
THE EQUATION n(n+ d) · · · (n+ (k − 1)d) = by2 WITH ω(d) ≤ 6 OR d ≤ 1010

SHANTA LAISHRAM AND T. N. SHOREY

Abstract. For relatively prime positive integers n and d, a well-known Conjecture states that n(n +
d) · · · (n+ (k− 1)d) with k ≥ 4 is never a square. The first result is due to Euler for k = 4. We confirm the

conjecture when d ≤ 1010 or d has at most five prime divisors.

1. Introduction

For an integer x > 1, we denote by P (x) and ω(x) the greatest prime factor of x and the number of

distinct prime divisors of x, respectively. Further we put P (1) = 1 and ω(1) = 0. The letter p always denote

a prime number and pi the i−th prime number. Let n, d, k, b and y be positive integers such that b is square

free, k ≥ 2, P (b) ≤ k and gcd(n, d) = 1. We consider the equation

(1.1) n(n+ d) · · · (n+ (k − 1)d) = by2 in n, d, k, b, y.

If d = 1, then (1.1) has been completely solved for P (b) < k by Erdős and Selfridge [ErSe75] and for P (b) = k

by Saradha [Sar97]. Therefore we always suppose that d > 1. We observe that (1.1) has infinitely many

solutions if k = 2, 3 and b = 1. Also (1.1) with k = 4 implies that b = 6. Therefore we always suppose that

k ≥ 5 if we consider (1.1) and k ≥ 4 if we consider (1.1) with b = 1. It has been conjectured that (1.1)

with k ≥ 5 does not hold. A weaker version due to Erdős states that (1.1) implies that k is bounded by

an absolute constant. This has been confirmed by Marszalek [Mar85] when d is fixed and by Shorey and

Tijdeman [ShTi90] when ω(d) is fixed. In fact Shorey and Tijdeman [ShTi90] proved that (1.1) implies that

2ω(d) > c1
k

log k
(1.2)

which gives

d > kc2 log log k

where c1 > 0 and c2 > 0 are absolute constants. Laishram [Lai06] gave an explicit version of (1.2) by showing

k < 11ω(d)4ω(d) if ω(d) ≥ 12(1.3)

and we improve

k < 2ω(d)2ω(d),(1.4)

see Corollary 8.7 when ω(d) ≥ 5 and Theorem 3 when ω(d) < 5 for a precise formulation. Equation (1.1)

has been completely solved in Saradha and Shorey [SaSh03a] for d ≤ 104 and k ≥ 4. We prove

Theorem 1. Equation (1.1) with k ≥ 6 implies that

d > max(1010, klog log k).
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For a given value of d, we observe that (1.1) with k ∈ {4, 5} can be solved via finding all the integral

points on elliptic curves by MAGMA or SIMATH as in [FiHa01] and [SaSh03a]. Analogous results on higher

powers for (1.1) with k ≥ 4 and y2 replaced by y` where ` > 2 is prime are proved in Saradha and Shorey

[SaSh05]; they showed that d > 30, 5 · 104, 108 and 1015 according as ` = 3, 5, 7 and ≥ 11, respectively. For

Theorem 1, we prove several results on (1.1) which are of independent interest. For example, we solve (1.1)

when ω(d) ≤ 5, b = 1 or ω(d) ≤ 4. We prove

Theorem 2. Equation (1.1) with b = 1 and ω(d) ≤ 5 does not hold.

Theorem 2 contains the case ω(d) = 1 already proved by Saradha and Shorey [SaSh03a]. In fact they

proved it without the assumption gcd(n, d) = 1. We show that this is also not required when ω(d) = 2 and

k ≥ 8, see Section . We derive Theorem 2 from a more general result and we turn to introducing some

notation for it.

From (1.1), we have

n+ id = aix
2
i for 0 ≤ i < k(1.5)

where ai’s are square free such that P (ai) ≤max(P (b), k − 1) ≤ k. Thus (1.1) with b as the squarefree part

of a0a1 · · · ak−1 is determined by the k−tuple (a0, a1, · · · , ak−1). We rewrite (1.1) as

(1.6) N(N − d) · · · (N − (k − 1)d) = by2, N = n+ (k − 1)d.

We call (1.6) as the mirror image of (1.1). It is completely determined by (ak−1, · · · , a0) which we call as

the mirror image of (a0, · · · , ak−1). Let S1 be the set of tuples (a0, · · · , ak−1) given by
k = 8 : (2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10);

k = 9 : (2, 3, 1, 5, 6, 7, 2, 1, 10);

k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15), (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1)

and their mirror images. Further S2 be the set of tuples (a0, a1, · · · , ak−1) given by
k = 14 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22);

k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7);

k = 24 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7)

and their mirror images.

Equation (1.1) with k = 6 is not possible by Bennett, Bruin, Győry and Hajdu [BBGH06]. Also (1.1) with

k ∈ {5, 7} and P (b) < k does not hold by Mukhopadhyay and Shorey [MuSh03] for k = 5 and Hirata-Kohno,

Laishram, Shorey and Tijdeman [HiLaShTi06] for k = 7. We do not have any contribution for the cases

k ∈ {5, 7} and P (b) = k in the next result where we solve all the equations (1.1) other than the ones given

by S1 ∪S2 whenever ω(d) ≤ 4 and therefore we assume k ≥ 8 in Theorem 3 (a). More precisely, we prove

Theorem 3. (a) Equation (1.1) with k ≥ 8 and ω(d) ≤ 4 implies that either ω(d) = 2, k = 8, (a0, a1, · · · , a7) ∈
{(3, 1, 5, 6, 7, 2, 1, 10), (10, 1, 2, 7, 6, 5, 1, 3)} or ω(d) = 3, (a0, a1, · · · , ak−1) ∈ S1 or ω(d) = 4, (a0, a1, · · · , ak−1) ∈
S1 ∪S2.
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(b) Equation (1.1) with ω(d) ∈ {5, 6} and d even does not hold.

Theorem 3 contains already proved case ω(d) = 1 where it has been shown in [SaSh03a] for k > 29

and [MuSh03] for 4 ≤ k ≤ 29 that (1.1) implies that either k = 4, (n, d, b, y) = (75, 23, 6, 140) or k =

5, P (b) = k. The next result shows that it suffices to prove our Theorems 1 and 3 for k ≥ 101 unless

(1.1) is given by S which is the union of S1,S2 and set of tuples given by k = 7, (a0, a1, · · · , ak−1) ∈
{(2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10)} and their mirror images.

Theorem A. (a) Equation (1.1) with 7 ≤ k ≤ 100 is not possible unless (a0, a1, · · · , ak−1) ∈ S.

(b) Equation (1.1) with 4 ≤ k ≤ 109 and b = 1 does not hold.

This is due to Hirata-Kohno, Laishram, Shorey and Tijdeman [HiLaShTi06]. For a survey of related

results, see [Sho02].

2. Notations and Preliminaries

Let k ≥ 4 and γ1 < γ2 < · · · < γt be integers with 0 ≤ γi < k for 1 ≤ i ≤ t. We consider a more general

equation

(2.1) (n+ γ1d) · · · (n+ γtd) = by2

in positive integers n, d, k, b, y, t with b squarefree, P (b) ≤ k and gcd(n, d) = 1. If t = k, we observe that

γi = i− 1 and (2.1) coincides with (1.1). It is of interest to consider more general equation (2.1) because of

possible applications. Assume that (2.1) holds. Then we have

n+ γid = aγix
2
γi for 1 ≤ i ≤ t(2.2)

with aγi squarefree such that P (aγi) ≤ k. Also

n+ γid = AγiX
2
γi for 1 ≤ i ≤ t(2.3)

P (Aγi) ≤ k and gcd(Xγi ,
∏
p≤k p) = 1. Further we write

bi = aγi , Bi = Aγi , yi = xγi , Yi = Xγi .

Since gcd(n, d) = 1, we see from (2.2) and (2.3) that

(bi, d) = (Bi, d) = (yi, d) = (Yi, d) = 1 for 1 ≤ i ≤ t.(2.4)

Let

R = {bi : 1 ≤ i ≤ t}.

For bi ∈ R, let ν(bi) = |{j : 1 ≤ j ≤ t, bj = bi}| and

νo(bi) = |{j : 1 ≤ j ≤ t, bj = bi, 2 - yj}|, νe(bi) = |{j : 1 ≤ j ≤ t, bj = bi, 2|yj}|.

We define

Rµ = {bi ∈ R : ν(bi) = µ}, rµ = |Rµ|, r =
∣∣{(i, j) : bi = bj , i > j}

∣∣.
Let

T = {1 ≤ i ≤ t : Yi = 1}, T1 = {1 ≤ i ≤ t : Yi > 1}, S1 = {Bi : i ∈ T1}.
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Note that Yi > k for i ∈ T1. For i ∈ T1, we denote by ν(Bi) = |{j ∈ T1 : Bj = Bi}|.
Let

δ = min(3, ord2(d)), δ′ = min(1, ord2(d)),(2.5)

η =

{
1 if ord2(d) ≤ 1,
2 if ord2(d) ≥ 2

(2.6)

and

ρ =

{
3 if 3|d,
1 if 3 - d.

(2.7)

Let d
′ |d and d

′′
= d

d′
be such that gcd(d

′
, d
′′
) = 1. We write

d
′′

= d1d2, gcd(d1, d2) =

{
1 if ord2(d

′′
) ≤ 1

2 if ord2(d
′′
) ≥ 2

and we always suppose that d1 is odd if ord2(d
′′
) = 1. We call such pairs (d1, d2) as partitions of d

′′
. We

observe that the number of partitions of d
′′

is 2ω(d
′′

)−θ1 where

θ1 := θ1(d
′′
) =

{
1 if ord2(d

′′
) = 1, 2

0 otherwise

and we write θ for θ1(d). In particular, by taking d′ = 1 and d
′′

= d, the number of partitions of d is 2ω(d)−θ.

Let bi = bj , i > j. Then from (2.2) and (2.4), we have

(γi − γj)
bi

d
′

=
y2
i − y2

j

d′′
=

(yi − yj)(yi + yj)
d′′

.(2.8)

such that gcd(d
′′
, yi−yj , yi+yj) = 1 if d

′′
is odd and 2 if d

′′
is even. Thus a pair (i, j) with i > j and bi = bj

corresponds to a partition (d1, d2) of d
′′

such that d1 | (yi − yj), d2 | (yi + yj) and it is unique. Similarly, we

have unique partition of d
′′

corresponding to every pair (i, j) whenever Bi = Bj , i, j ∈ T1.

Let p1 < p2 < · · · be the odd primes dividing d. Let

d =

{
2δq1q2 · · · qω(d)−1 if δ = 1, 2
q1q2 · · · qω(d) otherwise

where q1 < q2 < · · · qω(d)−θ are prime powers dividing d
2δθ

. By induction, we have

p1p2 · · · ph ≤ q1q2 · · · qh ≤
(
d

2δθ

) h
ω(d)−θ

(2.9)

for any h with 1 ≤ h ≤ ω(d)− θ. Further we define

Ah = {Bi ∈ T1 : Bi < q1q2 · · · qh}, λh = |Ah|.(2.10)

for any h with 1 ≤ h ≤ ω(d)− θ.

3. Upper bound for n+ (k − 1)d

In this section, we assume that (2.1) holds. Let i > j, g > h, 0 ≤ i, j, g, h < k be such that

bi = bj , bg = bh, γi + γj ≥ γg + γh(3.1)

and

yi − yj = d1r1, yi + yj = d2r2, yg − yh = d1s1, yg + yh = d2s2(3.2)
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where (d1, d2) is a partition of d. We write V (i, j, g, h, d1, d2) for such double pairs. We call V (i, j, g, h, d1, d2)

degenerate if

bi = bg, r1 = s1 or bi = bg, r2 = s2.(3.3)

Otherwise we call it non-degenerate. Let q1 and q2 be given by

|bir21 − bgs21| = q1d2 and |bir22 − bgs22| = q2d1.(3.4)

We shall also write V (i, j, g, h, d1, d2) = V (i, j, g, h, d1, d2, q1, q2).

Let Ω be a set of pairs (i, j) with i > j such that bi = bj . Then we say that Ω has Property ND if the

the following holds: For any two distinct pairs (i, j) and (g, h) in Ω corresponding to a partition (d1, d2) of

d, the double pair V (i, j, g, h, d1, d2) is non-degenerate.

In this section, we give upper bound for n + (k − 1)d whenever it is possible to find a non-degenerate

double pair. The next section gives lower bound for n+ (k− 1)d. As in [ShTi90], the proof of our theorems

depend on showing that the upper bound and lower bound for n + (k − 1)d are not consistent whenever

it is possible to find a non-degenerate double pair. Further we show in this section that this is always the

case whenever k − |R| ≥ 2ω(d)−θ. If we do not have this, we use Lemmas 5.4 and 7.6 depending on an idea

of Erdős to give an upper bound for k. Thus there are only finitely many possibilities for k and we use

counting arguments given in Section 6 to exclude these possibilities. For example, we show in Lemma 7.5

that k is large whenever d is divisible by two small primes. This is very useful in our proofs and increases

considerably a lower bound for d in Theorem 1. The computations in this paper were carried out using

MATHEMATICA.

We begin with the following result.

Lemma 3.1. Let d = θ1(k − 1)2, n = θ2(k − 1)3 with θ1 > 0 and θ2 > 0. Let V (i, j, g, h, d1, d2, q1, q2) be a

non-degenerate double pair. Then

θ2 <
1
2

{
1
q1q2

− θ1 +

√
1

(q1q2)2
+

θ1
q1q2

}
(3.5)

and

d1 <
θ1(k − 1)
q1(2θ2 + θ1)

, d2 <
4(k − 1)

q2
.(3.6)

Proof. We have from (3.2) that yi = d1r1+d2r2
2 and yg = d1s1+d2s2

2 . Further from (2.2) and (3.1), we get

(γi − γg)d = biy
2
i − bgy2

g =
1
4
{

(bir21 − bgs21)d2
1 + (bir22 − bgs22)d2

2 + 2d(bir1r2 − bgs1s2)
}
.

We observe from (3.2), (3.1) and (2.2) that bir1r2 = γi − γj , bgs1s2 = γg − γh. Therefore

2(γi + γj − γg − γh)d = (bir21 − bgs21)d2
1 + (bir22 − bgs22)d2

2.(3.7)

Then reading modulo d1, d2 separately in (3.7), we have

d2

∣∣∣(bir21 − bgs21), d1

∣∣∣(bir22 − bgs22) if ord2(d) ≤ 1

d2

2

∣∣∣(bir21 − bgs21),
d1

2

∣∣∣(bir22 − bgs22) if ord2(d) ≥ 2.
(3.8)
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Hence 2q1, 2q2 are non-negative integers. We see that q1 6= 0 and q2 6= 0 since V (i, j, g, h, d1, d2, q1, q2) is

non-degenerate. Further we see from (2.2) that

biy
2
i − bgy2

g = (γi − γg)d, bjy
2
j − bhy2

h = (γj − γh)d.(3.9)

Therefore, by (3.2), we have

0 6= F1 := (bir21 − bgs21)d2
1 = bi(yi − yj)2 − bg(yg − yh)2

= (γi + γj − γg − γh)d− 2(biyiyj − bgygyh)
(3.10)

and
0 6= F2 := (bir22 − bgs22)d2

2 = bi(yi + yj)2 − bg(yg + yh)2

= (γi + γj − γg − γh)d+ 2(biyiyj − bgygyh).
(3.11)

We note here that F1 < 0, F2 < 0 is not possible since γi + γj ≥ γg + γh.

Let a and b be positive real numbers with a 6= b. We have 2
√
ab = (a + b)(1 − (a−ba+b )

2)
1
2 . By using

1 − x < (1 − x)
1
2 < 1 − x

2 for 0 < x < 1, we get a + b − (a−b)2
a+b < 2

√
ab < a + b − (a−b)2

2(a+b) . We use it with

a = n+ γid and b = n+ γjd so that
√
ab = biyiyj by (2.2) and (3.1). We obtain

2n+ (γi + γj)d−
(γi − γj)2d2

2n+ (γi + γj)d
< 2biyiyj < 2n+ (γi + γj)d−

(γi − γj)2d2

4n+ 2(γi + γj)d
.(3.12)

Similarly we get

2n+ (γg + γh)d− (γg − γh)2d2

2n+ (γg + γh)d
< 2bgygyh < 2n+ (γg + γh)d− (γg − γh)2d2

4n+ 2(γg + γh)d
.(3.13)

Therefore we have from (3.4), (3.10), (3.12) and (3.13) that

q1dd1 <(γi + γj − γg − γh)d− (2n+ (γi + γj)d) +
(γi − γj)2d2

2n+ (γi + γj)d

+ (2n+ (γg + γh)d)− (γg − γh)2d2

4n+ 2(γg + γh)d
if F1 > 0

and

q1dd1 <(2n+ (γi + γj)d)− (γi − γj)2d2

4n+ 2(γi + γj)d
− (2n+ (γg + γh)d)

+
(γg − γh)2d2

2n+ (γg + γh)d
− (γi + γj − γg − γh)d if F1 < 0.

Thus

q1d1 <


(γi−γj)2d

2n+(γi+γj)d
= θ1(γi−γj)2

2θ2(k−1)+θ1(γi+γj)
if F1 > 0,

(γg−γh)2d
2n+(γg+γh)d = θ1(γg−γh)2

2θ2(k−1)+θ1(γg+γh) if F1 < 0.
(3.14)

Similarly from (3.4), (3.11), (3.12) and (3.13), we have

q2d2 <

2(γi + γj − γg − γh) + θ1(γg−γh)2

2θ2(k−1)+θ1(γg+γh) if F2 > 0
θ1(γi−γj)2

2θ2(k−1)+θ1(γi+γj)
− 2(γi + γj − γg − γh) if F2 < 0.

(3.15)

Let

ni,j := (k − 1)2
{
θ2(k − 1) +

θ1(γi + γj)
2

− θ21(γi − γj)2

2(2θ2(k − 1) + θ1(γi + γj))

}
and

ng,h := (k − 1)2
{
θ2(k − 1) +

θ1(γg + γh)
2

− θ21(γg − γh)2

2(2θ2(k − 1) + θ1(γg + γh))

}
.
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Then we see from (3.12) and (3.13) that ni,j < biyiyj <
1
4bi(yi + yj)2 and ng,h < bgygyh <

1
4bg(yg + yh)2,

respectively. Assume F1 > 0. Then from (3.4), (3.11) and (3.2), we have

ni,jq1d2d
2
1 <

1
4
bi(yi + yj)2bi(yi − yj)2 =

1
4

(γi − γj)2d2

implying

θ1 + θ2 =
ni,j

(k − 1)3
+

θ1
k − 1

(
k − 1− γi + γj

2
+

θ1(γi − γj)2

2(2θ2(k − 1) + θ1(γi + γj))

)
<

(γi − γj)2

4q1(k − 1)3
d2 + θ1 ≤

d2

4q1(k − 1)
+ θ1 if F1 > 0

(3.16)

by estimating θ1(γi−γj)2
2(2θ2(k−1)+θ1(γi+γj))

≤ (γi−γj)2
2(γi+γj)

<
γi+γj

2 . Similarly

θ1 + θ2 <
d2

4q1(k − 1)
+ θ1 if F1 < 0.(3.17)

We separate the possible cases:

Case I: Let F1 > 0, F2 > 0. From (3.14) and (3.15), we have

q1q2θ1(k − 1)2 <
θ1(γi − γj)2

2θ2(k − 1) + θ1(γi + γj)

{
2(γi + γj − γg − γh) +

θ1(γg − γh)2

2θ2(k − 1) + θ1(γg + γh)

}
<

θ1(γi − γj)2

2θ2(k − 1) + θ1(γi + γj)
{2(γi + γj)− 2(γg + γh) + γg − γh}

<
2θ1(γi − γj)2(γi + γj)

2θ2(k − 1) + θ1(γi + γj)
≤ 2θ1γ3

i

2θ2(k − 1) + θ1γi
≤ 2θ1(k − 1)3

2θ2(k − 1) + θ1(k − 1)

since 2θ1γ
3
i

2θ2(k−1)+θ1γ3
i

is an increasing function of γi. Therefore 2θ2 + θ1 <
2

q1q2
which gives (3.5). Further from

(3.14) and (3.15), we have

d1 <
θ1(γi − γj)2

q1(2θ2(k − 1) + θ1(γi + γj))
<

θ1γ
2
i

q1(2θ2(k − 1) + θ1γi)
≤ θ1(k − 1)
q1(2θ2 + θ1)

and

d2 <
1
q2
{2(γi + γj)− 2(γg + γh) + γg − γh} <

2(γi + γj)
q2

<
4(k − 1)

q2

giving (3.6).

Case II: Let F1 > 0, F2 < 0. From (3.14), we have

d1 <
θ1(γi − γj)2

q1(2θ2(k − 1) + θ1(γi + γj))
<

θ1(k − 1)
q1(2θ2 + θ1)

.

Similarly d2 <
1
q2

θ1(k−1)
2θ2+θ1

< k−1
q2

from (3.15) and γi + γj ≥ γg + γh. Therefore (3.6) follows. Further

θ1(k − 1)2 = d = d1d2 <
θ21(k − 1)2

q1q2(2θ2 + θ1)2

implying (2θ2 + θ1)2 < θ1
q1q2

. Hence (3.5) follows.

Case III: Let F1 < 0, F2 > 0. From (3.14) and (3.15), we have

θ1(k − 1)2 <
θ1γ

2
g

q1q2(2θ2(k − 1) + θ1γg)

{
2(γi + γj − γg) +

θ1γ
2
g

2θ2(k − 1) + θ1γg

}
.
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Let χ(γg) = 1 − 2θ2(k−1)
2θ2(k−1)+θ1γg

so that γgχ(γg) = θ1γ
2
g

2θ2(k−1)+θ1γg
≤ θ1(k−1)

2θ2+θ1
and both χ(γg) and γgχ(γg) are

increasing functions of γg. Since γi + γj ≤ 2(k − 1), we have

θ1(k − 1)2 <
γgχ(γg)
q1q2

{2(2(k − 1)− γg) + γgχ(γg)}

<
χ(γg)
q1q2

{
2γg(2(k − 1)− γg) + γ2

gχ(γg)
}
.

We see that γg(2(k− 1)− γg) is an increasing function of γg since γg ≤ k− 1. Therefore the right hand side

of the above inequality is an increasing function of γg. Hence we obtain

θ1 <
θ1/(k − 1)2

q1q2(2θ2 + θ1)

{
2(k − 1)2 +

θ1(k − 1)2

2θ2 + θ1

}
=

θ1
q1q2(2θ2 + θ1)

{
2 +

θ1
2θ2 + θ1

}
.

Thus (2θ2 + θ1)2 < 3θ1+4θ2
q1q2

. Then we derive

(2θ2 + θ1 −
1
q1q2

)2 <
1

(q1q2)2
+

θ1
q1q2

.

Thus we get either 2θ2 + θ1 <
1

q1q2
or 2θ2 + θ1 − 1

q1q2
<
√

1
(q1q2)2

+ θ1
q1q2

giving (3.5). Further from (3.14),

we have

d1 <
θ1(γg − γh)2

q1(2θ2(k − 1) + θ1(γg + γh))
<

θ1(k − 1)
q1(2θ2 + θ1)

.

As in Case I, we have d2 <
4(k−1)
q2

. Thus (3.6) follows. �

Let θ1, θ2 be as in as the statement of Lemma 3.1.

Corollary 3.2. We have

θ1 <
3
q1q2

, θ1 + θ2 < θ1 + 2θ2 <
3
q1q2

.(3.18)

Proof. Since θ2 > 0, we see from (3.5) that either θ1 < 1
q1q2

or (θ1 − 1
q1q2

)2 < 1
(q1q2)2

+ θ1
q1q2

giving θ1 < 3
q1q2

.

Hence we get from (3.5) that

θ1 + 2θ2 <
1
q1q2

+

√
1

(q1q2)2
+

θ1
q1q2

<
3
q1q2

.

Thus (3.18) is valid. �

Lemma 3.3. Let bi = bj , bg = bh and (d1, d2) 6= (η, dη ) be a partition of d. Suppose that (i, j) and (g, h)

correspond to the partitions (d1, d2) and (d2, d1), respectively. Then

d1 < η(k − 1)2, d2 < η(k − 1)2.(3.19)

Proof. We write

yi − yj = d1r1, yi + yj = d2r2, yg − yh = d2s2, yg + yh = d1s1.

with

bir1r2 = γi − γj , bgs1s2 = γg − γh.(3.20)

Then as in the proof of Lemma 3.1, we get (3.7) and (3.8). If both bir
2
1 − bgs21 6= 0 and bir

2
2 − bgs22 6= 0,

we obtain max(d1, d2) < η max(bir21, bgs
2
1, bir22, bgs

2
2) ≤ η(k − 1)2 by (3.20). Thus we may assume that

either bir21 − bgs21 = 0 or bir22 − bgs22 = 0. Note that bir21 − bgs21 = bir
2
2 − bgs22 = 0 is not possible. Suppose
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bir
2
1 − bgs

2
1 = bir

2
2 − bgs

2
2 = 0. Then bi = bg, r1 = s1, r2 = s2 implying yi = yg, yj = yh. Hence we

get γi = γg, γj = γh from (2.2) implying (i, j) = (g, h) which is a contradiction. Now we consider the

case bir21 − bgs
2
1 = 0 and the proof for the other is similar. From bir

2
2 − bgs

2
2 6= 0 and (3.7), we obtain

2(γi + γj − γg − γh)d1 = (bir22 − bgs22)d2 implying d1

∣∣∣η(bir22 − bgs22) and d2

∣∣∣2η(γi + γj − γg − γh). Hence by

(3.20), d1 < η(k − 1)2, d2 < 2η(k − 1 + k − 2− 1) ≤ η(k − 1)2 implying (3.19). �

For two pairs (a, b), (c, d) with positive rationals a, b, c, d, we write (a, b) ≥ (c, d) if a ≥ c, b ≥ d.

Lemma 3.4. Let (d1, d2) be a partition of d. Suppose that there is a set G of at least z0 distinct pairs

corresponding to the partition (d1, d2) such that V (i, j, g, h, d1, d2) is non-degenerate for any (i, j) and (g, h)

in G. Then (3.5), (3.6) and (3.18) hold with (q1, q2) ≥ (Q1, Q2) where (Q1, Q2) is given by the following

table.
z0 d odd 2||d 4||d 8|d
2 (1, 1) (2, 1) ( 1

2 ,
1
2 ) (1, 1

2 ) if 2||d1, ( 1
2 , 1) if 2||d2

3 (2, 2) (4, 4) or (8, 2) (2, 2) (2, 2)
5 (4, 4) (8, 4) (2, 8) or (8, 2) (2, 8) if 2||d1, (8, 2) if 2||d2

Table 1

For example, (Q1, Q2) = (1, 1) if z0 = 2, d odd and (Q1, Q2) = (2, 2) if z0 = 3, 4||d. If there exists a

non-degenerate double pair V (i, j, g, h, d1, d2), then we can apply Lemma 3.4 with z0 = 2.

Proof. For any pair (i, j) ∈ G, we write

yi − yj = r1(i, j)d1 and yi + yj = r2(i, j)d2(3.21)

where r1 = r1(i, j) and r2 = r2(i, j) are integers.

Let d be odd. Then r1 ≡ r2(mod 2) for any pair (i, j) by (3.21) and we shall use it in this paragraph

without reference. We observe that q1 ≥ 1, q2 ≥ 1 by (3.8), (3.4) and the assertion follows for z0 = 2. Let

z0 = 3. If there are two distinct pairs (i, j) with bir1 even, then q1 ≥ 2, q2 ≥ 2 by (3.8). Thus we may assume

that there is at most one pair (i, j) for which bir1 is even. Therefore, for the remaining two pairs, we see that

both bir1’s are odd and the assertion follows again by (3.8). Let z0 = 5. We may suppose that there is at

most one (i, j) for which r1 is even otherwise the result follows from (3.8). Now we consider remaining four

pairs (i, j) for which r21 ≡ 1(mod 4). Out of these pairs, there are (i1, j1) and (i2, j2) such that bi1 ≡ bi2(mod

4) since b’s are square free. Now the assertion follows from (3.8).

Let d be even. We observe that

8|(y2
i − y2

j ) and gcd(yi − yj , yi + yj) = 2(3.22)

for any pair (i, j). Let 2||d. Then d1 is odd and d2 is even implying r1 is even by (3.22). Further from

(3.22), we have either 4|r1, 2 - r2 or 2||r1, 2|r2. Therefore (q1, q2) ≥ (2, 1) by (3.8) since r1 is even and

the assertion follows for z0 = 2. Let z0 = 3. Then there are two pairs (i1, j1) and (i2, j2) such that

r2(i1, j1) ≡ r2(i2, j2)(mod 2). Assume that r2 is odd. Then 4|r1 which implies 8|q1 and 2|q2 by (3.8). Now

we suppose that r2 is even. Then 2||r1. We write r1 = 2r′1 and

bi1r
2
1(i1, j1)− bi2r21(i2, j2) = 4(bi1r

′2
1 (i1, j1)− bi2r′21 (i2, j2)) ≡ 0(mod 8).
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Hence 4|q1, 4|q2 by (3.8). Let z0 = 5. We choose three pairs (i, j) for which all bi’s ≡ 1(mod 4) or all bi’s

≡ 3(mod 4). Out of these, we choose two pairs both of which satisfy either 4|r1, 2 - r2 or 2||r1, 2|r2. Now we

argue as above and use bi1 ≡ bi2(mod 4) to get the result.

Let 4||d. Then both d1 and d2 are even. From (3.22), we have either 2|r1, 2 - r2 or 2 - r1, 2|r2. Since

(q1, q2) ≥ ( 1
2 ,

1
2 ) by (3.8), the the assertion follows for z0 = 2. Let z0 = 3. Then there are two pairs (i1, j1)

and (i2, j2) such that r1(i1, j1) ≡ r1(i2, j2)(mod 2) and r2(i1, j1) ≡ r2(i2, j2)(mod 2). Since bi ≡ n(mod 4)

for each i, we get from (3.8) and (3.4) that 2|q1 and 2|q2. Thus (q1, q2) ≥ (2, 2). Let z0 = 5. Then we

get 3 pairs (i, j) for which 2|r1(i, j), 2 - r2(i, j) or 3 pairs (i, j) for which 2 - r1(i, j), 2|r2(i, j). Assume the

first case. Then there are 2 pairs (i1, j1) and (i2, j2) such that r1(i1, j1) ≡ r1(i2, j2)(mod 4). This, with

bi ≡ n(mod 4) and (3.4), implies that 16|q1d2 and 4|q2d1. Hence (q1, q2) ≥ (8, 2). In the latter case, we get

(q1, q2) ≥ (2, 8) similarly.

Let 8|d. Then we have from (3.21) and (3.22) that either 2||d1 implying all r1’s are odd, or 2||d2 implying

all r2’s are odd. Also bi ≡ n(mod 8) for all i. We prove the result for 2||d1 and the proof for the other case

is similar. From (3.7), we derive

2(γi1 + γj1 − γi2 − γj2)
d1

2
d2

2
= (bi1r

2
1 − bi2s21)

(
d1

2

)2

+ (bi1r
2
2 − bi2s22)

(
d2

2

)2

(3.23)

where r1 = r1(i1, j1), s1 = r1(i2, j2), r2 = r2(i1, j1) and s2 = r2(i2, j2). Noting that 4d2|d2
2 and taking

modulo d2, we get (q1, q2) ≥ (1, 1
2 ) implying the assertion for z0 = 2. Let z0 = 3. Then there are 2 pairs

(i1, j1) and (i2, j2) such that r2(i1, j1) ≡ r2(i2, j2)(mod 2). Using this and (3.4), we get 4|q2d1. Further

from bir1r2 = γi − γj , we see that γi1 − γj1 ≡ γi2 − γj2(mod 2) implying γi1 + γj1 ≡ γi2 + γj2(mod 2). Now

we see from (3.23) that 4d22 |q1d2. Thus (q1, q2) ≥ (2, 2). Let z0 = 5. We see that bi ≡ n or n + 8 modulo

16 so that bir22(mod 16) is equal to 0 if 4|r2, 4n if 2||r2 and n, n + 8 if 2 - r2. Now we can find 2 pairs

(i1, j1) and (i2, j2) such that bi1r
2
2(i1, j1) ≡ bi2r22(i2, j2)(mod 16). This gives 16|q2d1 by (3.4). Further again

2|(γi1 + γj1 − γi2 − γj2) and hence 4d22 |q1d2 from (3.23). Therefore (q1, q2) ≥ (2, 8). �

Lemma 3.5. (i) Assume that

n+ γtd > η2γ2
t .(3.24)

Then for any pair (i, j) with bi = bj, the partition (dη−1, η) is not possible.

(ii) Let d = d
′
d
′′

with gcd(d
′
, d
′′
) = 1. Then for any pair (i, j) with Bi = Bj ≥ d

′
, i, j ∈ T1, the partition

(d
′′
η−1, η) is not possible. In particular, the partition (dη−1, η) is not possible.

Proof. (i) Suppose the pair (i, j) with bi = bj correspond to the partition (dη−1, η). From n+γid
n+γtd

> γi
γt

and

(3.24), we get n+ γid > η2γiγt. Then from (2.8), we have

γi − γj ≥
bi(yi + yj)

η
≥

(biy2
i )

1
2 + (bjy2

j )
1
2

η
>
η(
√
γiγt +√γjγt)

η
≥ γi + γj ,

a contradiction.

(ii) Suppose the pair (i, j) with Bi = Bj ≥ d
′

correspond to the partition (d
′′
η−1, η). As in (2.8), we have

γi − γj ≥ (γi − γj)
d
′

Bi
≥ Yi + Yj

η
>

2k
2

since Yi ≥ Yj > k. This is a contradiction. The latter assertion follows by taking d
′

= 1, d
′′

= d. �
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Lemma 3.6. (i) Assume (3.24). Let 1 ≤ i0 ≤ t and ν(bi0) = µ. Let (d1, d2) be any partition of d. Then

the number of pairs (i, j) with bi=bj=bi0 , i > j corresponding to (d1, d2) is at most [µ2 ].

(ii) Let d = d
′
d
′′

with gcd(d
′
, d
′′
) = 1. Let i0 ∈ T1, Bi0 ≥ d

′
and ν(Bi0) = µ. Let (d1, d2) be any partition

of d
′′

. Then the number of pairs (i, j) with Bi=Bj=Bi0 , i > j corresponding to (d1, d2) is at most [µ2 ].

Proof. (i) Suppose there are µ′ = [µ2 ]+1 pairs (il, jl) with il > jl, 0 ≤ l < µ′ and bil = bjl = bi0 corresponding

to (d1, d2). We consider the sets I = {il|0 ≤ l < µ′} and J = {jl|0 ≤ l < µ′}. If |I| < µ′ or |J | < µ′ or

I ∩ J 6= φ, then there are l 6= m such that

d1|(yjl − yjm), d2|(yjl − yjm) if il = im

d1|(yil − yim), d2|(yil − yim) if jl = jm

d1|(yjl − yim), d2|(yjl − yim) if il = jm.

We exclude the first possibility and proofs for the others are similar. Without loss of generality, we may

assume that jl > jm. Then lcm(d1, d2)
∣∣(yjl − yjm) so that the pair (jl, jm) correspond to the partition

(dη−1, η). This is not possible by Lemma 3.5 (i). Thus |I| = µ′, |J | = µ′ and I ∩ J = φ. Now we see that

|I ∪ J | = |I|+ |J | = 2µ′ > µ and bi = bi0 for every i ∈ I ∪ J . This contradicts ν(bi0) = µ.

(ii) The proof is similar to that of (i) and we use Lemma 3.5 (ii). �

As a corollary, we have

Corollary 3.7. (i) Assume (3.24). For 1 ≤ i ≤ t, we have ν(bi) ≤ 2ω(d)−θ.

(ii) Let d = d
′
d
′′

with gcd(d
′
, d
′′
) = 1. For Bi ≥ d

′
, we have ν(Bi) ≤ 2ω(d

′′
)−θ1 . In particular, ν(Bi) ≤

2ω(d)−θ.

Proof. (i) Let ν(bi) = µ. Then there are µ(µ−1)
2 pairs (g, h) with g > h and bg = bh = bi. Since there are

at most 2ω(d)−θ − 1 permissible partitions of d, we see from Lemma 3.6 (i) that µ(µ−1)
2 ≤ µ

2 (2ω(d)−θ − 1).

Hence the assertion follows.

(ii) The proof of the assertion (ii) is similar and we use Lemma 3.6 (ii). �

Corollary 3.8. Let Tr+1 = {i ∈ T1 : Bi ≥ q1q2 · · · qr} and sr+1 = |{Bi : i ∈ Tr+1}|. Then

sr+1 ≥
|T1|

2ω(d)−r−θ −
r−1∑
µ=1

2r−µλµ − 2λr

where λ’s are as defined in (2.10).

Proof. We apply Corollary 3.7 (ii) with d′ = q1q2 · · · qµ to derive that ν(Bi) ≤ 2ω(d)−µ−θ for Bi ≥ q1q2 · · · qµ,

µ ≥ 1 since θ1 ≥ θ. Therefore

|Tr+1| ≥ |T1| − 2ω(d)−θλ1 − 2ω(d)−1−θ(λ2 − λ1)− · · · − 2ω(d)−r+1−θ(λr − λr−1).

Since ν(Bi) ≤ 2ω(d)−r−θ for i ∈ Tr+1, we have sr+1 ≥ |Tr+1|
2ω(d)−r−θ and the assertion follows. �

Lemma 3.9. Assume (3.24). There exists a set Ω of at least

t− |R|+
∑
µ>1
µ odd

rµ ≥ t− |R|
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pairs (i, j) having Property ND.

Proof. We have

t =
∑
µ

µrµ and |R| =
∑
µ

rµ.

Each bi0 ∈ Rµ gives rise to µ(µ−1)
2 pairs (i, j) with i > j such that bi = bj = bi0 and each pair corresponds

to a partition of d. By Lemma 3.6, we know that there are at most [µ2 ] pairs corresponding to any partition

of d. For each 1 ≤ j ≤ [µ2 ] = µ1, let vj be the number of partitions of d for which there are j pairs out of

the ones given by bi0 ∈ Rµ corresponding to that partition. Then

µ(µ− 1)
2

=
µ1∑
j=1

jvj .(3.25)

For each partition having j pairs with vj > 0, we remove j − 1 pairs. Then we remove in all
∑µ1
j=1(j − 1)vj

pairs. Rewriting (3.25) as

µ(µ− 1)
2

= µ1

µ1∑
j=1

vj −
µ1∑
j=1

(µ1 − j)vj ,

we see that we are left with at least
µ1∑
j=1

vj =
µ(µ− 1)

2µ1
+

µ1∑
j=1

(1− j

µ1
)vj ≥

µ(µ− 1)
2µ1

=

{
µ− 1 if µ is even
µ if µ is odd

pairs. Let Ω be the union of all such pairs taken over all bi0 ∈ Rµ and for all µ ≥ 2. Since |Rµ| = rµ, we

have

|Ω| ≥
∑
µ even

(µ− 1)rµ +
∑
µ>1
µ odd

µrµ = t− |R|+
∑
µ>1
µ odd

rµ.

Further we see from the construction of the set Ω that Ω satisfy Property ND. �

Corollary 3.10. Assume (3.24). Let z be a positive integer and h(z) = (z − 1)(2ω(d)−θ − 1) + 1. Let

z0 ∈ {2, 3, 5}. Suppose that t− |R| ≥ h(z0). Then there exists a partition (d1, d2) of d such that (3.5), (3.6)

and (3.18) hold with (q1, q2) ≥ (Q1, Q2) where (Q1, Q2) is given by Table 1.

Proof. By Lemma 3.9, there exists a set Ω with at least h(z0) pairs satisfying Property ND. Since there are

at most 2ω(d)−θ − 1 permissible partitions of d by Lemma 3.5 (i), we can find a partition (d1, d2) of d and a

subset G ⊂ Ω of at least z0 pairs corresponding to (d1, d2). Now the result follows by Lemma 3.4. �

Corollary 3.11. Assume (3.24). Suppose that t−|R| ≥ 2ω(d)−θ−1 +1. Then there exists a partition (d1, d2)

of d such that (3.19) holds.

Proof. By Lemma 3.9, there exists a set Ω with at least 2ω(d)−θ−1 +1 pairs (i, j) satisfying Property ND. We

may assume that for each partition (d1, d2) of d, there is at most 1 pair corresponding to (d1, d2) otherwise

the assertion follows by z0 = 2 in Lemma 3.4. We see that there are 2ω(d)−θ−1 − 1 partitions (d1, d2) with

d1 > d2, 2ω(d)−θ−1 − 1 partitions (d1, d2) with η < d1 < d2 and the partition (η, dη−1). Since there are at

least 2ω(d)−θ−1 + 1 pairs, we can find two pairs (i, j) and (g, h) corresponding to the partitions (d1, d2) and

(d2, d1), respectively. Now the assertion follows by Lemma 3.3. �
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Lemma 3.12. Assume (3.24).

(i) Let |S1| ≤ |T1| − h(3). Then (3.18) is valid with

q1q2 ≥


144ρ−1 if 2 - d
16 if 2||d
4 if 4|d.

(3.26)

(ii) Let d be even and |S1| ≤ |T1| − h(5). Then (3.18) is valid with

q1q2 ≥


144ρ−1 if 2||d
36 if 4|d and 3 - d
16 if 4|d and 3|d.

(3.27)

Proof. Let Bi = Bj with i > j and i, j ∈ T1. Then there is a partition (d1, d2) of d such that Yi−Yj = d1r
′
1,

Yi + Yj = d2r
′
2 with r′1, r

′
2 even, 24ρ−1|r′1r′2 if d is odd and r′1 even, 12ρ−1|r′1r′2 if 2||d and 3ρ−1|r′1r′2 if 4|d.

Since BiY 2
i = biy

2
i and bi is squarefree, we see that p|bi if and only if p|Bi with ordp(Bi) odd. Therefore

bi = bj implying b2 = Bi
bi

= Bj
bj

and yi = bYi, yj = bYj . Hence

yi − yj = d1br
′
1 = d1r1(i, j) = d1r1, yi + yj = d2br

′
2 = d2r2(i, j) = d2r2

with r1 = br′1, r2 = br′2 even, 24ρ−1|r1r2 if d is odd; r1 even, 12ρ−1|r1r2 if 2||d and 3ρ−1|r1r2 if 4|d. Let

z ∈ {3, 5} and |S1| ≤ |T1| − h(z). We argue as in Lemma 3.9 and Corollary 3.10 with t and |R| replaced

by |T1| and |S1|. There exists a partition (d1, d2) of d and z pairs corresponding to (d1, d2) such that

V (i, j, g, h, d1, d2) is non-degenerate for any two such distinct pairs (i, j) and (g, h). Let z = 3. By Lemma

3.4 with z0 = 3, we may suppose that d is odd. Let 3 - d. Then we can find two distinct pairs (i1, j1)

and (i2, j2) both of which satisfy either 3|r1(i1, j1), 3|r1(i2, j2) or 3|r2(i1, j1), 3|r2(i2, j2). Now (3.26) follows

from (3.8) and (3.4) since r1, r2 are even. Assume that 3|d. Let 3|d1. Then we can find two distinct pairs

(i1, j1) and (i2, j2) both of which satisfy either 3|r1(i1, j1), 3|r1(i2, j2) or 3 - r1(i1, j1), 3 - r1(i2, j2). Since

bi ≡ n(mod 3) and r2 ≡ 1(mod 3) for 3 - r, the assertion follows from (3.8) and (3.4) since r1, r2 are even.

The same assertion hold for 3|d2 in which case r1 is replaced by r2. This proves (3.26) and we turn to the

proof of (3.27). Let d be even and z = 5. Let 3 - d. Out of these five pairs, we can find three distinct pairs

(i, j) for which either r1(i, j)’s are all divisible by 3 or r2(i, j)’s are all divisible by 3. As in the proof of

Lemma 3.4 with d even and z0 = 3, we find two distinct pairs (i1, j1) and (i2, j2) such that 16|q1q2 if 2||d
and 4|q1q2 if 4|d. Further 9|q1q2 since either r1(i, j)’s are all divisible by 3 or r2(i, j)’s are all divisible by

3 and hence the assertion. Assume now that 3|d. By Lemma 3.4 with z0 = 5, we may suppose that 2||d.

Let 3|d1. Then we can find three pairs (i, j) for which either 3 divides all r1(i, j)’s or 3 does not divide any

r1(i, j). Then for any two such pairs (i1, j1) and (i2, j2), we have 3|(bi1r21(i1, j1) − bi2r21(i2, j2)). Therefore

by the proof of Lemma 3.4 with d even and z0 = 3, we get 3 · 16|q1q2. The other case 3|d2 is similar. �

4. Lower bound for n+ (k − 1)d

We observe that |S1| ≥ |T1|
2ω(d)−θ and n+ (k − 1)d ≥ |S1|k2. We give lower bound for |T1|. We have

Lemma 4.1. Let k ≥ 4. Then

|T1| > t−
(k − 1) log (k − 1)−

∑
p|d,p<k max

(
0, (k−1−p) log p

p−1 − log(k − 2)
)

log (n+ (k − 1)d)
− πd(k)− 1.(4.1)
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Proof. The proof depends on an idea of Sylvester and Erdős and it is similar to [SaSh03a, Lemma 3]. Since

|T1| = t − |T |, we may assume that |T | > πd(k). For a prime q with q ≤ k and q - d, let iq be a term such

that ordq(Biq ) is maximal. Let T ′ = T \ {iq : q ≤ k, q - d}. Thus |T ′| ≥ |T | − πd(k). Let i ∈ T ′. Then

n+ γid = Bi and ordq(n+ γid) ≤ordq(γi − γiq ) since gcd(n, d) = 1. Therefore

ordq(
∏
i∈T ′

(n+ γid)) ≤ ordq((γiq )!(k − 1− γiq )!) ≤ ordq(k − 1)!.

This, with n+ id ≥ i
k−1 (n+ (k − 1)d) for i > 0, gives

(|T ′| − 1)!
(
n+ (k − 1)d

k − 1

)|T ′|−1

<
∏
i∈T ′

(n+ γid) ≤ (k − 1)!ψ−1

where ψ =
∏
q|d q

ordq(k−1)!. Therefore

(|T | − πd(k)− 1) log(n+ (k − 1)d)

<(|T ′| − 1) log(k − 1) + log((k − 1) · · · |T ′|)− logψ ≤ (k − 1) log(k − 1)− logψ.

Now the assertion (4.1) follows from Lemma 5.1 (iv). �

The following result is an immediate consequence of Laishram and Shorey [LaSh06, Theorem 1].

Lemma 4.2. Let n ≥ 1, d > 2 and k ≥ 5. Then

P (n(n+ d) · · · (n+ (k − 1)d)) > 2k(4.2)

unless (n, d, k) = (1, 3, 10).

Lemma 4.3. Let t = k. Then we have

|T1| > αk for k ≥ Kα(4.3)

where α and Kα are given by
α 0.3 0.35 0.4 0.42
Kα 101 203 710 1639

Proof. Let k ≥ Kα. Thus k ≥ 101. From Lemma 4.2, we have n+ (k − 1)d > 4k2. We see from (4.1) that

|T1|+ πd(k) >k − 1− (k − 1) log k
2 log 2k

=
k

2
+

1
2

{
(k − 1) log 2

log 2k
− 1
}
>
k

2
.

Therefore n+ (k − 1)d > (k2 log k
2 )2 by Lemma 5.1 (ii).

For 0 < β < 1, let

n+ (k − 1)d > (βk log βk)2.(4.4)

We may assume that β ≥ 1
2 . Put Xβ = Xβ(k) = β log(βk). Then log(n + (k − 1)d) > 2 logXβ + 2 log k.

From (4.1), we see that

|T1|+ πd(k) >k − 1− (k − 1) log k
2 logXβ + 2 log k

=
k

2

(
1− 1

k

)(
1 +

logXβ

logXβ + log k

)
=
k

2

(
1− 1

k

)(
1 +

1
1 + log k

logXβ

)
=: gβ(k)k =: gβk.

(4.5)
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By using πd(k) ≤ π(k) and Lemma 5.1 (i), we get from (4.5) that

|T1| > gβk −
k

log k

(
1 +

1.2762
log k

)
.(4.6)

Let β = 1
2 . We observe that

14
13

log k −
(

1 +
log k

logXβ

)(
1 +

1.2762
log k

)
=
(

14
13
− 1

logXβ

)
log k −

(
1.2762
log k

+
1.2762
logXβ

)
− 1

is an increasing function of k and it is positive at k = 2500. Therefore
1

1 + log k
logXβ

>
13
14

1
log k

(
1 +

1.2762
log k

)
for k ≥ 2500

which, together with (4.6) and (4.5), implies

|T1|
k

>
1
2
− 1

2k
− 1

28 log k

(
1 +

1.2762
log k

)(
15 +

13
k

)
> 0.42 for k ≥ 2500

since the middle expression is an increasing function of k. Thus we may suppose that k < 2500. From (4.5),

we get |T1| + πd(k) > g 1
2
k =: β1k. Then (4.4) is valid with β replaced by β1 and we get from (4.5) that

|T1|+ πd(k) > gβ1k =: β2k. We iterate this process with β replaced by β2 to get gβ2 =: β3 and further with

β3 to get |T1|+ πd(k) > gβ3k =: β4k. Finally we see that |T1| > β4k − π(k) ≥ αk for k ≥ Kα. �

Lemma 4.4. Let S ⊆ {Bi : 1 ≤ i ≤ t}. Let h ≥ 1 and P1 < P2 < · · · < Ph be a subset of odd primes

dividing d. For |S| >
(
P1−1

2

)
· · ·
(
Ph−1

2

)
, we have

max
Bi∈S

Bi ≥

{
3
42h+δ|S| if 3 - d
9
82h+δ|S| if 3|d.

(4.7)

Proof. The assertion (4.7) for 3 - d is [Lai06, Corollary 2] with Ai replaced by Bi and s = |S|. Let 3|d. As

in [Lai06, Corollary 2], let Qh ≥ 1 and 1 ≤ f ≤ Ph−1
2 be integers such that (f − 1)

(
P1−1

2

)
· · ·
(
Ph−1−1

2

)
<

|S| − Qh
(
P1−1

2

)
· · ·
(
Ph−1

2

)
≤ f

(
P1−1

2

)
· · ·
(
Pt−1−1

2

)
. Then we continue the proof as in [Lai06, Corollary 2]

to get

max
Bi∈S

Bi ≥ 2δQhP1P2 · · ·Ph + 2δ(f − 1)P1P2 · · ·Ph−1.

Since P1 = 3, it suffices to show

QhP2 · · ·Ph + (f − 1)P2 · · ·Ph−1 ≥
3
4
{Qh(P2 − 1) · · · (Ph − 1) + 2f(P2 − 1) · · · (Ph−1 − 1)}

for getting the the assertion (4.7). For h = 2, we see from
1
4
Qh(P2 + 3)− 1− f

2
≥ 1

4
P2 −

1
4
− P2 − 1

4
= 0

that the above inequality is valid. For h ≥ 3, by observing that

Qh(P2 − 1) · · · (Ph − 1) ≤ QhP2 · · ·Ph −QhP2 · · ·Ph−1,

2f(P2 − 1) · · · (Ph−1 − 1) ≤ 2fP2 · · ·Ph−1 − 2fP2 · · ·Ph−2,

it suffices to show that

Qh +
3(Qh − 1)− (2f + 1)

Ph
+

6f
PhPh−1

≥ 0

which is true since Qh ≥ 1 and 1 ≤ f ≤ Ph−1
2 . �
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Corollary 4.5. We have λ1 <
2
3q1 if 2 - d, 3 - d and λ1 <

q1
ρ2δ

+ 1 otherwise. For r ≥ 2, we have

λr <


q1q2···qr
3·2r−2 if 2 - d, 3 - d

q1···qr
9·2r−3 if 2 - d, 3|d
q1···qr

3·2δ+r−3 if 2|d, 3 - d
min(q1···qr

3·2δ + 1, q1···qr
9·2r−2 ) if 6|d.

Proof. Let 2 - d and 3 - d. If λr ≥ q1···qr
3·2r−2 , then λr >

q1−1
2 · · · qr−1

2 ≥ p1−1
2 · · · pr−1

2 giving q1 · · · qr >
max
Bi∈Ar

Bi ≥ 3
42rλr by (4.7) with S = Ar. This is a contradiction.

Let 2|d or 3|d. Then we derive from Chinese remainder theorem that λr < q1···qr
ρ2δ

+ 1. Thus we may

suppose that r ≥ 2. Further we may also assume that r ≥ δ + 1 when 6|d.

Let 2 - d and 3|d. Suppose λr ≥ q1···qr
9·2r−3 . Then q1 ≥ p1 = 3 implying λr > q2−1

2 · · · qr−1
2 ≥ p1−1

2
p2−1

2 · · · pr−1
2 .

Therefore q1 · · · qr > 9
42r−1λr by (4.7) with S = Ar. This is a contradiction.

Let 2|d and 3 - d. Suppose λr ≥ q1···qr
3·2δ+r−3 . Then qr ≥ 7 since r ≥ 2 implying q′ := max(qr, 2δ) ≥ 7

implying

λr ≥
2r−1q′

3 · 2δ+r−3

p1 − 1
2
· · · pr−1 − 1

2
≥ q′

6
p1 − 1

2
· · · pr−1 − 1

2
>

p1 − 1
2
· · · pr−1 − 1

2
.

Now we apply (4.7) with S = Ar to get a contradiction.

Let 6|d. Suppose λr ≥ q1···qr
9·2r−2 . Let 2||d or 4||d. Then λr >

q2−1
2 · · · qr−1−1

2 ≥ p1−1
2

p2−1
2 · · · pr−2−1

2 since

q1qr ≥ 9 and p1 = 3. Now we apply (4.7) with S = Ar to get a contradiction. Thus it remains to consider

8|d. Then λr >
q2−1

2 · · · qr−1−1
2 ≥ p1−1

2
p2−1

2 · · · pr−1−1
2 since

λr ≥
2r−2q1q

′

9 · 2r−2

p1 − 1
2
· · · pr−2 − 1

2
>

p1 − 1
2
· · · pr−2 − 1

2
.

where q′ := max(qr, 8). Now we apply (4.7) with S = Ar to get a contradiction. �

5. Results from other sources

We now state some lemmas. We begin with some estimates from Prime Number theory.

Lemma 5.1. We have

(i) π(x) ≤ x

log x

(
1 +

1.2762
log x

)
for x > 1

(ii) pi ≥ i log i for i ≥ 2

(iii)
∏
p≤x

p < 2.71851x for x > 0

(iv)
∑
p≤pi

log p > i(log i+ log log i− 1.076868) for i ≥ 2

(v) ordp(k!) ≥ k−p
p−1 −

log(k−1)
log p for p < k.

The estimates (i) is due to Dusart [Dus98, p.14], [Dus99] and (ii) is proved by Rosser and Schoenfeld

[RoSc62]. For estimate (iii) is due to [Dus98, Prop 1.7], [Dus99]. The estimate (iv) is [Rob83, Theorem 6].

For a proof of (iv), see [LaSh04, Lemma 2(i)]. �

The next lemma is Stirling’s formula, see Robbins [Rob55].

Lemma 5.2. For a positive integer ν, we have
√

2πν e−νννe
1

12ν+1 < ν! <
√

2πν e−νννe
1

12ν .
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The following lemma is contained in [Lai06, Lemma 8].

Lemma 5.3. Let si denote the i-th squarefree positive integer. Then
l∏
i=1

si ≥ (1.6)ll! for l ≥ 286.(5.1)

Further let ti be i-th odd squarefree positive integer. Then
l∏
i=1

ti ≥ (2.4)ll! for l ≥ 200.(5.2)

The next result depends on an idea of Erdős and Rigge.

Lemma 5.4. Let z1 > 1 be a real number, h0 > i0 ≥ 0 be integers such that
∏
bi∈R bi ≥ z

|R|−i0
1 (|R| − i0)!

for |R| ≥ h0. Suppose that t − |R| < g and let g1 = k − t + g − 1 + i0. For k ≥ h0 + g1 and for any real

number m > 1, we have

g1 >

k log

 z1n0
2.71851

∏
p≤m

p
2

p2−1
(1− 1

pn(k,p) )

+ (k + 1
2 ) log(1− g1

k )

log(k − g1)− 1 + log z1
+

(0.5`+ 1) log k − log

n−1
1

∏
p≤m

p1.5n(k,p)


log(k − g1)− 1 + log z1

(5.3)

and

g1 >

k log

 z1n0
2.71851

∏
p≤m

p
2

p2−1

+ (k + 1
2 ) log(1− g1

k )

log(k − g1)− 1 + log z1
−

(1.5π(m)− 0.5`− 1) log k + log

n−1
1 n2

∏
p≤m

p
0.5+ 2

p2−1


log(k − g1)− 1 + log z1

(5.4)

where

n(k, p) =

{
[ log(k−1)

log p ] if [ log(k−1)
log p ] is even

[ log(k−1)
log p ]− 1 if [ log(k−1)

log p ] is odd,

` = |{p ≤ m : p|d}|, n0 =
∏
p|d
p≤m

p
1
p+1 , n1 =

∏
p|d
p≤m

p
p−1

2(p+1) and n2 =

{
2

1
6 if 2 - d

1 otherwise.

Proof. Since |R| ≥ t− g + 1 = k − g1 + i0, we get∏
bi∈R

bi ≥ zk−g11 (k − g1)!.(5.5)

Let

ϑp = ordp

(∏
bi∈R

bi

)
, ϑ′p = 1 + ordp((k − 1)!).
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Let h be the positive integer such that ph ≤ k − 1 < ph+1 and ε = 1 or 0 according as h is even or odd,

respectively. Then

ϑ′p − 1 =
[
k − 1
p

]
+
[
k − 1
p2

]
+ · · ·+

[
k − 1
ph

]
.(5.6)

Let p - d. We show that

ϑp − ϑ′p < −
2k

p2 − 1
(1− 1

pn(k,p)
) + 1.5n(k, p)(5.7)

< − 2k
p2 − 1

+
1.5 log k

log p
+ 0.5 +

2
p2 − 1

+ n3(5.8)

where n3 = 1
6 if p = 2 and 0 otherwise. We see that ϑp is the number of elements in {n+γ1d, n+γ2d, . . . , n+

γtd} divisible by p to an odd power. For a positive integer s with s ≤ h, let 0 ≤ ips < ps be such that

ps|n+ ipsd. Then we observe that ps divides exactly 1 +
[
k−1−ips

ps

]
elements in {n, n+ d, . . . , n+ (k− 1)d}.

After removing a term to which p appears to a maximal power, the number of remaining elements in

{n, n+ d, . . . , n+ (k − 1)d} divisible by p to an odd power is at most[
k − 1− ip

p

]
−
[
k − 1− ip2

p2

]
+
[
k − 1− ip3

p3

]
− · · ·+ (−1)ε

[
k − 1− iph

ph

]
.

Since
[
k
ps

]
− 1 ≤

[
k−1−ips

ps

]
≤
[
k−1
ps

]
, we obtain

ϑp − 1 ≤
[
k − 1
p

]
−
[
k

p2

]
+
[
k − 1
p3

]
− · · ·+ (−1)ε

[
k − 1 + ε

ph

]
+
h− 1 + ε

2
.

This with (5.6) implies

ϑp − ϑ′p ≤ −

h−1+ε
2∑
j=1

([
k − 1
p2j

]
+
[
k

p2j

])
+
h− 1 + ε

2
.(5.9)

Since [ k
p2j ] ≥ [k−1

p2j ] ≥ k−1
p2j − 1 + 1

p2j = k
p2j − 1, we obtain

ϑp − ϑ′p ≤ −2k

h−1+ε
2∑
j=1

1
p2

+ 1.5(h− 1 + ε)

giving (5.7) since n(k, p) = h− 1 + ε. Further from (5.7), k ≤ ph+1 and h < log k
log p , we get

ϑp − ϑ′p < −
2k

p2 − 1
+

1.5 log k
log p

+
2p2−ε

p2 − 1
+ 1.5(ε− 1)

giving (5.8). For p|d, we get ϑp − ϑ′p = −1− ordp(k − 1)! which together with Lemma 5.1 (v) gives

ϑp − ϑ′p <−
k

p− 1
+

log k
log p

+
1

p− 1

<− 2k
p2 − 1

+
1.5 log k

log p
+ 0.5 +

2
p2 − 1

− k

p+ 1
− 0.5 log k

log p
− p− 1

2(p+ 1)
.

(5.10)

For m > 1, we have

∏
bi∈R

bi

∣∣∣ (k − 1)!

∏
p≤k

p

 ∏
p≤m

pϑp−ϑ
′
p .

Therefore from Lemma 5.1 (iii), (5.10), (5.7) and (5.8), we have

∏
bi∈R

bi < k!k−0.5`−1

n−1
1

∏
p≤m

p1.5n(k,p)

 n0

2.71851

∏
p≤m

p
2

p2−1
(1− 1

pn(k,p) )

−k(5.11)
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and

∏
bi∈R

bi < k!k1.5π(m)−.5`−1

n−1
1 n2

∏
p≤m

p
0.5+ 2

p2−1

 n0

2.71851

∏
p≤m

p
2

p2−1

−k .(5.12)

Comparing (5.11) and (5.12) with (5.5), we get

(5.13)
zg11 k!

(k − g1)!
> k0.5`+1

n−1
1

∏
p≤m

p1.5n(k,p)

−1 z1n0

2.71851

∏
p≤m

p
2

p2−1
(1− 1

pn(k,p) )

k

and

(5.14)
zg11 k!

(k − g1)!
> k−1.5π(m)+.5`+1

n−1
1 n2

∏
p≤m

p
0.5+ 2

p2−1

−1 z1n0

2.71851

∏
p≤m

p
2

p2−1

k

.

By Lemma 5.2, we have

zg11 k!
(k − g1)!

< zg11 e
−g1(k − g1)g1

(
k

k − g1

)k+ 1
2

=
(
z1(k − g1)

e

)g1 (
1− g1

k

)−k− 1
2
.

This together with (5.13) and (5.14) imply the assertions (5.3) and (5.4), respectively. �

The inequality (5.8) corrects the corresponding inequality in [Lai06, p. 466, line 3 from the bottom] used

in [Lai06, Lemma 13] but the proof of [Lai06, Lemma 13] remains unaffected.

We end this section with the following lemma which follow immediately from [Lai06, Lemma 10].

Lemma 5.5. Let t = k. Let c > 0 be such that c2ω(d)−3 > 248, µ ≥ 2 and

Cµ = {Ai : i ∈ T1, ν(Ai) = µ, Ai >
ρ2δk

3c2ω(d)
}.

Then

C :=
∑
µ≥2

µ(µ− 1)
2

|Cµ| ≤
3c
32

4ω(d)(log c2ω(d)−3).(5.15)

6. Some counting functions

Let p be a prime ≤ k and coprime to d. Then the number of i’s for which bi are divisible by q is at most

σq =
⌈k
q

⌉
.

Let r ≥ 5 be any positive integer. Define F (k, r) and F ′(k, r) as

F (k, r) = |{i : P (bi) > pr}| and F ′(k, r) =
π(k)∑
i=r+1

σpi .

Then |{bi : P (bi) > pr}| ≤ F (k, r) ≤ F ′(k, r)−
∑

p|d,p>pr

σp. Let

Br = {bi : P (bi) ≤ pr}, Ir = {i : bi ∈ Br} and ξr = |Ir|.

We have

ξr ≥ t− F (k, r) ≥ t− F ′(k, r) +
∑

p|d,p>pr

σp(6.1)
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and

t− |R| ≥ t− |{bi : P (bi) > pr}| − |{bi : P (bi) ≤ pr}|(6.2)

≥ t− F (k, r)− |{bi : P (bi) ≤ pr}|(6.3)

≥ t− F ′(k, r) +
∑

p|d,p>pr

σp − |{bi : P (bi) ≤ pr}|(6.4)

≥ t− F ′(k, r) +
∑

p|d,p>pr

σp − 2r.(6.5)

We write S := S(r) for the set of positive squarefree integers composed of primes≤ pr. Let δ =min{3,ord2(d)}.
Let p = q = 2δ or p ≤ q be odd primes dividing d. Let p = q = 2δ. Then bi ≡ n(mod 2δ). Considering

modulo 2δ for elements of S(r), we see by induction on r that

|{bi : P (bi) ≤ pr}| ≤ 2r−δ =: g2δ,2δ =: g2δ .(6.6)

For any odd prime p dividing d, all bi’s are either quadratic residues mod p or non-quadratic residues mod

p. For odd primes p, q dividing d with p ≤ q, we consider four sets:

S1(n′, r) = S1(δ, n′, p, q, r) = {s ∈ S : s ≡ n′(mod 2δ),
(
s

p

)
= 1,

(
s

q

)
= 1},

S2(n′, r) = S2(δ, n′, p, q, r) = {s ∈ S : s ≡ n′(mod 2δ),
(
s

p

)
= 1,

(
s

q

)
= −1},

S3(n′, r) = S3(δ, n′, p, q, r) = {s ∈ S : s ≡ n′(mod 2δ),
(
s

p

)
= −1,

(
s

q

)
= 1},

S4(n′, r) = S4(δ, n′, p, q, r) = {s ∈ S : s ≡ n′(mod 2δ),
(
s

p

)
= −1,

(
s

q

)
= −1}.

(6.7)

We take n′ = 1 if δ = 0, 1; n′ = 1, 3 if δ = 2 and n′ = 1, 3, 5, 7 if δ = 3. Let

gp,q := gp,q(r) = max
n′

(|S1(n′, r)|, |S2(n′, r)|, |S3(n′, r)|, |S4(n′, r)|)(6.8)

and we write gp = gp,p. Then

|{bi : P (bi) ≤ pr}| ≤ gp,q.(6.9)

In view of (6.6) and (6.9), the inequality (6.4) is improved as

t− |R| ≥ t− F ′(k, r) +
∑

p|d,p>pr

σp − min
p|d,q|d

{gp,q}.(6.10)

We observe that gcd(s, pq) = 1 for s ∈ Sl, 1 ≤ l ≤ 4. Hence we see that Sl(n′, r+1) = Sl(n′, r) if p = pr+1

or q = pr+1 implying

gp,q(r + 1) = gp,q(r) if p = pr+1 or q = pr+1.(6.11)

Assume that pr+1 /∈ {p, q}. Let 1 ≤ l ≤ 4. We write S ′l(n′, r + 1) = {s : s ∈ Sl(n′, r + 1), pr+1|s}. Then

s = pr+1s
′ with P (s′) ≤ pr whenever s ∈ S ′l(n′, r + 1). Let l = 1. Then s′ ≡ n′p−1

r+1 ≡ n
′′
(mod 2δ)

where n
′′

= 1 if δ = 0, 1; n
′′

= 1, 3 if δ = 2 and n
′′

= 1, 3, 5, 7 if δ = 3. Further
(
s′

p

)
=
(
pr+1
p

)
and(

s′

q

)
=
(
pr+1
q

)
for s ∈ S ′l(r + 1). This implies S ′1(n′, r + 1) = pr+1Sm(n

′′
, r) for some m, 1 ≤ m ≤ 4.

Therefore |S ′1(n′, r+ 1)| ≤ gp,q(r) by (6.8). Similarly |S ′l(n′, r+ 1)| ≤ gp,q(r) for each l, 1 ≤ 1 ≤ 4. Hence we
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get from Sl(n′, r + 1) = Sl(n′, r) ∪ S ′l(n′, r + 1) that

gp,q(r + 1) ≤ 2gp,q(r).(6.12)

We now use the above assertions to calculate gp,q.

i) Let 5 ≤ r ≤ 7, p ≤ 547 when δ = 0, 1; 5 ≤ r ≤ 7, p ≤ 547 when δ = 2 and 5 ≤ r ≤ 7, p ≤ 89 when δ = 3.

Then

gp(r) =

{
max(1, 2r−δ−2) if p ≤ pr
max(1, 2r−δ−1) if p > pr

(6.13)

except when δ = 0, r = 5, p = 479 where gp = 2r;

δ = 1, r = 5, p ∈ {131, 421, 479}, r = 6, p = 131 where gp = 2r−δ;

δ = 2, r = 5, p ∈ {41, 101, 131, 331, 379, 421, 461, 479, 499} where gp = 2r−δ;

δ = 2, r = 6, p ∈ {101, 131}, r = 7, p = 101 where gp = 2r−δ;

δ = 3, r = 5, p = 3 where gp = 2r−δ−1, r = 5, p = 41 where gp = 2r−δ.

ii) Let 5 ≤ r ≤ 7, p ≤ 19, q ≤ 193, 23 ≤ p < q ≤ 97 when δ = 0 and r = 5, 6, p < q ≤ 37 when δ ≥ 1. Then

gp,q(r) =


max(1, 2r−δ−4) if p < q ≤ pr
max(1, 2r−δ−3) if p ≤ pr < q

max(1, 2r−δ−2) if pr < p < q

(6.14)

except when

δ = 0 and



r = 5, gp,q = 2r−2 for (p, q) ∈ {(5, 43), (5, 167), (7, 113), (7, 127),
(7, 137), (11, 61), (11, 179), (11, 181)};

r = 5, gp,q = 2r−1 for (p, q) ∈ {(19, 139), (23, 73), (37, 83)};
r = 6, gp,q = 2r−2 for (p, q) = (7, 137);
r = 6, gp,q = 2r−1 for (p, q) = (37, 83);

δ = 1 and


r = 5, gp,q = 2r−4 for (p, q) ∈ {(5, 7), (5, 11)};
r = 5, gp,q = 2r−3 for (p, q) = (5, 37);
r = 5, gp,q = 2r−2 for (p, q) ∈ {(13, 23), (29, 31)};
r = 6, gp,q = 2r−4 for (p, q) = (5, 7);

δ = 2 and



r = 5, gp,q = 2r−4 for (p, q) ∈ {(3, 19), (5, 17), (5, 37), (7, 13),
(7, 23), (7, 29), (7, 31), (11, 19), (11, 29), (11, 31)};

r = 5, gp,q = 2r−3 for (p, q) ∈ {(13, 23), (17, 37), (29, 31)};
r = 6, gp,q = 2r−5 for (p, q) ∈ {(5, 7), (7, 13)};
r = 6, gp,q = 2r−4 for (p, q) ∈ {(7, 29), (11, 31), (13, 23)}.

Now we combine (6.13), (6.14), (6.12) and (6.11). We obtain (6.13) with = replaced by ≤ for r ≥ 7 and

p ≤ 89 and we shall refer it as (6.13,≤). Further we obtain (6.14) with = replaced by ≤ for r ≥ 7 and either

p < q ≤ 97 when δ = 0 or p = 3, q = 5 when δ ≥ 1 and we shall refer it as (6.14,≤).

7. Computational Lemmas

From now on, we take t = k. Thus bj = aj−1, Bj = Aj−1, yj = xj−1 and Yj = Xj−1 for 1 ≤ j ≤ k.

Let f̄(x) =
⌈
x
⌉
− [
⌈
x
⌉

4 ] for x > 0 and Ka = k
a23−δ for a ∈ R. We now state a result which generalises

[HiLaShTi06, Lemma 1].
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Lemma 7.1. Let a ∈ R and µ be a positive integer. Let p, q be distinct odd primes.

(i) Let f0(k, a, δ) = f̄(Ka),

f1(k, a, p, µ, δ) =
p− 1

2

µ−1∑
l=0

f̄(
Ka
p2l+1

) + f̄(
Ka
p2µ

)

and

f2(k, a, p, q, µ, δ) =
p− 1

2

µ−1∑
l=0

(
q − 1

2
f̄(
Ka

p2l+1q
) + f̄(

Ka
p2l+1q2

)
)

+ f̄(
Ka
p2µ

).

Then

νo(a) ≤


f0(k, a, δ)
f1(k, a, p, µ, δ) if p - d
f2(k, a, p, q, µ, δ) if p - d, q - d.

(7.1)

(ii) Let d be odd. Let

g0(k, a, µ) =
µ−1∑
l=1

f̄(
Ka
22l

) + f̄(
k

a22µ
),

g1(k, a, p, µ) =
p− 1

2

µ−1∑
l=0

2∑
j=1

f̄(
Ka

2jp2l+1
) +

2∑
j=1

f̄(
Ka

2jp2µ
)

and

g2(k, a, p, q, µ) =
p− 1

2

µ−1∑
l=0

2∑
j=1

(
q − 1

2
f̄(

Ka
2jp2l+1q

) + f̄(
Ka

2jp2l+1q2
)
)

+
2∑
j=1

f̄(
Ka

2jp2µ
).

Then

νe(a) ≤


g0(k, a, µ)
g1(k, a, p, µ) if p - d
g2(k, a, p, q, µ) if p - d, q - d.

(7.2)

Proof. Let I ⊆ {i : ai = a} and τ |(i − j) whenever i, j ∈ I. Let τ ′ be the lcm of all τ1 such that τ1|(i − j)
whenever i, j ∈ I. Then τ |τ ′ and a|τ ′ since a|(i− j) whenever i, j ∈ I. Let i0 = min

i∈I
i, N = n+i0d

a and D =
τ ′

a d. Then we see that ax2
i with i ∈ I come from the squares in the set {N,N +D, · · · , N + (

⌈
k−i0
τ

⌉
− 1)D}.

Dividing this set into consecutive intervals of length 4 and using Euler’s result, we see that there are at most⌈
k−i0
τ ′

⌉
− [
⌈
k−i0
τ′

⌉
4 ] ≤

⌈
k
τ ′

⌉
− [
⌈
k
τ′

⌉
4 ] = f̄( kτ ′ ) of them which can be squares. Hence |I| ≤ f̄( kτ ′ ) ≤ f̄(kτ ) since

τ |τ ′.
Let Io = {i : ai = a, 2 - xi} and Ie = {i : ai = a, 2|xi}. Then νo(a) = |Io| and νe(a) = |Ie|.
First we prove (7.1). For i, j ∈ Io, we observe from x2

i , x
2
j ≡ 1(mod 8) and (i − j)d = a(x2

i − x2
j ) that

a23−δ|(i− j). Therefore |Io| ≤ f̄(Ka) = f0(k, a, δ).

For a prime p′, let

Qp′ = {m : 1 ≤ m < p′,

(
m

p′

)
= 1}.

Let p - d. Let

Iol = {i ∈ Io : pl||xi} for 0 ≤ l < µ and Ioµ = {i ∈ Io : pµ|xi}.
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Then a23−δp2µ|(i − j) whenever i, j ∈ Ioµ giving |Ioµ| ≤ f̄( Kap2µ ). For each l, 0 ≤ l < µ and for each m ∈ Qp,

let

Iolm = {i ∈ Iol : (
xi
pl

)2 ≡ m(mod p)}.

Then a23−δp2l+1|(i − j) whenever i, j ∈ Iolm giving |Iolm| ≤ f̄( Ka
p2l+1 ). Therefore |Iol | =

∑
m∈Qp

|Iolm| ≤
p−1
2 f̄( Ka

p2l+1 ). Hence |Io| = |Ioµ|+
∑µ−1
l=0 |Iol | ≤ f1(k, a, p, µ, δ).

Thus we may assume that p - d and q - d. For each l with 0 ≤ l < µ, m ∈ Qp and for each u ∈ Qq, let

Iolmu = {i ∈ Iolm : x2
i ≡ u(mod q)} and Iolm0 = {i ∈ Iolm : q|xi)}.

Then a23−δp2l+1q|(i− j) for i, j ∈ Iolmu and a23−δp2l+1q2|(i− j) for i, j ∈ Iolm0 implying |Iolmu| ≤ f̄( Ka
p2l+1q

)

for u ∈ Qq and |Iolm0| ≤ f̄( Ka
p2l+1q2

). Now the assertion νo(a) ≤ f2(k, a, p, q, µ, δ) follows from

|Iolm| ≤ |Iolm0|+
∑
u∈Qq

|Iolmu|, |Iol | =
∑
m∈Qp

|Iolm|, and |Io| = |Ioµ|+
µ−1∑
l=0

|Iol |.

Now we turn to the proof of (7.2). Let

Iel = {i ∈ Ie : 2l||xi} for 1 ≤ l < µ and Ieµ = {i ∈ Ie : 2µ|xi}.

Since xi
2l

is odd, we get a22l+3|(i − j) whenever i, j ∈ Iel implying |Iel| ≤ f̄(Ka
22l ) for 0 ≤ l < µ. Further

a22µ|(i − j) for i, j ∈ Ieµ giving |Ieµ| ≤ f̄( k
a22µ ). Now the assertion νe(a) ≤ g0(k, a, µ) from |Ie| =

|Ieµ|+
∑
l<µ |Iel|.

For the remaining proofs of (7.2), we consider Ie1 = {i ∈ Ie : 2||xi}, Ie2 = {i ∈ Ie : 4|xi} so that

|Ie| = |Ie1| + |Ie2|. Then 32a|(i − j) for i, j ∈ Ie1 and 16a|(i − j) for i, j ∈ Ie2. We now continue

the proof as in that of (7.1) with Ie1, Ie2 in place of Io to get νe(a) ≤ g1(k, a, p, µ) when p - d and

νe(a) ≤ g2(k, a, p, q, µ) when p - d, q - d. �

Lemma 7.2. For a ∈ R, let

f3(k, a, δ) =



1 if k ≤ a23−δ

f̄(Ka) if k > a23−δ, 3|d, 5|d
f̄(Ka3 ) + f̄(Ka9 ) if k > a23−δ, 3 - d, 5|d
f̄(Ka) if a23−δ < k ≤ 2a23−δ, 3|d, 5 - d
2f̄(Ka5 ) + f̄(Ka25 ) if k > 2a23−δ, 3|d, 5 - d
f̄(Ka3 ) + f̄(Ka9 ) if a23−δ < k ≤ 24a23−δ, 3 - d, 5 - d
2
(
f̄(Ka15 ) + f̄( Ka135 )

)
+

f̄(Ka75 ) + f̄( Ka675 ) + f̄(Ka81 ) if 24a23−δ < k ≤ 324a23−δ, 3 - d, 5 - d
2
(
f̄(Ka15 ) + f̄( Ka135 ) + f̄( Ka1215 )

)
+

f̄(Ka75 ) + f̄( Ka675 ) + f̄( Ka6075 ) + f̄( Ka729 ) if k > 324a23−δ, 3 - d, 5 - d
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and

g3(k, a) =



1 if k ≤ 4a∑2
j=1 f̄(Ka2j ) if 4a < k ≤ 32a∑2
j=1 f̄(Ka2j ) k > 32a, 3|d, 5|d∑2
j=1

(
f̄( Ka2·3j ) + f̄( Ka4·3j )

)
if k > 32a, 3 - d, 5|d∑2

j=1 f̄(Ka2j ) 32a < k ≤ 64a, 3|d, 5 - d
2
∑2
j=1 f̄( Ka2j ·5 ) +

∑2
j=1 f̄( Ka2j ·25 ) if k > 64a, 3|d, 5 - d∑2

j=1

∑2
l=1 f̄( Ka

2j ·3l ) if 32a < k ≤ 576a, 3 - d, 5 - d
2
∑2
j=1

∑2
l=1 f̄( Ka

2j ·32l−1·5 )+∑2
j=1

∑2
l=1 f̄( Ka

2j ·32l−1·25 ) +
∑2
j=1 f̄( Ka2j ·81 ) if k > 576a, 3 - d, 5 - d.

Then for a ∈ R, we have

νo(a) ≤ f3(k, a, δ), νe(a) ≤ g3(k, a)

and

ν(a) ≤ F0(k, a, δ) :=


1 if k ≤ a
f3(k, a, δ) if k > a and d even
f3(k, a, 0) + g3(k, a) if k > a and d odd.

Proof. Since a|(i−j) whenever ai = aj = a, we get ν(a) ≤ 1, νo(a) ≤ 1, νe(a) ≤ 1 for k ≤ a. In fact νo(a) ≤ 1

for k ≤ a23−δ and νe(a) ≤ 1 for k ≤ 4a. Thus we suppose that k > a. We have ν(a) = νo(a) + νe(a). It

suffices to show νo(a) ≤ f3(k, a, δ) for k > a23−δ and νe(a) ≤ g3(k, a) for k > 4a since νe(a) = 0 for d even.

From (7.1), we get the assertion νo(a) ≤ f3(k, a, δ) for k > a23−δ since

νo(a) ≤



f0(k, a, δ) if 15|d
f1(k, a, 3, 1, δ) if 3 - d, 5|d
min(f0(k, a, δ), f1(k, a, 5, 1, δ)) if 3|d, 5 - d
min(f1(k, a, 3, 1, δ), f2(k, a, 3, 5, 2, δ),
f2(k, a, 3, 5, 3, δ)) if 3 - d, 5 - d.

The assertion νe(a) ≤ g3(k, a) for k > 4a follows from (7.2) since νe(a) ≤ g0(k, a, 2) for 4a < k ≤ 32a and

νe(a) ≤


g0(k, a, 2) if 15|d
g1(k, a, 3, 1)) if 3 - d, 5|d
min(g0(k, a, 2), g1(k, a, 5, 1)) if 3|d, 5 - d
min(g1(k, a, 3, 1), g2(k, a, 3, 5, 2)) if 3 - d, 5 - d

for k > 32a. �

By applying that there are p−1
2 distinct quadratic residues and p−1

2 distinct quadratic nonresidues modulo

a prime p, we have

Lemma 7.3. Assume (1.1) holds with k - d. Then ν(a) ≤ k−1
2 for any a ∈ R.

Lemma 7.4. Suppose that (1.1) with P (b) ≤ k and k = pm has no solution. Then (1.1) with P (b) ≤ k and

pm ≤ k < pm+1 has no solution.

Proof. Let pm ≤ k < pm+1. Suppose (n, d, b, y) is a solution of

n(n+ d) · · · (n+ (k − 1)d) = by2
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with P (b) ≤ k. Then P (b) ≤ pm and by (1.5),

n(n+ d) · · · (n+ (pm − 1)d) = b′y′2

holds for some b′ with P (b′) ≤ pm giving a solution of (1.1) at k = pm. This is a contradiction. �

Lemma 7.5. Let k ≥ 101. Assume (1.1).

(a) Let d be odd and p < q be primes such that pq|d with p ≤ 19, q ≤ 47. Then k ≥ 1733.

(b) Let d be odd and p < q be primes such that pq|d with 23 ≤ p < q ≤ 43, (p, q) 6= (31, 41). Then k ≥ 1087.

(c) Let d be even such that p|d with 3 ≤ p ≤ 47. Then k ≥ 1801.

Proof. We shall use the notation and results of Section 6 without reference. By Lemma 7.4, it suffices to

prove Lemma 7.5 when k is a prime. Let P0 be the largest prime ≤ k such that P0 - d. Then (1.1) holds

at k = P0. Therefore P0 ≥ 101 by Theorem A with k = 97. Thus there is no loss of generality in assuming

that k - d for the proof of Lemma 7.5.

(a) Let d be odd and p, q be as in (a). Assume k < 1733. It suffices to consider 4 cases, viz (i) 5 < p < q, 3 -

d, 5 - d; (ii) p = 3, q > 5, 5 - d; (iii) p = 5, q > 5, 3 - d and (iv) p = 3, q = 5. We take r ≥ 7. We see that

Br is contained in one of the four sets Sµ = Sµ(1, r) with 1 ≤ µ ≤ 4. Let S ′µ = {s ∈ Sµ : s < 2000} with

1 ≤ µ ≤ 4. We have ν(s) ≤ F0(k, s, 0) by Lemma 7.2. Further ν(s) ≤ 1 for s ≥ k and hence for s ∈ Sµ \ S ′µ.

Observe that 1 ∈ S ′1 ⊆ S1.

Assume that 1 /∈ R in the case (iv). For the case (i), we take r = 7 for 101 ≤ k < 1087 and r = 8

for 1087 ≤ k < 1733. For all other cases, we take r = 7 for 101 ≤ k < 941, r = 8 for 941 ≤ k < 1297

and r = 9 for 1297 ≤ k < 1733. Then ξr ≤ max
∑
s∈Sµ ν(s) ≤ max

(
gp,q − |S ′µ|+

∑
s∈S′µ

F (k, s, 0)
)
≤

gp,q + max
∑
s∈S′µ

(F0(k, s, 0)− 1) =: ξ̃r where the maximum is taken over 1 ≤ µ ≤ 4 and we remove 1 from

S ′1 ⊆ S1 when the case (iv) holds. We now check that

k − F ′(k, r)− ξ̃r >


0 if p < q ≤ pr
−
⌈
k
q

⌉
if p ≤ pr < q

−
⌈
k
p

⌉
−
⌈
k
q

⌉
if pr < p < q.

(7.3)

This contradicts (6.1) by using the estimates for gp,q and ξ̃r ≥ ξr.
Thus it remains to consider (iv) with 1 ∈ R. Then

(
ai
3

)
=
(
ai
5

)
= 1 for all ai ∈ R. Suppose that

p′ - d for some prime p′ ∈ P = {7, 11, 13}. We take r = 9. We have Br ⊆ S1. Further |S1| = 32 and

S ′1 = {1, 19, 34, 46, 91, 154, 286,

391, 646, 874, 1309, 1729, 1771}. We get from (7.1) that νo(a) ≤ min(f0(k, a, 0),

f1(k, a, p′, 1, 0)) ≤ min(f0(k, a, 0),max
p′∈P
{f1(k, a, p′, 1, 0)}) := G1(k, a). Similarly we get from (7.2) that

νe(a) ≤min(g0(k, a, 2),max
p′∈P
{g1(k, a, p′, 1, 0)} := G2(k, a). Let G(k, a) = 1 if k ≤ a and G(k, a) = G1(k, a) +

G2(k, a) if k > a. Then ν(a) ≤ G(k, a) implying ξr ≤ 32+
∑
s∈S′1

(G(k, s)−1) =: ξ̃r as above. We check that

k − F ′(k, r)− ξ̃r > 0.(7.4)

This contradicts (6.1). Thus p′|d for each prime p ∈ P. Now we take r = 14. Since 1 ∈ R, we have
(
ai
p

)
= 1

for all ai ∈ R and for each p with 3 ≤ p ≤ 13. Therefore Br ⊆ {s ∈ S(r) :
(
s
p

)
= 1, 3 ≤ p ≤ 13} =

{1, 1054} ∪ S ′′ where |S ′′ | = 14 and s > 2000 for each s ∈ S ′′ . Hence ξr ≤ ν(1) + ν(1054) + 14 ≤ ν(1) + 16
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since ν(1054) ≤ 2 by Lemma 7.2. From (7.1) and (7.2) with µ = 3, we get ν(1) ≤ f0(k, 1, 0) + g0(k, 1, 3).

Therefore ξr ≤ f0(k, 1, 0) + g0(k, 1, 3) + 16 =: ξ̃r and we compute that (7.4) holds contradicting (6.1).

(b) Let d be odd and p, q be as in (b). Assume k < 1013. By (a), we may assume that 3 - d, 5 - d. We continue

the proof as above in the case (i) of (a). We take r = 7 and check that k − F ′(k, r) − ξ̃r +
⌈
k
p

⌉
+
⌈
k
q

⌉
> 0.

This contradicts (6.1).

(c) Let d be even and p be as in (c). Assume k < 1801. For any set W of squarefree integers, let W ′ =

W ′(δ) = {s ∈W : s < 2000
23−δ }. We consider four cases, viz (i) p > 5, 3 - d, 5 - d; (ii) p = 5, 3 - d; (iii) p = 3, 5 - d

and (iv) 15|d. We take r ≥ 7. Assume that (i), (ii) or (iii) holds. Then from (6.7) with p = q, we get 2δ

sets Uµ, 1 ≤ µ ≤ 2δ given by S1(n′, r),S4(n′, r). Without loss of generality, we put S1(1, r) = U1. Further

|Uµ| ≤ gp for 1 ≤ µ ≤ 2δ. Assume (iv). We take p = 3, q = 5 in (6.7). We get 2δ+1 sets Vµ, 1 ≤ µ ≤ 2δ+1

given by Sj(n′, r), 1 ≤ j ≤ 4 and we put S1(1, r) = V1. Further |Vµ| ≤ 2r−δ−4 for 1 ≤ µ ≤ 2δ+1. We define g′

by g′ = 2r−δ−4 if (iv) holds and g′ = gp otherwise. Further let Wµ with 1 ≤ µ ≤ 2δ+1 be given by Wµ = Vµ

if (iv) holds and Wµ = Uµ for 1 ≤ µ ≤ 2δ, Wµ = ∅ for µ > 2δ if (i), (ii) or (iii) holds. We see from Lemma

7.2 that ν(s) ≤ F0(k, s, δ) and ν(s) ≤ 1 for s ∈Wµ \W ′µ. Observe that 1 ∈W ′1 ⊆W1.

Assume that 1 /∈ R in the cases (ii), (iii) or (iv). We take r = 8 for 101 ≤ k ≤ 941, r = 9 for

941 < k ≤ 1373 and r = 10 for 1373 < k < 1801 in the case (i) with 8|d. For all other cases, we take

r = 7 for 101 ≤ k ≤ 941, r = 8 for 941 < k ≤ 1373 and r = 9 for 1373 < k < 1801. Then ξr ≤
max

∑
s∈Wµ

F (k, s, δ) ≤ g′ + max
∑
s∈W ′µ

(F0(k, s, δ)− 1) =: ξ̃r where maximum is taken over 1 ≤ µ ≤ 2δ+1

and we remove 1 from W ′1 ⊆W1 when (ii), (iii) or (iv) holds. We check that

k − F ′(k, r)− ξ̃r >

{
−
⌈
k
p

⌉
if (i) holds with p > pr

0 otherwise.

This contradicts (6.1).

Thus it remains to consider the cases (ii), (iii) or (iv) and 1 ∈ R. Then ai ≡ 1(mod 2δ) and
(
ai
p

)
= 1 for

all p|d whenever ai ∈ R. Let P0 = {5}, {3}, {3, 5} when (ii), (iii), (iv) holds, respectively. Then
(
ai
p

)
= 1

for p ∈ P0.

Assume that 7 - d when 8|d, 15|d. Let P = {7} if 8|d, 3|d, 5 - d; P = {7, 11, 13, 17, 19} if 4||d, 15|d;

P = {11, 13, 17, 19} if 8|d, 15|d and P = {7, 11, 13} in all other cases. Suppose that p′ - d for some prime

p′ ∈ P. Let r be given by the following table:

(ii), (iii), 2||d, 4||d (ii), (iii), 8|d (iv), 2||d (iv), 4||d, 8|d{
8 for k ≤ 941
9 for k > 941

{
10 for k ≤ 941
11 for k > 941

9 11

We get Br ⊆W1. For s ∈W ′1, we get from (7.1) that ν(s) = νo(s) ≤ G(k, s, δ) :=min(f0(k, s, δ),

G1, G2) where

(G1, G2) =


(f1(k, s, 3, 2, δ),maxp′∈P f2(k, s, 3, p′, 2, δ)) when (ii) holds, 8 - d
(f1(k, s, 5, 1, δ),maxp′∈P f2(k, s, 5, p′, 1, δ)) when (iii) holds, 8 - d
(f1(k, s, 3, 1, 3),maxp′∈P f2(k, s, 3, p′, 2, 3)) when (ii) holds, 8|d
(f1(k, s, 5, 1, 3),maxp′∈P f2(k, s, 5, p′, 2, 3)) when (iii) holds, 8|d



THE EQUATION n(n+ d) · · · (n+ (k − 1)d) = by2 WITH ω(d) ≤ 6 OR d ≤ 1010 27

and when (iv) holds, G1 = G2 = maxp′∈P f1(k, s, p′, 1, δ) if 2||d or 4||d, G1 = G2 = maxp′∈P f2(k, s, 7, p′, 1, 3)

if 8|d. Therefore ξr ≤ g′ +
∑
s∈W ′1

(G(k, s, δ) − 1) =: ξ̃r. Now we check (7.4) contradicting (6.1). Thus p′|d
for each prime p′ ∈ P. Let r and g1 be given by the following table:

Cases: (ii), (iii), 2||d (ii), (iii), 4||d (ii), 8|d (iv), 2||d (iv), 8|d
(r, g1) (12, 8) (12, 4) (15, 16) (13, 4) (17, 4)

Suppose that one of the above case hold. Then Br ⊆ {s ∈ S(r) : s ≡ 1(mod 2δ),
(
s
p′

)
= 1, p′ ∈ P ∪ P0} =

{1} ∪W ′′
with |W ′′ | = g1 − 1 and s ≥ 2000

23−δ for s ∈ W ′′
. Therefore ξr ≤ ν(1) + g1 − 1. From (7.1), we get

ν(1) ≤ G(k) where G(k) = f1(k, 1, 3, 2, δ) if (ii) holds; f1(k, 1, 5, 2, δ) if (iii) holds, 8 - d; G(k) = f0(k, 1, 1) if

(iv) holds with 2||d and G(k) = f1(k, 1, 7, 2, 3) if (iv) holds with 8|d. Therefore ξr ≤ G(k) + g1− 1 =: ξ̃r and

we compute that (7.4) holds. This contradicts (6.1). Thus either (A) : (iv) holds, 4||d or (B) : (iii) holds, 8|d.

Assume that p′ - d with p′ ∈ P1 where P1 = {23, 29, 31, 37}, {11, 13, 17, 19} when (A), (B) holds, respectively.

In the remaining part of this paragraph, by ’respectively”, we mean “when (A), (B) holds, respectively’. We

take r = 18, 11, respectively. Then Br ⊆ {s ∈ S(r) : s ≡ 1(mod 2δ),
(
s
p′

)
= 1, p′ ∈ P ∪P0} ⊆ {1, 1705}∪W ′′

with |W ′′ | = g1 and s ≥ 2000
23−δ for s ∈ W ′′

where g1 = 3, 14, respectively. Hence ξr ≤ ν(1) + ν(1705) + g1 ≤
G(k) + 2 + g1 =: ξ̃r where ν(1) ≤ G(k) = maxp′∈P1 f1(k, 1, p′, 1, 2),maxp′∈P1 f2(k, 1, 5, p′, 1, 3), respectively

by (7.1). We check (7.4), contradicting (6.1). Thus p′|d with p′ ≤ 37 if (A) holds and p′|d with p′ ≤ 19, p′ 6= 5

if (B) holds. Now we take r = 22, 16, respectively to get Br ⊆ {1} ∪W
′′

with |W ′′ | = g2 and s ≥ 2000
23−δ for

s ∈W ′′
where g2 = 0, 3, respectively. From (7.1), we get ν(1) ≤ G(k) with G(k) = f0(k, 1, 2), f1(k, 1, 5, 2, 3),

respectively. Hence ξr ≤ G(k) + g2 =: ξ̃r and we compute that (7.4) holds. This contradicts (6.1).

Thus it remains to consider the case (iv) with 8|d and 7|d. Then

ai ≡ 1(mod 8) and
(
ai
p

)
= 1 for p = 3, 5, 7(7.5)

whenever ai ∈ R. Let k < 263. By taking r = 12, we find that Br ⊆ {s ∈ S(r) : s ≡ 1(mod 8),
(
s
pj

)
= 1, 2 ≤

j ≤ 4} = {1, 6409, 9361, 12121, 214489,

268801, 4756609, 59994649}. Then by Lemma 7.3, ν(1) ≤ k−1
2 since k - d by our assumption. Further

ν(6409) + ν(268801) + ν(4756609) + ν(59994649) ≤
⌈

k
13·29

⌉
≤ 1, ν(9361) + ν(214489) ≤

⌈
k

11·37
⌉
≤ 1 and

ν(12121) ≤ 1. Therefore ξr ≤ k−1
2 + 3 =: ξ̃r. We check (7.4) contradicting (6.1). Thus k ≥ 263. By (7.5),

we see that ai is not a prime ≤ 89. Hence for ai ∈ R with P (ai) ≤ 89, we have ω(ai) ≥ 2. Further by (7.5),

ai = p′q′ with 11 ≤ p′ ≤ 37 and 41 ≤ q′ ≤ 89 is not possible. For integers P1, P2 with P1 < P2, let

I(P1, P2) = {i : p′q′|ai, P1 ≤ p′ < q′ ≤ P2}.

Then |I(P1, P2)| ≤
∑
P1≤p′<q′≤P2

⌈
k
p′q′

⌉
. Suppose that pj - d for some prime j ∈ {5, 6}. Then ν(1) ≤

G0(k) := maxj=5,6 f1(k, 1, pj , 2, 3) by (7.1). We take r = 23. For P0 ∈ {11, 13}, let A(P0) = {ai : ai =

P0p
′ with P0 < p′ ≤ 37 or ai = P0p

′q′ with P0 < p′ ≤ 37, 41 ≤ q′ ≤ 83}. Then from (7.5), we get

A(11) ⊆ {6721, 8569, 25201} and A(13) ⊆ {17329, 17641, 27001}. Therefore we get from

Ir ⊆{i : ai = 1} ∪ I(17, 37) ∪ I(41, 83)∪

{i : ai ∈ A(11) ∪A(13)} ∪ {i : 11 · 13p′|ai, 17 ≤ p′ ≤ 37}
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that

ξr ≤ G0(k) +
∑

17≤p′<q′≤37

⌈ k

p′q′
⌉

+
⌈ k

41 · 43
⌉

+ 54 + 3 + 3 + 6 =: ξ̃r

since p′q′ > k for 41 ≤ p′ < q′ ≤ 83 except when p′ = 41, q′ = 43. Now we compute that (7.4) holds

contradicting (6.1). Thus pj |d for j ≤ 6. Assume that pj - d for some j with 7 ≤ j ≤ 9. Then ν(1) ≤ G1(k) :=

max7≤j≤9 f1(k, 1, pj , 1, 3) by (7.1). We take r = 24. Then Ir ⊆ {i : ai = 1}∪I(17, 37)∪I(41, 89). Therefore

ξr ≤ G1(k)+
∑

17≤p′<q′≤37

⌈
k
p′q′

⌉
+
⌈

k
41·43

⌉
+65 =: ξ̃r and we check (7.4). This contradicts (6.1). Thus pj |d for

j ≤ 9. Suppose that pj - d for some j with 10 ≤ j ≤ 14. Then ν(1) ≤ G2(k) := max10≤j≤14 f1(k, 1, pj , 1, 3)

by (7.1). We take r = 21. Then Br ⊆ {s ∈ S(r) : s ≡ 1(mod 8) and
(
s
pi

)
= 1, i ≤ 9} = {1, 241754041}

giving ξr ≤ G2(k) + 1 =: ξ̃r. Now we check (7.4) contradicting (6.1). Hence pj |d for j ≤ 14. Suppose that

pj - d for some j with 15 ≤ j ≤ 22. Then ν(1) ≤ G3(k) := max15≤j≤22 f1(k, 1, pj , 1, 3) by (7.1). We take

r = 26. Then Br ⊆ {1} as above giving ξr ≤ G2(k) =: ξ̃r. We compute that (7.4) holds contradicting (6.1).

Thus pj |d for j ≤ 22. Finally we take r = 32. Then Br ⊆ {1} as above giving ξr ≤ ν(1) ≤ k−1
2 =: ξ̃r by

Lemma 7.3. We check (7.4). This contradicts (6.1). �

Lemma 7.6. We have

k − |R| ≥ g for k ≥ k0(g)(7.6)

where g and k0(g) are given by

(i)

g 9 14 17 29 33 61 65 129 256 2s with s ≥ 9, s ∈ Z
k0(g) 101 299 308 489 556 996 1057 2100 4252 s2s+1

(ii) d even:

g 18 29 33 61 64 128 256 512 1024
k0(g) 101 223 232 409 430 900 1895 4010 8500

(iii) 4||d:

g 26 32 33 61 64 128 256 512 1024
k0(g) 101 126 129 286 303 640 1345 2860 6100

(iv) 8|d:

g 33 61 64 128 256 512 1024
k0(g) 101 209 220 466 990 2110 4480

(v) 3|d:

g 26 32 33 64 125 128 256 512
k0(g) 101 126 129 351 720 735 1550 3300

(vi) p|d with p ∈ {5, 7} :

g 33 64 128 256
k0(g) 240 460 930 1940

Further we have k0(128) = 1200 if p|d with p ≤ 19 and k0(256) = 2870 if p|d with p ≤ 47.

(vii) Further k0(256) = 1115 if pq|d with p ∈ {5, 7, 11}; k0(256) = 1040 if 2p|d with p ∈ {3, 5}; k0(512) =

1400 if 105|d; k0(512) = 1440 if 30|d and k0(512) = 1480 if 8p|d with p ∈ {3, 5}.

Proof. (i) Let g be given as in (i). Assume that k ≥ k0(g) and k−|R| < g. We shall arrive at a contradiction.
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Let g 6= 9. From (5.1), we have
∏
ai∈R ai ≥ (1.6)|R|(|R|)! whenever |R| ≥ 286. We observe that (5.3) and

(5.4) hold with i0 = 0, h0 = 286, z1 = 1.6, g1 = g−1, m =min(89,
√
k0(g)), ` = 0, n0 = 1, n1 = 1 and n2 = 2

1
6

for k ≥ g1 + 286 and thus for k ≥ k0(g).

Let g = 2s with s ≥ 9. Then g1
k ≤

2s

s2s+1 ≤ 1
18 and we get from (5.4)

2s − 1 >
c1k − c2 log k − c3

log c4k
=
c1k − c3 + c2 log c4

log c4k
− c2(7.7)

where

c1 = log

 1.6
2.71851

∏
p≤m

p
2

p2−1

+ log(1− 1
18

), c2 = 1.5π(m)− 1,

c3 = log

2
1
6

∏
p≤m

p
0.5+ 2

p2−1

− 1
2

log(1− 1
18

), c4 =
1.6
e

Here we check that c1k− c2 log k− c3 > 0 at k = 9 · 210 and hence (7.7) is valid. Further we observe that the

right hand side of (7.7) is an increasing function of k. Putting k = k0(g) = s2s+1, we get from (7.7) that

2s
{

2c1 − c3−c2 log c4
s2s

log 2 + log(2c4s)
s

− c2 − 1
2s

− 1

}
< 0.

The expression inside the brackets is an increasing function of s and it is positive at s = 9. Hence (7.7) does

not hold for all k ≥ k0(g). Therefore k − |R| ≥ g = 2s whenever s ≥ 9 and k ≥ s2s+1.

Let g ∈ {14, 17, 29, 33, 61, 65, 129, 256} and k1(g) = 299, 316, 500, 569, 1014,

1076, 2126, 4295 according as g = 14, 17, 29, 33, 61, 65, 129, 256, respectively. We see that the right hand side

of (5.4) is an increasing function of k and we check that it exceeds g1 at k = k1(g). Therefore (5.4) is not

possible for k ≥ k1(g). Thus g 6= 14 and k < k1(g). For every k with k0(g) ≤ k < k1(g), we compute the

right hand side of (5.3) and we find it greater than g1. This is not possible.

Thus we may assume that g = 9 and k < 299. By taking r = 4 for 101 ≤ k ≤ 181 and r = 5 for

181 < k < 299 in (6.3) and (6.5), we get k − |R| ≥ k − F ′(k, r) − 2r ≥ 9 for k ≥ 101 except when

103 ≤ k ≤ 120, k 6= 106 where k − |R| ≥ k − F (k, r) − 2r ≥ k − F ′(k, r) − 2r = 8. Let 103 ≤ k ≤ 120, k 6=
106. We may assume that k − |R| = 8 and hence F (k, r) = F ′(k, r). Thus for each prime 11 ≤ p ≤ k,

there are exactly σp number of i’s for which p|ai and for any i, pq - ai whenever 11 ≤ q ≤ k, q 6= p.

Now we get a contradiction by considering the i’s for which ai’s are divisible by primes 17, 101; 103, 17;

13, 103; 53, 13; 107, 53; 11, 109; 37, 11; 19, 113; 23, 19; 29, 23; 13, 29; 59, 13; 17,

59 when k = 103, 104, 105, 107, 108, 111, 112, 115, 116, 117, 118, 119, 120, respectively; 107, 53, 13, 103, 17 when

k = 109, 109, 107, 53 when k = 110; 37, 11, 109, 107 when k = 113 and 113, 37, 11 when k = 114. For instance

let k = 113. Then 37|ai for i ∈ {0, 37, 74, 111} or i ∈ {1, 38, 75, 112}. We consider the first case and the other

case follows similarly. Then 11|ai for i ∈ {2 + 11j : 0 ≤ j ≤ 10} and 109|ai for i ∈ {1, 110}. Now σ107 = 2

implies that 107|aiai+107 for i ∈ {j : 0 ≤ j ≤ 5}, a contradiction. The other cases are excluded similarly.

(ii) Let d be even and g be given as in (ii). Assume that k ≥ k0(g) and k − |R| < g. From (5.2), we

have
∏
ai∈R ai ≥ (2.4)|R|(|R|)! whenever |R| ≥ 200. By taking i0 = 0, h0 = 200, m =

√
k0(g), z1 =

2.4, ` = 1, n0 = 2
1
3 , n1 = 2

1
6 and n2 = 1, we observe that (5.3) and (5.4) are valid for k ≥ g − 1 +

200. Let g ∈ {33, 61, 64, 128, 256, 512, 1024}. Thus (5.3) and (5.4) are valid for k ≥ k0(g). Let k1(g) =
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232, 414, 435, 904, 1907, 4024, 8521 according as g = 33, 61, 64, 128, 256, 512, 1024, respectively. We see that

(5.4) is not possible for k ≥ k1(g). Therefore g 6= 33 and k < k1(g). For every k with k0(g) ≤ k < k1(g), we

check that (5.3) is contradicted. Therefore g ∈ {18, 29} and we may assume that k < 232. We take r = 5

for 101 ≤ k < 200 and r = 6 for 200 ≤ k < 232. From (6.10) and (6.6), we get k− |R| ≥ k−F ′(k, r)− 2r−1.

We compute that k−F ′(k, r)− 2r−1 ≥ 18, 29 for k ≥ 101, 217, respectively. Hence the assertion (ii) follows.

(iii), (iv) Let g be given as in (iii), (iv). Suppose that k ≥ k0(g) and k − |R| < g. We have
∏
ai∈R ai ≥

(2δ)|R|−1(|R| − 1)! since ai ≡ n(mod 2δ). We take z1 = 4 if 4||d and z1 = 8 if 8|d. We observe that (5.3) and

(5.4) are valid for k ≥ k0(g) with i0 = 1, h0 = 1, m =
√
k0(g), z1 = 2,` = 1, n0 = 2

1
3 , n1 = 2

1
6 and n2 = 1.

Let 4||d and g ∈ {61, 64, 128, 256, 512, 1024}. Let k1(g) = 288, 306, 640, 1350,

2870, 6100 according as g = 61, 64, 128, 256, 512, 1024, respectively. We see that (5.4) is not possible for

k ≥ k1(g). Therefore g 6= 128, 1024 and k < k1(g). For every k with k0(g) ≤ k < k1(g), we check that (5.3)

is contradicted.

Let 8|d and g ∈ {61, 64, 128, 256, 512, 1024}. Let k1(g) = 210, 221, 468, 994,

2111, 4485 according as g = 61, 64, 128, 256, 512, 1024, respectively. We see that (5.4) is not possible for

k ≥ k1(g). Therefore k < k1(g). For every k with k0(g) ≤ k < k1(g), we check that (5.3) is contradicted.

Thus we may assume that g ∈ {26, 32, 33}, k < 286 if 4||d and g = 33, k < 209 if 8|d. By taking r = 6 for

101 ≤ k < 286, we get from (6.10) and (6.6) that k− |R| ≥ k−F ′(k, r)− 2r−δ ≥ g for k ≥ k0(g). Hence the

assertions (iii) and (iv) follows.

(v) Let 3|d. Suppose that k ≥ k0(g) and k− |R| < g. We have
∏
ai∈R ai ≥ 3|R|−1(|R| − 1)! since ai ≡ n(mod

3). We observe that (5.3) and (5.4) are valid with i0 = 1, h0 = 1,m =
√
k0(g), z1 = 3, ` = 1, n0 = 3

1
4 ,

n1 = 3
1
4 and n2 = 2

1
6 . Let g ∈ {64, 125, 128, 256, 512} and k1(g) = 354, 720, 737, 1556, 3300 according as

g = 64, 125, 128, 256, 512, respectively. We see that (5.4) is not possible for k ≥ k1(g). Therefore g 6= 125, 512

and k < k1(g). For every k with k0(g) ≤ k < k1(g), we check that (5.3) is contradicted.

Thus it remains to consider g ∈ {26, 32, 33} and k < 351. We take r = 6 for 101 ≤ k < 351. We get from

(6.10) and (6.13) with p = 3 that k − |R| ≥ k − F ′(k, r)− 2r−2 ≥ g for k ≥ k0(g).

(vi) Suppose g ∈ {33, 64, 128, 256}, k ≥ k0(g) and k − |R| < g. By (ii) and (v), we may assume that

2 - d and 3 - d. We observe that
∏
ai∈R ai ≥ ( 2p

p−1 )|R|−
p−1
2 (|R| − p−1

2 )! since the number of quadratic

residues or quadratic non-residues mod p is p−1
2 . Let p|d with p ≤ p′. Then ( 2p

p−1 )|R|−
p−1
2 (|R| − p−1

2 )! ≥

( 2p′

p′−1 )|R|−
p′−1

2 (|R| − p′−1
2 ). We take p′ = 7, 19 and 47 in the first, second and third case, respectively. Then

(5.3) and (5.4) are valid with z1 = 2p′

p′−1 , i0 = h0 = p′−1
2 , m =

√
k0(g), ` = 1, n0 = p

′ 1
p′+1 , n1 = 5

1
3 and

n2 = 2
1
6 . We find that (5.4) is not possible for k ≥ k0(g) + 24 and (5.3) is not possible for each k with

k0(g) ≤ k < k0(g) + 24. This is a contradiction.

(vii) Let (z1, i0, `′, n′0, n
′
1) be given by

pq|d
p,q∈{5,7,11}

2δp|d
p∈{3,5},δ∈{1,3}

105|d 30|d

(z1, i0) ( 77
15 , 15) (2δ−15, 2) ( 35

2 , 6) (15, 2)
`′ 2 2 3 3
n′0 z2(7)z2(11) z2(2)z2(5) z2(3)z2(5)z2(7) z2(2)z2(3)z2(5)
n′1 z3(5)z3(7) z3(2)z3(3) z3(3)z3(5)z3(7) z3(2)z3(3)z3(5)
n′2 2

1
6 1 2

1
6 1
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where z2(p) = p
1
p+1 , z3(p) = p

p−1
2(p+1) . We observe that

∏
ai∈R ai ≥ z

|R|−i0
1 (|R| − i0)! with (z1, i0) given above.

Suppose g ∈ {256, 512}, k ≥ k0(g) and k − |R| < g. We see that (5.3) and (5.4) are valid for k ≥ k0(g)

with h0 = i0, m =
√
k0(g), ` = `′, n0 = n′0, n1 = n′1 and n2 = n′2. We find that (5.4) is not possible for

k ≥ k0(g) + 2 and (5.3) is not possible for each k with k0(g) ≤ k < k0(g) + 2. This is a contradiction. �

8. Further Lemmas

We observe that (3.24) is satisfied when k ≥ 11 by Lemma 4.2. We shall use it without reference in this

section.

Lemma 8.1. Let d be odd and p, q be primes dividing d. Let ω(d) ≤ 4 and k ≤ 821. Assume that

gp,q(r) ≤ 2r−ω(d) for r = 5, 6. Then (1.1) with k ≥ 101 has no solution.

Proof. Suppose equation (1.1) has a solution. Let r = 5 if 101 ≤ k < 257 and r = 6 if 257 ≤ k ≤ 821.

From (6.9), ν(ai) ≤ 2ω(d) and (6.1), we get k − F ′(k, r) ≤ ξr ≤ 2ω(d)gp,q ≤ 2r. We find k − F ′(k, r) > 2r by

computation. This is a contradiction. �

Lemma 8.2. Equation (1.1) with k ≥ 101 and ω(d) ≤ 4 is not possible.

Proof. We may assume that k is prime by Lemma 7.4. Let d be even. For k−|R| ≥ h(5) = 4(2ω(d)−θ−1)+1,

we get from Corollary 3.10 with z0 = 5 that n + (k − 1)d < 3
Qk

3 with Q = 32 if 2||d and 16 if 4|d. Let

ω(d) ≤ 3. Since k − |R| ≥ h(5) by Lemma 7.6 (ii), (iii), (iv) and |S1| ≥ |T1|
2ω(d)−θ ≥ 0.3k

23−θ by Lemma 4.3, we

get 3
Qk

3 > n+ (k− 1)d > 2δ( 0.3k
23−θ − 1)k2, a contradiction. Thus ω(d) = 4. Let k ≥ 710. Then k− |R| ≥ h(5)

by Lemma 7.6 and |S1| ≥ |T1|
2ω(d)−θ ≥ 0.4k

24−θ by Lemma 4.3. Hence we get 3
Q > n+ (k − 1)d > 2δ( 0.4k

24−θ − 1)k2,

a contradiction again. Therefore k < 710. By Lemma 7.6, we get k − |R| ≥ h(3) implying d < 3
16k

2 if 2||d
and d < 3

4k
2 if 4|d by Corollary 3.10 with z0 = 3. However d ≥ 2δ · 53 · 59 · 61 by Lemma 7.5 (c). This is a

contradiction.

Thus d is odd. Suppose |S1| ≤ |T1| − h(3). By Lemma 3.12, we have

d <
ρ

48
k2, n+ (k − 1)d <

ρ

48
k3.(8.1)

Let k ≥ 710. Since ν(ai) ≤ 2ω(d), we derive from Lemma 4.3 that |S1| ≥ |T1|
2ω(d) >

0.4k
16 = 0.025k. Therefore

max
Ai∈S1

Ai > ρ(0.025k − 1) giving n+ (k − 1)d > ρ(0.025k − 1)k2 which contradicts (8.1). Thus k < 710. We

see from Lemma 4.3 that |T1| > 0.3k. For ω(d) ≤ 3, we have max
Ai∈S1

Ai > ρ( 0.3k
8 − 1) giving n + (k − 1)d >

ρ( 0.3k
8 − 1)k2 which contradicts (8.1). Let ω(d) = 4. By Lemma 7.5 (a), we see that d ≥min(3 · 53 · 59 ·

61, 23 · 29 · 31 · 37) > 3
48k

2 contradicting (8.1).

Hence |S1| ≥ |T1| − h(3) + 1. Therefore

n+ (k − 1)d ≥ ρ(|T1| − h(3))k2.(8.2)

Let k−|R| ≥ h(5). By Corollary 3.10 with z0 = 5, we get n+(k−1)d < 3
16k

3 which, together with |T1| ≥ 0.3k

by Lemma 4.3, contradicts (8.2) when ω(d) ≤ 2. Further k ≤ 133, 275 when ω(d) = 3, 4, respectively. Thus

either

k − |R| < h(5)(8.3)
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or

ω(d) > 2; k ≤ 131 if ω(d) = 3; k ≤ 271 if ω(d) = 4.(8.4)

We now apply Lemma 7.6 (i) to get ω(d) ≥ 2 and k ≤ 293, 487, 991 for ω(d) = 2, 3, 4, respectively.

Let 3|d. Then we have from Lemma 7.6 (v) that ω(d) > 2 and k ≤ 131, 350 when ω(d) = 3, 4, respectively.

By Lemma 7.5, we get p2 ≥ 53 and hence 53 ≤ p2 ≤
(
d
3

) 1
ω(d)−1 . By Corollary 3.10 with z0 = 3 if ω(d) = 3,

z0 = 2 if ω(d) = 4 and Lemma 7.6 (v), we get d < 3
4k

2 if ω(d) = 3 and < 3k2 if ω(d) = 4. Therefore

53 ≤ p2 < k
2 < 67 if ω(d) = 3 and 53 ≤ p2 < k

2
3 ≤ 350

2
3 < 53 if ω(d) = 4. Therefore ω(d) = 3 and

53 ≤ p2 ≤ 61. Now we get a contradiction from Lemma 8.1 with (p, q) = (3, p2) and (6.14).

Thus we may assume that 3 - d. Therefore k ≤ 293, 487, 991 for ω(d) = 2, 3, 4, respectively, as stated

above. Let ω(d) = 4 and k < 308. From k − |R| ≥ 9 by Lemma 7.6 (i) and by Corollary 3.11, there exists a

partition (d1, d2) of d such that max(d1, d2) < (k−1)2. Thus p1p2 ≤ max(d1, d2) < (k−1)2 giving p1 < k−1.

By taking r = 5 for 101 ≤ k < 251, r = 6 for 251 ≤ k < 308, we get from (6.10) and gp1 ≤ 2r−1 by (6.13)

with p = p1 that k− |R| ≥ k−F ′(k, r)− 2r−1 ≥ 16. Now we return to ω(d) = 2, 3, 4. By Lemma 7.6 (i), we

get k − |R| ≥ 2ω(d). Then we see from Corollary 3.10 with z0 = 2 that there is a partition (d1, d2) of d with

d1 < k − 1, d2 < 4(k − 1). Thus p1 < k. We take r = 5 for 101 ≤ k < 211 and r = 6 for 211 ≤ k < 556 for

the next computation and we use Lemma 7.6 (i) for k ≥ 556. From (6.10) with p = q = p1 and (6.13) with

p = p1, and since
∑
p|d,p>pr σp − gp1 ≥ 2− 2r−1 if p1 > pr and ≥ −2r−2 if p1 ≤ pr, we get

k − |R| ≥ k − F ′(k, r) + 2− 2r−1 ≥


20 for k ≥ 101
29 for k ≥ 211
33 for k ≥ 251.

(8.5)

Therefore we get from (8.3), (8.4) that ω(d) > 2 and k ≤ 199, 991 when ω(d) = 3, 4, respectively.

Let ω(d) = 3. By Corollary 3.10 with z0 = 3, there is a partition (d1, d2) with d1 <
k−1
2 and d2 < 2(k−1).

Thus p1p2 ≤max(d1, d2) < 2(k − 1) giving p1 <
√

2(k − 1) ≤
√

2 · 198 and hence p1 ≤ 19. Further the

possibility p1 = 19 is excluded since 19 · 23 > 2(k − 1). Also p2 ≤ 79, 53, 31, 29, 23 for p1 = 5, 7, 11, 13, 17,

respectively. Now we apply Lemma 7.5 (a) to derive that either p1 = 5, 53 ≤ p2 ≤ 79 or p1 = 7, p2 = 53.

Further from 5 · 53 < 2(k − 1), we get k ≥ 134. Thus k − |R| ≤ 28 by (8.3) and (8.4). Now we take

r = 6 for 134 ≤ k ≤ 199 in the next computation. We get from (6.10) and (6.14) with (p, q) = (p1, p2) that

k − |R| ≥ k − F ′(k, r)− 2r−2 ≥ 29. This is a contradiction.

Let ω(d) = 4. By Lemma 7.5 (a), (b), we get d ≥min(5 · 53 · 59 · 61, 23 · 47 · 53 · 59, 31 · 41 · 47 · 53) = 953735.

Further by Corollary 3.10 with z0 = 2 if k < 251, z0 = 3 if k ≥ 251 and (8.5), we obtain d < 3k2 if k < 251

and d < 3
4k

2 for k ≥ 251. This is a contradiction since k ≤ 991. �

Lemma 8.3. Assume (1.1) with ω(d) ≥ 12. Suppose that

d <
3
16
k2, n+ (k − 1)d <

3
16
k3.(8.6)

Then k < ω(d)4ω(d).

Proof. Assume that k ≥ ω(d)4ω(d). Then from 40 ·
(

3
16

) 2
11 < (12)

7
11 2

36
11 and ω(d) ≥ 12, we get

(
3k2

16

) 2
11 ≤

k
40·2ω(d) . This together with q1q2 ≤

(
d

2δθ

) 2
ω(d)−θ <

(
3k2

16

) 2
11

by (2.9) and (8.6) gives q1q2 <
k

40·2ω(d) . Hence
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we derive from Corollary 3.7 (ii) with d′ = q1q2 that

ν(Ai) ≤ 2ω(d)−2−θ whenever Ai ≥
k

40 · 2ω(d)
.(8.7)

Let

T (1) = {i ∈ T1 : Ai >
2δρk

6 · 2ω(d)
}, T (2) = T1 \ T (1)(8.8)

and

S(1) = {Ai : i ∈ T (1)}, S(2) = {Ai : i ∈ T (2)}.(8.9)

Then considering residue classes modulo 2δρ, we derive that

2δρk
6 · 2ω(d)

≥ max
Ai∈S(2)

Ai ≥ 2δρ(|S(2)| − 1) + 1

so that |S(2)| ≤ k
6·2ω(d) + 1 ≤ k

6·2ω(d) + 1. We have from (8.8), (8.9) and (8.7) together with ν(Ai) ≤ 2ω(d) by

Corollary 3.7 (ii) that

|T (2)| ≤ k

40 · 2ω(d)
2ω(d) +

(
k

6 · 2ω(d)
− k

40 · 2ω(d)
+ 1
)

2ω(d)−2

≤ k

40
+

1
4

(
k

6
− k

40

)
+ 2ω(d)−2 ≤ k

24
+

3k
160

+
k

480
=

k

16

since k ≥ ω(d)4ω(d) and ω(d) ≥ 12. By Lemma 4.3 and k > 1639, we have

|T (1)| > |T1| − |T (2)| ≥ 0.42k − k

16
= 0.3575k.

Let C, Cµ be as in Lemma 5.5 with c = 2. Then .3575k < |T (1)| = |S(1)|+
∑
µ≥2(µ−1)|Cµ| ≤ |S(1)|+C ≤

|S(1)| + 3 log 2
16 ω(d)4ω(d) by Lemma 5.5. Now we use 3 log 2

16 < 1
7.6 to get 0.3575k < |S(1)| + k

7.6 implying

|S(1)| > 0.2259k. Therefore n+ (k − 1)d ≥ ( max
Ai∈S(1)

Ai)k2 ≥ 0.2259k3 contradicting (8.6). �

Lemma 8.4. Assume (1.1) with ω(d) ≥ 5. Then there is no non-degenerate double pair.

Proof. Assume (1.1) with ω(d) ≥ 5. Further we suppose that there exists a non-degenerate double pair.

Then we derive from Lemma 3.4 with z0 = 2 that

d < X0k
2, n+ (k − 1)d < X0k

3(8.10)

where

X0 = 3,
3
2
, 12, 6 if 2 - d, 2||d, 4||d, 8|d, respectively.(8.11)

This with d ≥ 2δ
∏ω(d)+1−δ′
i=2 pi implies k2 > 1

6

∏ω(d)
i=1 pi. Therefore we get from Lemma 5.1 (ii), (iv) that

log(
k

ω(d)2ω(d)
) ≥ ω(d)

{
logω(d) + log logω(d)− 1.076868

2
− log 2− logω(d)

ω(d)

}
− log 6

2
.

The right side of the above inequality is an increasing function of ω(d) and hence k > 9ω(d)2ω(d) for

ω(d) ≥ 12. We find from X0k
2 > d ≥ 2δ

∏ω(d)+1−δ′
i=2 pi that k > 3.2ω(d)2ω(d) if ω(d) = 10, 11. Further

k > 2.97ω(d)2ω(d) if ω(d) = 8, 9 when d is odd. Also k > 2542, 12195 when ω(d) = 8, 9, respectively if 2||d
or 8|d and k > 1271, 6097 when ω(d) = 8, 9, respectively if 4||d.

Suppose k < 1733. Then ω(d) ≤ 8 if 4||d and ω(d) < 8 otherwise. By Lemma 7.5 (a), (c), we get

d ≥min(3 · 53 · 59 · 61 · 67, 23 · 29 · 31 · 37 · 41) if d is odd and d ≥ 2δ · 53 · 59 · 61 · 67 if d is even. This is not

possible since d < X0k
2. Hence k ≥ 1733.
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Let d be even and ω(d) = 8, 9. Since k ≥ 1733, we get k − |R| ≥ h(3) by Lemma 7.6 (ii), (iii), (iv)

implying d < 3
16k

2, 3
4k

2 if 2||d, 4|d, respectively, by Corollary 3.10 with z0 = 3. Therefore k ≥ 2.48ω(d)2ω(d)

if 4||d and k ≥ 3.2ω(d)2ω(d) otherwise.

Therefore for ω(d) ≥ 8, we have

k ≥


2.48ω(d)2ω(d) if 4||d
2.97ω(d)2ω(d) if d is odd, ω(d) = 8, 9
3.2ω(d)2ω(d) otherwise

(8.12)

Suppose that |S1| ≤ |T1| − h(3) if d is odd and |S1| ≤ |T1| − h(5) if d is even. We put

X :=


ρ
48 if ord2(d) ≤ 1
1
12 if ord2(d) ≥ 2, 3 - d
3
16 if ord2(d) ≥ 2, 3|d.

Then

d < Xk2, n+ (k − 1)d < Xk3(8.13)

by Lemma 3.12. Therefore k < ω(d)4ω(d) for ω(d) ≥ 12 by Lemma 8.3.

Let ω(d) ≥ 19. Then(
2δ

9∏
i=2

pi

)
(29)ω(d)−8−δ′ ≤ d < Xk2 < W :=

{
3
48ω(d)2(16)ω(d) if ord2(d) ≤ 1
3
16ω(d)2(16)ω(d) if ord2(d) ≥ 2.

Therefore

29
16

<

(64
9∏
i=3

pi

)−1

299ω(d)2

 1
ω(d)

.

We see that the right hand side of the above inequality is a non-increasing function of ω(d) and the inequality

does not hold at ω(d) = 26. Thus ω(d) ≤ 25. Further we get a contradiction from 2δ
∏ω(d)+1−δ′
i=2 pi ≤ d < W

since ω(d) ≥ 19.

Thus ω(d) ≤ 18. We get from (2.9) and d < Xk2 that

q1 · · · qh < X h1 :=



(
ρ
48

) h
ω(d) k

2h
ω(d) if d is odd(

ρ
96

) h
ω(d)−1 k

2h
ω(d)−1 if 2||d(

1
12·4θ

) h
ω(d)−θ k

2h
ω(d)−θ if 4|d, 3 - d(

3
16·4θ

) h
ω(d)−θ k

2h
ω(d)−θ if 4|d, 3|d

for 1 ≤ h ≤ ω(d)− θ. Further from Xk2 > d ≥ 2δp1 · · · pω(d)−δ′ , we get

k > k1 :=


√

2δ

X
∏ω(d)+1−δ′
i=2 pi if 3|d√

2δ

X
∏ω(d)+2−δ′
i=3 pi if 3 - d.

Thus

k > k2 := max(1733, k1)(8.14)

Further we derive from (8.13) that

p1 − 1
2
· · · ph − 1

2
< X h2 :=


1

2h−1

(
Xk2

3·2δ

) h−1
ω(d)−1−δ′ if 3|d

1
2h

(
Xk2

2δ

) h
ω(d)−δ′ if 3 - d
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for 1 ≤ h ≤ ω(d)− δ′.
We take r = [ω(d)−1

2 ] if d is odd and r = [ω(d)
2 ] − 1 if d is even. By Corollary 3.8 and |T1| > 0.42k by

Lemma 4.3, we have

sr+1 ≥
0.42k

2ω(d)−r−θ − 2λr − 2r−1λ1 −
r−1∑
µ=2

2r−µλµ.(8.15)

This with Corollary 4.5 and q1q2 · · · qh < X h1 gives (8.13) gives

sr+1 ≥ X3 :=



0.42k
2ω(d)−r −

X r1
3·2r−3 −

∑r−1
µ=1

2r+2

3
Xµ1
22µ if 2 - d, 3 - d

0.42k
2ω(d)−θ−r −

X r1
3·2r−4+δ − 2r−1(X1

2δ
+ 1)−

∑r−1
µ=2

2r+3−δ

3
Xµ1
22µ if 2|d, 3 - d

0.42k
2ω(d)−θ−r −

X r1
9·2r−4+δ′ − 2r−1( X1

3·2δ + 1)−
∑r−1
µ=2

2r+3−δ′

9
Xµ1
22µ if 3|d, 8 - d

0.42k
2ω(d)−r − 2(X

r
1

24 + 1)−
∑r−1
µ=1 2r−µ(X

µ
1

24 + 1) if 8|d, 3|d, r ≤ 3
0.42k

2ω(d)−r −
X r1

9·2r−3 −
∑3
µ=1 2r−µ(X

µ
1

24 + 1)−
∑r−1
µ=4

2r+2

9
Xµ1
22µ if 8|d, 3|d, r ≥ 4.

By observing that X3−X r2
k is an increasing function of k and is positive at k = k2 except when ω(d) = 7, d

odd and 3|d in which case it is positive at k = 11500. Let k ≥ 25500 when ω(d) = 7, d odd and 3|d. Then

sr+1 ≥ X3 > X r2 > p1−1
2 · · · pr−1

2 . Therefore by Lemma 4.4 with S = {Ai : i ∈ Tr+1}, |S| = sr+1, h = r and

(8.13), we get

Xk3 > n+ (k − 1)d ≥ X4k
2 :=

{
3
42r+δX3k

2 if 3 - d
9
42r+δ−1X3k

2 if 3|d.

This is a contradiction by checking that X4
k − X > 0 except when d odd, 3|d and ω(d) = 6, 8, 9. Thus

we may assume that d is odd, 3|d, 6 ≤ ω(d) ≤ 9 and k < 25500 if ω(d) = 7. Also we check that X4
k −

X > 0 for k = 5000, 62000, 350000 according as ω(d) = 6, 8, 9, respectively. Thus we may assume that

k < 5000, 25500, 62000, 350000 whenever ω(d) = 6, 7, 8, 9, respectively. If q1 ≥ 7, then we get a contradiction

from d < Xk2 = 1
16k

2 and d
7·9·11·13·17·19 ≥ 1, 23, 23 · 25, 23 · 25 · 29 for ω(d) = 6, 7, 8, 9, respectively. Thus

q1 ∈ {3, 5}. Further we get q1 ≤ 5, q2 ≤ 7 if ω(d) = 6, q1 ≤ 5, q2 ≤ 7, q3 ≤ 11 if ω(d) = 7, 8 and

q1 = 3, q2 = 5, q3 = 7 if ω(d) = 9. Thus p1 = 3 and p2 ∈ {5, 7} if ω(d) = 6, p2, p3 ∈ {5, 7, 11} if ω(d) > 6.

Since
(
ai
p

)
=
(
n
p

)
for p|d, we consider Legendre symbols modulo 3, q1, q2 to all squarefree positive integers

≤ q1 and ≤ q1q2 to obtain λ1 ≤ 1, λ2 ≤ 3. Further for ω(d) > 6, we consider Legendre symbols modulo

3, q1, q2 and q3 if q3 6= 9 to all squarefree positive integers ≤ q1q2q3 to get λ3 ≤ 17. Therefore we get from

(8.15) and Corollary 4.5 that

sr+1 ≥ X5 :=


0.42k

24 − 8 if ω(d) = 6
0.42k

2ω(d)−3 − 44 if ω(d) = 7, 8
0.42k

25 − 1
9

(
1
16

) 4
9 k

8
9 − 54 if ω(d) = 9.

We check that sr+1 ≥ X5 > X r2 > p1−1
2 · · · pr−1

2 by observing X5−X r2
k is an increasing function of k and is

positive at k =max(1733, k1). Therefore by Lemma 4.4 with h = r and (8.13), we get 1
16k

3 > n+ (k− 1)d ≥
9
82rX5k

2. This is a contradiction since X5
k −

1
18·2r > 0.

Thus |S1| ≥ X6 using |T1| > 0.42k by Lemma 4.3 where X6 = 0.42k − h(3) + 1 if d is odd and X6 =

0.42k − h(5) + 1 if d is even. Since there exists a non-degenerate double pair, we apply Lemma 3.4 with
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z0 = 2 to get a partition (d1, d2) of d with
p1p2 · · · p[

ω(d)+1
2 ]
≤ max(d1, d2) < 4k if 2 - d

p1p2 · · · p[
ω(d)

2 ]
≤ max(d1, d2) < 4k if 2||d

2p1p2 · · · p[
ω(d)

2 ]
≤ max(d1, d2) < 8k if 4|d.

Let ω(d) ≥ 7 + δ′. Then we see from (8.12) that |S1| ≥ X6 >
k
4 >

p1−1
2 · · · p4−1

2 . We now apply Lemma 4.4

with h = 4 to get X0k > n+ (k − 1)d ≥ 3
424+δX6k

2 > 3 · 2δk3 since X6 >
k
4 . This contradicts (8.11). Thus

ω(d) ≤ 6 + δ′ and k ≥ 1733 by (8.12).

Assume that k−|R| ≥ h(3). Then from Corollary 3.10 with z0 = 3, we get n+(k−1)d < X7k
3 where X7 =

3
16 if 2||d and 3

4 otherwise. If 2|d or 3|d, then n+(k−1)d ≥ 3(X6−1)k2 if 3|d and n+(k−1)d ≥ 2δ(X6−1)k2

if 2|d contradicting n+(k−1)d < X7k
3. Thus d is odd, 3 - d and ω(d) = 5, 6. By Corollary 3.10 with z0 = 3,

there is a partition (d1, d2) of d with p1p2p3 ≤max(d1, d2) < 2(k − 1). Now we get k
4 > p1−1

2
p2−1

2
p3−1

2 .

Further we check X6 >
k
4 implying |S1| ≥ X6 >

p1−1
2

p2−1
2

p3−1
2 . Therefore we derive from Lemma 4.4 with

h = 3 that 3
4k

3 = X7k
3 > n+ (k − 1)d ≥ 6X6k

2 > 3
2k

3, a contradiction. Hence k − |R| < h(3). By Lemma

7.6 (i) − (iv), we get d odd, ω(d) = 6 and 1733 ≤ k < 2082. Further from Lemma 7.6 (v), (vi), we get

p1 ≥ 11. Now 11 · 13 · 17 · 19 · 23 · 29 ≤ d < 3k2 by (8.10) and (8.11). This is a contradiction. �

Corollary 8.5. Equation (1.1) with ω(d) ≥ 5 implies that k − |R| < 2ω(d)−θ.

Proof. Assume (1.1) with ω(d) ≥ 5 and k − |R| ≥ 2ω(d)−θ. By Lemma 3.9, there exists a set Ω with at

least 2ω(d)−θ pairs satisfying Property ND. Since there are at most 2ω(d)−θ − 1 permissible partitions of d

by Lemma 3.5 (i), we can find a partition (d1, d2) of d and a non-degenerate double pair with respect to

(d1, d2). This contradicts Lemma 8.4. �

Lemma 8.6. Equation (1.1) with d odd, k ≥ 101 and 5 ≤ ω(d) ≤ 7 implies that k − |R| ≤ 2ω(d)−1.

Proof. Let d be odd. Assume (1.1) with 5 ≤ ω(d) ≤ 7 and k − |R| ≥ 2ω(d)−1 + 1. By Corollary 8.5, we may

suppose that k − |R| < 2ω(d). Further by Lemma 7.6 (i), we obtain k ≤ 555, 1056, 2099 when ω(d) = 5, 6, 7,

respectively. Since k− |R| ≥ 2ω(d)−1 + 1, we derive from Corollary 3.11 that there exists a partition (d1, d2)

of d such that D12 :=max(d1, d2) < (k − 1)2.

Let ω(d) = 5. Then p1p2p3 ≤ D12 < (k − 1)2 implying p1 ≤ 61 since 67 · 71 · 73 > 5552. Also

p2 <
k−1√

p1
. By taking r = 6 for 208 < k ≤ 547, we get from (6.10) and (6.13) with p = p1 that k − |R| ≥

k−F ′(k, r)+min(−2r−2, σ61−2r−1) ≥ 32 if k > 208. Thus k ≤ 208. Further p1 ≤ 29 since 31·37·41 > 2082. If

p1 ≥ 17, then we obtain from Lemma 7.5 (a), (b) that 2072 > D12 ≥min(17·53·59, 23·47·53), a contradiction.

Therefore p1 ≤ 13 and hence 53 ≤ p2 < k by Lemma 7.5 (a). By taking r = 6, we get from (6.14) with

(p, q) = (p1, p2) that gp1,p2 = 2r−3 if k ≤ 127 and gp1 = 2r−2 if k > 127 by (6.13) with p = p1. From (6.10)

and σp2 ≥ 2, we have k − |R| ≥ k − F ′(k, r) + 2 − 2r−3 if k ≤ 127 and k − |R| ≥ k − F ′(k, r) + 2 − 2r−2 if

k > 127 giving k − |R| ≥ 32, a contradiction.

Let ω(d) = 6. Then p2p3p4 ≤ D12 < (k − 1)2 implying p1 < p2 ≤ 97 since 101 · 103 · 107 > 10552.

By taking r = 7 for 384 < k ≤ 1039, we get from (6.10) and (6.14) with (p, q) = (p1, p2) that k − |R| ≥
k − F ′(k, r) − 2r−2 ≥ 64 if k > 384. Thus k ≤ 384. Further p2 ≤ 43 since 47 · 53 · 59 > 3832. Then we

derive from Lemma 7.5 (a), (b) that p1 = 31, p2 = 41, p3 ≥ 47. Also k > 319 since 41 · 47 · 53 > 3192. By
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taking r = 7 for 319 < k ≤ 384, we obtain from (6.10) and (6.14) with (p, q) = (31, 41) that k − |R| ≥
k − F ′(k, r) + σ31 + σ41 − 2r−2 ≥ 64. This is a contradiction.

Let ω(d) = 7. Suppose p1 ≤ 19. By Lemma 7.6 (v), (vi), vii), we get k < 735, 930, 1200 according as

p1 = 3, p1 ∈ {5, 7}, p1 ≥ 11, respectively. By Lemma 7.5 (a), we obtain p2 ≥ 53. Now 53 · 59 · 61 ≤ D12
p1

<

7352

3 , 9302

5 , 12002

11 according as p1 = 3, p1 ∈ {5, 7}, p1 ≥ 11, respectively. This is not possible. Thus p1 ≥ 23.

Further p1 ≤ 41, p2 ≤ 53 from p1p2p3p4 ≤ D12 < (k − 1)2 ≤ 20982. By taking r = 9, we get from (6.10) and

(6.14) with (p, q) = (p1, p2) that k − |R| ≥ k − F ′(k, r) + min(−2r−3 + σ53,−2r−2 + σ41 + σ53) ≥ 128 for

k > 1007. Therefore k ≤ 1007. Now 10072 > D12 ≥min(23 · 47 · 53 · 59, 31 · 41 · 47 · 53) by Lemma 7.5 (b).

This is not possible. �

Corollary 8.7. Assume (1.1) with ω(d) ≥ 5. Then k < 308, 556, 1057, 2870 and 2(ω(d) − θ)2ω(d)−θ for

ω(d) = 5, 6, 7, 8 and ≥ 9, respectively. In particular k < 2ω(d)2ω(d).

Proof. By Corollary 8.5 and Lemma 8.6, we derive that k − |R| < 2ω(d)−θ and k − |R| ≤ 2ω(d)−1 if d is

odd, 5 ≤ ω(d) ≤ 7. By Lemma 7.6 (i), (ii), we get k < 2(ω(d) − θ)2ω(d)−θ for ω(d) ≥ 9 + θ, k < 4252

if ω(d) = 8 and k < 308, 556, 1057 according as ω(d) = 5, 6, 7, respectively. Now it remains to consider

ω(d) = 9 if 2||d, 4||d and ω(d) = 8. By Lemma 7.6 (ii), it suffices to consider d odd and ω(d) = 8. Further

k < 4252 and k − |R| < 256. Suppose k ≥ 2870. Then k − |R| ≥ 129 by Lemma 7.6 (i) and we derive from

Corollary 3.11 that there exists a partition (d1, d2) of d with max(d1, d2) < (k − 1)2. Let p1 ≥ 53. Then

42524 > d ≥ 53 · 59 · 61 · 67 · 71 · 73 · 79 · 83, a contradiction. Thus p1 ≤ 47. Now we obtain from Lemma 7.6

(vi) that k − |R| ≥ 256, a contradiction. �

Lemma 8.8. (i) Let d be odd and ω(d) = 5, 6. Suppose that d is divisible by a prime ≤ k when ω(d) = 5.

Further assume that there exist distinct primes p and q with pq|d, p ≤ 19, q ≤ k when ω(d) = 6. Then (1.1)

with k ≥ 101 has no solution.

(ii) Let d be even and 5 ≤ ω(d) ≤ 6 + θ. Assume that p|d with p ≤ 47 when ω(d) = 7. Then (1.1) with

k ≥ 101 has no solution.

Proof. By Lemma 8.5, we may suppose that k − |R| < 2ω(d)−θ.

(i) Let d be odd. From Corollary 8.7, we get k < 308, 556 when ω(d) = 5, 6, respectively. Let ω(d) = 5. By

taking r = 5 for 101 ≤ k < 308, we get from (6.10) and (6.13) with p = p1 that k−|R| ≥ k−F ′(k, r)−2r−1 ≥
17 which is not possible by Lemma 8.6.

Let ω(d) = 6. Then 53 ≤ p2 ≤ k by Lemma 7.5 (a). We take r = 6. Let p1 ≤ 13. Then we get from (6.14)

with (p, q) = (p1, p2) that gp1,p2 = 2r−3 if k ≤ 127 and gp1 = 2r−2 if k > 127 by (6.13) with p = p1. From

(6.10) and σp2 ≥ 1, we have k−|R| ≥ k−F ′(k, r) + 1− 2r−3 if k ≤ 127 and k−|R| ≥ k−F ′(k, r) + 1− 2r−2

if k > 127 giving k − |R| ≥ 33. This contradicts Lemma 8.6. Thus p1 ∈ {17, 19}. We get from (6.14) with

(p, q) = (p1, p2) that gp1,p2 = 2r−2 if k ≤ 193 and gp1 = 2r−1 if k > 193 by (6.13) with p = p1. From (6.10)

and σp1 + σp2 ≥ σ19 + 1, we get k − |R| ≥ 33, a contradiction.

(ii) Let d be even. Then from Lemma 7.6 (ii), (iii), (iv), we get ω(d) = 6, k < 252 and ω(d) = 7, k < 430

if 2||d; ω(d) = 6, k < 127 and ω(d) = 7, k < 303 if 4||d; ω(d) = 6, k < 220 if 8|d. By Lemma 7.5, we obtain

ω(d) = 6, k < 252 and p1 ≥ 53. Further by Lemma 7.6, we get k− |R| ≥ 2ω(d)−θ−1 + 1. This with Corollary
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3.11 gives max(d1, d2) < (k − 1)2 for some partition (d1, d2) of d. Since max(d1, d2) ≥ p1p2p3 ≥ 533 > 4302,

we get a contradiction. �

Lemma 8.9. Equation (1.1) with k ≥ 101 implies that d > 1010.

Proof. Assume (1.1) with k ≥ 101 and d ≤ 1010. By Lemma 8.2, we have ω(d) ≥ 5. Further we obtain from

Corollary 8.5 that k − |R| < 2ω(d)−θ which we use without reference in the proof.

Let d be odd. Then ω(d) ≤ 9 otherwise d ≥
∏11
i=2 pi > 1010. By Lemma 8.8 (i), we see that d > k5 > 1010

if ω(d) = 5. Thus ω(d) ≥ 6.

Let ω(d) = 6. If p1 ≤ 19, then d > k5 > 1010 by Lemma 8.8 (i). Therefore p1 ≥ 23. Also p1 ≤ 37

otherwise d ≥ 41 · 43 · 47 · 53 · 59 · 61 > 1010. Further k < 556 by Corollary 8.7. Therefore by Lemma 7.5 (b),

we obtain d ≥min(23 · 47 · 53 · 59 · 61 · 67, 31 · 41 · 47 · 53 · 59 · 61) > 1010.

Thus ω(d) ≥ 7. Then p1 ≤ 13 otherwise d ≥
∏13
j=7 pi > 1010. Further k ≥ 1733 otherwise d ≥ 3·536 > 1010

by Lemma 7.5 (a). By Corollary 8.7, we obtain ω(d) ≥ 8.

Let ω(d) = 8. Then p1 ≤ 7. Now Lemma 7.6 (v), (vi) gives p1 ∈ {5, 7}. Further p2 ≤ 11 since

5
∏12
j=6 pi > 1010. This is not possible by Lemma 7.6 (vii) since k ≥ 1733.

Let ω(d) = 9. Then p1 = 3, p2 = 5 and p3 = 7. This is not possible by Lemma 7.6 (vii) since k ≥ 1733.

Let d be even. Then ω(d) ≤ 10 otherwise d ≥
∏11
i=1 pi > 1010. Further ω(d) ≤ 9 for 4|d since 4

∏10
i=2 pi >

1010. By Lemma 8.8 (ii), we have ω(d) ≥ 7. Further k ≥ 1801 by Lemma 7.5 (c) since 2
∏21
i=16 pi > 1010.

Now we use Lemma 7.6 (ii), (iii), (iv) to obtain either 2||d, ω(d) = 9, 10 or 8|d, ω(d) = 9.

Let 2||d. Let ω(d) = 9. Then p1 ≤ 5 otherwise d ≥ 2
∏11
i=4 pi > 1010. Then k − |R| ≥ 256 by Lemma 7.6

(vii), a contradiction. Let ω(d) = 10. Then p1 = 3, p2 = 5 and hence k − |R| ≥ 512 by Lemma 7.6 (vii).

This is not possible.

Let 8|d and ω(d) = 9. Then p1 ≤ 5 since 8
∏11
i=4 pi > 1010. By Lemma 7.6, we get k − |R| ≥ 512 which is

a contradiction. �

9. Proof of Theorem 2

Suppose that (1.1) with b = 1 has a solution. By Theorem A (b), Lemmas 8.2, 8.6 and Corollary 8.7,

we get ω(d) = 5, d odd, k − |R| ≤ 16 and 110 ≤ k < 308. We observe that ordp(a0a1 · · · ak−1) is even

for each prime p. Therefore the number of i’s for which ai are divisible by p is at most σ′p =
⌈
k
p

⌉
or⌈

k
p

⌉
− 1 according as

⌈
k
p

⌉
is even or odd, respectively. Let r = 4. Then from (6.3), we get k − |R| ≥

k − F (k, r) − 2r ≥ k −
∑
p>pr

σ′p − 2r which is ≥ 17 except at k = 110, 112, 114, 116, 118, 120, 122, 124 where

k − |R| ≥ 16. Therefore k = 110, 112, 114, 116, 118, 120, 122, 124 and k − |R| = 16. Further we may

assume that for each prime 11 ≤ p ≤ k, there are exactly σ′p number of i’s for which p|ai and for any i,

pq - ai whenever 11 ≤ q ≤ k, q 6= p. By considering the i’s for which ai’s are divisible by primes 109, 107

when k = 110; 37, 109, 107 when k = 112; 113, 37, 109, 107 when k = 114; 23, 113, 37, 109, 107 when k = 116;

13, 23, 113, 37, 109, 107 when k = 118; 17, 13, 23, 113, 37, 109, 107 when k = 120; 11, 17, 13, 23, 113, 37, 109, 107

when k = 122 and 41, 11, 17, 13, 23, 113, 37, 109, 107 when k = 124, we get P (aςkaςk+1 · · · aςk+105) ≤ 103

where ςk = 2 + k−110
2 . This is excluded. For instance let k = 124. Then P (a9a10 · · · a114) ≤ 103. This

gives 1032|ajaj+103 for j ∈ {9, 10, 11}. Let 1032|a9a112. Then 1012|ajaj+101 for j ∈ {10, 12, 13} so that
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P (a14a15 · · · a110) ≤ 97. This is excluded by considering by TheoremA with k = 97. If 1032|a1a114, we obtain

similarly that P (a13a14 · · · a109) ≤ 97 and it is excluded. Thus 1032|a10a113. If 1012|ajaj+101 for j ∈ {11, 13},
we get P (a14a15 · · · a110) ≤ 97 and is excluded. Hence 1012|a9a110 implying P (a11a12 · · · a107) ≤ 97 and it is

excluded again. �

10. Proof of Theorem 3

By TheoremA (a) and Lemmas 8.2, 8.8 (ii), we may suppose that d is odd, either ω(d) = 3, (a0, a1, · · · , ak−1) ∈
S2 or ω(d) ≤ 2, (a0, a1, · · · , ak−1) ∈ S1∪S2, (a0, a1, · · · , a7) 6= (3, 1, 5, 6, 7, 2, 1, 10) or its mirror image when

k = 8, ω(d) = 2. For p|d, we observe from
(
q
p

)
= 1 for q ∈ {2, 3, 5, 7} that p ≥ 311 and therefore d ≥ 311ω(d).

Further we observe from Lemma 4.2 that (3.24) is valid.

Let ω(d) = 1. If k − |R| ≥ 2, we get d = d2 < 4(k − 1) by Corollary 3.10 with z0 = 2, a contradiction

since d ≥ 311. Therefore it remains to consider k = 8 and (a0, · · · , a7) = (3, 1, 5, 6, 7, 2, 1, 10) or its mirror

image. We exclude the possibility (a0, · · · , a7) = (3, 1, 5, 6, 7, 2, 1, 10) and the proof for excluding its mirror

image is similar. We write

n = 3x2
0, n+ d = x2

1, n+ 2d = 5x2
2, n+ 3d = 6x2

3,

n+ 4d = 7x2
4, n+ 5d = 2x2

5, n+ 6d = x2
6, n+ 7d = 10x2

7.

Then we get 5d = x2
6 − x2

1 = (x6 − x1)(x6 + x1) implying either x6 − x1 = 1, x6 + x1 = 5d or x6 − x1 =

5, x6+x1 = d. We apply Runge’s method to arrive at a contradiction. Suppose x6−x1 = 1, x6+x1 = 5d. Then

5d = 2x1+1 and x1 ≥ 14. We obtain (125·6x0x3x5)2 = (25(n+d)−25d)(25(n+d)+50d)(25(n+d)+100d) =

(25x2
1−10x1−5)(25x2

1 + 20x1 + 10)(25x2
1 + 40x1 + 20) = 15625x6

1 + 31250x5
1 + 20625x4

1−3000x3
1−10750x2

1−
6000x1 − 1000 =: ψ(x1). We see that

(125x3
1 + 125x2

1 + 20x1 − 32)2 > ψ(x1) > (125x3
1 + 125x2

1 + 20x1 − 33)2.

This is a contradiction. Let x6 − x1 = 5, x6 + x1 = d. Then we argue as above to conclude that d =

2x1 + 5, x1 ≥ 66 and

(x3
1 + 5x2

1 + 4x1 − 32)2 > ψ1(x1) > (x3
1 + 5x2

1 + 4x1 − 33)2

where ψ1(x1) = x6
1 + 10x5

1 + 33x4
1 − 24x3

1 − 430x2
1 − 1200x1 − 1000 is a square. This is again not possible.

Thus ω(d) ≥ 2. Let k ≥ 13 and (a0, a1, · · · , a12) 6= (3, 1, 5, 6, 7, 2, 1, 10, 11,

3, 13, 14, 15) or its mirror image when k = 13. Let g = 3, 4, 5 if k = 13, 14,≥ 19, respectively. Then from

ν(1) = 3 and Lemma 3.9, we get a set Ω of pairs (i, j) with |Ω| ≥ k − |R| + r3 ≥ g having Property ND.

Therefore there exists a non-degenerate double pair for k ≥ 14 when ω(d) = 2. Further there are distinct

pairs corresponding to partitions (d1, d2), (d2, d1) for some divisor d1 of d for k ≥ 13 when ω(d) = 2 and for

k ≥ 19 when ω(d) = 3.

Suppose that there is a non-degenerate double pair. Then we get from Lemma 3.4 with z0 = 2 that

d < 3k2 ≤ 3 · 242 contradicting d ≥ 3112. Thus there is no non-degenerate double pair corresponding to any

partition. Again, if there are pairs (i, j), (g, h) corresponding to partitions (d1, d2), (d2, d1) for some divisor

d1 of d, then we derive from Lemma 3.3 that d < (k − 1)4. This is not possible since 3112 ≤ d < 124

when ω(d) = 2 and 3113 ≤ d < 234 when ω(d) = 3. Therefore there are no distinct pairs corresponding to
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partitions (d1, d2), (d2, d1) for any divisor d1 of d. Thus it remains to consider k = 14 when ω(d) = 3 and

either k = 8, 9 or k = 13, (a0, a1, · · · , a12) = (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15) or its mirror image when

ω(d) = 2. Also we may suppose that there is a pair (i, j) with ai = aj corresponding to the partition (1, d)

for each of these possibilities.

Let k = 8 and ω(d) = 2. We exclude the possibility (a0, a1, · · · , a7) = (2, 3, 1, 5, 6, 7, 2, 1) and the proof

for excluding its mirror image is similar. We see that either the pair (0, 6) or (2, 7) corresponds to (1, d) and

we arrive at a contradiction as in the case k = 8, ω(d) = 1 and (a0, · · · , a7) = (3, 1, 5, 6, 7, 2, 1, 10). Let the

pair (0, 6) corresponds to (1, d). Then either x6 − x0 = 1, x6 + x0 = 3d or x6 − x0 = 3, x6 + x0 = d. Suppose

x6 − x0 = 1, x6 + x0 = 3d. Then we obtain 3d = 2x0 + 1, x0 ≥ 100 and (3x2x7)2 = (3n + 6d)(3n + 21d) =

(6x2
0 + 4x0 + 2)(6x2

0 + 14x0 + 7) = 36x4
0 + 108x3

0 + 110x2
0 + 56x0 + 14 := ψ2(x0) is a square. This is a

contradiction since (6x2
0 + 9x0 + 3)2 > ψ2(x0) > (6x2

0 + 9x0 + 2)2. Let x6 − x0 = 3, x6 + x0 = d. Then we

argue as above to conclude that d = 2x0 + 3, x0 ≥ 100 and 4x4
0 + 36x3

0 + 11x2
0 + 168x0 + 126 := ψ3(x0) is a

square. This is again not possible since (2x2
0 + 9x0 + 8)2 > ψ3(x0) > (2x2

0 + 9x0 + 7)2. The other possibility

of the pair (2, 7) corresponding to (1, d) is excluded similarly.

Let k = 9 and ω(d) = 2. Then (1.1) holds with k = 8 and (a0, · · · , a7) = (2, 3, 1, 5, 6, 7, 2, 1) or its mirror

image. This is already excluded. The case k = 13, ω(d) = 2 and (a0, · · · , a12) = (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15)

or its mirror image is excluded as above in the case k = 8.

Let k = 14 and ω(d) = 3. Let (a0, · · · , a13) = (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13,

14, 15, 1). Then one of the pairs (0, 9), (1, 6), (1, 13), (6, 13) corresponds to the partition (1, d). This is ex-

cluded as above in the case k = 8, ω(d) = 2. The proof for excluding the mirror image (1, 15, 14, 13, 3, 11, 10, 1, 2, 7, 6, 5, 1, 3)

is similar. �

11. Proof of Theorem 1

First we show that d > 1010. By Lemma 8.9 and Theorem A (a), it suffices to consider the case k = 7

and (a0, a1, · · · , a6) given by

(2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10)(11.1)

or their mirror images. Then for p|d, we have
(
q
p

)
= 1 for q ∈ {2, 3, 5, 7}. Suppose that d ≤ 1010. Since

ω(d) ≥ 2, we have p1 ≤ 105. For X > 0, let

P0 = P0(X) = {p ≤ X :
(
q

p

)
= 1, q = 2, 3, 5, 7}.

We find that that P0(105) = {311, 479, 719, 839, 1009, · · · }. Thus p1 ≥ 311 by p1 ∈ P0(105). Since 311 ·
479 · 719 · 839 > 1010, we have ω(d) ≤ 3. Further from 3112 · 4792 > 1010, we get either ω(d) = 2, d =

p1p2, p
2
1p2, p1p

2
2 or ω(d) = 3, d = p1p2p3.

Consider (a0, a1, · · · , a6) = (2, 3, 1, 5, 6, 7, 2). From d = n + d − n = 3x2
1 − 2x2

0, 3 - x0, 4 - x0x1, we get

d ≡ −2 ≡ 1(mod 3) and d ≡ 3− 2 ≡ 1(mod 8) giving d ≡ 1(mod 24). Again from 2(x2
6− x2

0) = n+ 6d−n =
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6d = 6d1d2, we get x6 − x0 = r1d1, x6 + x0 = r2d2 with r1r2 = 3, r1d1 < r2d2 and (r1d1, r2d2) ∈ D3 with

D3 =


{(1, 3q1q2), (3, q1q2), (q1, 3q2), (3q1, q2), (q2, 3q1)} if ω(d) = 2
{(1, 3p1p2p3), (3, p1p2p3), (p1, 3p2p3), (3p1, p2p3),
(p2, 3p1p3), (3p2, p1p3), (p3, 3p1p2), (3p3, p1p2)} if ω(d) = 3.

Then x0 = r2d2−r1d1
2 giving x2

2 = n + 2d = 2x2
0 + 2d1d2 = 1

2{(r1d1)2 + (r2d2)2 − 2d1d2} a square. Now

we see from 3x2
1 = n + d = 2x2

0 + d = 1
2{(r1d1)2 + (r2d2)2 − 4d1d2} that 1

6{(r1d1)2 + (r2d2)2 − 4d1d2} is

an square. For each d = q1q2, we first check for d ≡ 1(mod 24) and restrict to such d. Further for each

possibility of (r1d1, r2d2) ∈ D3 with r1d1 < r2d2, we check for 1
2{(r1d1)2 + (r2d2)2 − 2d1d2} being a square

and restrict to such pairs (r1d1, r2d2). Finally we check that 1
6{(r1d1)2 + (r2d2)2 − 4d1d2} is not a square.

For example, let d = 1319 · 4919. Then q1 = 1319, q2 = 4919. We check that d ≡ 1(mod 24). For each

choice (r1d1, r2d2) ∈ D3 with r1d1 < r2d2, we check for 1
2{(r1d1)2 + (r2d2)2 − 2d1d2} being a square which

is possible only for (r1d1, r2d2) = (1319, 3 · 4919). However we find that 1
6{(r1d1)2 + (r2d2)2 − 4d1d2} is not

a square for (r1d1, r2d2) = (1319, 3 · 4919).

Next we consider (a0, a1, · · · , a6) = (3, 1, 5, 6, 7, 2, 1). From d = n+ 6d− (n+ 5d) = x2
6 − 2x2

5, 3 - x5, 3|x2
6

and 2 - x6, 4|x2
5, we get d ≡ 1(mod 24). Again from x2

6 − x2
1 = n + 6d − (n + d) = 5d = 5d1d2 we get

x6 − x1 = r1d1, x6 + x1 = r2d2 with r1r2 = 5, r1d1 < r2d2 and

D5 =


{(1, 5q1q2), (5, q1q2), (q1, 5q2), (5q1, q2), (q2, 5q1)} if ω(d) = 2
{(1, 5p1p2p3), (5, p1p2p3), (p1, 5p2p3), (5p1, p2p3),
(p2, 5p1p3), (5p2, p1p3), (p3, 5p1p2), (5p3, p1p2)} if ω(d) = 3.

Thus x6 = r2d2+r1d1
2 giving 2x2

5 = n + 5d = x2
6 − d = 1

4{(r1d1)2 + (r2d2)2 + 6d} implying 1
2{(r1d1)2 +

(r2d2)2 +6d} is a square. Further from 7x2
4 = n+4d = n+6d−2d = x2

6−2d = 1
4{(r1d1)2 +(r2d2)2 +2d1d2},

we get 1
7{(r1d1)2 + (r2d2)2 + 2d1d2} is a square. For each d = q1q2, we first check for d ≡ 1(mod 24)

and restrict to such d. Further for each possibility of (r1d1, r2d2) ∈ D5 with r1d1 < r2d2, we check for
1
2{(r1d1)2 + (r2d2)2 + 6d} being a square and restrict to such pairs (r1d1, r2d2). Finally we check that
1
7{(r1d1)2 + (r2d2)2 + 2d} is not a square. Further the case (a0, a1, · · · , a6) = (1, 5, 6, 7, 2, 1, 10) is excluded

by the preceding test.

The case (a0, a1, · · · , a6) = (2, 7, 6, 5, 1, 3, 2) is similar to (a0, a1, · · · , a6) = (2, 3, 1, 5, 6, 7, 2) and we ob-

tain d ≡ −1(mod 24), 1
2{(r1d1)2+(r2d2)2+2d} and 1

6{(r1d1)2+(r2d2)2+4d} are squares for each possibility of

(r1d1, r2d2) ∈ D3 with r1d1 < r2d2. This is excluded. The cases (a0, a1, · · · , a6) = (1, 2, 7, 6, 5, 1, 3), (10, 1, 2, 7, 6, 5, 1)

are also similar to that of (a0, a1, · · · , a6) = (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10) and is excluded. Thus

d > 1010.

Now we show that d > klog log k. Since klog log k < 1010 for k < 22027, we may assume that k ≥ 22027.

By Corollary 8.7, we obtain ω(d) ≥ 9 and k < 2(ω(d)− θ)2ω(d)−θ =: Ψ0(ω(d)− θ). Further we derive from

22027 ≤ k < 2ω(d)2ω(d) that ω(d) ≥ 11. It suffices to show that log d > (log Ψ0(ω(d)− θ))(log log Ψ0(ω(d)−
θ)) =: Ψ1(ω(d) − θ). Let Ψ2(l) = l(log l + log log l − 1.076868) for l > 1. From d ≥ 2δ

∏ω(d)+1−δ′
i=2 pi and

Lemma 5.1 (iv), we get log d > Ψ2(ω(d) + 1)− log 2,Ψ2(ω(d)) + (δ − 1) log 2 when 2 - d, 2|d, respectively. It

suffices to check for ω(d) ≥ 11 that Ψ2(ω(d) + 1)− log 2−Ψ1(ω(d)) > 0 if 2 - d, Ψ2(ω(d))−Ψ1(ω(d)− 1) > 0

if 2||d, 4||d and Ψ2(ω(d)) + log 4−Ψ1(ω(d)) > 0 if 8|d. This is the case. �
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12. Theorem 2 with ω(d) = 2 and gcd(n, d) ≥ 1

As stated in Section 1, we prove

Theorem 4. A product of eight or more terms in arithmetic progression with common difference d satisfying

ω(d) = 2 is not a square.

Proof. Suppose Theorem 4 is not true. Then (1.1) is valid with k ≥ 8, b = 1 and ω(d) = 2 but n and d not

necessarily coprime. Let n′ = n
gcd(n,d) and d′ = d

gcd(n,d) . Now, by dividing gcd(n, d)k on both sides of (1.1),

we have

(12.1) n′(n′ + d′) · · · (n′ + (k − 1)d′) = pδ11 pδ22 y
2
1

where y1 > 0 is an integer and δ1, δ2 ∈ {0, 1}. We may assume that k is odd and (δ1, δ2) 6= (0, 0) by Theorem

2 with ω(d) = 2. Let d′ = 1. Then we see from [SaSh03b, Corollary 3] that the left hand side of (12.1)

is divisible by at least three primes > k. Therefore there exists a prime p with p 6= p1, p 6= p2, p > k such

that it divides a term on the left hand side of (12.1) to power at least 2. This implies n′ > k2. Now we

see from [MuSh04b, Theorem 2] that the left hand side of (12.1) is divisible by at least three primes > k to

odd powers. This contradicts (12.1). Thus d′ > 1 implying (δ1, δ2) 6= (1, 1) by gcd(n′, d′) = 1. Now we may

assume that (δ1, δ2) = (1, 0). Then d′ is a power of p2. Further we may suppose that p1 ≥ k by the results

stated in Section 1. Let n+ i0d with 0 ≤ i0 < k be the term divisible by p1 on the left hand side of (12.1).

Then

n′ · · · (n′ + (i0 − 1)d′)(n′ + (i0 + 1)d′) · · · (n′ + (k − 1)d′) = b′y2
2

where P (b′) < k and y2 > 0 is an integer. Now k = 8 by [MuSh04a, Theorem 1]. This is not possible since

k is odd. �

References
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