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Abstract. It is shown under Schinzel’s Hypothesis that for a given ` ≥ 1, there are
infinitely many k such that a product of k consecutive integers each exceeding k is divisible
by exactly π(2k)− ` prime divisors.

1. Introduction

For n > 0, k > 0 integers, we define

∆(n, k) = n(n+ 1)(n+ 2) · · · (n+ k − 1).(1)

Let ω(n) denote the number of distinct prime divisors of n and π(x) the number of primes
p ≤ x for any given real number x > 1. We write p1 = 2, p2 = 3, . . . and pr, the r-th prime.

Let n = k + 1 in (1). Then we have ∆(k + 1, k) = (k + 1)(k + 2) · · · (2k). Since k! divides
∆(k + 1, k), clearly, we have

ω(∆(k + 1, k)) = π(k) + π(2k)− π(k) = π(2k).(2)

Hence, it is natural to ask the following question.

Question 1: For any given integer ` ≥ 1, can we find infinitely many pairs (n, k) with n > k
such that

ω(∆(n, k)) = π(2k)− ` ?(3)

First we observe that the answer to Question 1 is true when ` = 1. For this put n = k+ 2
in (1) and consider

∆(k + 2, k) = ∆(k + 1, k)
2k + 1

k + 1
.

It suffices to find infinitely many values of k satisfying

(i) k + 1 is a prime and
(ii) 2k + 1 is a composite number.

Let k + 1 be a prime of the form 3r + 2. Then 2k + 1 = 3(2r + 1) is composite. Since
there are infinitely many primes of the form 3r + 2, we see that there are infinitely many k
for which k + 1 is prime and 2k + 1 is composite. Thus Question 1 is true when ` = 1.
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For a given `, a method to construct pairs (n, k) satisfying (3) has been given in [1]. In
particular, it has been observed in [1] that (3) holds if

(n, k) ∈{(74, 57), (284, 252), (3943, 3880)} when ` = 2

(n, k) ∈{(3936, 3879), (3924, 3880), (3939, 3880)} when ` = 3

(n, k) ∈{(1304, 1239), (1308, 1241), (3932, 3879)} when ` = 4

(n, k) ∈{(3932, 3880), (3932, 3881), (3932, 3882)} when ` = 5.

Before we state our result, we need the following hypothesis.

Schinzel’s Hypothesis. ([2] and [3]) Let fr(x) = arx+br be non-constant polynomials with
ar > 0 and br are integers for every r = 1, 2, . . . , `. If for every prime p, there exists an
integer n such that p doesn’t divide f1(n) f2(n) · · · f`(n), then, there exist infinitely many
integer values, say, x1, x2, . . ., satisfying

f1(xj) = q1, f2(xj) = q2, . . . , f`(xj) = q`

for all j = 1, 2, . . . where qi’s are prime numbers.

For a given positive integer ` ≥ 2, we first let

A =
∏
p≤`

p

and we enumerate all the positive integers > 1 which are coprime to A as a1 < a2 < . . . <
an < . . . . We define

λ` := min
j
{aj+`−1 − aj : j = 1, 2, . . .}

Clearly, from the definition, we have λ` ≥ 2(`− 1) and we put

R = R` = λ` + 1.

We show that Schinzel’s Hypothesis confirms Question 1. In fact, we prove

Theorem 1. Assume Schinzel’s Hypothesis and let ` ≥ 2 be an integer. Then there are
infinitely many values of k such that

ω(∆(k + 2R, k)) = π(2k)− `.(4)

Note. In the statement of Theorem 1, the value 2R cannot be replaced by a smaller value.
If there is a smaller value L < 2R for which Theorem 1 is true, then it will contradict the
minimality of λ`. This is clear from (4) with 2R replaced by 2S such that S < R and
(2). Further, in view of Theorem 1, it is of interest to compute R` and we compute R` for
2 ≤ ` ≤ 100 in Section 3. We thank the referee for his remarks on an earlier draft of this
paper.

2. Proof of Theorem 1

For any given positive integer ` ≥ 2, let M = λ`. Therefore, by the definition of M , we
get integers aj ≥ `+ 1 and aj+`−1 such that aj+`−1− aj = M and hence aj+`−1 = M + pj for
some positive integer j. So, the sequence aj, 1 + aj, . . . ,M + aj contains exactly ` integers
which are coprime to A. In other words, we have a+ 1 = aj, a+ 2, . . . , a+M + 1 = aj +M
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contains ` integers which are coprime to A. In this new notation, we denote the set of those
` coprime integers to A to be

P = {a+ x(1), a+ x(2), . . . , a+ x(`)} ,
where x(1), x(2), . . . , x(`) are some odd integers not exceeding M + 1 = R.

We write

∆(k + 2R, k) = ∆(k + 1, k)× 2R−1 × (2k + 1)(2k + 3) · · · (2k + 2R− 1)

(k +R)(k +R + 1) · · · (k + 2R− 1)
.

We put

B0 = {(k + (R− 1) + 1), (k + (R− 1) + 2), . . . , (k + (R− 1) +R)} .
Then B0 contains at most [(R + 1)/2] even integers. We omit these numbers from B0 and
name the remaining set as B1. Clearly, B1 contains k + (R − 1) + x(r) with r = 1, 2, . . . , `.
Let B2 be the subset of B1 obtained by deleting these elements. Further we put

B = {x− k − (R− 1) : x ∈ B2}
so that |B| = |B2|. We order the elements of B as i1 < i2 < . . . < i|B2|.

Now, we choose primes Pj, qj satisfying the conditions

(i) 4R < P1 < P3 < . . . < P2R−1 and;
(ii) P2R−1 < q1 < q2 < . . . < q|B2|;

(iii) We consider the following system of congruences

2x+ 1 ≡ 0 (mod P1)

2x+ 3 ≡ 0 (mod P3)

. . . . . .

2x+ 2R− 1 ≡ 0 (mod P2R−1)

x+ (R− 1) + ij ≡ 0 (mod qj) ∀ ij ∈ B.
By the Chinese Remainder Theorem, we have infinitely many common solutions of the form

k = b+ λQ; for all λ ∈ Z and Q =
R∏
i=1

P2i−1

|B|∏
i=1

qi,

for some positive integer b.
Under Schinzel’s hypothesis, we shall prove that there are infinitely many choices for λ

such that
k +R− 1 + x(1), k +R− 1 + x(2), . . . , k +R− 1 + x(`)

are prime numbers.
Now, we use Schinzel’s hypothesis with the polynomials

fr(X) = QX + b+R− 1 + x(r) for r = 1, 2, . . . , `.

We only need to show that if q is any prime number and

p(X) =
∏̀
r=1

fr(X) =
∏̀
r=1

(QX + b+R− 1 + x(r)),

then there exists λ ∈ Z such that q does not divide p(λ).
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Let q be any prime number. Then we have the following cases.

Case 1. (q,Q) = 1.

Subcase (i). q ≤ `.
In this case, we see that q|A. Since (q,Q) = 1, we choose λ such that k + R − 1 =

λQ+ b+R− 1 ≡ a (mod q). Therefore, for every r = 1, 2, . . . , `, we have

k +R− 1 + x(r) ≡ a+ x(r) (mod q).

Since a+ x(r) is coprime to q, clearly, q cannot divide p(λ).

Subcase (ii). q > `.
In this case, clearly, {−(b+R− 1 + x(r))}`r=1 covers only ` residue classes modulo q.

Since q > `, there exists a residue class c modulo q which is not covered. Since (q,Q) = 1,
choose λ such that

λQ ≡ c (mod q).

Since c is not one of the {−(b+R− 1 + x(r))}`r=1, we have

k +R− 1 + x(r) = λQ+ b+R− 1 + x(r) ≡ c+ b+R− 1 + x(r) 6≡ 0 (mod q)

for r = 1, 2, . . . , `. Therefore q does not divide p(λ) for this choice of λ.

Case 2. q|Q
Suppose q = qj for some j = 1, 2, . . . , |B2|. If possible, q divides p(λ) for all choices of λ.

Then

k +R− 1 + x(r) ≡ 0 (mod qj) for some r.

Note that by the definition of qj, we have,

k +R− 1 + ij ≡ 0 (mod qj).

Hence, we get

k +R− 1 + x(r) ≡ k +R− 1 + ij (mod qj) =⇒ x(r) ≡ ij (mod qj).

As qj ≥ 4R and x(r), ij ∈ {1, 2, . . . , R}, the above congruence implies that

x(r) = ij

which is not possible by the definition of B. Hence, q does not divide p(λ) for some choice
of λ.

Suppose q = Pi for some i = 1, 3, . . . , 2R − 1. If possible, we assume that q divides p(λ)
for all λ ∈ Z. Then

k +R− 1 + x(r) ≡ 0 (mod Pi) for some r.

By the definition of Pi, we have 2k + m ≡ 0 (mod Pi) for some odd integer m ≤ 2R − 1.
Combining the above two congruences, we get,

2(R− 1 + x(r)) ≡ m (mod Pi).

But since R− 1 + x(r) ≤ 2R− 1, m ≤ 2R− 1 and Pi ≥ 4R, the above congruence implies

2(R− 1 + x(r)) = m,

which is a contradiction because m is an odd integer. Hence, q does not divide p(λ) for some
choice of λ.
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In all the cases, if q is any prime, then q does not divide p(λ) for some choice of λ. Hence,
by Schinzel’s Hypothesis, we get infinitely many values of k such that

k + (R− 1) + x(1), k + (R− 1) + x(2), . . . , k + (R− 1) + x(r)

are all primes. Thus we arrive at

ω(∆(k + 2R, k)) = π(2k)− `.
This completes the proof of Theorem 1. �

3. Computation of R` with 2 ≤ ` ≤ 28

The computation of R` depends on the following lemmas.

Lemma 3.1. For each integer j ≥ 1 and m ≥ 1, we have

aj +mA = aj+mφ(A).

Proof. Let b1, b2, . . . , bφ(A) be the positive integers which are coprime to A and 1 ≤ bi ≤ A
for every i. Then, for each integer m ≥ 1, we have mA + 1 ≤ bi + mA ≤ (m + 1)A
and mA + bi are coprime to A for every i = 1, 2, . . . , φ(A). If a is any integer such that
mA + 1 ≤ a ≤ (m + 1)A and a 6= bi + mA, then, a = b + mA where b 6= bi for all
i = 1, 2, . . . , φ(A) and b ≤ A. Therefore, by the definition of b, (b, A) > 1 and hence
(a,A) > 1. Hence, bi +mA (i = 1, 2, . . . , φ(A)) are, precisely, those integers which are in the
interval [mA+ 1, (m+ 1)A] and coprime to A. Thus, we enumerate all the positive integers
which are coprime to A as

b1 < b2 < . . . < bφ(A) < b1 + A < b2 + A < . . . < bφ(A) + A < b1 + 2A < b2 + 2A < . . .

Let (bi)
∞
i=φ(A)+1 be given by

bφ(A)+1 = b1 + A, bφ(A)+2 = b2 + A, . . .

so that the sequence (bi)
∞
i=1 satisfies

ai = bi+1 for i ≥ 1.

We observe that for j ≥ 1,
bj +mA = bj+mφ(A)

implying
aj +mA = bj+1 +mA = bj+1+mφ(A) = aj+mφ(A).

This completes the proof of Lemma 3.1. �

Lemma 3.2. For each integer ` ≥ 2, we have

λ` = min {aj+`−1 − aj : j = 1, 2, . . . , φ(A)} .

Proof. Assume that j > φ(A). Then we can write j = mφ(A) + i for some integer m ≥ 1
and 1 ≤ i ≤ φ(A). Therefore, by Lemma 3.1,

aj+`−1 = amφ(A)+i+`−1 = ai+`−1 +mA

and hence
aj+`−1 − aj = ai+`−1 +mA− ai −mA = ai+`−1 − ai

for some i satisfying 1 ≤ i ≤ φ(A). Thus, to find λ`, it is enough to find the minimum values
of ai+`−1 − ai for all i = 1, 2, . . . , φ(A). �



6 BALASUBRAMANIAN, LAISHRAM, SHOREY AND THANGADURAI

Case (a). ` = 2. In this case, A = 2 and hence φ(A) = 1. So, by Lemma 3.2, we see that
λ2 = a2 − a1 = 2 and R = 3.

Case (b). ` = 3, 4. We have A = 6 and hence φ(A) = 2 and a1 = 5, a2 = 7, a3 = 11, a4 =
13, a5 = 17. Therefore

λ3 = min{a3 − a1, a4 − a2} = min{11− 5, 13− 7} = 6, R = 7

λ4 = min{a4 − a1, a5 − a2} = min{13− 5, 17− 7} = 8, R = 8.

Case (c). ` = 5, 6. In this case, A = 30 and hence φ(A) = 8. We have

a1 = 7, a2 = 11, a3 = 13, a4 = 17, a5 = 19, a6 = 23, a7 = 29,

a8 = 31, a9 = 37, a10 = 41, a11 = 43, a12 = 47, a13 = 49.

Therefore

λ5 = min{ai+4 − ai : 1 ≤ i ≤ 8} = 12, R = 13

λ6 = min{ai+5 − ai : 1 ≤ i ≤ 8} = 16, R = 17.

Case (d). ` ≥ 7. Let `1 ≤ ` < `2 where `1, `2 are consecutive primes. Then A` = A`1 = A.
Define a0 = 1,

S0
`1

= {a : 1 ≤ a < A and gcd(a,
∏
p≤`1

p) = 1} = {a0} ∪ {a1, a2, . . . , aφ(A)−1}

and

S1
`1

= S0
`1
∪ {A+ ai : 0 ≤ i < `2} = {a0} ∪ {a1, a2, . . . , aφ(A)−1, aφ(A), . . . , aφ(A)+`2−1}.

Note that aφ(A) = A + 1 and if gcd(A + a,
∏

p≤`1 p) = 1, then a ∈ S0
`1

. To compute λ` for

`1 ≤ ` < `2, we take the subset of S1
`1

containing the first φ(A) + `−1 elements and compute

λ` = min {aj+`−1 − aj : j = 1, 2, . . . , φ(A)} .

Suppose we have computed S0
`1
, S1

`1
and we would like to compute S0

`2
, S1

`2
. Divide A`2 = A

as

(0, A] = ∪`2i=1((i− 1)
A

`2
, i
A

`2
).

Note that A
`2

= A`1 . If A
`2
≡ r(mod `2), then

S0
`2

= ∪`2i=1

{
(i− 1)

A

`2
+ ai : ai ∈ S0

`1
and r(i− 1) + ai 6≡ (mod `2)

}
= {a0 = 1} ∪ {a1, a2, . . . , aφ(A)}.

We now take

S1
`2

= S0
`2
∪ {A+ ai : 0 ≤ i < `3} = {a0, a1, a2, . . . , aφ(A)−1, aφ(A), . . . , aφ(A)+`3−1}.

where `3 > `2 is the prime next to `2. Finally we compute

λ` = min {aj+`−1 − aj : j = 1, 2, . . . , φ(A)} .
For 7 ≤ ` ≤ 18, computing ai’s and λ` were fast and we list the values in the following

table. For 19 ≤ ` ≤ 22, we start with `1 = 17, `2 = 19 to compute λ`. For 23 ≤ ` ≤ 28,
we take `1 = 19, `2 = 23 and compute λ`. We stop at ` = 28 since computations increase
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exponentially when we go to the next prime. Here we list the values of `, A, φ(A), λ`, a1, aφ(A)
and aφ(A)+`−1 for 6 ≤ ` ≤ 28.

` A φ(A) λ` a1 aφ(A) aφ(A)+`−1
6 30 8 16 7 31 49
7 210 48 20 11 211 239
8 210 48 26 11 211 241
9 210 48 30 11 211 247
10 210 48 32 11 211 251
11 2310 480 36 13 2311 2357
12 2310 480 42 13 2311 2363
13 30030 5760 48 17 30031 30091
14 30030 5760 50 17 30031 30097
15 30030 5760 56 17 30031 30101
16 30030 5760 60 17 30031 30103
17 510510 92160 66 19 510511 510593
18 510510 92160 70 19 510511 510599
19 9699690 1658880 76 23 9699691 9699791
20 9699690 1658880 80 23 9699691 9699793
21 9699690 1658880 84 23 9699691 9699797
22 9699690 1658880 90 23 9699691 9699799
23 223092870 36495360 94 29 223092871 223092997
24 223092870 36495360 100 29 223092871 223093001
25 223092870 36495360 110 29 223092871 223093007
26 223092870 36495360 114 29 223092871 223093009
27 223092870 36495360 120 29 223092871 223093019
28 223092870 36495360 126 29 223092871 223093021
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