here that F; < 0, F5 < 0 is not possible since ; +v; > v + Va.
Let a and b be positive real numbers with a # b. We have 2vab = (a + b)(1 — (22)2)2. By using

a+b
l—z< (1—3;)% <1-35for0<uz<1, weget a+b—% < 2Vab < a+b— ;‘E;ﬁj We use it with
a=n+d and b =n+ v;d so that Vab = b;yiy; by (2.2) and (3.1). We obtain
(vi = 75)*d? (vi = 75)*d?

(3.12) 2n + (v; +7;)d < 2biyiy; < 2n+ (v +75)d

e e el
Similarly we get

(vg = )*d”
2n + (g +m)d
Therefore we have from (3.4), (3.10), (3.12) and (3.13) that

. (’Yg _'WL)Zd2
An +2(vg + yn)d’

(3.13) 2n+ (vg +n)d — < 2bgygyn < 2n+ (4 +vn)d

qddy <(vi +7v5 =Yg — n)d — (2n + (vi +,)d) + (i)
i J g 1 J 2n+(’}/1+’}/])d
(’Vg _Vh)2d2

g

if F1>0

and
(i — %‘)2d2
ddy <(2 i d) — ————— — (2 d
quddy <(2n + (v; + v;)d) I+ 203 + 7)d (2n+ (7 +m)d)
(g = )*d* -
—  — —(y =Yg — dif F; <0.
3+ (7 + ) (Vi +75 — g —m)d if Fy
Thus
(vi—v)%d 01 (vi—v)” :
(3.14) qdi < 2n+(%‘er‘)d o 262(k—1)+011(%;mj) it /1 >0,
(vg—n)7d 01(vg—n) if Fy <0.

2t (g tyn)d — 205 (k= D)+01 (g F71)
Similarly from (3.4), (3.11), (3.12) and (3.13), we have

0 ( g L)2 .
(3 15) q2d2 < 2(71 + Vi — Zg - ’Yh) + 292(ki1’;+9?27g+’)’h) if FQ >0
' 01 (i~ .
292(ki(1’;+9211(’)ﬁ+7j) —2(vi+vj =79 —n) if F2 <O.
Let
01(vi + 7)) 02(vi — ;)2
ii=(k—=1)2205(k—1 J/ 1 Jj
g = ( ) { 2( )+ 2 220,k — 1) + 01 (7; + 7))
and
01(7g + ) 02(~v, — )2
= (k—1)205(k—1 g _ 1%y .
Ng,h ( ) { 2 ( )+ 2 2(205(k — 1) + 91(% +91))
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Then we see from (3.12) and (3.13) that n;; < by;y; < 2bi(yi +y;)? and ng, < byyeyn < 2be(yy + yn)%
respectively. Assume F; > 0. Then from (3.4), (3.11) and (3.2), we have

1 1
ni jqidadi < ibi(yi + )by — y;)? = = (i —v5)°d”

4
implying
M, j 01 Y+ 01(vi —75)?
0 + 0y = d_ + (k -1- L4+ J
(3.16) TR T k-1 T k-1 2 2205 (k — 1) + 61 (i +75))
. (vi —5)? do .
- do+ 0 < ————+0;if ;>0

<4(J1(k—1)3 2+ 174q1(k—1)+ 1L >

_~)2 =Y 2 i . ..
by estimating 2(292(21(¥;+;’1J()7i+%)) < éz%z%) <X ‘5%. Similarly

do

3.17 0 +0, < ————+ 0, if I <O.
(3.17) RS e TR

We separate the possible cases:

Case I: Let F; > 0, F» > 0. From (3.14) and (3.15), we have

61(vi —;)* { 017 — n)*
01(k — 1) < ’ 20v + 75 = %9 =) + :
e iy ey vy ) K i et e (el T3 e y ey oy copprery
01(vi —;)*

2(7i N =2 —
292(k,1)+91(%+%){ (vi +73) (Vg + ) + 79 — Y}

201 (v —%)* (i ) 2017} - 20, (k —1)3
292(k — 1) + 91(’}/1 +’}/j) - 292(k — 1) + 91’71' - 292(k — 1) + 91(]6 — 1)

3
since 292(13_01% is an increasing function of «;. Therefore 265 + 0; < ﬁ which gives (3.5). Further from

(3.14) and (3.15), we have

61 (vi —5)? 0177 < O1(k—1)

d; < <
P 200k — 1) + 01 (v + 7)) @ (202(k — 1) +017:) — qu(202 +01)

and

2(7vi + ;) < 4(k —1)
q2 q2

1
dy < - {207 +v5) = 2(vg + ) +7g — W} <

giving (3.6).
Case II: Let Fy > 0, F> < 0. From (3.14), we have

01(vi —3)? 01(k —1)

dy < < .
! q1(202(k = 1) +01(vi +v5))  q1(202+61)

Similarly do < q%‘gzle(ﬁr_oll) < % from (3.15) and 7; +; > 74 + Yn. Therefore (3.6) follows. Further

02(k —1)?

01k—1)2 =d=dydy < —1——7
i ) 1 q192(202 + 01)?

implying (202 + 61)? < qf(lh. Hence (3.5) follows.

Case III: Let F} < 0, Fy > 0. From (3.14) and (3.15), we have

0r(k—1)* < 4kF 207 +v5 —g) + 4l :
q1q2(202(k — 1) + 617,) T 205(k — 1) + 01
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205 (k—1 6172 01 (k—1
Let x(vq) =1 — m so that yyx(v4) = 292(k_117)+91,yg < 219(2+91) and both x(v4) and v,x(v4) are

increasing functions of 7,. Since v; +v; < 2(k — 1), we have

6y (k — 1)? < 22509 o000 1) ) 4 yax(r))
q192

- 92(1“(7;72) 29,20k — 1) — 7)) +72x(7) } -

We see that v,4(2(k — 1) —,) is an increasing function of 4 since 74 < k — 1. Therefore the right hand side

of the above inequality is an increasing function of v,. Hence we obtain
01/(k — 1) 01 (k —1)2 0 0
91<71/( ) {2(k—1)2+ i )}: ! {2+1 }
q192(202 + 01) 202 + 61 q192(202 + 01) 202 + 61

Thus (26, + 61)? < 3014402 - Then we derive

q14q2
1 1 0
(292 + 60, — 2 < 5 + ! .
q1492 (Q16]2) q192
Thus we get either 205 + 6 < ﬁ or 205 + 6, — ﬁ < ((h;)z + qfr112 giving (3.5). Further from (3.14),
we have
0 — )2 01(k—1
dl < l(lyl] ’Yh) < 1( ) .
q1(202(k — 1) + 61(vg + ) q1(202 + 61)
As in Case I, we have dy < 2E=1 Thuysg (3.6) follows. O

q2

Let 601,05 be as in as the statement of Lemma 3.1.

Corollary 3.2. We have

3 3
(3.18) 0 < —, 01 +05 <01 +20, < —.
q1492 q142
Proof. Since 0 > 0, we see from (3.5) that either 6; < q11q2 or (61 — ﬁ)Q < (qléz)Q + q?ﬁ giving 6; < qlng.
Hence we get from (3.5) that
1 1 0 3
91 + 292 < + 3 + ! < .
0142 (192)* @192~ Q192
Thus (3.18) is valid. O

Lemma 3.3. Let b; = b;,b, = by, and (dy,d2) # (n, %) be a partition of d. Suppose that (i,j) and (g, h)
correspond to the partitions (dy,ds) and (ds,dy), respectively. Then

(3.19) dy <n(k —1)%, dg < n(k —1)2
Proof. We write
Yi —y; = diry, yi +y5 = dara, Yg — yn = d2s2, Yo +yn = dis1.
with
(3.20) birira = %i — 75, bgs152 = 79 = Vh-
Then as in the proof of Lemma 3.1, we get (3.7) and (3.8). If both b;rf — bys? # 0 and b;r3 — bys3 # 0,

we obtain max(dy,dz2) < n max(b;r?,bys?, bird, bys3) < n(k — 1)? by (3.20). Thus we may assume that

either b;r? — b,s? = 0 or bir? — b,s3 = 0. Note that b;r} — bys? = bir? — b,s3 = 0 is not possible. Suppose
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bir? — bgst = bird — bys3 = 0. Then b; = by, 71 = s1,72 = so implying y; = y,,y; = yn. Hence we
get vi = ¥g,7; = 7Yn from (2.2) implying (¢,7) = (g, h) which is a contradiction. Now we consider the
case bjr} — bys? = 0 and the proof for the other is similar. From b;r3 — bys3 # 0 and (3.7), we obtain
2(vi + v — g — vn)d1 = (bir3 — bys3)dy implying dy|n(bir3 — bys3) and da|2n(vi + v; — vy — Yn). Hence by
(3.20), dy <n(k —1)%*,ds < 2n(k —1+k —2—1) <n(k — 1)? implying (3.19). O

For two pairs (a,b), (¢,d) with positive rationals a, b, ¢, d, we write (a,b) > (¢,d) if a > ¢, b > d.

Lemma 3.4. Let (dy,ds2) be a partition of d. Suppose that there is a set & of at least zo distinct pairs
corresponding to the partition (di,ds) such that V (i, 7, g, h,dy,ds) is non-degenerate for any (i,7) and (g, h)
in &. Then (3.5), (3.6) and (3.18) hold with (q1,q2) > (Q1,Q2) where (Q1,Q2) is given by the following
table.

zo | d odd 2||d 4||d 8|d

2 | (1,1) (2,1) (3:32) (1, 3) i 2[ldy, (5,1) if 2[|do

3 1(2,2) | (4,4) or (8,2) (2,2) (2,2)

51 (4,4) (8,4) (2,8) or (8,2) | (2,8) if 2||d1, (8,2) if 2||d2
Table 1

For example, (Q1,Q2) = (1,1) if 29 = 2,d odd and (Q1,Q2) = (2,2) if 2o = 3,4||d. If there exists a
non-degenerate double pair V (4, j, g, h, d1, d3), then we can apply Lemma 3.4 with zg = 2.

Proof. For any pair (i,7) € &, we write
(3.21) yi —y; =711(6,5)d1 and y; +y; = 12(i,j)d2

where 71 = r1(i, ) and ro = ro(i,j) are integers.

Let d be odd. Then r; = ra(mod 2) for any pair (i,7) by (3.21) and we shall use it in this paragraph
without reference. We observe that ¢; > 1,¢2 > 1 by (3.8), (3.4) and the assertion follows for zo = 2. Let
zo9 = 3. If there are two distinct pairs (i, j) with b;r; even, then ¢ > 2,2 > 2 by (3.8). Thus we may assume
that there is at most one pair (4, j) for which b;ry is even. Therefore, for the remaining two pairs, we see that
both b;r1’s are odd and the assertion follows again by (3.8). Let zo = 5. We may suppose that there is at
most one (4, j) for which r; is even otherwise the result follows from (3.8). Now we consider remaining four
pairs (4, j) for which r? = 1(mod 4). Out of these pairs, there are (i1, j1) and (iz, j2) such that b;, = b;, (mod
4) since b’s are square free. Now the assertion follows from (3.8).

Let d be even. We observe that

(3.22) 81(y7 — v3) and ged(ys — yj, i + y;) = 2

for any pair (i,5). Let 2||d. Then d; is odd and ds is even implying 7y is even by (3.22). Further from

(3.22), we have either 4|r;,2 1 ro or 2||r1,2|re. Therefore (¢1,92) > (2,1) by (3.8) since r; is even and
the assertion follows for zp = 2. Let zp = 3. Then there are two pairs (i1,71) and (ig,j2) such that
ro(i1, 1) = ra(iz, j2)(mod 2). Assume that ro is odd. Then 4|r; which implies 8|¢g; and 2|g2 by (3.8). Now

we suppose that 7o is even. Then 2||r;. We write 1 = 2r] and

bilr%(ilajl) - bizrf(i%jQ) = 4(bi1’r/12(i1’j1) - bi27"/12(i2aj2)) = O(mOd 8)
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Hence 4|q1, 4|g2 by (3.8). Let zp = 5. We choose three pairs (4,7) for which all b;’s = 1(mod 4) or all b;’s
= 3(mod 4). Out of these, we choose two pairs both of which satisfy either 4|r;,2 1 rg or 2||r1,2|r2. Now we
argue as above and use b;, = b;,(mod 4) to get the result.

Let 4||d. Then both d; and d are even. From (3.22), we have either 2|r;,2 { ro or 2 1 71, 2|re. Since
(q1,92) = (3,3) by (3.8), the the assertion follows for 29 = 2. Let zo = 3. Then there are two pairs (i1, j1)
and (ig, j2) such that r1(i1, 1) = r1(i2,J2)(mod 2) and 74 (i1, j1) = r2(i2, j2)(mod 2). Since b; = n(mod 4)
for each i, we get from (3.8) and (3.4) that 2|¢g; and 2|¢2. Thus (g1,92) > (2,2). Let zo = 5. Then we
get 3 pairs (4,7) for which 2|ry(4,5),2 1 r2(i,7) or 3 pairs (4,5) for which 2 ¢ r1(4,7),2|r2(4,7). Assume the
first case. Then there are 2 pairs (i1,71) and (i2,j2) such that ri(i1,j1) = 71(42,72)(mod 4). This, with
b; = n(mod 4) and (3.4), implies that 16|g;ds and 4|gad;. Hence (g1, ¢2) > (8,2). In the latter case, we get
(g1,92) > (2,8) similarly.

Let 8|d. Then we have from (3.21) and (3.22) that either 2||d; implying all r1’s are odd, or 2||dz implying
all 73’s are odd. Also b; = n(mod 8) for all i. We prove the result for 2||d; and the proof for the other case
is similar. From (3.7), we derive
%% = (biyr{ — by 57) <d21>2 + (biy 75 — biys3) <d22>2

where T = Tl(i17j1)751 = Tl(ig,jg)ﬂ"g = Tg(il,jl) and S9 = ’I"Q(ig,jg). Noting that 4d2|d% and taking

(3.23) 2(%i, + Vi — Yz — Vi)

modulo dg, we get (q1,¢2) > (1, %) implying the assertion for zg = 2. Let zg = 3. Then there are 2 pairs
(i1,71) and (iz,72) such that ro(i1,j1) = ra(ia, j2)(mod 2). Using this and (3.4), we get 4|gad;. Further
from b;rire = y; — v;, we see that v;, —vj, = Vi, — V5, (mod 2) implying v, +v;, = Vi, + 7j, (mod 2). Now
we see from (3.23) that 4%|q1d2. Thus (q1,92) > (2,2). Let zg = 5. We see that b; = n or n + 8 modulo
16 so that b;r3(mod 16) is equal to 0 if 4|ry, 4n if 2||ry and n,n + 8 if 2 f 5. Now we can find 2 pairs
(i1,71) and (g, j2) such that by, 73 (i1, j1) = bi,73(i2, j2)(mod 16). This gives 16|gad; by (3.4). Further again
2|(vi, +7j, — Vi» — Vj.) and hence 4% |g;d, from (3.23). Therefore (g1,g2) > (2,8). O

Lemma 3.5. (i) Assume that
(3.24) n+ v d > 0?2

Then for any pair (i,7) with b; = bj, the partition (dn~',n) is not possible.

ii) Let d = d d’ with ged dl,d” = 1. Then for any pair (i,j) with B, = B; > d/, i,7 € Ty, the partition
J

(d”nfl, n) is not possible. In particular, the partition (dn=',n) is not possible.

1 n+v;d

2
,n). From > 2% and

Proof. (i) Suppose the pair (4, j) with b; = b; correspond to the partition (dn~ e

(3.24), we get n + v;d > n*v;:. Then from (2.8), we have

bilys + ) o (i) + (byy)* AT+ VT .
- 7 1 -

Vi — Vi = i T 5

a contradiction.

(ii) Suppose the pair (4, j) with B; = B; > d correspond to the partition (d//n_l, 7). As in (2.8), we have
( ) d _Yi+Y; 2k

Yi — Vs B, © n D)

since Y; > Y; > k. This is a contradiction. The latter assertion follows by taking d=1,d" =d. O

Y

Yi — V5
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Lemma 3.6. (i) Assume (3.24). Let 1 <ig <t and v(b;,) = u. Let (d1,ds) be any partition of d. Then
the number of pairs (i,j) with b;=>b;j=0b;,,1 > j corresponding to (di,d2) is at most [§].

(i3) Let d = dd’ with gcd(d/,d”) =1. Letig € Th, By, > d and v(B;,) = p. Let (d1,d2) be any partition
of d". Then the number of pairs (i,7) with Bi=Bj=Bj,,i > j corresponding to (dy,dz) is at most [5].

Proof. (i) Suppose there are ' = [5]41 pairs (i, j;) with i; > j;,0 <1 < p’ and b;, = bj, = b;, corresponding
to (di1,d2). We consider the sets I = {|0 <1 < g/} and J = {50 <! < p'}. If |I| < p/ or |J] < ¢/ or
1N J # ¢, then there are [ # m such that

il (W = Yjo)s d2l(ys — Yj,,) i it = i

dil(Yi, = Yin), d2|(yi, — ¥i,,) i Ji = Jm

di[(ys = Yin )y dal(yjy = vi,,) i 0 = jim.
We exclude the first possibility and proofs for the others are similar. Without loss of generality, we may
assume that j; > j,,. Then lcm(dl,dg)‘(yj, — y;,.) so that the pair (j;,jm) correspond to the partition
(dn~!,n). This is not possible by Lemma 3.5 (i). Thus |I| = ¢/, |J| = ¢/ and I N J = ¢. Now we see that
[TUJ|=|I|+|J| =24 > pand b; = b;, for every ¢ € I U J. This contradicts v(b;,) = u.

(ii) The proof is similar to that of (i) and we use Lemma 3.5 (ii). O
As a corollary, we have

Corollary 3.7. (i) Assume (3.24). For 1 <i < t, we have v(b;) < 2¢(@~0,

ii) Let d = d'd’ wit gc /, "y =1. For > ,,we ave v(B;) < 2% ”_1. n particular, v(B;) <
i) Let d = d d h ged(d ,d 1. For B; > d h B 2@(d )=61 ! B
2w(d)79'

Proof. (i) Let v(b;) = p. Then there are “(“2_1) pairs (g, h) with ¢ > h and by = b, = b;. Since there are
at most 2¢(=% — 1 permissible partitions of d, we see from Lemma 3.6 (i) that w < %(2“’(’1)_9 —1).
Hence the assertion follows.

(ii) The proof of the assertion (ii) is similar and we use Lemma 3.6 (ii). a

Corollary 3.8. Let T,y1 ={i €Ty : B; > qiq2---qr} and Sp41 = |{Bi : 1 € Tr41}|. Then

r—1

|T1| r—
ST+1ZW—Z2 'U'>\M—2>\T
p=1

where X’s are as defined in (2.10).

Proof. We apply Corollary 3.7 (ii) with d’ = q1q2 - - - q,, to derive that v(B;) < 2w =1=0 for B; > qiqa - - - du,
> 1 since 61 > 0. Therefore

|Tr+1| > |T1| _ 2w(d)—6)\1 _ 2w(d)—1—6()\2 _ )\1) L 2w(d)—r+1—9(>\r _ )\rfl)-
Since v(B;) < ou(d)=r=0 for ; ¢ T,4+1, we have 5,41 > QJ(T(,jiﬂ‘_e and the assertion follows. O

Lemma 3.9. Assume (3.24). There exists a set Q0 of at least

t—|Rl+ > ry>t—|R|

pu>1
p odd
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pairs (i,7) having Property ND.
Proof. We have

t= Z:W'u and |R| = ZT“'
m

m

Each b;, € R, gives rise to “(“271) pairs (¢, j) with ¢ > j such that b; = b; = b;, and each pair corresponds

to a partition of d. By Lemma 3.6, we know that there are at most [%] pairs corresponding to any partition
of d. For each 1 < j < [§] = p1, let v; be the number of partitions of d for which there are j pairs out of

the ones given by b;, € R,, corresponding to that partition. Then

M1

(3.25) w - Z jv;.

For each partition having j pairs with v; > 0, we remove j — 1 pairs. Then we remove in all Zf;l(j — 1),

pairs. Rewriting (3.25) as

H1 M1

pp—1 -
(T) =M Z'Uj - Z(Hl = J)vj,
j=1 j=1

we see that we are left with at least

i“j _ p(p—1) +§:(1 -
j=1

21 = I

j wlp—1) w—1 if pis even
Juj = ——— = e
2441 1 if p is odd

pairs. Let 2 be the union of all such pairs taken over all b;, € R, and for all p > 2. Since |R,| = r,, we

have
Q2 > Z (n—=1Dr,+ Z pry =t —|R[ + Z Tpa
n even pn>1 pn>1
wn odd wn odd
Further we see from the construction of the set Q that Q satisfy Property ND. O

Corollary 3.10. Assume (3.24). Let z be a positive integer and h(z) = (z — 1)(2(D=9 — 1) + 1. Let
20 € {2,3,5}. Suppose that t — |R| > §(z0). Then there exists a partition (di,dz2) of d such that (3.5), (3.6)
and (3.18) hold with (q1,q2) > (Q1,Q2) where (Q1,Q2) is given by Table 1.

Proof. By Lemma 3.9, there exists a set {2 with at least h(zo) pairs satisfying Property ND. Since there are
at most 2¢(9=% _ 1 permissible partitions of d by Lemma 3.5 (i), we can find a partition (dy,ds) of d and a

subset & C € of at least zy pairs corresponding to (di,ds). Now the result follows by Lemma 3.4. ]

Corollary 3.11. Assume (3.24). Suppose that t — |R| > 2°(D=0=1 4 1. Then there exists a partition (dy, dy)
of d such that (3.19) holds.

Proof. By Lemma 3.9, there exists a set  with at least 2¢(D=0=1 41 pairs (i, j) satisfying Property ND. We
may assume that for each partition (dy,ds) of d, there is at most 1 pair corresponding to (dy,ds) otherwise
the assertion follows by zo = 2 in Lemma 3.4. We see that there are 2¢(9—=0=1 _ 1 partitions (di,ds) with
di > do, 29@=0=1 _ 1 partitions (d1,dy) with n < d; < dy and the partition (n,dn~1). Since there are at
least 2¢(9—=0=1 4 1 pairs, we can find two pairs (i, ) and (g, h) corresponding to the partitions (d;,dy) and
(da,dy), respectively. Now the assertion follows by Lemma 3.3. O
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Lemma 3.12. Assume (3.24).
(1) Let |S1] < |Ti| — 5(3). Then (3.18) is valid with
144p~1 if 24d

(3.26) q1g2 > { 16 if 2||d
4 if 4|d.
(#i) Let d be even and |S1| < |T1| — h(5). Then (3.18) is valid with
144p=1 if 2||d
(3.27) qig2 > { 36 if 4|d and 31d
16 if 4|d and 3|d.

Proof. Let B; = B; with ¢ > j and ¢,j € T1. Then there is a partition (dy,ds2) of d such that Y; —Y; = dyrf,

Y; +Y; = dorh, with r{,rh even, 24p~t|rirh if d is odd and 7} even, 12p~1|rir} if 2||d and 3p~t|rirh if 4|d.

Since B;Y;? = b;y? and b; is squarefree, we see that p|b; if and only if p|B; with ord,(B;) odd. Therefore
B; _ B

b; = b; implying b* = 3+ = 5+ and y; = bY;, y; = bY;. Hence

yi —yj = dibry = diri(i,7) = diry, yi +y; = dabry = dara(i, j) = dary
with 71 = bri,ro = brh even, 24p~t|riry if d is odd; ry even, 12p~tryry if 2||d and 3p~t|riry if 4|d. Let
z € {3,5} and |S1] < |Ti| — H(2). We argue as in Lemma 3.9 and Corollary 3.10 with ¢ and |R| replaced
by |T1| and |S1]. There exists a partition (di,ds) of d and z pairs corresponding to (di,dz) such that
V (i, 7,9, h,d1,ds) is non-degenerate for any two such distinct pairs (4, j) and (g,h). Let z = 3. By Lemma
3.4 with zp = 3, we may suppose that d is odd. Let 3 + d. Then we can find two distinct pairs (i1, j1)
and (i2, j2) both of which satisfy either 3|ry (i1, j1), 3|r1(i2,j2) or 3|ra(i1, j1), 3|ra(iz, j2). Now (3.26) follows
from (3.8) and (3.4) since 71,72 are even. Assume that 3|d. Let 3|d;. Then we can find two distinct pairs
(i1,41) and (i2,j2) both of which satisfy either 3|ry (i1, j1), 3|r1(i2, j2) or 3 1 r1(i1,41), 3 1 r1(i2,j2). Since
b; = n(mod 3) and r? = 1(mod 3) for 3 1 r, the assertion follows from (3.8) and (3.4) since 71,7 are even.
The same assertion hold for 3|ds in which case r; is replaced by ro. This proves (3.26) and we turn to the
proof of (3.27). Let d be even and z = 5. Let 3 1 d. Out of these five pairs, we can find three distinct pairs
(i,4) for which either (¢, 7)’s are all divisible by 3 or r2(7,j)’s are all divisible by 3. As in the proof of
Lemma 3.4 with d even and zo = 3, we find two distinct pairs (i1,71) and (ia,j2) such that 16|g1q2 if 2||d
and 4|q1 g2 if 4|d. Further 9|g;qo since either (7, j)’s are all divisible by 3 or r3(4,j)’s are all divisible by
3 and hence the assertion. Assume now that 3|d. By Lemma 3.4 with zp = 5, we may suppose that 2||d.
Let 3|d;. Then we can find three pairs (4, j) for which either 3 divides all r1(7,j)’s or 3 does not divide any
r1(i,j). Then for any two such pairs (i1, 1) and (i, j2), we have 3|(b;, 73 (i1, j1) — bi,73(i2, j2)). Therefore

by the proof of Lemma 3.4 with d even and zg = 3, we get 3 - 16|q1g2. The other case 3|ds is similar. O
4. LOWER BOUND FOR n + (k — 1)d
We observe that |Sp| > w'?;% and n + (k — 1)d > |S1]|k%. We give lower bound for |T;|. We have

Lemma 4.1. Let k > 4. Then

(k= 1)log (k —1) = 3, ey max (o, e 2))
log (n+ (k—1)d)

41) T >t- — ma(k) — 1.
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Proof. The proof depends on an idea of Sylvester and Erdés and it is similar to [SaSh03a, Lemma 3]. Since
|T1| =t — |T|, we may assume that |T'| > m4(k). For a prime ¢ with ¢ < k and ¢ { d, let ¢; be a term such
that ordy(B;,) is maximal. Let 7" = T\ {iq : ¢ < k,q { d}. Thus |T'| > |T| — m4(k). Let i € T'. Then
n+7;d = B; and ordg(n + v;d) <ordy(v; — 7s,) since ged(n, d) = 1. Therefore

ord,( H (n +7id)) < ordg((yi )!(k — 1 —7;,)!) < ordg(k — 1)!.

€T’
This, with n +id > = (n+ (k — 1)d) for i > 0, gives
k— 1)\
('] - 1)! ("*lj_l)) < T (n+7d) < (k= 1)ty

€T’

where ¢ =], ¢ da(k=D!  Therefore
(IT| = wa(k) — 1)log(n + (k — 1)d)
<(IT'] — 1) Tog(k — 1) +log((k — 1)+ |T']) — Togs < (k — 1) log(k — 1) — log -

Now the assertion (4.1) follows from Lemma 5.1 (iv). O

The following result is an immediate consequence of Laishram and Shorey [LaSh06, Theorem 1].

Lemma 4.2. Letn>1,d > 2 and k > 5. Then

(4.2) Pn(n+d)---(n+ (k—1)d)) > 2k
unless (n,d, k) = (1,3,10).

Lemma 4.3. Lett = k. Then we have

(4.3) |T1| > ak for k > K,

where a and K, are given by

a [ 031035]04 | 042
K, [ 101 | 203 | 710 | 1639

Proof. Let k > K,. Thus k > 101. From Lemma 4.2, we have n + (k — 1)d > 4k*. We see from (4.1) that

(k—1Dlogk k 1 ((k—1)log2 k
T Bysk—1—Ww_Doek & 1T Joss Lk
171l + ma(k) > 2log2k 2 2\ log2k 73

Therefore n + (k — 1)d > (% log £)2 by Lemma 5.1 (ii).
For 0 < B <1, let
(4.4) n+ (k—1)d > (Bklog k).

We may assume that 3 > 3. Put Xg = Xg(k) = Blog(8k). Then log(n + (k — 1)d) > 2log X5 + 2log k.
From (4.1), we see that

(k—1)logk k 1 log Xz
T k) >k—1— =2 (1) (14 —22F
ITil + malk) 2log X5 +2logk 2 k +logX5+logk

k 1 1
:5 (1 — k) (1 + 1_’_logk> = gﬁ(k)k = gﬁk

log X3

(4.5)
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By using 74(k) < w(k) and Lemma 5.1 (i), we get from (4.5) that

k 1.2762
4. T; — 1 .

Let 8 = % We observe that

14 log k 1.2762

—logk— (1 1

13°°% ( * 10g‘X5> ( + log k )
(14 1 loo o — 1.2762 n 1.2762'\
~\13  log X3 & log k log Xz

is an increasing function of k and it is positive at k = 2500. Therefore

1 1 1 1.2762
1 B 14+ B2702) ok > 2500
14 logk = 14logk log k

log X

which, together with (4.6) and (4.5), implies

T 11 1 1.2762 13
;11 | 154+ =2 ) > 0.42 for k > 2500
k2 2k 28logk \' | loghk R

since the middle expression is an increasing function of k. Thus we may suppose that & < 2500. From (4.5),
we get |T1[ + mq(k) > g1k =: B1k. Then (4.4) is valid with 3 replaced by f; and we get from (4.5) that
|T1| + ma(k) > gg k =: Bok. We iterate this process with 3 replaced by 52 to get gg, =: f3 and further with
Bs to get |Th| + ma(k) > g,k =: fsk. Finally we see that |T1| > Bsk — w(k) > ak for k > K,. O

Lemma 4.4. Let S C {B; : 1 < i <t}. Let h>1and P, < P, < --- < Py, be a subset of odd primes
dividing d. For |S| > (£1) - (%), we have

(4.7 maxB; >

3ohtd|5| if 34d
B;eS

92h+01S)if 3|d.
Proof. The assertion (4.7) for 3 t d is [Lai06, Corollary 2] with A; replaced by B; and s = |S|. Let 3|d. As

in [Lai06, Corollary 2], let @, > 1l and 1 < f < P’gl be integers such that (f — 1) (Plgl) e (P"’21_1> <

S| = Qn (B -+ (B71) < f(BE) - (P"’l_l). Then we continue the proof as in [Lai06, Corollary 2]

2
to get
gla)éBi > 29QuP\ Py Py +2°(f —1)Pi Py Py_y.
S

Since Py = 3, it suffices to show
3
QuPo- P+ (f=1)Py---Ppq > E{Qh(Pz—1)"'(Ph—1)+2f(P2—1)"'(th1—1)}

for getting the the assertion (4.7). For h = 2, we see from
1 fo1 1 P-1
SQuPy+3)—1-L>-p— -~ =0
F P+ 2°4°7 4 4

that the above inequality is valid. For h > 3, by observing that

Qn(Po—1)-- (P, —1)<QnPy--- P, —QnPs--- Py,
2f(Po—1)---(Pho1 —1) <2fPy--- Py —2fPa- - Py,

it suffices to show that

3(Qn—1)—(2f+1) 6f
P, * PPy =0

which is true since @, > 1 and 1 < f < £2-1, 0

Qn +
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Corollary 4.5. We have A\ < 3q1 if 21d,31d and M\ <3 5 + 1 otherwise. For r > 2, we have

e dr if 21d,31d
N if 21 d,3]d
" 3‘*25% if 2|d,31d
mln( =+ 1, 55 40y if 6|d.
Proof. Let 2+ d and 3 td. If A\, >312T £, then A\, > ‘“21 ”q,,2712p1271“_p7,271 giving ¢y -+ - g, >
Jnax B; > 327\, by (4.7) with S = A,. This is a contradiction.
e T

Let 2|d or 3|d. Then we derive from Chinese remainder theorem that X, < qlp'é'(;q" + 1. Thus we may
suppose that r > 2. Further we may also assume that r > 6 4+ 1 when 6|d.

Let 2 { d and 3|d. Suppose A, > 35795, Then q; > p; = 3 implying A, > 92~ L. q’"gl > p1;1 p"’;l pr2—1.
Therefore q1 - - - g, > %QT*IAT by (4.7) with S = A,. Thisis a contradlctlon.

Let 2|d and 3 f d. Suppose A, > 33578, Then g, > 7 since r > 2 implying ¢’ := max(q,,2°) > 7

implying
vos 2 pml el gl pea—l ol e -l
"= 3.204r=3 9 2 -6 2 2 2 2 '
Now we apply (4.7) with S = A, to get a contradiction.
Let 6|d. Suppose A, > 35735 Let 2|[d or 4||[d. Then A, > ‘“;1 qrle—l > p1;1 ngl p"‘*;_l since

q19- > 9 and p; = 3. Now we apply (4.7) with S = A, to get a contradiction. Thus it remains to consider

g2—1  Gr—1—1 pi—lps—1  pra—l _
8|d. Then A, > 5 1= > b = =L Gince

2r72 / _ — — _ -
A > 019”1 Lopre=l =1l pra— 1
9.2r—2 2 2 2 2
where ¢’ := max(q,, 8). Now we apply (4.7) with S = A, to get a contradiction. a

5. RESULTS FROM OTHER SOURCES
We now state some lemmas. We begin with some estimates from Prime Number theory.

Lemma 5.1. We have

T 1.2762
) < 1 f 1
(1) m(x) < Tog s ( + Tog s ) or x >

(1) p; > ilogi for i > 2
(iii) [ p < 271851 for x>0

p<z

(iv) Z logp > i(logi + loglogi — 1.076868) for ¢ > 2
P<pi

(v) ord,(k!) > f)%’l’ - % for p < k.

The estimates (7) is due to Dusart [Dus98, p.14], [Dus99] and (i¢) is proved by Rosser and Schoenfeld
[RoSc62]. For estimate (iii) is due to [Dus98, Prop 1.7], [Dus99]. The estimate (iv) is [Rob83, Theorem 6].
For a proof of (iv), see [LaSh04, Lemma 2(i)]. O

The next lemma is Stirling’s formula, see Robbins [Rob55].

Lemma 5.2. For a positive integer v, we have

_ 1 _ 1
2ty e VvV eTm 1 < vl < V2mv e Vi e,
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The following lemma is contained in [Lai06, Lemma 8].
Lemma 5.3. Let s; denote the i-th squarefree positive integer. Then
(5.1) ﬁs > (1.6)'1! for 1> 286.
i=1
Further let t; be i-th odd squarefree positive integer. Then

l
(5.2) [1t = o' for 1> 200.

i=1
The next result depends on an idea of Erdés and Rigge.
Lemma 5.4. Let z; > 1 be a real number, hg > i > 0 be integers such that [[, cpbi > zllleio(\R| —ip)!

for |R| > hg. Suppose thatt — |R| < g and let g1 =k —t+g—1+1i9. For k > ho+ g1 and for any real

number m > 1, we have

2 (q__ 1 _
Klog [ gzma: [[p7 = 707 | + (k + 4)log(1 - %)
p<m

~ +
(5.3) ” log(k — g1) —1+log 2
(0.5¢ + 1)logk —log | ny* Hp1-5"(k7p)
p<m
log(k —¢g1) — 1+ log z1
and
2
klOg 2AZ711%051 pr?'*l + (k + %) 10g(1 — q—kl)
> p<m
(5.4) ” log(k — g1) — 1+ log 1
(1.5m(m) — 0.5¢ — 1) log k + log | ny 'ny Hp0'5+?271
p<m
log(k —g1) — 1 +log 21
where
n(k,p) = [10%5)%;1)} if [10%5)%;1)] is even
[lsloD] g f 8D ) s odd,
1
—— i 25 if 24d
= <m:p|d}, ng= P Ny = 267D and no =
sl H ’ 1 H ! e {1 otherwise.
o F

Proof. Since |R| >t—g+ 1=k — g1 + 19, we get

(55) H b, > Zf_gl (k — 91)!~
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Let h be the positive integer such that p < k —1 < p"*! and € = 1 or 0 according as h is even or odd,

respectively. Then

k—1 k—1 k—1
5.6 19’—1:[]+[ ]+ +[ ]
(5.6) b ’ P p
Let p { d. We show that

2k 1
(5.7) Uy =0} < = (L ) + Ln(k,p)

2k 1.5logk
5.8 — 0.5
(5.8) < P Togp + +p2_1+113

where nz = % if p = 2 and 0 otherwise. We see that 9, is the number of elements in {n+y1d,n+2d,...,n+
v¢d} divisible by p to an odd power. For a positive integer s with s < h, let 0 < 4,s < p® be such that
k_l_i”s} elements in {n,n+d,...,n+ (k—1)d}.

p®|n + ip=d. Then we observe that p® divides exactly 1 + [ >

After removing a term to which p appears to a maximal power, the number of remaining elements in

{n,n+d,...,n+ (k—1)d} divisible by p to an odd power is at most

k—l—ip] [k1ip2‘ {klips] [kliph}
_ - — |+ | — | -+ (1) | —F].
[ p p> p? - ph
Since [pﬁ} —-1< [k_i;i”s} < [kp_sl}, we obtain
k—1 k [k —1 k—1+¢ h—1+4¢€
9, 1< || | & (-1 .
: [p}{pQ}Jr_p?’} +()[p”’ }Jr 2
This with (5.6) implies
h721+e
k—1 k h—1+c¢€
) n-v<- 3 ([ ]+ []) -
j=1
Since [%}2[’;};}]2’;@171+ﬁ:%71, we obtain
h—14e

2

1
Oy — 0, < —2k > P+1.5(h—1+e)
j=1

1

giving (5.7) since n(k,p) = h — 1 + e. Further from (5.7), k < p"*! and h < 122’;, we get

2k 1.5logk  2p*>~€
9, =9, < — 1.5(e—1
p— U, < p2—1+ logp +p2—1+ 5(e—1)

giving (5.8). For p|d, we get ¥, — 1}, = —1 — ord,(k — 1)! which together with Lemma 5.1 (v) gives

k log k 1
9, — 0 < — 48
(5.10) p p—1 logp p-—1
’ - 2k +1.510gk+05+ 2k 05logk p-—-1
p*—1  logp TopP=1 p+1l logp  20p+1)

For m > 1, we have

1o |G- (TTw | IT o™

biER p<k p<m

Therefore from Lemma 5.1 (i4), (5.10), (5.7) and (5.8), we have

—k

_ 1.-0.50—1 [ -1 1.5n(k,p) o 777 (1= —giy)
(5.11) IT b < k& nt [ e i8] II»
b;ER p<m p<m
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and
—k
5.12 b; < klELOmm—50=1 [ =1 0ot | | N0 R
(5:12) 11 mtne [T a5 LL?
b;ER p<m p<m
Comparing (5.11) and (5.12) with (5.5), we get
g g
-1 k
(5.13) 27 k! S p0-50+1 —1H 1.5n(k,p) Z1Mo H 2 (1= —y)
. —_— ’ n p ’ pre- LA
Y 1
(k—g1)! o 271851 L
and
—1 k
(5.14) k! S pLem(m)£5e41 [ -1 H 0.5+ 2 Z1ho H S
‘ k—g1)! L2 AP 271851 117
p<m p<m

By Lemma 5.2, we have

glk' k ks z1(k —g1) 7 g1 —k—3
7<zgle 91 (k — = (I (1_7> ]
(k—g)! =™ tk=o0” (k—m) < e > k
This together with (5.13) and (5.14) imply the assertions (5.3) and (5.4), respectively. O

The inequality (5.8) corrects the corresponding inequality in [Lai06, p. 466, line 3 from the bottom] used
in [Lai06, Lemma 13] but the proof of [Lai06, Lemma 13] remains unaffected.

We end this section with the following lemma which follow immediately from [Lai06, Lemma 10].

Lemma 5.5. Lett = k. Let ¢ > 0 be such that ¢2#(@D=3 > 248, > 2 and

o N ' p20k
Cu=A{di:ieT, v(Ai)=p A>3 oooy)
Then
Iu 3c (d) w(d)—3
(5.15) C=) —— |¢" < gt loge2 -

n>2

6. SOME COUNTING FUNCTIONS

Let p be a prime < k and coprime to d. Then the number of i’s for which b; are divisible by ¢ is at most

k
Let 7 > 5 be any positive integer. Define F(k,r) and F'(k,r) as
(k)
F(k,r)=1|{i: P(b;) > p.}| and F'(k,r) = Z Op;-
1=r+1

Then [{b; : P(b;) > pr}| < F(k,r) < F'(k,r) = > 0p. Let

pld,p>pr

By = {bi: Pb) <p}, I = {i: b € B} and & = |I,].
We have

(6.1) &G2t—Fkr)>t—F(kr)+ Y op

pld,p>pr
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and
(6.2) t—|R[ =t~ [{bi : P(b;) > pr}| = [{bi : P(bi) < pr}
(6.3) >t —F(k,r) = [{bi : P(bi) < pr}|
(6.4) >t—F'(kr)+ Y. op—{bi: P(b;) < p,}|
pld,p>pr
(6.5) >t—F'(k,r)+ Y op,—2.
pld,p>pr

We write S := S(r) for the set of positive squarefree integers composed of primes < p,.. Let 6 =min{3,ordy(d)}.
Let p = ¢ = 2° or p < ¢ be odd primes dividing d. Let p = ¢ = 2°. Then b; = n(mod 2°). Considering

modulo 2? for elements of S(r), we see by induction on r that
(6.6) [{bi : P(bi) < pr}| <2770 =t gys 25 =1 gas.

For any odd prime p dividing d, all b;’s are either quadratic residues mod p or non-quadratic residues mod

p. For odd primes p, ¢ dividing d with p < ¢, we consider four sets:

Si(n',r) = 81(6,n,p,q,7) = {5 €S : s =n/(mod 2%),
So(n/, 1) = Sa(6,n,p,q,r) = {s € S : s = n/(mod 2°),
Ss(n,r) = S3(0,n',p,q,r) = {s € S : s = n/(mod 2°),

Si(n',r) =840, ,p,q,7) = {s € S : s = n/(mod 2%),

TN TN N N
Ve Bl Blew Bln
~
| Il
|
—
TN TN R

Wetaken’=1ifd=0,1;n'=1,3if §=2and n’ =1,3,5,7if § = 3. Let
(6.8) Ip.a = Gp.a(r) = max(|Su(n',7)], Sa(n', r)], [Sa(n', 7)1, [Sa(n', 7))
and we write g, = g, . Then

(6.9) [{bi : P(bi) < pr}| < gpg-
In view of (6.6) and (6.9), the inequality (6.4) is improved as

(6.10) t=|R|>t=F(kr)+ > op— min{g,,}.
oldoapr pld,q|

We observe that ged(s,pg) =1 for s € §;, 1 <1 < 4. Hence we see that S;(n’,r+1) = S;(n’,r) if p = pry1
or ¢ = py41 implying

(6.11) Ip.qg(r+1) = gpg(r) if p=p,41 0r ¢=prya.

Assume that p,11 ¢ {p,q}. Let 1 <1 < 4. We write Sj(n’,r+1) = {s: s € S§(n',r +1),pr41|s}. Then
s = pry18’ with P(s') < p, whenever s € S/(n/,r +1). Let | = 1. Then s’ = n'p,}; = n” (mod 29)
where n” = 1if § = 0,1; n' = 1,3 if § = 2 and n' = 1,3,5,7 if § = 3. Further (%) = (’)’%) and

q q
Therefore |S{(n/, 7+ 1)| < gp4(r) by (6.8). Similarly |S/(n’, 7+ 1)| < g, 4(r) for each I,1 <1 < 4. Hence we

(i) = (pr—“) for s € S/(r +1). This implies S| (n',7 + 1) = pr1Sm(n’,7) for some m,1 < m < 4.
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get from S§;(n',r + 1) = §;(n',r) US/(n/,r + 1) that

(6.12) Ip,g(r+1) < 2gp4(7).

We now use the above assertions to calculate g, 4.
1) Let 5 <7 <7,p<547when 6 =0,1; 5 <r <7,p <547 when 6 =2 and 5 < r < 7,p < 89 when § = 3.
Then

max(1,2"7972) if p < p,
(6.13) gp<r>{ ( ) ifp<p

max(1,2" 70" if p > p,
except when § = 0,7 = 5,p = 479 where g, = 2";
§=1,r =5,p € {131,421,479}, r = 6,p = 131 where g, = 2"~°;
§=2,r=5,p€ {41,101,131,331,379, 421, 461,479, 499} where g, = 2"—°;
d=2,7=6,p e {101,131}, r = 7,p = 101 where g, = 2r=9.
§=3,r=5,p=3 where g, = 2" r =5 p =41 where g, = 2" 9.
1) Let 5<r <7,p<19,¢<193,23<p<q<97when d=0and r=5,6,p <q<37when 6 > 1. Then
max(1,2" 704 if p<q<p,
(6.14) Ipq(r) = max(1,2"7973) if p<p,.<gq
max(1,2"7972) ifp. <p<gq
except when
r=>5, gpg=2""2for (p,q) € {(543),(5,167),(7,113),(7,127),
(7,137),(11,61), (11,179), (11,181)};
d=0and Sr=5, g,,=2"""!"for € {(19,139), (23,73),(37,83) };
(7,137);
(37,83);
€{(5.7).6, 1)}
r=>5, gpg=2""3for (p, (5,37);

(p,q)

(p,q) =
q) =
q)
q) =

r=>5, gpg=2""2for (p,q) € {(13,23),(29,31)};
q) =
q)
1)
q)
q)

r=6, gpq=2""2for (p,

r=6, gpq=2"""for (p,
r=5, gpg=2"""for (p,

6=1and

r=20, Ggpg= 274 for (p, (5,7);
{(3,19),(5,17), (5,37),(7,13),

r=>5, gpg=2""""for (p,q) €
(7.23), (7,29), (7,31), (11,19), (11, 29), (11, 31)};
§=2and {r=>5 gn,=2""3"for (pq) € {(13,23), (17,37), (29,31)};
F= 6, gpq= 2" for (p.q) € {(5,7),(7,13));
r=6, gy,=2""4for (p.q) € {(7,29), (11,31), (13,23)}.

Now we combine (6.13), (6.14), (6.12) and (6.11). We obtain (6.13) with = replaced by < for r > 7 and
p < 89 and we shall refer it as (6.13, <). Further we obtain (6.14) with = replaced by < for r > 7 and either
p<qg<97when§=0o0rp=3,¢g=>5when § > 1 and we shall refer it as (6.14, <).

7. COMPUTATIONAL LEMMAS

From now on, we take ¢t = k. Thus b; = a;_1,B; = Aj_1,y; = zj1and ¥; = X, for 1 < j < k.
Let f(z) = [x—| — [@} for z > 0 and K, = aTk—ﬁ for a € R. We now state a result which generalises
[HiLaShTi06, Lemma 1].
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Lemma 7.1. Let a € R and p be a positive integer. Let p,q be distinct odd primes.

(1) Let fo(k,a,0) = f(Ks),

-1
p—1 5 Ko - Ko
fl(kaavpnuvé): 2 f(p21+1)+f(ﬁ)
=0
and
k 6_p_1/i_1 q_I* ICa r ’Ca *Ica
f2( y Ay Py g5 s ) - 2 rr 2 f(p21+1q)+f(p21+1q2) +f(ﬁ)
Then
folk, a, )
(7.1) vo(a) < < fi(k,a,p,u,0) if ptd
fQ(kvaap,QMU'vé) lfpjfd,qu
(i4) Let d be odd. Let
pn—1
Ka. ok
go(k,a, p) = ;f(ﬁ) + f(cﬂTu)v
p—1 2 2
p—1 = K = Kq
gl(ka a,p, ,LL) = T Zf(ijQH-l ) + Z f(2jp2ﬂ)
1=0 j=1 j=1
and
p—1 2 2
p—1 -1 K, K, K,
gQ(kaaapa(L/J‘):T Z<2 (W)‘Ff(m) +Zf(2jp2u)'
1=0 j=1 j=1
Then
go(k;,a,u)
(72) Ve(a’) S gl(k7 a,p, /J,) if p Jf d

QQ(kvavpaqaﬂ) lfpjfdaQ*d

Proof. Let T C {i : a; = a} and 7|(¢ — j) whenever i,j € Z. Let 7/ be the lem of all 7y such that 7 |(¢ — j)
whenever 4, j € Z. Then 7|7’ and a7’ since a|(i — j) whenever i,j € Z. Let ig = Izrél%l i, N = "tiod and D =
%d. Then we see that az? with i € Z come from the squares in the set {N, N+ D,--- N + ([@w —1)D}.
Dividing this set into consecutive intervals of length 4 and using Euler’s result, we see that there are at most

[k;fo] - [@] <[£]- [@] = f(£) of them which can be squares. Hence [Z| < f(£) < f(£) since

T - T

7|7,

Let Z° ={i:a; = a,2tz;} and Z¢ = {i : a; = a,2|z;}. Then v,(a) = |Z°| and v.(a) = |Z¢|.
First we prove (7.1). For i,j € Z°, we observe from z7,25 = 1(mod 8) and (i — j)d = a(x} — 273) that
a2379%|(i — §). Therefore |Z°| < f(K4) = fo(k,a,d).

For a prime p/, let
m
Dpfz{m:1§m<p',(p/> =1}
Let ptd. Let

7P ={i € Z°: p'||x;} for 0 <1 < p and I, ={i € I° : p"|z;}.
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Then a2*~°p**|(i — j) whenever i,j € If, giving |Z5] < f(z%) For each 1,0 <1 < p and for each m € Q,,
let

Ly

r,={ie}: (H)2 = m(mod p)}.

Then a23~9p®+1|(i — j) whenever 4,7 € I7, giving |Z7, | < f(;%)- Therefore |I7| = 3,,cq, IZ5,] <
-1z o o -1 o
pglf( éclil) Hence ‘I | = |Iy,‘ + Zf:o |Il | S fl(kua7p7M75)‘

D
Thus we may assume that p{d and ¢ td. For each [ with 0 <! < u, m € Q, and for each u € 9, let

fr = {1 € Iy, + 27 = u(mod q)} and I7, o = {i € I, « qlz)}-

K2

Then a2*~0p**q|(i — j) for i, j € If,,, and a2*~°p* 1 ¢2|(i — j) for i, j € I, implying |Z7,,| < f(er;)

mu m!

for u € Qg4 and |77, < f(pzﬁi‘;qz) Now the assertion v,(a) < fa(k,a,p, q, p,0) follows from

pn—1
1 Zi] < [Zimol + D Timu TP = D 1) and |Z°) = (0] + ) 1T7).
u€EN, meQ, =0

Now we turn to the proof of (7.2). Let

7 = {i € T°: 2Y|a;} for 1 <1 < pand I = {i € I : 2"|x;}.

Since % is odd, we get a2*73|(i — j) whenever i,j € Z¢ implying |Z¢| < f(%) for 0 <[ < p. Further
a2?#|(i — j) for i,j € T giving [T < f(-Lz). Now the assertion v.(a) < go(k,a,p) from |I¢| =
T8 4+ Xy, 177

For the remaining proofs of (7.2), we consider Z¢!' = {i € Z¢ : 2||z;}, Z°? = {i € Z° : 4|z;} so that
|Z¢| = |Z¢] + |Z°%|. Then 32a|(i — j) for i,j € Z°' and 16a|(i — j) for i,j € Z°%. We now continue
the proof as in that of (7.1) with Z¢, Z°? in place of Z° to get v.(a) < g1(k,a,p,u) when p t d and
ve(a) < g2(k,a,p,q, 1) when ptd,qtd. O

Lemma 7.2. Fora € R, let

1 if k<a2379
f(Ka) if k> a2379,3|d,5|d
F(Ee) + F(Ee) if k> a2-%,34d,5|d
f(Ka) if a2379 <k <2a2%7°3|d,51d
2f(Ee) + f(52) if k> 242579 3|d,51d

fok,a:0) =4 2l L Foxe) e 93-8 3-5
J) + () if a237° <k <24a237°31d,5¢d
2(f(ke) + F(4)) +
FEa)+ f(Eay + f(52) if 240230 < k < 324a2%°,31d,51d
2 (F(5) + fl335) + F(i5t5)) +
FEe)+ F(Ea) 4 f( &) + F(Ky) if k> 324a2579,31d,51d
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and
1 if k<d4a
S (S if da < k < 32a
Sl F(Ss) k > 32a,3|d,5|d
S (F(Es) + F(£2) if k> 32a,31d,5|d

ga(k,a) = 201 f(Ke) 32a < k < 64a,3|d,51d

237 F(355) + 20 F(E) if k> 64a,3|d,51d
S f(Ee) if 32a < k <576a,31d,51d
223’:1 212 1 f(ﬁwr
Y2 gt ) + 02 f(5Ra) it k> 576a,31d,51d.

Then for a € R, we have
Vo(a) < .f3(kaa56)a Ve(a) < g3(k7a)

and

1 if k<a

v(a) < Fy(k,a,0) := < fs(k,a,d) if k> a and d even

f3(k,a,0) + gs(k,a) if k> a and d odd.
Proof. Since a|(i—j) whenever a; = a; = a, we get v(a) <1, v,(a) <1, ve(a) < 1for k < a. Infact v,(a) <1
for k < 279 and ve(a) < 1 for k < 4a. Thus we suppose that k& > a. We have v(a) = v,(a) + ve(a). Tt
suffices to show v,(a) < f3(k,a,d) for k > a2~ and v.(a) < g3(k,a) for k > 4a since v.(a) = 0 for d even.
From (7.1), we get the assertion v,(a) < f3(k,a,d) for k > a23~? since

fo(k,a,8) if 15|d
fi(k,a,3,1,9) if 31d,5|d
vo(a) < < min(fo(k,a,d), f1(k,a,5,1,9)) if 3|d,51d
min(fl(ka a, 37 17 6)7 f2(k7 a, 37 5a 27 5)7
f2(k,a,3,5,3,9)) if 31d,51d.
The assertion v.(a) < gs(k,a) for k > 4a follows from (7.2) since v.(a) < go(k,a,2) for 4a < k < 32a and
go(k,a,2) if 15|d
1 if
l/e(a) < gl.(kva'aga )) 1 3fd75‘d
mln(QO(kvaa2)7gl(k7av5a1)) if 3|d75+d
mln(gl(kvaa'?’v1)792(k7aa375,2)) if 3*d75+d
for k > 32a. |

By applying that there are 5~ L distinct quadratic residues and b= L distinct quadratic nonresidues modulo

a prime p, we have
Lemma 7.3. Assume (1.1) holds with ktd. Then v(a) < *5L for any a € R.

Lemma 7.4. Suppose that (1.1) with P(b) < k and k = py, has no solution. Then (1.1) with P(b) < k and

Pm < k < Pmy1 has no solution.

Proof. Let py, < k < pma1. Suppose (n,d,b,y) is a solution of

nn+d)---(n+(k—1)d) = by*
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with P(b) < k. Then P(b) < p,, and by (1.5),
n(n+d)--(n+ (pm — 1)d) = 'y

holds for some b with P(V') < p,, giving a solution of (1.1) at k = p,,,. This is a contradiction. O

Lemma 7.5. Let k > 101. Assume (1.1).

(a) Let d be odd and p < q be primes such that pq|d with p <19,q < 47. Then k > 1733.

(b) Let d be odd and p < q be primes such that pq|d with 23 < p < g < 43,(p,q) # (31,41). Then k > 1087.
(c) Let d be even such that p|d with 3 < p < 47. Then k > 1801.

Proof. We shall use the notation and results of Section 6 without reference. By Lemma 7.4, it suffices to
prove Lemma 7.5 when k is a prime. Let Py be the largest prime < k such that Py { d. Then (1.1) holds
at k = Py. Therefore Py > 101 by Theorem A with & = 97. Thus there is no loss of generality in assuming
that k t d for the proof of Lemma 7.5.

(a) Let d be odd and p, g be as in (a). Assume k < 1733. It suffices to consider 4 cases, viz (i) 5 < p < ¢,31
d,51d; (it) p=3,¢ > 5,5td; (4ii) p= 5,9 > 5,3td and (iv) p = 3,qg = 5. We take r > 7. We see that
B, is contained in one of the four sets S, = Sy, (1,7) with 1 < p < 4. Let S, = {s € S, : s < 2000} with
1 < p < 4. We have v(s) < Fy(k, s,0) by Lemma 7.2. Further v(s) <1 for s > k and hence for s € S, \ S,.
Observe that 1 € §1 C ;.

Assume that 1 ¢ R in the case (iv). For the case (i), we take r = 7 for 101 < k < 1087 and r = 8
for 1087 < k < 1733. For all other cases, we take r = 7 for 101 < k < 941, »r = 8 for 941 < k < 1297
and r = 9 for 1297 < k < 1733. Then &, < maxzsesu v(s) < max (gpﬂ — IS+ s F(k,s,O)) <
gp.q + max Zsesl’b (Fo(k,s,0) — 1) =: £ where the maximum is taken over 1 < y < 4 and we “remove 1 from
S1 € 81 when the case (iv) holds. We now check that

0 itp<qg<p,
(7.3) k—F'(k,r) =& > < —[%] if p<p,<gq
—[%] — (ﬂ if p, <p<yq.
This contradicts (6.1) by using the estimates for g, , and & > 6.

Thus it remains to consider (iv) with 1 € R. Then (%) = (%) = 1 for all a; € R. Suppose that
p’ 1 d for some prime p' € P = {7,11,13}. We take r = 9. We have B, C S;. Further |S;] = 32 and
S! = {1,19,34,46,91, 154, 286,

391,646, 874,1309,1729,1771}. We get from (7.1) that v,(a) < min(fy(k, a,0),
filk,a,p',1,0)) < min(fo(k,a,O),LI}Ea%{fl(k,a,p’,1,0)}) := Gi(k,a). Similarly we get from (7.2) that
Ve(a) gmin(go(k,a,2),512%{91(16,60,19’, 1,0)} := Ga(k,a). Let G(k,a) =1if k < a and G(k,a) = G1(k,a) +

Ga(k,a) if k > a. Then v(a) < G(k,a) implying &, < 32+Zs€S{(G(k, s)—1) =: &, as above. We check that
(7.4) k— F'(k,r) — & > 0.

This contradicts (6.1). Thus p’|d for each prime p € P. Now we take r = 14. Since 1 € R, we have (%) =1

for all a; € R and for each p with 3 < p < 13. Therefore B, C {s € S(r) : (%) =1,3<p<13} =
{1,1054} US" where |S”| = 14 and s > 2000 for each s € S”. Hence &, < v(1) 4+ v(1054) + 14 < v(1) + 16
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since v(1054) < 2 by Lemma 7.2. From (7.1) and (7.2) with pu = 3, we get v(1) < fo(k,1,0) + go(k, 1,3).
Therefore &, < fo(k,1,0) + go(k,1,3) + 16 =: &, and we compute that (7.4) holds contradicting (6.1).

(b) Let d be odd and p, g be as in (b). Assume k < 1013. By (a), we may assume that 31 d, 5 { d. We continue
the proof as above in the case (i) of (a). We take r = 7 and check that k — F'(k,r) — &, + {%1 + [%] > 0.
This contradicts (6.1).

(¢) Let d be even and p be as in (¢). Assume k < 1801. For any set W of squarefree integers, let W/ =
W) ={s e W :s< 2%} We consider four cases, viz (i) p > 5,31 d,5 1 d; (ii) p=5,31d; (iii) p=3,51d
and (iv) 15|d. We take r > 7. Assume that (4), (i7) or (iii) holds. Then from (6.7) with p = ¢, we get 2°
sets Uy, 1 < p < 29 given by S;(n/,r),S4(n’,7). Without loss of generality, we put S;(1,7) = U;. Further
|U,| < gpfor 1 < p <29 Assume (iv). We take p = 3,¢g =5 in (6.7). We get 207! sets V,,,1 < p < 20F1
given by S;(n’,7),1 < j <4 and we put S;(1,7) = V;. Further |V,,| <2779 for 1 < pu < 2°+1. We define ¢’
by ¢’ = 2"~9=%if (iv) holds and ¢’ = g, otherwise. Further let W, with 1 <y < 2°+! be given by W, =V,
if (4v) holds and W, = U,, for 1 < pu < 2%, W, = () for p > 2% if (i), (ii) or (iii) holds. We see from Lemma
7.2 that v(s) < Fo(k, s,d) and v(s) <1 for s € W, \ W/. Observe that 1 € W| C W1.

Assume that 1 ¢ R in the cases (i1), (ii1) or (iv). We take r = 8 for 101 < k < 941, r = 9 for
941 < k < 1373 and r = 10 for 1373 < k < 1801 in the case (i) with 8|d. For all other cases, we take
r=7for 101 < k < 941, r = 8 for 941 < k < 1373 and r = 9 for 1373 < k < 1801. Then &, <
maxzsewM F(k,s,8) < g + max ZseWL(FO(k,s,é) — 1) =: & where maximum is taken over 1 < p < 20+1
and we remove 1 from W] C Wy when (%), (i#i) or (iv) holds. We check that

- [%] if (7) holds with p > p,

0 otherwise.

k—F'(k,r)— & > {

This contradicts (6.1).

Thus it remains to consider the cases (i), (4ii) or (iv) and 1 € R. Then a; = 1(mod 2°) and (%) =1 for
all p|d whenever a; € R. Let Py = {5},{3},{3,5} when (¢4), (¢i¢), (iv) holds, respectively. Then (%) =1
for p € Py.

Assume that 7 t+ d when 8|d,15|d. Let P = {7} if 8/d,3|d,5 1t d; P = {7,11,13,17,19} if 4||d, 15|d;
P = {11,13,17,19} if 8|d,15|d and P = {7,11,13} in all other cases. Suppose that p’ { d for some prime
p’ € P. Let r be given by the following table:

(44), (111),2||d, 4[|d |  (d9), (#11),8]d | (iv),2[|d | (iv),4]|d,8|d
8 for k <941 10 for £ <941
9 for k> 941 11 for k& > 941

9 11

We get B, C Wi. For s € W1, we get from (7.1) that v(s) = v,(s) < G(k, s,d) :=min(fo(k, s,),
G1,G9) where

(fi(k,s,3,2,6), maxyep fa(k,s,3,p,2,9)
(fi(k,s,5,1,0), maxyep fa(k,s,5,p',1,0)
(f1(k,s,3,1,3), maxyep fa(k,s,3,p',2,3)
(fi(k,s,5,1,3), maxycp fa(k,s,5,0,2,3)

) when (i7) holds, 8td
) when (444) holds, 81d
) when (i7) holds, 8|d
) (

when (#47) holds, 8|d

(G1,Go) =



THE EQUATION n(n+4d)---(n+ (k — 1)d) = by> WITH w(d) <6 OR d < 10'° 27

and when (4v) holds, G1 = G2 = maxyep f1(k,s,p',1,0) if 2||d or 4||d, G1 = G2 = maxyep fa(k,s,7,p',1,3)
if 8|d. Therefore &, < ¢ + ZseW{ (G(k,s,0) — 1) =: .. Now we check (7.4) contradicting (6.1). Thus p’|d
for each prime p’ € P. Let r and g; be given by the following table:

Cases: | (id), (#44), 2]|d | (d), (¢40), 4]|d | (3),8]d | (#v),2]|d | (iv),8]d

Suppose that one of the above case hold. Then B, C {s € S(r) : s = 1(mod 2%), (i) =1,p e PUPy} =
{1y UuW” with [W'|=g; — 1 and s > 2003 for s € W". Therefore & < v(1) + g1 — 1. From (7.1), we get

v(1) < G(k) where G(k) = f1(k,1,3,2,0) if (#) holds; fi(k,1,5,2,0) if (¢i7) holds, 8 1 d; G(k) = fo(k,1,1) if
(iv) holds with 2||d and G(k) = f1(k,1,7,2,3) if (iv) holds with 8|d. Therefore &, < G(k)+ g1 —1 =: £, and
we compute that (7.4) holds. This contradicts (6.1). Thus either (A) : (iv) holds, 4||d or (B) : (iii) holds, 8|d.
Assume that p’ 1 d with p’ € P; where P; = {23,29,31,37}, {11, 13,17,19} when (A), (B) holds, respectively.
In the remaining part of this paragraph, by ’respectively”, we mean “when (A), (B) holds, respectively’. We
take 7 = 18, 11, respectively. Then B, C {s € S(r) : s = 1(mod 2°), (;) =1,/ € PUP,} C {1,1705} UW”
with [W"| = g1 and s > 2903 for s € W' where g, = 3,14, respectively. Hence & < v(1) + v(1705) + g1 <
Gk)+2+g = & where v(1) < G(k) = maxyep, f1(k,1,p,1,2), maxyep, fo(k,1,5,p,1,3), respectively
by (7.1). We check (7.4), contradicting (6.1). Thus p'|d with p’ < 37 if (A) holds and p’|d with p’ < 19,p" # 5
if (B) holds. Now we take r = 22,16, respectively to get B, C {1} UW " with [W"| = g, and s > 2003 for

s e W' where go = 0,3, respectively. From (7.1), we get v(1) < G(k) with G(k) = fo(k,1,2), f1(k,1,5,2,3),
respectively. Hence &, < G(k) 4 g2 =: &, and we compute that (7.4) holds. This contradicts (6.1).

Thus it remains to consider the case (iv) with 8|d and 7|d. Then

(7.5) a; = 1(mod 8) and (L;Z) =1for p=3,57

whenever a; € R. Let k < 263. By taking r» = 12, we find that B, C {s € S(r) : s = 1(mod 8), (i) =1,2<
j <4} = {1,6409,9361, 12121, 214489,

268801,4756609,59994649}. Then by Lemma 7.3, v(1) < %1 since k t d by our assumption. Further
v(6409) + v(268801) + v(4756609) + »(59994649) < [Lh-] < 1, 1(9361) + »(214489) < [1£-] < 1 and
v(12121) < 1. Therefore &, < 551 43 = &.. We check (7.4) contradicting (6.1). Thus k& > 263. By (7.5),
we see that a; is not a prime < 89. Hence for a; € R with P(a;) < 89, we have w(a;) > 2. Further by (7.5),

a; = p'q’ with 11 < p’ <37 and 41 < ¢’ < 89 is not possible. For integers P;, P, with P; < P, let
I(P,Py) ={i:p'qa;, P <p' < ¢ < P}

Then [Z(P1, P2)| < 3 p cpeq<p, [ﬁ] Suppose that p; 1 d for some prime j € {5,6}. Then v(1) <

Go(k) = maxj—56 f1(k,1,p;,2,3) by (7.1). We take r = 23. For Py € {11,13}, let A(P) = {a; : a; =

Pop’ with Py < p' < 37 or a; = Pop'q’ with Py < p’ < 37,41 < ¢’ < 83}. Then from (7.5), we get
A(11) C {6721,8569, 25201} and A(13) C {17329, 17641, 27001}. Therefore we get from

I, C{i:a; = 1} UZ(17,37) UT(41,83)U
{i:a; € A1) UA13)} U {i:11-13p'|a;, 17 < p’ <37}



28 SHANTA LAISHRAM AND T. N. SHOREY

that

k
r'q

<G+ Y }+(ﬁ}+54+3+3+6::§}

17<p’'<q’' <37
since p'q’ > k for 41 < p’ < ¢’ < 83 except when p’ = 41,¢' = 43. Now we compute that (7.4) holds
contradicting (6.1). Thus p;|d for j < 6. Assume that p; { d for some j with 7 < j <9. Then v(1) < Gy (k) :=
maxr<j<o fi(k,1,p;,1,3) by (7.1). We take r = 24. Then I, C {i : a; = 1}UZ(17,37) UZ(41,89). Therefore
& < GLR)+D17<pcqr<ar [ﬁ] + [ s | +65 =: &, and we check (7.4). This contradicts (6.1). Thus p;|d for
J < 9. Suppose that p; { d for some j with 10 < j < 14. Then v(1) < Go(k) := maxio<;<i14 f1(k,1,p;,1,3)
by (7.1). We take r = 21. Then B, C {s € S(r) : s = 1(mod 8) and (p—) = 1,i <9} = {1,241754041}
giving & < Ga(k) +1 =: &.. Now we check (7.4) contradicting (6.1). Hence p;|d for j < 14. Suppose that
p; 1 d for some j with 15 < j < 22. Then v(1) < G3(k) := maxis<j<a2 f1(k,1,p;,1,3) by (7.1). We take
7 =26. Then B, C {1} as above giving &, < Ga(k) =: £.. We compute that (7.4) holds contradicting (6.1).
Thus pj|d for j < 22. Finally we take r = 32. Then B, C {1} as above giving & < (1) < 551 = & by
Lemma 7.3. We check (7.4). This contradicts (6.1). O

Lemma 7.6. We have
(7.6) k—|R| > g for k > ko(g)

where g and ko(g) are given by

(4)

g 9 14 | 17 | 29 | 33 | 61 65 129 | 256 | 2° withs>9, s€Z

ko(g) | 101 | 299 | 308 | 489 | 556 | 996 | 1057 | 2100 | 4252 §25F1
(it) d even:
g 18 129 | 33 | 61 | 64 | 128 | 256 | 512 | 1024
ko(g) | 101 | 223 | 232 | 409 | 430 | 900 | 1895 | 4010 | 8500
(i33) 4||d:
g 26 | 32 | 33 | 61 | 64 | 128 | 256 | 512 | 1024
ko(g) | 101 | 126 | 129 | 286 | 303 | 640 | 1345 | 2860 | 6100
(1v) 8|d:
g 33 | 61 | 64 | 128 | 256 | 512 | 1024
ko(g) | 101 | 209 | 220 | 466 | 990 | 2110 | 4480
(v) 3|d:

g 26 | 32 | 33 | 64 | 125 | 128 | 256 | 512
ko(g) | 101 | 126 | 129 | 351 | 720 | 735 | 1550 | 3300

(vi) p|d with p € {5,7} :

g | 33 64 [128] 256
ko(g) | 240 | 460 | 930 | 1940

Further we have ko(128) = 1200 if p|d with p < 19 and ko(256) = 2870 if p|d with p < 47.
(vit) Further ko(256) = 1115 if pqld with p € {5,7,11}; ko(256) = 1040 if 2p|d with p € {3,5}; ko(512) =
1400 if 105|d; ko(512) = 1440 if 30|d and ko(512) = 1480 if 8p|d with p € {3,5}.

Proof. (i) Let g be given as in (i). Assume that & > ko(g) and k—|R| < g. We shall arrive at a contradiction.
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Let g # 9. From (5.1), we have [[, cpa; > (1.6)I%1(|R|)! whenever |R| > 286. We observe that (5.3) and
(5.4) hold with ip = 0, hg = 286, z; = 1.6, 91 = g — 1, m =min(89, /ko(9)),£ = 0,1 = 1,n; = 1 and ny = 25
for k > g1 + 286 and thus for k& > ko(g).

Let g = 2° with s > 9. Then 9+ < ﬁ < % and we get from (5.4)

c1k —cologk — c3 c1k — c3 + colog ey

7.7 2% —1 = —
(77) o log c4k log c4k 2

where

1.6
2.71851

_2 1
c1 = log prLl + log(1 — 1—8), co = 1.57(m) — 1,
p<m
_ 1 0_5_;,_% 1 1 - 1.6
c3 = log | 27 Hp pe-1 —ilog(l—f), €=

s 18

Here we check that cik—cplogk —c3 > 0 at k =9-2' and hence (7.7) is valid. Further we observe that the
right hand side of (7.7) is an increasing function of k. Putting k = ko(g) = s2°*!, we get from (7.7) that

23 {261 - 03_222150g04 _ CQ - 1 - 1} < 0
log(2c4s) s :
log 2 + o8(ess) 2

The expression inside the brackets is an increasing function of s and it is positive at s = 9. Hence (7.7) does
not hold for all k > kqo(g). Therefore k — |R| > g = 2° whenever s > 9 and k > 52571

Let g € {14,17,29,33,61, 65,129,256} and k;(g) = 299, 316, 500, 569, 1014,

1076, 2126, 4295 according as g = 14, 17,29, 33,61, 65, 129, 256, respectively. We see that the right hand side
of (5.4) is an increasing function of k and we check that it exceeds g; at k = k1(g). Therefore (5.4) is not
possible for k > k1(g). Thus g # 14 and k < ki(g). For every k with ko(g) < k < k1(g), we compute the
right hand side of (5.3) and we find it greater than g;. This is not possible.

Thus we may assume that ¢ = 9 and k < 299. By taking » = 4 for 101 < k£ < 181 and » = 5 for
181 < k < 299 in (6.3) and (6.5), we get k — |R| > k — F'(k,r) — 2" > 9 for kK > 101 except when
103 < k < 120,k # 106 where k — |R| > k — F(k,r) — 2" > k — F'(k,r) — 2" = 8. Let 103 < k < 120,k #
106. We may assume that k — |R| = 8 and hence F(k,r) = F'(k,r). Thus for each prime 11 < p < k,
there are exactly o, number of i’s for which p|a; and for any 4, pg { a;, whenever 11 < ¢ < k,q # p.
Now we get a contradiction by considering the i’s for which a;’s are divisible by primes 17,101;103,17;
13,103;53,13;107,53;11,109; 37, 11; 19, 113; 23, 19; 29, 23; 13, 29; 59, 13; 17,

59 when k& = 103,104, 105,107,108,111,112,115,116,117,118,119, 120, respectively; 107,53, 13,103, 17 when
k =109, 109, 107,53 when k£ = 110; 37,11,109, 107 when k£ = 113 and 113, 37,11 when k = 114. For instance
let k = 113. Then 37|a; for ¢ € {0,37,74,111} or ¢ € {1,38,75,112}. We consider the first case and the other
case follows similarly. Then 11|a; for ¢ € {24115 : 0 < j < 10} and 109|a; for ¢ € {1,110}. Now o197 = 2
implies that 107|a;a;1107 for i € {j : 0 < j < 5}, a contradiction. The other cases are excluded similarly.

(i) Let d be even and g be given as in (i7). Assume that k& > ko(g) and k — |R| < ¢g. From (5.2), we
have [, cpai > (24)/FI(|R|)! whenever |R| > 200. By taking ip = 0,ho = 200, m = \/ko(g), 21 =
24,0 = 1, ng = 25,1, = 25 and ny = 1, we observe that (5.3) and (5.4) are valid for k > g — 1 +
200. Let g € {33,61,64,128,256,512,1024}. Thus (5.3) and (5.4) are valid for k > ko(g). Let ki1(g) =
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232,414,435,904, 1907, 4024, 8521 according as g = 33,61, 64, 128,256,512, 1024, respectively. We see that
(5.4) is not possible for k > k;(g). Therefore g # 33 and k < k1(g). For every k with ko(g) < k < k1(g), we
check that (5.3) is contradicted. Therefore g € {18,29} and we may assume that k& < 232. We take r = 5
for 101 < k < 200 and 7 = 6 for 200 < k < 232. From (6.10) and (6.6), we get k — |R| > k — F’'(k,r) — 2"~ 1.
We compute that k — F'(k,r) — 271 > 18,29 for k > 101,217, respectively. Hence the assertion (ii) follows.
(#i), (iv) Let g be given as in (i), (iv). Suppose that k > ko(g) and k — |R| < g. We have [[, cpa; >
(29)IEI=1(|R| — 1)! since a; = n(mod 2°). We take z; = 4 if 4||d and 2z; = 8 if 8|d. We observe that (5.3) and
(5.4) are valid for k > ko(g) with ig = 1,ho = 1, m = \/ko(g), 21 = 2€ =1, ng = 23, n; = 26 and ny = 1.
Let 4||d and g € {61, 64,128, 256,512,1024}. Let k1 (g) = 288, 306, 640, 1350,
2870,6100 according as g = 61,64, 128,256,512,1024, respectively. We see that (5.4) is not possible for
k > k1(g). Therefore g # 128,1024 and k < k1(g). For every k with ko(g) < k < k1(g), we check that (5.3)
is contradicted.
Let 8|d and g € {61, 64,128,256,512,1024}. Let k;(g) = 210, 221, 468, 994,
2111, 4485 according as g = 61,64, 128,256,512, 1024, respectively. We see that (5.4) is not possible for
k > k1(g). Therefore k < k1(g). For every k with ko(g) < k < k1(g), we check that (5.3) is contradicted.
Thus we may assume that g € {26,32,33}, k < 286 if 4||d and g = 33,k < 209 if 8|d. By taking r = 6 for
101 < k < 286, we get from (6.10) and (6.6) that k — |R| > k — F'(k,r) —2"=% > g for k > ko(g). Hence the
assertions (iii) and (iv) follows.
(v) Let 3|d. Suppose that k > ko(g) and k —|R| < g. We have [[, cpa; > 3IBI=1(|R| —1)! since a; = n(mod
3). We observe that (5.3) and (5.4) are valid with ig = 1,hg = 1,m = /ko(g), 21 = 3,£ = 1, ng = 31,
n; = 3% and ny = 25. Let g € {64,125,128,256,512} and ki(g) = 354, 720,737,1556,3300 according as
g = 64,125,128, 256,512, respectively. We see that (5.4) is not possible for k > k;(g). Therefore g # 125,512
and k < k1(g). For every k with ko(g) < k < k1(g), we check that (5.3) is contradicted.
Thus it remains to consider g € {26,32,33} and k < 351. We take r = 6 for 101 < k < 351. We get from
(6.10) and (6.13) with p = 3 that k — |R| > k — F'(k,r) — 2772 > g for k > ko(g).
(vi) Suppose g € {33,64,128,256}, k > ko(g) and k — |R| < g. By (i¢) and (v), we may assume that

2{dand 3 { d. We observe that [[, crai > (%)\RFPTA(\M — 221! since the number of quadratic

residues or quadratic non-residues mod p is 25+, Let p|d with p < p’. Then (pr )|R|_7(|R| b >
(;—ZjlﬂRI 2 (IR| — ) We take p’ = 7,19 and 47 in the first, second and third case, respectlvely Then
(5.3) and (5.4) are Vahd with z; = p? 7,00 = ho = T? m = \/koi f=1,n = pp+1, n; = 53 and
ny, = 25. We find that (5.4) is not possible for k > ko(g) + 24 and (5.3) is not possible for each k with

ko(g) < k < ko(g) + 24. This is a contradiction.

(vii) Let (z1,140,¢,n,n}) be given by

29p|d 105]d 30]d
p,qe{5,7,11} | pe{3,5},6€{1,3}
(21,10) (11,15) (20-15,2) (32,6) (15,2)

A 2 2 3 3
ﬂ6 22(7)22(11) 22(2)22(5) 22(3)22(5)22(7) 22(2)22(3)22(5)

( ) (

1

n z3(5)23(7) | 23(2)23(3) | 23(3)23(5)z3(7
n 2% 1 2%
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L .
where 23(p) = pT}rl,Zg(p) = p=ri0 . We observe that [la,crai> z‘lR‘_“]

Suppose g € {256,512}, k > ko(g) and k — |R| < g. We see that (5.3) and (5.4) are valid for k > ko(g)

(|R| —io)! with (z1,%0) given above.

with hg = ig, m = y/ko(g), £ = ¥/, ng = nj,n; = nj and ny = n,. We find that (5.4) is not possible for
k > ko(g) + 2 and (5.3) is not possible for each k with ko(g) < k < ko(g) + 2. This is a contradiction. O

8. FURTHER LEMMAS

We observe that (3.24) is satisfied when k& > 11 by Lemma 4.2. We shall use it without reference in this

section.

Lemma 8.1. Let d be odd and p,q be primes dividing d. Let w(d) < 4 and k < 821. Assume that
Gp.q(r) <2779D for r =56. Then (1.1) with k > 101 has no solution.

Proof. Suppose equation (1.1) has a solution. Let r = 5 if 101 < k < 257 and r = 6 if 257 < k < 821.
From (6.9), v(a;) < 2¢(4) and (6.1), we get k — F'(k,r) < & < 2¢(g,  <2". We find k — F’'(k,r) > 2" by

computation. This is a contradiction. g
Lemma 8.2. Equation (1.1) with k > 101 and w(d) < 4 is not possible.

Proof. We may assume that k is prime by Lemma 7.4. Let d be even. For k—|R| > h(5) = 4(2*(D=0 —1)+1,
we get from Corollary 3.10 with zp = 5 that n 4+ (k — 1)d < %k‘3 with @ = 32 if 2||d and 16 if 4|d. Let
w(d) < 3. Since k — |R| > h(5) by Lemma 7.6 (id), (i), (iv) and |S1| > 505k > %3% by Lemma 4.3, we
get %k?’ >n+(k—1)d > 2°(%2% — 1)k?, a contradiction. Thus w(d) = 4. Let k > 710. Then k —|R| > (5)
by Lemma 7.6 and |Sy| > WE% > gﬁ’g by Lemma 4.3. Hence we get % >n+(k—1)d > 2‘5(&%‘:’?9 —1)k?,
a contradiction again. Therefore k < 710. By Lemma 7.6, we get k — |R| > h(3) implying d < TSsz if 2||d
and d < 3k? if 4|d by Corollary 3.10 with zy = 3. However d > 2° - 53 - 59 - 61 by Lemma 7.5 (c). This is a

contradiction.
Thus d is odd. Suppose |S1| < |T1| — h(3). By Lemma 3.12, we have
P2 P 3
1 — -1 KB,
(8.1) d<48k,n+(k )d<48k
Let k > 710. Since v(a;) < 2@ we derive from Lemma 4.3 that S| > ESTRES % = 0.025k. Therefore

2w (d)

max A; > p(0.025k — 1) giving n + (k — 1)d > p(0.025k — 1)k? which contradicts (8.1). Thus k < 710. We
€51

8
p(%3E — 1)k? which contradicts (8.1). Let w(d) = 4. By Lemma 7.5 (a), we see that d >min(3 - 53 - 59 -
61,23-29-31-37) > Zk?* contradicting (8.1).
Hence |S1| > |T1| — b(3) 4+ 1. Therefore

see from Lemma 4.3 that |T1| > 0.3k. For w(d) < 3, we have Imax A > p(%3E 1) giving n + (k — 1)d >
i€51

(8.2) 0+ (k= 1)d > p(|Ti| - b(3))k2

Let k—|R| > b(5). By Corollary 3.10 with zo = 5, we get n+(k—1)d < %k* which, together with |T}| > 0.3k
by Lemma 4.3, contradicts (8.2) when w(d) < 2. Further k < 133,275 when w(d) = 3,4, respectively. Thus

either

(8.3) k—|R| <h(5)



32 SHANTA LAISHRAM AND T. N. SHOREY

or
(8.4) w(d) > 2; k<131 if w(d) = 3; k <271 if w(d) = 4.

We now apply Lemma 7.6 (i) to get w(d) > 2 and k < 293,487,991 for w(d) = 2, 3,4, respectively.

Let 3|d. Then we have from Lemma 7.6 (v) that w(d) > 2 and k < 131,350 when w(d) = 3, 4, respectively.
By Lemma 7.5, we get ps > 53 and hence 53 < py < (%)‘“(%H By Corollary 3.10 with zp = 3 if w(d) = 3,
zo = 2 if w(d) = 4 and Lemma 7.6 (v), we get d < 3k? if w(d) = 3 and < 3k? if w(d) = 4. Therefore
53 < po < B < 67 if w(d) = 3 and 53 < po < k3 < 3505 < 53 if w(d) = 4. Therefore w(d) = 3 and
53 < ps < 61. Now we get a contradiction from Lemma 8.1 with (p,q) = (3,p2) and (6.14).

Thus we may assume that 3 t d. Therefore k < 293,487,991 for w(d) = 2, 3,4, respectively, as stated
above. Let w(d) = 4 and k < 308. From k — |R| > 9 by Lemma 7.6 (i) and by Corollary 3.11, there exists a
partition (dy, d2) of d such that max(dy,ds) < (k—1)2. Thus p1pe < max(dy,ds) < (k—1)? giving p; < k—1.
By taking r = 5 for 101 < k < 251, r = 6 for 251 < k < 308, we get from (6.10) and g,, < 2" ' by (6.13)
with p = py that k — |R| > k — F'(k,r) — 2"~ > 16. Now we return to w(d) = 2,3,4. By Lemma 7.6 (i), we
get k —|R| > 29, Then we see from Corollary 3.10 with 2y = 2 that there is a partition (d;, dy) of d with
dy <k—1,dy <4(k—1). Thus p; < k. We take r =5 for 101 < k < 211 and r = 6 for 211 < k < 556 for
the next computation and we use Lemma 7.6 (i) for & > 556. From (6.10) with p = ¢ = p; and (6.13) with
p = p1, and since Zpld,p>p7v Op = Gp, = 2 — 27~Lif py > p, and > —2""2 if p; < p,., we get

20 for k> 101
(8.5) kE—|R|>k—F'(k,r)+2-2"1>¢29 for k> 211
33 for k > 251.
Therefore we get from (8.3), (8.4) that w(d) > 2 and k < 199,991 when w(d) = 3,4, respectively.

Let w(d) = 3. By Corollary 3.10 with zg = 3, there is a partition (dy,ds) with d; < % and dy < 2(k—1).
Thus p1pe <max(di,ds) < 2(k — 1) giving p; < \/2(k —1) < v/2-198 and hence p; < 19. Further the
possibility p; = 19 is excluded since 19 - 23 > 2(k — 1). Also py < 79,53,31,29,23 for p; = 5,7,11,13,17,

respectively. Now we apply Lemma 7.5 (a) to derive that either p; = 5,53 < ps < 79 or p; = 7,p2 = 53.
Further from 5-53 < 2(k — 1), we get k > 134. Thus k — |R| < 28 by (8.3) and (8.4). Now we take
r =6 for 134 < k < 199 in the next computation. We get from (6.10) and (6.14) with (p,q) = (p1,p2) that
k—|R| >k — F'(k,r) —2"=2 > 29. This is a contradiction.

Let w(d) = 4. By Lemma 7.5 (a), (b), we get d >min(5-53-59-61,23-47-53-59,31-41-47-53) = 953735.
Further by Corollary 3.10 with zy = 2 if k < 251, 29 = 3 if k > 251 and (8.5), we obtain d < 3k? if k < 251
and d < %kQ for kK > 251. This is a contradiction since k£ < 991. O

Lemma 8.3. Assume (1.1) with w(d) > 12. Suppose that

3.2 3 3
(8.6) d<1—6k,n+(k 1)d<1—6k.
Then k < w(d)4<(D,

=S
I8

.
1

Proof. Assume that k > w(d)4“®?. Then from 40 - ( < (12)112

)

2
m%. This together with q1q2 < (2%) wd=b < (%)

o

IA

2
1 and w(d) > 12, we get (%) "

‘ V)

3
16
2

|
|

by (2.9) and (8.6) gives q1q2 < 40_2%. Hence
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we derive from Corollary 3.7 (i) with d’ = q1q2 that

k
w(d)—2—6
(8.7) v(A;) <2 whenever A; > 10 2@
Let
20 pk;
D — 1 A S 2P (2 — (1)
(88) T _{ZeTl'AZ>6,2w(d)}’T —Tl\T
and
(8.9) S = {A;:ieTMY, 8@ = (A, :ieT®).
Then considering residue classes modulo 2%p, we derive that
20 pk s (2)

62w(d)> mz;xA>2 p(JS¥9—-1)+1

so that |S(?)| < T e+ 1< G QW(F,) + 1. We have from (8.8), (8.9) and (8.7) together with v/(4;) < 2¢(4) by

Corollary 3.7 (i7) that

k k k
(2) _ M 9w _ w(d)—2
7] 40 - 2w(d) 2 + (6 Low(d) 40 . 2w(d) + 1) 2

k 1/k k k 3k k k
<22 _ gu(d)=2 ¥ -
_40+ (6 40>+ _24+160+ 480 16

since k > w(d)4“@ and w(d) > 12. By Lemma 4.3 and k > 1639, we have

IN

k
ITW| > |1y — |T®| > 0.42k — 16 = 0-3575k.

Let €, €, be as in Lemma 5.5 with ¢ = 2. Then .3575k < [TM] =[SO+ ., (n—1)|€,| < [SV|+€ <
|SM| 4 210820,(@)4«(@) by Lemma 5.5. Now we use 2282 < L to get 0.3575k < [SM| + £ implying

1SM| > 0.2259k. Therefore n + (k — 1)d > ( ma)(cl)Ai)k;Q > 0.2259k3 contradicting (8.6). O
A;eS

Lemma 8.4. Assume (1.1) with w(d) > 5. Then there is no non-degenerate double pair.

Proof. Assume (1.1) with w(d) > 5. Further we suppose that there exists a non-degenerate double pair.

Then we derive from Lemma 3.4 with zg = 2 that

(8.10) d < Xok?, n+ (k—1)d < Xk*
where
3
(8.11) Xo =3, 2 12,6 if 2t d,2||d, 4]|d, 8|d, respectively.

This with d > 2° [];25 w(d)+1-4 p; implies k% > 2 HW(?) p;. Therefore we get from Lemma 5.1 (7), (iv) that

k log w(d) 4 loglog w(d) — 1.076868 log w(d) log 6
log(———) > w(d —log2 — — .
o8 Sz = ){ 2 &S () 2

The right side of the above inequality is an increasing function of w(d) and hence k > 9w(d)2¢(9) for
w(d) > 12. We find from Xpk? > d > 29 Hf:(g)ﬂ_él p; that k > 3.2w(d)2@ if w(d) = 10,11. Further
k> 2.97w(d)2¢@ if w(d) = 8,9 when d is odd. Also k > 2542,12195 when w(d) = 8,9, respectively if 2||d
or 8|d and k > 1271,6097 when w(d) = 8,9, respectively if 4||d.

Suppose k < 1733. Then w(d) < 8 if 4||d and w(d) < 8 otherwise. By Lemma 7.5 (a), (c), we get
d >min(3-53-59-61-67,23-29-31-37-41) if d is odd and d > 2%.53.59-61-67 if d is even. This is not
possible since d < Xpk?. Hence k > 1733.
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Let d be even and w(d) = 8,9. Since k > 1733, we get k — |R| > h(3) by Lemma 7.6 (i7), (ii7), (iv)
implying d < 3 k2 3k2 if 2||d, 4|d, respectively, by Corollary 3.10 with zy = 3. Therefore k > 2.48w/(d)2+(%)
if 4||d and k > 3.2w(d)2“’(d) otherwise.

Therefore for w(d) > 8, we have

2.48w(d)2¢( D if 4||d
(8.12) k> <297w(d)2@ if d is odd, w(d) =8,9
3.2w(d)2*@)  otherwise

Suppose that |S1| < |T1| — h(3) if d is odd and |S;| < |Ty| — b(5) if d is even. We put
£ ifordy(d) <1
X =<5 if ordy(d) >2,31d

1% if orda(d) > 2, 3|d.

—
o]

Then
(8.13) d< Xk*n+(k—1)d < Xk*

by Lemma 3.12. Therefore k < w(d)4*(9) for w(d) > 12 by Lemma 8.3.
Let w(d) > 19. Then

3 2 w(d) ;
<25 Hp> Wd)=8=0" <« Xk2 < W = {48w(d) (16) ?f ordQ(d)i

Therefore
1
w(d)

29 i B
, 9 2
5 < (64 i|_|3p7,> 29°w(d)

We see that the right hand side of the above inequality is a non-increasing function of w(d) and the inequality
does not hold at w(d) = 26. Thus w(d) < 25. Further we get a contradiction from 2° [];5 w(d)+1-4 P <d<W
since w(d) > 19.

Thus w(d) < 18. We get from (2.9) and d < Xk? that

(2) i if d is odd

18

Q- qn < & = (%) ST o= if 2||d
(124 @=e Led=e if 4|d,3td

2SI ps@ e if 4]d, 3|d

for 1 < h < w(d) — 0. Further from Xk? > d > 20p; - “Pu(d)—s> We get

WDH1=0" 0 if 3|d

k> k= VAR
LIy, if 31d.
Thus
(8.14) k> ky := max(1733, k1)

Further we derive from (8.13) that

2 w(d)—1—0o7 .
p1 — 1 Pr — 1 < L 2;}71 (g(’;a) (@i if B‘d
2 2 . 1 xk? w(d};—a' .
on ( 25 ) if 3’i'd
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for 1 <h <w(d)—d"
We take r = [%] if d is odd and r = [#] —1if d is even. By Corollary 3.8 and |71| > 0.42k by

Lemma 4.3, we have

r—1
0.42k
(815) Sp41 = W — 2\, — 2"’*1)\1 _ Z 2T*H)\‘u.
n=2
This with Corollary 4.5 and q1qz2 - - - qn < XJ* gives (8.13) gives
I . r2 M .
e D B . if21d,31d
7 . —1 grt3—6 XH .
zw(()é;%]g—r B 3-21"*14% -2 1(% +1) - 22:12 2 3 221u if 2|d’ 31d
r r—1 or+3—8" xH |
srp1 > X o= 02 AL o or-l( A ) Yl 25D L if 31d,84d
SQAZk _9(Gh +1) = YT 2 (S 1) if 8|d,3|d,r < 3

X7 X —1 ort2 X .
SR — g — e PTG A ) - g 8|3l > 4.

By observing that ka? is an increasing function of k and is positive at k = ko except when w(d) = 7,d
odd and 3|d in which case it is positive at k = 11500. Let & > 25500 when w(d) = 7,d odd and 3|d. Then
Spp1 > X3 > XY > '“T_l e %. Therefore by Lemma 4.4 with S = {4; :4 € Tr11},|S| = sr41,h = r and
(8.13), we get

SorOXsk? if 3td

XE® >n+ (k—1)d > Xk =
n ( ) = 4 %27-+6—1X3k2 1f3|d

This is a contradiction by checking that % — X > 0 except when d odd, 3|d and w(d) = 6,8,9. Thus
we may assume that d is odd, 3|d,6 < w(d) < 9 and k < 25500 if w(d) = 7. Also we check that % -
X > 0 for k& = 5000,62000, 350000 according as w(d) = 6,8,9, respectively. Thus we may assume that
k < 5000, 25500, 62000, 350000 whenever w(d) = 6,7, 8,9, respectively. If q; > 7, then we get a contradiction
from d < Xk? = %ﬁkz and Wd&lmg >1,23,23-25,23 2529 for w(d) = 6,7,8,9, respectively. Thus
q1 € {3,5}. Further we get q1 < 5,92 < 7T if w(d) = 6, q1 < 5,92 < 7,93 < 11 if w(d) = 7,8 and
g1 =3,92 = 5,493 = 7 if w(d) = 9. Thus p; = 3 and py € {5,7} if w(d) = 6, p2,ps € {5,7,11} if w(d) > 6.
Since (%) = (%) for p|d, we consider Legendre symbols modulo 3,1, g2 to all squarefree positive integers
< g1 and < g1g2 to obtain Ay < 1,As < 3. Further for w(d) > 6, we consider Legendre symbols modulo
3,q1,q2 and g3 if q3 # 9 to all squarefree positive integers < q1q2q3 to get A3 < 17. Therefore we get from

(8.15) and Corollary 4.5 that

042k _g if w(d) =6
Spp1 > X o= { 24— 44 . if w(d)=17,8
042k L (L)okS —54 if w(d) =9
We check that s,.1 > X5 > X5 > —‘“2_1 ...L‘rz—l by observing XE’;X'; is an increasing function of k£ and is

positive at k =max(1733, k;). Therefore by Lemma 4.4 with h = 7 and (8.13), we get =k > n+ (k—1)d >
92" X5 k2. This is a contradiction since % — 55 > 0.
Thus |S1]| > Xs using |T1] > 0.42k by Lemma 4.3 where Xy = 0.42k — §(3) + 1 if d is odd and X5 =

0.42k — h(5) + 1 if d is even. Since there exists a non-degenerate double pair, we apply Lemma 3.4 with
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20 = 2 to get a partition (di,ds) of d with

p1pa - ~p[%] < max(dy,ds) < 4k if 24d

Pip2 - Prew) < max(di,ds) < 4k  if 2||d

2p1po - - -p[@] < max(dy,d2) < 8k if 4|d.
Let w(d) > 7+ ¢'. Then we see from (8.12) that [S1| > X > & > % e %. We now apply Lemma 4.4
with h = 4 to get Xok > n+ (k — 1)d > 3249 Xsk? > 3 - 2°k® since X5 > %. This contradicts (8.11). Thus
w(d) <64 ¢ and k > 1733 by (8.12).

Assume that k—|R| > h(3). Then from Corollary 3.10 with 29 = 3, we get n+ (k—1)d < X7k* where X7 =
3 if 2||d and 3 otherwise. If 2|d or 3|d, then n+ (k—1)d > 3(Xs —1)k? if 3|d and n+ (k—1)d > 2°(Xs — 1)k?
if 2|d contradicting n+ (k—1)d < X7k3. Thus d is odd, 31 d and w(d) = 5,6. By Corollary 3.10 with 2o = 3,
there is a partition (di,ds) of d with p1pops <max(dy,ds) < 2(k —1). Now we get & > %%%.
Further we check X5 > % implying |S1| > X > %%%. Therefore we derive from Lemma 4.4 with
h =3 that 3k* = X7k* > n+ (k — 1)d > 6X¢k* > 3k, a contradiction. Hence k — |R| < h(3). By Lemma
7.6 (i) — (i), we get d odd, w(d) = 6 and 1733 < k < 2082. Further from Lemma 7.6 (v), (vi), we get
p1>11. Now 11-13-17-19-23-29 < d < 3k? by (8.10) and (8.11). This is a contradiction. O

Corollary 8.5. Equation (1.1) with w(d) > 5 implies that k — |R| < 2*()=9,

Proof. Assume (1.1) with w(d) > 5 and k — |R| > 2¥(D=% By Lemma 3.9, there exists a set Q with at
least 2¢(D=? pairs satisfying Property ND. Since there are at most 2¢(9—¢ — 1 permissible partitions of d
by Lemma 3.5 (i), we can find a partition (di,dz2) of d and a non-degenerate double pair with respect to

(d1,dg). This contradicts Lemma 8.4. O
Lemma 8.6. Equation (1.1) with d odd, k > 101 and 5 < w(d) < 7 implies that k — |R| < gw(d)—1,

Proof. Let d be odd. Assume (1.1) with 5 < w(d) < 7 and k — |R| > 2D~ 4 1. By Corollary 8.5, we may
suppose that k — |R| < 2¢(?). Further by Lemma 7.6 (i), we obtain k < 555, 1056, 2099 when w(d) = 5,6, 7,
respectively. Since k — |R| > 2¢(D~1 11, we derive from Corollary 3.11 that there exists a partition (dy,ds)
of d such that D15 :=max(dy,ds) < (k — 1)2.

Let w(d) = 5. Then pipops < Do < (kK — 1)? implying p; < 61 since 67 - 71 - 73 > 5552, Also
pa < ’\“/;p%. By taking r = 6 for 208 < k < 547, we get from (6.10) and (6.13) with p = p; that k — |R| >
k—F'(k, r)+min(—2""2, g, —2"1) > 32if k > 208. Thus k < 208. Further p; < 29 since 31-37-41 > 2082, If
p1 > 17, then we obtain from Lemma 7.5 (a), (b) that 207% > D15 >min(17-53-59,23-47-53), a contradiction.
Therefore p; < 13 and hence 53 < py < k by Lemma 7.5 (a). By taking r = 6, we get from (6.14) with
(p,q) = (p1,p2) that gy, p, =273 if k <127 and gp, = 2" 2 if k > 127 by (6.13) with p = p;. From (6.10)
and oy, > 2, we have k — |R| > k — F/(k,r) +2—2""3if k <127 and k — |R| > k — F'(k,r) + 2 — 2772 if
k > 127 giving k — |R| > 32, a contradiction.

Let w(d) = 6. Then popsps < D12 < (k — 1)? implying p; < p < 97 since 101 - 103 - 107 > 10552.
By taking r = 7 for 384 < k < 1039, we get from (6.10) and (6.14) with (p,q) = (p1,p2) that k — |R| >
k— F'(k,r) —2"=2 > 64 if k > 384. Thus k < 384. Further pp < 43 since 47 - 53 - 59 > 3832. Then we
derive from Lemma 7.5 (a), (b) that p; = 31,py = 41,p3 > 47. Also k > 319 since 41 - 47 - 53 > 3192, By
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taking r = 7 for 319 < k < 384, we obtain from (6.10) and (6.14) with (p,q) = (31,41) that k — |R| >
k— F'(k,r) + 031 + 041 —2"~2 > 64. This is a contradiction.
Let w(d) = 7. Suppose p; < 19. By Lemma 7.6 (v), (vi),vii), we get k < 735,930,1200 according as

p1 = 3,p1 € {5,7},p1 > 11, respectively. By Lemma 7.5 (a), we obtain py > 53. Now 53 -59 - 61 < % <

7352 930% 12002
3 05 0 11

Further p; < 41, py < 53 from pypapsps < D1 < (k —1)? < 20982, By taking r = 9, we get from (6.10) and
(6.14) with (p,q) = (p1,p2) that k — |R| > k — F'(k,7) + min(—2""3 + 053, —2" "2 + 041 + 0353) > 128 for
k > 1007. Therefore k < 1007. Now 10072 > D15 >min(23 - 47 - 53 - 59,31 - 41 - 47 - 53) by Lemma 7.5 (b).
This is not possible. O

according as p; = 3,p1 € {5,7},p1 > 11, respectively. This is not possible. Thus p; > 23.

Corollary 8.7. Assume (1.1) with w(d) > 5. Then k < 308,556, 1057,2870 and 2(w(d) — 6)2<D =0 for
w(d) =5,6,7,8 and > 9, respectively. In particular k < 2w(d)2*(®.

Proof. By Corollary 8.5 and Lemma 8.6, we derive that k — |R| < 2¢(¥=% and k — |R| < 2¥D~1 if d is
odd, 5 < w(d) < 7. By Lemma 7.6 (i), (ii), we get k < 2(w(d) — 0)2(D=? for w(d) > 9+ 0, k < 4252
if w(d) = 8 and k < 308,556,1057 according as w(d) = 5,6, 7, respectively. Now it remains to consider
w(d) =9 if 2||d,4||d and w(d) = 8. By Lemma 7.6 (i), it suffices to consider d odd and w(d) = 8. Further
k < 4252 and k — |R| < 256. Suppose k > 2870. Then k — |R| > 129 by Lemma 7.6 (¢) and we derive from
Corollary 3.11 that there exists a partition (dq,ds) of d with max(dy,ds) < (k —1)2. Let p; > 53. Then
4252* > d >53-59-61-67-71-73-79- 83, a contradiction. Thus p1 < 47. Now we obtain from Lemma 7.6
(vi) that k — |R| > 256, a contradiction. O

Lemma 8.8. (i) Let d be odd and w(d) = 5,6. Suppose that d is divisible by a prime < k when w(d) = 5.
Further assume that there exist distinct primes p and q with pq|d, p < 19,q < k when w(d) = 6. Then (1.1)
with k > 101 has no solution.

(i1) Let d be even and 5 < w(d) < 6+ 0. Assume that p|d with p < 47 when w(d) = 7. Then (1.1) with
k > 101 has no solution.

Proof. By Lemma 8.5, we may suppose that k — |R| < 2«(4)~0,

(7) Let d be odd. From Corollary 8.7, we get k < 308,556 when w(d) = 5, 6, respectively. Let w(d) = 5. By
taking r = 5 for 101 < k < 308, we get from (6.10) and (6.13) with p = p; that k—|R| > k—F'(k,7)—2""1 >
17 which is not possible by Lemma 8.6.

Let w(d) = 6. Then 53 < py < k by Lemma 7.5 (a). We take r = 6. Let p; < 13. Then we get from (6.14)
with (p,q) = (p1,p2) that gy, p, = 2773 if k < 127 and gy, = 2”72 if k > 127 by (6.13) with p = p;. From
(6.10) and op, > 1, we have k — |R| > k— F'(k,r)+1—-2""3if k <127 and k — |R| > k— F'(k,r)+1—2"2
if k> 127 giving k — |R| > 33. This contradicts Lemma 8.6. Thus p; € {17,19}. We get from (6.14) with
(p,q) = (p1,p2) that gy, p, =272 if k <193 and gp, = 2" if & > 193 by (6.13) with p = p;. From (6.10)
and oy, + 0y, > 019 + 1, we get k — |R| > 33, a contradiction.

(73) Let d be even. Then from Lemma 7.6 (i7), (ii), (iv), we get w(d) = 6,k < 252 and w(d) =7,k < 430
if 2||d; w(d) = 6,k < 127 and w(d) = 7,k < 303 if 4||d; w(d) = 6,k < 220 if 8|d. By Lemma 7.5, we obtain
w(d) = 6, k < 252 and p; > 53. Further by Lemma 7.6, we get k — |R| > 2(¥=¢=1 1 1. This with Corollary
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3.11 gives max(dy,ds) < (k — 1)? for some partition (dy,ds) of d. Since max(dy,ds) > p1paps > 533 > 4302,

we get a contradiction. O
Lemma 8.9. Equation (1.1) with k > 101 implies that d > 101°.

Proof. Assume (1.1) with k& > 101 and d < 10'°. By Lemma 8.2, we have w(d) > 5. Further we obtain from
Corollary 8.5 that k — |R| < 29(9=¢ which we use without reference in the proof.

Let d be odd. Then w(d) < 9 otherwise d > HlliZ p; > 1019 By Lemma 8.8 (i), we see that d > k® > 10'°
if w(d) =5. Thus w(d) > 6.

Let w(d) = 6. If p; < 19, then d > k5 > 10'° by Lemma 8.8 (i). Therefore p; > 23. Also p; < 37
otherwise d > 41-43-47-53-59-61 > 10'°. Further k < 556 by Corollary 8.7. Therefore by Lemma 7.5 (b),
we obtain d >min(23 - 47 - 53 - 59 - 61 - 67,31 - 41 - 47 - 53 - 59 - 61) > 1010,

Thus w(d) > 7. Then p; < 13 otherwise d > Hjli7 p; > 1010, Further k& > 1733 otherwise d > 3-53° > 1010
by Lemma 7.5 (a). By Corollary 8.7, we obtain w(d) > 8.

Let w(d) = 8. Then p; < 7. Now Lemma 7.6 (v),(vi) gives p1 € {5,7}. Further po < 11 since
5 H;2:6 p; > 1019, This is not possible by Lemma 7.6 (vii) since k > 1733.

Let w(d) =9. Then p; = 3,p2 = 5 and p3 = 7. This is not possible by Lemma 7.6 (vii) since k > 1733.

Let d be even. Then w(d) < 10 otherwise d > [[1, pi > 10'0. Further w(d) < 9 for 4|d since 4 []12, p; >
10'°. By Lemma 8.8 (ii), we have w(d) > 7. Further & > 1801 by Lemma 7.5 (c) since QH?ilﬁ p; > 1010
Now we use Lemma 7.6 (i%), (i4i), (¢v) to obtain either 2||d,w(d) = 9,10 or 8|d,w(d) = 9.

Let 2||d. Let w(d) = 9. Then p; <5 otherwise d > 2]_[3;4 p; > 10°. Then k — |R| > 256 by Lemma 7.6
(vii), a contradiction. Let w(d) = 10. Then p; = 3,p2 = 5 and hence k — |R| > 512 by Lemma 7.6 (vii).
This is not possible.

Let 8|d and w(d) = 9. Then p; < 5 since 8]_[3;4]91- > 10'°. By Lemma 7.6, we get k — |R| > 512 which is

a contradiction. O

9. PROOF OF THEOREM 2

Suppose that (1.1) with b = 1 has a solution. By Theorem A (b), Lemmas 8.2, 8.6 and Corollary 8.7,
we get w(d) = 5,d odd, k — |R| < 16 and 110 < k < 308. We observe that ord,(agpa; - --ax—_1) is even

for each prime p. Therefore the number of i’s for which a; are divisible by p is at most o, = [%] or

[%] — 1 according as [%] is even or odd, respectively. Let r = 4. Then from (6.3), we get k — |R| >

k—F(k,r)—2" > k— Y o}, —2" which is > 17 except at k = 110,112,114, 116,118,120, 122, 124 where

p>pr
k —|R| > 16. Therefore k¥ = 110,112,114,116,118,120,122,124 and k — |R| = 16. Further we may

assume that for each prime 11 < p < k, there are exactly O’;) number of ¢’s for which p|a; and for any ¢,
pq t a; whenever 11 < ¢ < k,q # p. By considering the i’s for which a;’s are divisible by primes 109, 107
when k = 110; 37,109, 107 when k = 112; 113,37, 109, 107 when k = 114; 23, 113,37, 109, 107 when k = 116;
13,23,113,37,109, 107 when k = 118; 17, 13, 23, 113, 37, 109, 107 when k = 120; 11,17, 13, 23, 113, 37, 109, 107
when k = 122 and 41,11,17,13,23,113,37,109, 107 when k = 124, we get P(aq,ac, 41 ae,1105) < 103
where ¢, = 2 + k‘%. This is excluded. For instance let k = 124. Then P(agaio---ai14) < 103. This
gives 1032|ajaj1103 for j € {9,10,11}. Let 103%|agaiie. Then 101%|aja;+101 for j € {10,12,13} so that
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P(ajsa1s---ai1p) < 97. This is excluded by considering by Theorem A with k = 97. If 1032%|aa;14, we obtain
similarly that P(a13a14 - - - a109) < 97 and it is excluded. Thus 1032|ajgayys. If 1012|ajaj+101 for j € {11,13},
we get P(ajqa1s - ai19) < 97 and is excluded. Hence 1012|agay1p implying P(a11a12 - - - a107) < 97 and it is

excluded again. O

10. PROOF OF THEOREM 3

By Theorem A (a) and Lemmas 8.2, 8.8 (i), we may suppose that d is odd, either w(d) = 3, (ag, a1, ,ax-1) €

Sy or w(d) < 2,(ag,a1,--- ,ax-1) € 61Uy, (ag, a1, -+ ,ar) # (3,1,5,6,7,2,1,10) or its mirror image when
k = 8,w(d) = 2. For p|d, we observe from (%) =1 for ¢ € {2,3,5,7} that p > 311 and therefore d > 311¢(4,

Further we observe from Lemma 4.2 that (3.24) is valid.

Let w(d) = 1. If k — |R| > 2, we get d = d2 < 4(k — 1) by Corollary 3.10 with zp = 2, a contradiction
since d > 311. Therefore it remains to consider k¥ = 8 and (ag,- - ,a7) = (3,1,5,6,7,2,1,10) or its mirror
image. We exclude the possibility (ag, - ,a7) = (3,1,5,6,7,2,1,10) and the proof for excluding its mirror

image is similar. We write
n=3m(2), n4d=x2 n+2d=>5z3 n—|—3d=6x§7
n+4d = T7x3, n+5d = 2x2, n+46d =13, n+ 7d= 1023

Then we get 5d = 22 — 23 = (w6 — x1)(z6 + 1) implying either 26 — 71 = 1,26 + 21 = 5d or g — x1 =
5,x¢+x1 = d. We apply Runge’s method to arrive at a contradiction. Suppose xg—x1 = 1, x6+x1 = 5d. Then
5d = 2x1+1 and z1 > 14. We obtain (125-6z¢x375)% = (25(n+d) —25d)(25(n+d)+50d)(25(n+d)+100d) =
(2522 — 1021 — 5)(252% + 2021 + 10) (2522 + 402, +20) = 1562529 + 3125025 + 2062527 — 300027 — 1075027 —
6000z1 — 1000 =: ¥(z1). We see that

(12523 + 12527 + 2021 — 32)? > h(x1) > (12523 + 12527 + 202, — 33)2.

This is a contradiction. Let xg — x1 = 5,26 + 1 = d. Then we argue as above to conclude that d =

2x1 4+ 5,21 > 66 and
(23 + 522 + 4oy — 32)? > Py (x1) > (23 + 5a? + 4x; — 33)2

where 91 (1) = 2§ + 1029 + 33z} — 2423 — 43022 — 120021 — 1000 is a square. This is again not possible.
Thus w(d) > 2. Let k > 13 and (ap, a1, - ,a12) # (3,1,5,6,7,2,1,10,11,
3,13,14,15) or its mirror image when k = 13. Let g = 3,4,5 if k = 13,14, > 19, respectively. Then from
v(1) = 3 and Lemma 3.9, we get a set  of pairs (4,7) with |Q| > k — |R| + r3 > g having Property ND.
Therefore there exists a non-degenerate double pair for & > 14 when w(d) = 2. Further there are distinct
pairs corresponding to partitions (dq, ds), (d2,d1) for some divisor d; of d for k > 13 when w(d) = 2 and for
k > 19 when w(d) = 3.
Suppose that there is a non-degenerate double pair. Then we get from Lemma 3.4 with zy = 2 that
d < 3k% < 3242 contradicting d > 3112. Thus there is no non-degenerate double pair corresponding to any
partition. Again, if there are pairs (i, ), (g, h) corresponding to partitions (dy,ds), (d2,d1) for some divisor
dy of d, then we derive from Lemma 3.3 that d < (k — 1)*. This is not possible since 3112 < d < 12*
when w(d) = 2 and 311 < d < 23* when w(d) = 3. Therefore there are no distinct pairs corresponding to
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partitions (dy,ds), (da,d;) for any divisor dy of d. Thus it remains to consider k¥ = 14 when w(d) = 3 and
either k = 8,9 or k = 13, (ap,a1,--- ,a12) = (3,1,5,6,7,2,1,10,11,3,13,14,15) or its mirror image when
w(d) = 2. Also we may suppose that there is a pair (7, j) with a; = a; corresponding to the partition (1, d)
for each of these possibilities.

Let k = 8 and w(d) = 2. We exclude the possibility (ag,as1,---,a7) = (2,3,1,5,6,7,2,1) and the proof
for excluding its mirror image is similar. We see that either the pair (0,6) or (2,7) corresponds to (1,d) and
we arrive at a contradiction as in the case k = 8,w(d) = 1 and (ag,--- ,a7) = (3,1,5,6,7,2,1,10). Let the
pair (0, 6) corresponds to (1,d). Then either g — 29 = 1,26 + x9 = 3d or xg — xo = 3, 26 + o = d. Suppose
26 — 20 = 1,26 + 20 = 3d. Then we obtain 3d = 2z¢ + 1,29 > 100 and (3xo27)% = (3n + 6d)(3n + 21d) =
(623 + dwg + 2) (623 + 14z + 7) = 3628 + 10823 + 11022 + 5679 + 14 := )a(z0) is a square. This is a
contradiction since (622 + 9xg + 3)2 > a(xg) > (622 + 9z + 2)2. Let 26 — 29 = 3,26 + 29 = d. Then we
argue as above to conclude that d = 2z + 3,29 > 100 and 4z3 + 3623 + 1123 + 16870 + 126 := ¥3(z0) is a
square. This is again not possible since (223 + 92 + 8)2 > ¥3(z0) > (223 + 929 + 7)2. The other possibility
of the pair (2,7) corresponding to (1,d) is excluded similarly.

Let k =9 and w(d) = 2. Then (1.1) holds with k£ = 8 and (ag, - ,a7) = (2,3,1,5,6,7,2,1) or its mirror
image. This is already excluded. The case k = 13, w(d) = 2 and (ag, - -+ ,a12) = (3,1,5,6,7,2,1,10, 11, 3,13, 14, 15)
or its mirror image is excluded as above in the case k = 8.

Let k = 14 and w(d) = 3. Let (ag,--- ,a13) = (3,1,5,6,7,2,1,10,11,3, 13,

14,15,1). Then one of the pairs (0,9), (1,6), (1,13), (6,13) corresponds to the partition (1,d). This is ex-
cluded as above in the case k = 8, w(d) = 2. The proof for excluding the mirror image (1,15, 14,13,3,11,10,1,2,7,6,5,1, 3)

is similar. O

11. PROOF OF THEOREM 1

First we show that d > 10'°. By Lemma 8.9 and Theorem A (a), it suffices to consider the case k = 7

and (ag, a1, - ,a¢) given by
(11.1) (2,3,1,5,6,7,2), (3,1,5,6,7,2,1), (1,5,6,7,2,1,10)

or their mirror images. Then for p|d, we have (%) =1 for ¢ € {2,3,5,7}. Suppose that d < 101°. Since
w(d) > 2, we have p; < 10°. For X > 0, let
q

Po=Po(X)={p<X: <p> =1,¢=2357T}

We find that that Po(10°) = {311,479,719,839,1009,---}. Thus p; > 311 by p; € Pp(10°). Since 311 -
479 - 719 - 839 > 10'°, we have w(d) < 3. Further from 3112 - 479% > 10'°, we get either w(d) = 2,d =
P1p2, PTp2, p1p3 or w(d) = 3,d = p1paps.

Consider (ag, a1, ,a6) = (2,3,1,5,6,7,2). From d = n+d —n = 323 — 223, 3 { xo, 4 { zo71, We get
d=—2=1(mod 3) and d = 3 — 2 = 1(mod 8) giving d = 1(mod 24). Again from 2(z2 —22) =n+6d—n =
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6d = 6d1d>, we get xg —xg = ridy, xg + Tg = rods with rire = 3, rid; < rods and (T‘1d1,’r‘2d2) € 93 with

{(1,3q192), (3, 9192), (91, 392), (391, d2), (42, 3q1)}  if w(d) =2
D3 = ¢ {(1,3p1p2p3), (3, p1p2p3), (P1, 3p2p3), (3p1, P2ps),
(P2, 3p1p3), (3p2, P1p3), (P3, 3p1p2), (3ps, p1p2)}  if w(d) = 3.

Then zy = w giving 23 = n + 2d = 223 + 2dydy = %{(rldl)Q + (rods)? — 2d1ds} a square. Now
we see from 323 = n+d = 223 + d = 3{(r1d1)* + (rad2)* — 4d1do} that {(r1d1)? + (rod2)? — 4d1ds} is
an square. For each d = ¢1q2, we first check for d = 1(mod 24) and restrict to such d. Further for each
possibility of (ridy,reds) € ®3 with r1dy < rads, we check for % (r1d1)? + (r2d2)? — 2d1da} being a square
and restrict to such pairs (r1dy,r2ds). Finally we check that %{(rldl)Q + (rada)? — 4dydy} is not a square.
For example, let d = 1319 - 4919. Then q; = 1319,q2 = 4919. We check that d = 1(mod 24). For each
choice (ridi,rads) € D3 with r1d; < rads, we check for 2{(r1d1)? + (rads)? — 2d1d>} being a square which
is possible only for (ridy,r2d2) = (1319,3 - 4919). However we find that ${(r1d1)? + (rad2)? — 4d1da} is not
a square for (ridy,rods) = (1319, 3 - 4919).

Next we consider (ag, a1, - ,a¢) = (3,1,5,6,7,2,1). From d = n + 6d — (n + 5d) = 2% — 222, 3 { x5, 3|22
and 2 t g, 4|22, we get d = 1(mod 24). Again from 22 — 23 = n + 6d — (n + d) = 5d = 5d1d> we get

Teg —T1 = 7’1d17l'6 +x1 = T2d2 with riro = 57 T'1d1 < T'ng and

{(1,59192), (5,4192), (q1,542), (591, 92), (42, 5q1)}  if w(d) =2
D5 = ¢ {(1,5p1p2p3), (5, p1p2ps), (p1, 5p2p3), (5p1, P2ps),
(P2, 5p1P3), (5p2, p103), (P3, 5p1p2), (Bp3, pip2)}  if w(d) = 3.

Thus zg = 2804 giving 202 = n + 5d = 22 — d = 1{(r1d1)? + (r2d2)? + 6d} implying L{(r1d:)? +
(rads)?+6d} is a square. Further from 723 = n+4d = n+6d—2d = 23 —2d = 1{(r1d1)*+ (r2d2)? +2d,d2},
we get %{(rldl)2 + (r2d2)? + 2d1ds} is a square. For each d = qiq2, we first check for d = 1(mod 24)
and restrict to such d. Further for each possibility of (r1di,red2) € D5 with r1d; < raods, we check for
%{(rldl)Q + (rod2)? + 6d} being a square and restrict to such pairs (r1dy,72d2). Finally we check that
1{(r1d1)? + (radz)* + 2d} is not a square. Further the case (ag,a1,-- ,a6) = (1,5,6,7,2,1,10) is excluded
by the preceding test.

The case (ag, a1, - ,a5) = (2,7,6,5,1,3,2) is similar to (ag,a1, - ,a¢) = (2,3,1,5,6,7,2) and we ob-
tain d = —1(mod 24), ${(r1d1)?+(rad2)?+2d} and ¢{(r1d1)?+(rad2)?+4d} are squares for each possibility of
(r1dy,rods) € D3 with r1dy < raods. This is excluded. The cases (ag, a1, -+ ,a6) = (1,2,7,6,5,1,3),(10,1,2,7,6,5,1)
are also similar to that of (ag,a1,---,as) = (3,1,5,6,7,2,1),(1,5,6,7,2,1,10) and is excluded. Thus
d > 10.

Now we show that d > k'°81°8%  Since Ekloslogk < 1010 for k < 22027, we may assume that k > 22027.
By Corollary 8.7, we obtain w(d) > 9 and k < 2(w(d) — 0)2¢(D=0 =: Uy(w(d) — 0). Further we derive from
22027 < k < 2w(d)2¥(® that w(d) > 11. Tt suffices to show that logd > (log Uo(w(d) — 0))(loglog o (w(d) —
0)) =: ¥y (w(d) — ). Let Uy(l) = I(logl + loglogl — 1.076868) for [ > 1. From d > 2° Hf:(;i)ﬂf‘sl p; and
Lemma 5.1 (iv), we get logd > ¥a(w(d) + 1) — log2, ¥a(w(d)) + (6 — 1) log 2 when 2t d, 2|d, respectively. It
suffices to check for w(d) > 11 that Uy(w(d)+1) —log2 — ¥1(w(d)) > 0if 2t d, ¥2(w(d)) — ¥1(w(d)—1) >0
if 2||d, 4||d and Ua(w(d)) + log4 — ¥y (w(d)) > 0 if 8|d. This is the case. O
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12. THEOREM 2 WITH w(d) = 2 AND GCD(n,d) > 1

As stated in Section 1, we prove

Theorem 4. A product of eight or more terms in arithmetic progression with common difference d satisfying

w(d) = 2 is not a square.

Proof. Suppose Theorem 4 is not true. Then (1.1) is valid with £ > 8,6 = 1 and w(d) = 2 but n and d not

necessarily coprime. Let n' = m and d' = ded)' Now, by dividing ged(n, d)* on both sides of (1.1),
we have
(12.1) n'(n 4+ d)-- (0 + (k= 1)d) = p]'p3yi

where y; > 0 is an integer and 01, 62 € {0,1}. We may assume that k is odd and (d1, d2) # (0,0) by Theorem
2 with w(d) = 2. Let d’ = 1. Then we see from [SaSh03b, Corollary 3] that the left hand side of (12.1)
is divisible by at least three primes > k. Therefore there exists a prime p with p # py,p # pa,p > k such
that it divides a term on the left hand side of (12.1) to power at least 2. This implies n’ > k?. Now we
see from [MuSh04b, Theorem 2] that the left hand side of (12.1) is divisible by at least three primes > k to
odd powers. This contradicts (12.1). Thus d’ > 1 implying (41, d2) # (1,1) by ged(n’,d’) = 1. Now we may
assume that (d1,02) = (1,0). Then d’ is a power of ps. Further we may suppose that p; > k by the results
stated in Section 1. Let n 4 iod with 0 < iy < k be the term divisible by p; on the left hand side of (12.1).
Then

n' s (0 (i = D) (' + (io + D)) -+ (0 + (k= 1)d') = 'y}
where P(V') < k and y2 > 0 is an integer. Now k = 8 by [MuSh04a, Theorem 1]. This is not possible since
k is odd. 0
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