THE GREATEST PRIME DIVISOR OF A PRODUCT
OF CONSECUTIVE INTEGERS
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1. INTRODUCTION

Let £ > 2 and n > 1 be integers. We denote by
An,k)=nn+1)---(n+k—1).

For an integer v > 1, we denote by w(v) and P(r) the number
of distinct prime divisors of v and the greatest prime factor of v,
respectively, and we put w(1) =0, P(1) = 1.

A well known theorem of Sylvester [7] states that

(1) P(A(n,k)) >k if n> k.

We observe that P(A(1,k)) < k and therefore, the assumption
n > k in (1) cannot be removed. For n > k, Moser [5] sharpened
(1) to P(A(n,k)) > 1tk and Hanson [3] to P(A(n,k)) > 1.5k
unless (n, k) = (3,2),(8,2),(6,5). Further Faulkner [2] proved that
P(A(n,k)) > 2k if n is greater than or equal to the least prime
exceeding 2k and (n, k) # (8,2),(8,3). In this paper, we sharpen
the results of Hanson and Faulkner. We shall not use these results
in the proofs of our improvements. We prove

Theorem 1. We have

(a)

(2) P(A(n,k)) > 2k for n > max(k + 13, %k)
(b)

(3) P(A(n,k)) > 1.97k for n > k + 13.

We observe that 1.97 in (3) cannot be replaced by 2 since there
are arbitrary long chains of consecutive composite positive integers.
The same reason implies that Theorem 1 (a) is not valid under
the assumption n > k + 13. Further the assumption n > %k in
Theorem 1 (a) is necessary since P(A(279,262)) < 2 x 262.
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Now we give a lower bound for P(A(n,k)) > 2k which is valid
for n > k > 2 except for an explicitly given finite set. For this, we
need some notation. For a pair (n, k) and a positive integer h, we
write [n, k, h] for the set of all pairs (n, k), - (n+h —1,k) and we
set [n, k] = [n,k, 1] = {(n, k)}. Let

Ao = {58}; As= AU {59}; As = AsU{60};
Ay = Ag U {12,16,46,61,72,93,103,109, 151, 163};
As = A, U{4,7,10,13,17,19, 25, 28, 32, 38,43, 47, 62, 73,94, 104, 110, 124, 152, 164, 269}
and Ag; 1 = Ay for 1 < ¢ < 5. Further let
A = Ay U{3,5,6,8,9,11, 14,15, 18, 20, 23, 26, 29, 33, 35, 39, 41, 44, 48, 50, 53,
56, 63,68, 74, 78, 81, 86, 89, 95, 105, 111, 125, 146, 153, 165, 173, 270}.

Finally we denote B as the union of the sets [8, 3], [5, 4, 3], [14, 13, 3]
and {(k+ 1,k)|k = 3,5,8,11,14,18,63}. Then

Theorem 2. We have
(4) P(A(n,k)) > 1.95k for n > k > 2

unless and only unless (n, k) € [k+1,k, h] for k € Ay with1 < h <
11 or (n, k) = (8,3).

If k =2, we observe (see Lemma 7) that P(A(n,k)) > 2k unless
n = 3,8 and that P(A(3,2)) = P(A(8,2)) = 3. Thus the estimate
(4) is valid for k = 2 whenever n # 3,8. We observe that P(A(k +
1,k)) < 2k and therefore, 1.95 in (4) cannot be replaced by 2.
There are few exceptions if 1.95 is replaced by 1.8 in Theorem 2.
We derive from Theorem 2 the following result.

Corollary 1. We have
(5) P(A(n,k)) > 1.8k forn >k > 2

unless and only unless (n, k) € B.

2. LEMMAS

We begin with a well known result due to Levi ben Gerson on a
particular case of Catalan equation.

Lemma 1. The solutions of
27 — 3" =41 in integers a > 0,b > 0
are giwen by (a,b) = (1,1),(2,1),(3,2).

Next we state a result of Saradha and Shorey [6] on a lower bound
for w(A(n, k)).
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Lemma 2. Forn > k > 2, we have
1

w(A(n, k) > n(k) + {gw(k)} +2

unless and only unless (n, k) belongs to the union of sets

[4,3],16,3,3],[16,3],[6,4],[6,5,4], [12, 5], [14, 5, 3], [23, 5, 2],
7,6,2], [15,6], [8,7, 3], [12,7], [14, 7, 2], [24, 7], [9, 8], [14, 8],
14,13, 3],[18,13], [20, 13, 2], [24, 13], [15, 14], [20, 14], [20, 17].

We shall use Lemma 2 only when £k = 3 or 5 < k < 8. Let p;
denote the i—th prime number. Then

Lemma 3. We have

(6)

35 for p; < 5591

15 for p; < 1123, p; # 523,887, 1069

21 for p; = 523, 887,1069

9 for p; <361,p; # 113,139, 181,199, 211, 241, 283,293, 317, 337.

Pit1 — Pi <

Lemma 4. Let 0N be a positive real number and ko a positive inte-

ger. Let I(M, ko) = {i|pix1 — pi = ko, pi <N}. Then
Pnin+1)---(n+k—1)) > 2k

for 2k < n <M and k > ko except possibly when p; <n <n+k —

1 <pi1 fOTi S I(‘ﬁ, /{Z())

Proof. Let 2k < n <9 and k > ky. We may suppose that none of
n,n+1,--- ,n+k—11s a prime, otherwise the result follows. Let
pi<n<n+k—1<p. Theni=n(n)and prn) <n <N. For
w(n) ¢ I(M, ko), we have
k—1 :n+k_1_n<p7r(n)+l_p7r(n) < kO
which implies £k — 1 < kg — 1, a contradiction. Hence the assertion.
O

The following result is on the estimates for primes due to Dusart
1, p.14].

Lemma 5. For v > 1, we have

v 1.2762
' < 1
(i) w(v) < log v ( * logv )
v
¥} > — > .
(17) m(v) > gy — 1 for v > 5393
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Lemma 6. Let X > 0 and 0 < 8 < e — 1 be real numbers. For
[ >0, let

log(1 2762
onmax(5393 og(1+6)+0.276 ))7

1+076Xp(

5393 log(1 4 6) 4 0.2762) ))

Xi41 = max , exp( _
1+6 0+ 1.27621(;g21c;§(1+9))

Then we have

(1 +6)X) — 1(X) >0

for X > X;.
Proof. Let [ > 0 and X > X;. Then (1+6)X > 5393. By Lemma
5, we have
(1+6)X X 1.2762
0= 1+0)X) —n(X) > — 1
(1 +6)X) = ( )_log(l—i—G)X—l log X log X

X log(1 + 0)X — 1 1.2762
> 1+60— 1
_log(l—i—H)X—l{ * log X ( - logX)}

X 1 —log(1+ 0) 1.2762\
> 14— 11— ——————— 1
_log(1+9)X—1{ * ( log X > < * logX)‘

X
= log(1+6)X —1 FX) + G}

Whel"e F(X) — 9 . log(l—il-gg);—&)—(ﬂ.2762 and G(X) — 1.2762(1(1);210;(1"1‘9)). We

see that G(X) > 0 and decreasing since 0 < § < e — 1. Further
we observe that {X;} is a non-increasing sequence. We notice that
d>0if F(X)+G(X)>0. But F(X)+ G(X) > F(X) > 0 for
X > X, by the definition of Xy. Thus § > 0 for X > Xj. Let X <
Xo. Then F(X)+G(X) > F(X)+ G(Xp) and F(X)+G(Xp) >0
if X > X; by the definition of X;. Hence 6 > 0 for X > X;. Now
we proceed inductively as above to see that § > 0 for X > X; with
[>2. O

Lemma 7. Letn > k and k < 16. Then
(7) P(A(n,k)) <2k

implies that (n,k) € {(8,2),(8,3)} or (n,k) € [k + 1, k| for k €
(2,3,5,6,8,9,11,14,15} or (n, k) € [k+1,k,3] for k € {4,7,10,13}
or (n,k) € [k+1,k,5] for k € {12,16}.
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Proof. We apply Lemma 1 to derive that (7) is possible only if
n = 3,8 when £k = 2 and n = 5,6,7 when k = 4. For the latter
assertion, we apply Lemma 1 after securing P((n +1i)(n+j)) <3
with 0 < ¢ < j < 3 by deleting the terms divisible by 5 and 7 in
n,n+1,n+2and n+ 3. For k =3 and 5 < k < 8, the assertion
follows from Lemma 2.

Thus we may assume that k£ > 9. Assume that (7) holds. Then
there are at most 1 + [%] terms divisible by the prime p. After
removing all the terms divisible by p > 7, we are left with at least
4 terms only divisible by 2,3 and 5. Further out of these terms,
for each prime 2,3 and 5, we remove a term in which the prime
divides to a maximal power. Then we are left with a term n + ¢
such that n <n+1: <8 x 9 x5 =360. Let n > 2k. We now apply
Lemma 4 with 9t = 361,ky = 9 and (6) to get P(A(n,k)) > 2k
for k > 9 except possibly when p; <n <n+k—1< pii1, pi =
113,139, 181,199, 211, 241, 283,293, 317, 337. For these values of n,
we check that P(A(n,k)) > 2k is valid for 9 < k < 16. Thus it
suffices to consider k < n < 2k. We calculate P(A(n, k)) for (n, k)
with 9 < k < 16 and k < n < 2k. We find that (7) holds only if
(n, k) is given in the statement of the Lemma 7. O

3. PROOF OF THEOREM 1 (a)

Let n > max(k + 13, %k). In view of Lemma 7, we may take
k > 17 since n < k+ 5 for the exceptions (n, k) given in Lemma 7.
It suffices to prove (2) for k such that 2k — 1 is prime. Let ky < ko
be such that 2k; — 1 and 2k, — 1 are consecutive primes. Suppose

(2) holds at ky. Then for k; < k < ko, we have
Pn(n+1)---(n+k—1))>Pn---(n+k —1)) > 2k

implying P(A(n,k)) > 2ky — 1 > 2k. Therefore we may suppose
that £ > 19 since 2k —1 with k = 17, 18 are composites. We assume
from now onward in the proof of Theorem 1 (a) that 2k—1 is prime.
We put x =n+k—1. Then A(n, k) =x(x—1)---(x —k+1). Let
fi < fo <--- < f, be all the integers in [0, k) such that

(8) Pl = fu)--(x = fu) <k
We derive as in the proof of [4, Lemma 4] to get

1
(9) k! > grm(®) (1 — f) .

T
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We may suppose w(A(n, k)) < m(2k) otherwise (2) follows. Then
(10) w>k—m(2k) + (k)

which we use as in [4, Lemma 4] to derive from (9) that

(11) r < k2 for k > 87; ¢ < ki for k > 40; = < k* for k > 19.

If + > 7k and k > 57, then we derive as in [4, Lemma 7] from
(10) that = > k2. Thus we get from (11) that = < 7k for k > 87.
Putting back n = x — k 4+ 1, we may assume that n < 6k + 1 for
k>87,n<ki—k+1fordd<k<8Tandn <k®>—k+1 for
19 < k < 40.

Let k£ < 87. Suppose n > 2k. Then 2k < n < ki—k+1 for
40 < k < 87and 2k <n < k>—k+1for 19 < k < 40. Thus Lemma
4 with 9 = 871 —87+1, ko = 35 and (6) implies that P(A(n, k)) >
2k for k£ > 35. We note here that 2k < n < N for 35 < k < 40.
Let k < 35. Taking 91 = 342 — 34+ 1,ky = 21 for 21 < k < 34 and
N =192—-19+1,ky = 19 for k = 19, we see from Lemma 4 and (6)
that P(A(n, k)) > 2k for k > 19. Here the case k = 20 is excluded
since 2k — 1 is composite. Therefore we may assume that n < 2k.
Further we observe that 7(n+k —1) — 7w(2k) > 7(2k + 13) — w(2k)
since n > k+13. Next we check that 7(2k + 13) — w(2k) > 0. This
implies that [2k,n + k — 1] contains a prime.

Thus we may assume that £ > 87. Then we write n = ak + 1
with 28 — 1 <a < 6if k> 201 and 1 + 22 < o < 6 if k < 201.
Further we consider 7(n + k — 1) — m(max(n — 1,2k)) which is

=7((a+1)k) —m(ak) for a > 2

41
> w([%k]) _2(2k)  fora <2 and k> 201

> 7(2k +13) — w(2k) for a < 2 and k < 201.

We check by using exact values of 7 function that w(2k + 13) —

7(2k) > 0for k < 201 and 7([35k]) —m(2k) > 0 for 201 < k < 2616.

Thus we may suppose that k > 2616 if o < 2. Also [31k] > 20k

for k£ > 2616. Now we apply Lemma 6 with X = ak,0 = é,l =0

ifa>2and X =2k0 = 7,0 =1if a <2 togetnln+k—

1) — m(max(n — 1,2k)) > 0 for X > Xy = 2% if @ > 2 and

X > X = %— it o < 2. Further when a < 2, we observe that
131

X =2k > Xy since k > 2616. Thus the assertion follows for n < 2k.
It remains to consider the case o > 2 and X < 5393(1+2)~!. Then
2k <n < n+k—1= X(141) < 5393. Now we apply Lemma 4 with
M = 5393, ko = 35 and (6) to conclude that P(A(n,k)) > 2k. O
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4. PROOF OF THEOREM 1 (b)

In view of Lemma 7 and Theorem 1 (a), we may assume that

k217andk<n§%k. LetX:%kﬁ:%,l:O. Then for

k< n <X, we see from Lemma 6 that
7(2k) —m(n—1) >7((1+0)X) —7n(X)>0

for X > Xy = 5393(1 + 0)~! which is satisfied for k& > 2696 since
(1 +6)X = 2k. Thus we may suppose that £ < 2696. Now we
check with exact values of 7 function that 7(2k) — w(335k) > 0.
Therefore P(A(n,k)) > P(n(n +1)---2k) > pror. Further we
apply Lemma 6 with X = 1.97k, 6 = % and [ = 25. We calculate

that X; < 284000. We conclude by Lemma 6 that
w(2k) — w(1.97k) =7((1 + 0)X) —7(X) >0

for k > 145000. Let k£ < 145000. Then we check that 7(2k) —
m(1.97k) > 0 is valid for £ > 680 by using the exact values of 7
function. Thus

(12) DPr(2k) > 1.97k for k > 680.

Therefore we may suppose that k& < 680. Now we observe that for
n>k+13, 71(n+k—1)—n(1.97k) > n(2k+13) —w(1.97k) > 0, the
latter inequality can be checked by using exact values of 7w function.
Hence the assertion follows since n < 1.97k. 0

5. PROOF OF THEOREM 2

By Theorem 1 (b), we may assume that n < k4 13. Also we may
suppose that k& < 680 by (12). For k < 16, we calculate P(A(n, k))
for all the pairs (n, k) given in the statement of Lemma 7. We find
that either P(A(n,k)) > 1.95k or (n, k) is an exception stated in
Theorem 1 (a). Thus we may suppose that & > 17. Now we check
that m(n+k — 1) — 7(1.95k) > 0 except for (n, k) € [k+ 1, k, h] for
k € A, with 1 < h <11 and the assertion follows. O

6. PROOF OF COROLLARY 1

We calculate P(A(n, k)) for all (n, k) with £ <270 and k + 1 <
n < k4 11. This contains the set of exceptions given in Theorem
2. We find that P(A(n,k)) > 1.8k unless (n,k) € B. Hence the

assertion (5) follows from Theorem 2. O
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