THE GREATEST PRIME DIVISOR OF A PRODUCT OF CONSECUTIVE INTEGERS

SHANTA LAISHRAM AND T. N. SHOREY

1. Introduction

Let $k \geq 2$ and $n \geq 1$ be integers. We denote by

$$\Delta(n,k) = n(n+1)\cdots(n+k-1).$$

For an integer $\nu > 1$, we denote by $\omega(\nu)$ and $P(\nu)$ the number of distinct prime divisors of ν and the greatest prime factor of ν , respectively, and we put $\omega(1) = 0$, P(1) = 1.

A well known theorem of Sylvester [7] states that

(1)
$$P(\Delta(n,k)) > k \text{ if } n > k.$$

We observe that $P(\Delta(1,k)) \leq k$ and therefore, the assumption n > k in (1) cannot be removed. For n > k, Moser [5] sharpened (1) to $P(\Delta(n,k)) > \frac{11}{10}k$ and Hanson [3] to $P(\Delta(n,k)) > 1.5k$ unless (n,k) = (3,2), (8,2), (6,5). Further Faulkner [2] proved that $P(\Delta(n,k)) > 2k$ if n is greater than or equal to the least prime exceeding 2k and $(n,k) \neq (8,2), (8,3)$. In this paper, we sharpen the results of Hanson and Faulkner. We shall not use these results in the proofs of our improvements. We prove

Theorem 1. We have

(a)

(2)
$$P(\Delta(n,k)) > 2k \text{ for } n > \max(k+13, \frac{279}{262}k).$$

(b)

(3)
$$P(\Delta(n,k)) > 1.97k \text{ for } n > k+13.$$

We observe that 1.97 in (3) cannot be replaced by 2 since there are arbitrary long chains of consecutive composite positive integers. The same reason implies that Theorem 1 (a) is not valid under the assumption n > k + 13. Further the assumption $n > \frac{279}{262}k$ in Theorem 1 (a) is necessary since $P(\Delta(279, 262)) \le 2 \times 262$.

²⁰⁰⁰ Mathematics Subject Classification: Primary 11A41, 11N05, 11N13. Keywords: Arithmetic Progressions, Primes.

Now we give a lower bound for $P(\Delta(n,k)) > 2k$ which is valid for n > k > 2 except for an explicitly given finite set. For this, we need some notation. For a pair (n,k) and a positive integer h, we write [n,k,h] for the set of all pairs $(n,k), \cdots (n+h-1,k)$ and we set $[n,k] = [n,k,1] = \{(n,k)\}$. Let

$$A_{10} = \{58\}; A_8 = A_{10} \cup \{59\}; A_6 = A_8 \cup \{60\};$$

 $A_4 = A_6 \cup \{12, 16, 46, 61, 72, 93, 103, 109, 151, 163\};$

 $A_2 = A_4 \cup \{4, 7, 10, 13, 17, 19, 25, 28, 32, 38, 43, 47, 62, 73, 94, 104, 110, 124, 152, 164, 269\}$

and $A_{2i+1} = A_{2i}$ for $1 \le i \le 5$. Further let

56, 63, 68, 74, 78, 81, 86, 89, 95, 105, 111, 125, 146, 153, 165, 173, 270}.

Finally we denote B as the union of the sets [8, 3], [5, 4, 3], [14, 13, 3] and $\{(k+1, k)|k=3, 5, 8, 11, 14, 18, 63\}$. Then

Theorem 2. We have

(4)
$$P(\Delta(n,k)) > 1.95k \text{ for } n > k > 2$$

unless and only unless $(n, k) \in [k+1, k, h]$ for $k \in A_h$ with $1 \le h \le 11$ or (n, k) = (8, 3).

If k = 2, we observe (see Lemma 7) that $P(\Delta(n, k)) > 2k$ unless n = 3, 8 and that $P(\Delta(3, 2)) = P(\Delta(8, 2)) = 3$. Thus the estimate (4) is valid for k = 2 whenever $n \neq 3, 8$. We observe that $P(\Delta(k + 1, k)) \leq 2k$ and therefore, 1.95 in (4) cannot be replaced by 2. There are few exceptions if 1.95 is replaced by 1.8 in Theorem 2. We derive from Theorem 2 the following result.

Corollary 1. We have

(5)
$$P(\Delta(n,k)) > 1.8k \text{ for } n > k > 2$$

unless and only unless $(n, k) \in B$.

2. Lemmas

We begin with a well known result due to Levi ben Gerson on a particular case of Catalan equation.

Lemma 1. The solutions of

$$2^{a} - 3^{b} = \pm 1$$
 in integers $a > 0, b > 0$

are given by (a, b) = (1, 1), (2, 1), (3, 2).

Next we state a result of Saradha and Shorey [6] on a lower bound for $\omega(\Delta(n,k))$.

Lemma 2. For n > k > 2, we have

$$\omega(\Delta(n,k)) \ge \pi(k) + \left[\frac{1}{3}\pi(k)\right] + 2$$

unless and only unless (n,k) belongs to the union of sets

$$\begin{cases} [4,3], [6,3,3], [16,3], [6,4], [6,5,4], [12,5], [14,5,3], [23,5,2], \\ [7,6,2], [15,6], [8,7,3], [12,7], [14,7,2], [24,7], [9,8], [14,8], \\ [14,13,3], [18,13], [20,13,2], [24,13], [15,14], [20,14], [20,17]. \end{cases}$$

We shall use Lemma 2 only when k=3 or $5 \le k \le 8$. Let p_i denote the i-th prime number. Then

Lemma 3. We have

(6)

$$p_{i+1} - p_i < \begin{cases} 35 & \text{for } p_i \le 5591 \\ 15 & \text{for } p_i \le 1123, p_i \ne 523, 887, 1069 \\ 21 & \text{for } p_i = 523, 887, 1069 \\ 9 & \text{for } p_i \le 361, p_i \ne 113, 139, 181, 199, 211, 241, 283, 293, 317, 337. \end{cases}$$

Lemma 4. Let \mathfrak{N} be a positive real number and k_0 a positive integer. Let $I(\mathfrak{N}, k_0) = \{i | p_{i+1} - p_i \geq k_0, p_i \leq \mathfrak{N}\}$. Then

$$P(n(n+1)\cdots(n+k-1)) > 2k$$

for $2k \le n < \mathfrak{N}$ and $k \ge k_0$ except possibly when $p_i < n < n + k - 1 < p_{i+1}$ for $i \in I(\mathfrak{N}, k_0)$.

Proof. Let $2k \leq n < \mathfrak{N}$ and $k > k_0$. We may suppose that none of $n, n+1, \dots, n+k-1$ is a prime, otherwise the result follows. Let $p_i < n < n+k-1 < p_{i+1}$. Then $i = \pi(n)$ and $p_{\pi(n)} < n < \mathfrak{N}$. For $\pi(n) \notin I(\mathfrak{N}, k_0)$, we have

$$k-1 = n + k - 1 - n < p_{\pi(n)+1} - p_{\pi(n)} < k_0$$

which implies $k - 1 < k_0 - 1$, a contradiction. Hence the assertion.

The following result is on the estimates for primes due to Dusart [1, p.14].

Lemma 5. For $\nu > 1$, we have

$$(i) \ \pi(\nu) \le \frac{\nu}{\log \nu} \left(1 + \frac{1.2762}{\log \nu} \right)$$
$$(ii) \ \pi(\nu) \ge \frac{\nu}{\log \nu - 1} \text{ for } \nu \ge 5393.$$

Lemma 6. Let X > 0 and $0 < \theta < e - 1$ be real numbers. For $l \ge 0$, let

$$X_{0} = \max\left(\frac{5393}{1+\theta}, \exp\left(\frac{\log(1+\theta) + 0.2762}{\theta}\right)\right),$$

$$X_{l+1} = \max\left(\frac{5393}{1+\theta}, \exp\left(\frac{\log(1+\theta) + 0.2762}{\theta + \frac{1.2762(1-\log(1+\theta))}{\log^{2} X_{l}}}\right)\right).$$

Then we have

$$\pi((1+\theta)X) - \pi(X) > 0$$

for $X > X_l$.

Proof. Let $l \geq 0$ and $X > X_l$. Then $(1 + \theta)X \geq 5393$. By Lemma 5, we have

$$\delta := \pi((1+\theta)X) - \pi(X) \ge \frac{(1+\theta)X}{\log(1+\theta)X - 1} - \frac{X}{\log X} \left(1 + \frac{1.2762}{\log X} \right)$$

$$\ge \frac{X}{\log(1+\theta)X - 1} \left\{ 1 + \theta - \frac{\log(1+\theta)X - 1}{\log X} \left(1 + \frac{1.2762}{\log X} \right) \right\}$$

$$\ge \frac{X}{\log(1+\theta)X - 1} \left\{ 1 + \theta - \left(1 - \frac{1 - \log(1+\theta)}{\log X} \right) \left(1 + \frac{1.2762}{\log X} \right) \right\}$$

$$\ge \frac{X}{\log(1+\theta)X - 1} \left\{ F(X) + G(X) \right\}$$

where $F(X) = \theta - \frac{\log(1+\theta) + 0.2762}{\log X}$ and $G(X) = \frac{1.2762(1-\log(1+\theta))}{\log^2 X}$. We see that G(X) > 0 and decreasing since $0 < \theta < e - 1$. Further we observe that $\{X_i\}$ is a non-increasing sequence. We notice that $\delta > 0$ if F(X) + G(X) > 0. But F(X) + G(X) > F(X) > 0 for $X > X_0$ by the definition of X_0 . Thus $\delta > 0$ for $X > X_0$. Let $X \le X_0$. Then $F(X) + G(X) \ge F(X) + G(X_0)$ and $F(X) + G(X_0) > 0$ if $X > X_1$ by the definition of X_1 . Hence $\delta > 0$ for $X > X_1$. Now we proceed inductively as above to see that $\delta > 0$ for $X > X_l$ with $l \ge 2$.

Lemma 7. Let n > k and $k \le 16$. Then

(7)
$$P(\Delta(n,k)) \le 2k$$

implies that $(n,k) \in \{(8,2),(8,3)\}$ or $(n,k) \in [k+1,k]$ for $k \in \{2,3,5,6,8,9,11,14,15\}$ or $(n,k) \in [k+1,k,3]$ for $k \in \{4,7,10,13\}$ or $(n,k) \in [k+1,k,5]$ for $k \in \{12,16\}$.

Proof. We apply Lemma 1 to derive that (7) is possible only if n=3,8 when k=2 and n=5,6,7 when k=4. For the latter assertion, we apply Lemma 1 after securing $P((n+i)(n+j)) \leq 3$ with $0 \leq i < j \leq 3$ by deleting the terms divisible by 5 and 7 in n, n+1, n+2 and n+3. For k=3 and $5 \leq k \leq 8$, the assertion follows from Lemma 2.

Thus we may assume that $k \geq 9$. Assume that (7) holds. Then there are at most $1 + \left[\frac{k-1}{p}\right]$ terms divisible by the prime p. After removing all the terms divisible by $p \geq 7$, we are left with at least 4 terms only divisible by 2, 3 and 5. Further out of these terms, for each prime 2, 3 and 5, we remove a term in which the prime divides to a maximal power. Then we are left with a term n+i such that $n \leq n+i \leq 8 \times 9 \times 5 = 360$. Let $n \geq 2k$. We now apply Lemma 4 with $\mathfrak{N} = 361, k_0 = 9$ and (6) to get $P(\Delta(n,k)) > 2k$ for $k \geq 9$ except possibly when $p_i < n < n+k-1 < p_{i+1}, p_i = 113, 139, 181, 199, 211, 241, 283, 293, 317, 337$. For these values of n, we check that $P(\Delta(n,k)) > 2k$ is valid for $9 \leq k \leq 16$. Thus it suffices to consider k < n < 2k. We calculate $P(\Delta(n,k))$ for (n,k) with $9 \leq k \leq 16$ and k < n < 2k. We find that (7) holds only if (n,k) is given in the statement of the Lemma 7.

3. Proof of Theorem 1 (a)

Let $n > \max(k+13, \frac{279}{262}k)$. In view of Lemma 7, we may take $k \ge 17$ since $n \le k+5$ for the exceptions (n,k) given in Lemma 7. It suffices to prove (2) for k such that 2k-1 is prime. Let $k_1 < k_2$ be such that $2k_1 - 1$ and $2k_2 - 1$ are consecutive primes. Suppose (2) holds at k_1 . Then for $k_1 < k < k_2$, we have

$$P(n(n+1)\cdots(n+k-1)) \ge P(n\cdots(n+k_1-1)) > 2k_1$$

implying $P(\Delta(n,k)) \geq 2k_2 - 1 > 2k$. Therefore we may suppose that $k \geq 19$ since 2k-1 with k=17,18 are composites. We assume from now onward in the proof of Theorem 1 (a) that 2k-1 is prime. We put x=n+k-1. Then $\Delta(n,k)=x(x-1)\cdots(x-k+1)$. Let $f_1 < f_2 < \cdots < f_{\mu}$ be all the integers in [0,k) such that

(8)
$$P((x-f_1)\cdots(x-f_{\mu})) \le k.$$

We derive as in the proof of [4, Lemma 4] to get

(9)
$$k! > x^{\mu - \pi(k)} \left(1 - \frac{k}{x} \right)^{\mu}$$
.

We may suppose $\omega(\Delta(n,k)) \leq \pi(2k)$ otherwise (2) follows. Then

which we use as in [4, Lemma 4] to derive from (9) that

(11)
$$x < k^{\frac{3}{2}}$$
 for $k \ge 87$; $x < k^{\frac{7}{4}}$ for $k \ge 40$; $x < k^2$ for $k \ge 19$.

If $x \geq 7k$ and k > 57, then we derive as in [4, Lemma 7] from (10) that $x \geq k^{\frac{3}{2}}$. Thus we get from (11) that x < 7k for $k \geq 87$. Putting back n = x - k + 1, we may assume that n < 6k + 1 for $k \geq 87$, $n < k^{\frac{7}{4}} - k + 1$ for $40 \leq k < 87$ and $n < k^2 - k + 1$ for $19 \leq k < 40$.

Let k < 87. Suppose $n \ge 2k$. Then $2k \le n < k^{\frac{7}{4}} - k + 1$ for $40 \le k < 87$ and $2k \le n < k^2 - k + 1$ for $19 \le k < 40$. Thus Lemma 4 with $\mathfrak{N} = 87^{\frac{7}{4}} - 87 + 1$, $k_0 = 35$ and (6) implies that $P(\Delta(n,k)) > 2k$ for $k \ge 35$. We note here that $2k \le n < \mathfrak{N}$ for $35 \le k < 40$. Let k < 35. Taking $\mathfrak{N} = 34^2 - 34 + 1$, $k_0 = 21$ for $21 \le k \le 34$ and $\mathfrak{N} = 19^2 - 19 + 1$, $k_0 = 19$ for k = 19, we see from Lemma 4 and (6) that $P(\Delta(n,k)) > 2k$ for $k \ge 19$. Here the case k = 20 is excluded since 2k - 1 is composite. Therefore we may assume that n < 2k. Further we observe that $\pi(n + k - 1) - \pi(2k) \ge \pi(2k + 13) - \pi(2k)$ since n > k + 13. Next we check that $\pi(2k + 13) - \pi(2k) > 0$. This implies that [2k, n + k - 1] contains a prime.

Thus we may assume that $k \geq 87$. Then we write $n = \alpha k + 1$ with $\frac{279}{262} - \frac{1}{k} < \alpha \leq 6$ if $k \geq 201$ and $1 + \frac{12}{k} < \alpha \leq 6$ if k < 201. Further we consider $\pi(n + k - 1) - \pi(\max(n - 1, 2k))$ which is

$$= \pi((\alpha + 1)k) - \pi(\alpha k) \text{ for } \alpha \ge 2$$

$$\ge \pi([\frac{541}{262}k]) - \pi(2k) \text{ for } \alpha < 2 \text{ and } k \ge 201$$

$$> \pi(2k + 13) - \pi(2k) \text{ for } \alpha < 2 \text{ and } k < 201.$$

We check by using exact values of π function that $\pi(2k+13)-\pi(2k)>0$ for k<201 and $\pi([\frac{541}{262}k])-\pi(2k)>0$ for $201\leq k\leq 2616$. Thus we may suppose that k>2616 if $\alpha<2$. Also $[\frac{541}{262}k]\geq \frac{540}{262}k$ for k>2616. Now we apply Lemma 6 with $X=\alpha k, \theta=\frac{1}{\alpha}, l=0$ if $\alpha\geq 2$ and $X=2k, \theta=\frac{4}{131}, l=1$ if $\alpha<2$ to get $\pi(n+k-1)-\pi(\max(n-1,2k))>0$ for $X>X_0=\frac{5393}{1+\frac{1}{\alpha}}$ if $\alpha\geq 2$ and $X>X_1=\frac{5393}{1+\frac{4}{131}}$ if $\alpha<2$. Further when $\alpha<2$, we observe that $X=2k>X_1$ since k>2616. Thus the assertion follows for n<2k. It remains to consider the case $\alpha\geq 2$ and $X\leq 5393(1+\frac{1}{\alpha})^{-1}$. Then $2k\leq n< n+k-1=X(1+\frac{1}{\alpha})\leq 5393$. Now we apply Lemma 4 with $\Re=5393, k_0=35$ and (6) to conclude that $P(\Delta(n,k))>2k$. \square

4. Proof of Theorem 1 (b)

In view of Lemma 7 and Theorem 1 (a), we may assume that $k \geq 17$ and $k < n \leq \frac{279}{262}k$. Let $X = \frac{279}{262}k$, $\theta = \frac{245}{279}$, l = 0. Then for $k < n \leq X$, we see from Lemma 6 that

$$\pi(2k) - \pi(n-1) \ge \pi((1+\theta)X) - \pi(X) > 0$$

for $X > X_0 = 5393(1+\theta)^{-1}$ which is satisfied for k > 2696 since $(1+\theta)X = 2k$. Thus we may suppose that $k \leq 2696$. Now we check with exact values of π function that $\pi(2k) - \pi(\frac{279}{262}k) > 0$. Therefore $P(\Delta(n,k)) \geq P(n(n+1)\cdots 2k) \geq p_{\pi(2k)}$. Further we apply Lemma 6 with X = 1.97k, $\theta = \frac{3}{197}$ and l = 25. We calculate that $X_l \leq 284000$. We conclude by Lemma 6 that

$$\pi(2k) - \pi(1.97k) = \pi((1+\theta)X) - \pi(X) > 0$$

for k>145000. Let $k\leq 145000$. Then we check that $\pi(2k)-\pi(1.97k)>0$ is valid for $k\geq 680$ by using the exact values of π function. Thus

(12)
$$p_{\pi(2k)} > 1.97k \text{ for } k \ge 680.$$

Therefore we may suppose that k < 680. Now we observe that for n > k+13, $\pi(n+k-1)-\pi(1.97k) \ge \pi(2k+13)-\pi(1.97k) > 0$, the latter inequality can be checked by using exact values of π function. Hence the assertion follows since n < 1.97k.

5. Proof of Theorem 2

By Theorem 1 (b), we may assume that $n \leq k+13$. Also we may suppose that k < 680 by (12). For $k \leq 16$, we calculate $P(\Delta(n,k))$ for all the pairs (n,k) given in the statement of Lemma 7. We find that either $P(\Delta(n,k)) > 1.95k$ or (n,k) is an exception stated in Theorem 1 (a). Thus we may suppose that $k \geq 17$. Now we check that $\pi(n+k-1) - \pi(1.95k) > 0$ except for $(n,k) \in [k+1,k,h]$ for $k \in A_h$ with $1 \leq h \leq 11$ and the assertion follows.

6. Proof of Corollary 1

We calculate $P(\Delta(n,k))$ for all (n,k) with $k \leq 270$ and $k+1 \leq n \leq k+11$. This contains the set of exceptions given in Theorem 2. We find that $P(\Delta(n,k)) > 1.8k$ unless $(n,k) \in B$. Hence the assertion (5) follows from Theorem 2.

References

- [1] Pierre Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D thesis, Université de Limoges, 1998.
- [2] M. Faulkner, On a theorem of Sylvester and Schur, J. Lond. Math. Soc., 41 (1966), 107-110.
- [3] D. Hanson, On a theorem of Sylvester and Schur, Canad. Math. Bull., **16** (1973), 195-199.
- [4] S. Laishram and T. N. Shorey, Number of prime divisors in a product of consecutive integers, Acta Arith. 113 (2004), 327-341.
- [5] L. Moser, Insolvability of $\binom{2n}{n} = \binom{2a}{a}\binom{2b}{b}$, Canad. Math. Bull.(2), **6** (1963), 167-169.
- [6] N. Saradha and T. N. Shorey, Almost squares and factorisations in consecutive integers, Compositio Math. 138 (2003), 113-124.
- [7] J. J. Sylvester, On arithmetical series, Messenger of Mathematics, XXI (1892), 1-19, 87-120, and Mathematical Papers, 4(1912), 687-731.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: shanta@math.tifr.res.in E-mail address: shorey@math.tifr.res.in