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ABSTRACT. It is shown under Schinzel’s Hypothesis that for a given ¢ > 1, there are
infinitely many & such that a product of k& consecutive integers each exceeding k is divisible
by exactly m(2k) — ¢ prime divisors.

1. INTRODUCTION

For n > 0,k > 0 integers, we define
(1) An,k)=nn+1)(n+2)---(n+k—1).

Let w(n) denote the number of distinct prime divisors of n and 7 (z) the number of primes
p < z for any given real number z > 1. We write p; = 2,ps = 3,... and p,, the r-th prime.

Let n =k +1in (1). Then we have A(k+1,k) = (k+ 1)(k+2)---(2k). Since k! divides
A(k + 1,k), clearly, we have

(2) w(Ak+ 1,k)) = (k) + n(2k) — n(k) = ©(2k).
Hence, it is natural to ask the following question.

Question 1: For any given integer £ > 1, can we find infinitely many pairs (n, k) with n > k
such that

(3) w(A(n, k) =m(2k)— €7

First we observe that the answer to Question 1 is true when ¢ = 1. For this put n = k42
in (1) and consider

2k +1

Ak+2.k) = Ak + 1,07

It suffices to find infinitely many values of k satisfying

(1) k+1is a prime and
(7i) 2k + 1 is a composite number.
Let k + 1 be a prime of the form 3r + 2. Then 2k + 1 = 3(2r + 1) is composite. Since

there are infinitely many primes of the form 3r 4 2, we see that there are infinitely many &
for which k£ + 1 is prime and 2k + 1 is composite. Thus Question 1 is true when ¢ = 1.

AMS Classification: Primary 11D61; Keywords: Schinzel’s Hypothesis, prime divisors.
1



2 BALASUBRAMANIAN, LAISHRAM, SHOREY AND THANGADURAI

For a given ¢, a method to construct pairs (n, k) satisfying (3) has been given in [1]. In
particular, it has been observed in [1] that (3) holds if

(n, k) €{(74,57), (284, 252), (3943, 3880)} when ¢ = 2
(n, k) €{(3936,3879), (3924, 3880), (3939, 3880)}  when ¢ = 3
(n, k) €{(1304,1239), (1308, 1241), (3932, 3879)}  when ¢ = 4
(n, k) €{(3932,3880), (3932, 3881), (3932,3882)}  when ¢ = 5.

Before we state our result, we need the following hypothesis.

Schinzel’s Hypothesis. ([2] and [3]) Let f.(x) = a,x+b, be non-constant polynomials with
a,. > 0 and b, are integers for every r = 1,2,... 0. If for every prime p, there exists an
integer n such that p doesn’t divide fi(n) fo(n) -+ fi(n), then, there exist infinitely many
integer values, say, x1, To, ..., satisfying

filzg) = qu, fa(x5) = qo, - -+, ful@s) = qe
forall j =1,2,... where ¢;’s are prime numbers.

For a given positive integer ¢ > 2, we first let
A= H P
p<t
and we enumerate all the positive integers > 1 which are coprime to A as a1 < as < ... <

a, < .... We define

Ag = m}n {ajre1—a; - j=1,2,...}

Clearly, from the definition, we have A\, > 2(¢ — 1) and we put
R=R,= X+ 1.
We show that Schinzel’s Hypothesis confirms Question 1. In fact, we prove

Theorem 1. Assume Schinzel’s Hypothesis and let ¢ > 2 be an integer. Then there are
infinitely many values of k such that

(4) WAk + 2R, k) = m(2k) — L.

Note. In the statement of Theorem 1, the value 2R cannot be replaced by a smaller value.
If there is a smaller value L < 2R for which Theorem 1 is true, then it will contradict the
minimality of A,. This is clear from (4) with 2R replaced by 2S5 such that S < R and
(2). Further, in view of Theorem 1, it is of interest to compute R, and we compute R, for
2 < ¢ <100 in Section 3. We thank the referee for his remarks on an earlier draft of this

paper.

2. PROOF OF THEOREM 1

For any given positive integer ¢ > 2, let M = \,. Therefore, by the definition of M, we
get integers a; > ¢+ 1 and aj;¢—; such that a;4s1 —a; = M and hence a1 = M + p; for
some positive integer j. So, the sequence a;,1 + a;,..., M + a; contains exactly ¢ integers
which are coprime to A. In other words, we have a +1 =a;j,a+2,...,a+ M +1=a; + M
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contains ¢ integers which are coprime to A. In this new notation, we denote the set of those
¢ coprime integers to A to be

P={a+z(1),a+x(2),...,a+z0)},

where x(1),2(2),...,z(¢) are some odd integers not exceeding M + 1 = R.
We write

(2k +1)(2k+3)---(2k +2R — 1)
(k+R)(k+R+1)---(k+2R—1)

Ak 4 2R, k) = A(k+1,k) x 271 x

We put
By={(k+(R-1D)+1),k+(R-1)+2),....,(k+(R-1)+R)}.
Then By contains at most [(R + 1)/2] even integers. We omit these numbers from By and
name the remaining set as By. Clearly, By contains k + (R — 1) + x(r) with r = 1,2,..., /.
Let B, be the subset of B; obtained by deleting these elements. Further we put
B={x—k—(R—-1) : z€ By}
so that |B| = |By|. We order the elements of B as i3 < iy < ... <1,
Now, we choose primes P}, g; satisfying the conditions
(1) 4R< PL< Py< ... < Parg and;
(i) Popa1 <1 < @2 < ... < qBy);
(iii) We consider the following system of congruences
20+1=0 (mod P,)
2r+3=0 (mod P%)
2r+2R—-1=0 (mod Psr_1)
t+(R—1)+4;=0 (modg;) Vi; € B.
By the Chinese Remainder Theorem, we have infinitely many common solutions of the form

R |B|
k=b+AQ; forall A€ Z and Q=[] Pu-1]]a
i=1 i=1
for some positive integer b.
Under Schinzel’s hypothesis, we shall prove that there are infinitely many choices for A
such that

k+R—-1+z(1),k+R—14+2(2),....k+ R—1+z({)
are prime numbers.
Now, we use Schinzel’s hypothesis with the polynomials

(X)=QX+b+R—1+42z(r) forr=1,2,...,¢

We only need to show that if ¢ is any prime number and
¢

p(X) =) =][(@X +b+R—1+a(r)),

r=1

then there exists A € Z such that ¢ does not divide p(\).
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Let g be any prime number. Then we have the following cases.
Case 1. (¢,Q) = 1.

Subcase (i). ¢ < /.
In this case, we see that g|A. Since (¢,Q) = 1, we choose A such that k + R — 1 =
AQ +b+ R—1=a (mod q). Therefore, for every r = 1,2,..., ¢, we have

k+R—1+z(r)=a+z(r) (mod q).
Since a + z(r) is coprime to g, clearly, ¢ cannot divide p(\).
Subcase (ii). ¢ > /.

In this case, clearly, {—(b+ R — 1+ x(r))}’_, covers only ¢ residue classes modulo g.
Since ¢ > ¢, there exists a residue class ¢ modulo ¢ which is not covered. Since (¢,Q) = 1,
choose A such that

AQ =c¢ (mod q).
Since c is not one of the {—(b+ R — 1+ 2(r))}._,, we have
k+R—14+z(r)=XQ+b+R—1+z(r)=c+b+R—1+42(r)Z0 (mod q)
for r =1,2,...,¢. Therefore q does not divide p(A) for this choice of \.

Case 2. ¢|Q
Suppose ¢ = ¢; for some j =1,2,...,|Bs|. If possible, ¢ divides p()) for all choices of .
Then

k+R—1+z(r)=0 (mod g;) for some r.
Note that by the definition of g;, we have,
k+R—-1+4;=0 (mod g;).
Hence, we get
k+R—1+z(r)=k+R—-1+14; (modg;) = xz(r)=1i; (mod g;).
As g; > 4R and x(r),i; € {1,2,..., R}, the above congruence implies that
x(r) =i
which is not possible by the definition of B. Hence, ¢ does not divide p()) for some choice
o S)\ﬁppose q = P, for some i =1,3,...,2R — 1. If possible, we assume that ¢ divides p(}\)
for all A € Z. Then

k+R—1+4+z(r)=0 (mod F,) for some r.

By the definition of P;, we have 2k +m = 0 (mod F;) for some odd integer m < 2R — 1.
Combining the above two congruences, we get,

2(R—14z(r))=m (mod F;).
But since R — 1+ z(r) <2R —1, m < 2R — 1 and P; > 4R, the above congruence implies
2(R—1+xz(r)) =m,

which is a contradiction because m is an odd integer. Hence, ¢ does not divide p(A) for some
choice of A.



THE NUMBER OF PRIME DIVISORS OF CONSECUTIVE INTEGERS 5

In all the cases, if ¢ is any prime, then ¢ does not divide p(\) for some choice of A. Hence,
by Schinzel’s Hypothesis, we get infinitely many values of k£ such that

k+(R-1)4+z(1),k+(R=1)4+x(2),...,k+(R—1)+ z(r)
are all primes. Thus we arrive at
w(A(k + 2R, k)) = m(2k) — L.
This completes the proof of Theorem 1. O

3. COMPUTATION OF Ry, WITH 2 < ¢ <28
The computation of R, depends on the following lemmas.

Lemma 3.1. For each integer j > 1 and m > 1, we have
aj +mA = ajymea).-

Proof. Let by, by, ..., bya) be the positive integers which are coprime to A and 1 <b; < A
for every i. Then, for each integer m > 1, we have mA +1 < b; + mA < (m + 1)A
and mA + b; are coprime to A for every i = 1,2,...,¢(A). If a is any integer such that
mA+1<a< (m+1)A and a # b; + mA, then, a = b+ mA where b # b; for all
i =1,2,...,0(A) and b < A. Therefore, by the definition of b, (b, A) > 1 and hence
(a, A) > 1. Hence, b; +mA (i = 1,2,...,¢(A)) are, precisely, those integers which are in the
interval [mA + 1, (m + 1)A] and coprime to A. Thus, we enumerate all the positive integers
which are coprime to A as

by <by <...<bya)y<bi+A<b+A<...<byay +A<b +2A<b+2A< ...
Let (bi);24(a)+1 be given by
b¢(A)+1 =b + A, b¢(A)+2 =by+A,...

so that the sequence (b;):2, satisfies

a; = bjyq for ¢ > 1.
We observe that for j > 1,

bj +mA = bjrme(a)
implying

aj +mA =bji1 +mA = bjt1imea) = Gjtmea)-

This completes the proof of Lemma 3.1. 0

Lemma 3.2. For each integer £ > 2, we have
P(A)}.

Proof. Assume that j > ¢(A). Then we can write j = m¢@(A) + i for some integer m > 1
and 1 <7 < @¢(A). Therefore, by Lemma 3.1,

M =min{aj 1 —a; : j=1,2,...

Ajre—1 = Amg(A)+iti—1 = Aiye—1 +MA
and hence
Ajro—1 — @5 = Qipp—1 +MA —a; — mA = a1 — a
for some i satisfying 1 < i < ¢(A). Thus, to find A, it is enough to find the minimum values
of ajyp 1 —a; foralli=1,2,... ¢(A). O
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Case (a). ¢ = 2. In this case, A = 2 and hence ¢(A) = 1. So, by Lemma 3.2, we see that
/\gzag—a1:2andR:3.
Case (b). ¢ =3,4. We have A = 6 and hence ¢(A) =2 and a; = 5,a0 = 7,a3 = 11,04 =
13, a5 = 17. Therefore
A3 = min{ag — a1,a4 —az} = min{ll = 5,13 -7} =6, R=7
Ay = min{ay — aj, a5 —as} = min{13 —5,17—-7} =8, R=28.
Case (¢). ¢ =5,6. In this case, A = 30 and hence ¢(A) = 8. We have
a1 ="T,a0 =11,a3 =13,a4 = 17,a5 = 19, a¢ = 23, a7 = 29,
ag — 31, g = 37, a1 = 41, ajp = 43, 19 = 47, a13 = 49.
Therefore
As =min{a; 14 —a;: 1 <i<8} =12, R=13
X¢ = min{a; 15 —a;: 1 <i<8} =16, R=1T7.
Case (d). ¢ > 7. Let ¢; < { < {5 where {1, (5 are consecutive primes. Then A, = A, = A.
Define ag = 1,
Sp={a:1<a<Aand ged(a Hp =1} ={ao} U{ai,as, ..., a54)-1}
p<ty
and
Sgll = S?l U {A +a;,:0<1< fg} = {CLO} U {al, A2,y Ag(A)—15 Ap(A)s - - - 5 Agp(A) +52_1}.
Note that agay = A+ 1 and if ged(A + a,[[,<,, p) = 1, then a € S). To compute A, for
0 <l < ly, we take the subset of Sll containing the first gb( )+ -1 elements and compute
AN =min{ajp1—a; : j=1,2,...,0(A)}.

Suppose we have computed Sy , S;. and we would like to compute Sy, , S;,. Divide Ay, = A
as

A A

(0. 4] = U2, (i = 1) i%2).

Note that % = Ay, If % = r(mod ¢), then

A
Sp, = U2, {(z— 1>€2 +a;:a; €S and r(i — 1) + a; # (mod EQ)}

= {G,Q = 1} U {al,ag, Ce ,CL¢(A)}.
We now take
532 = 522 U{A+a;:0<i</l3} ={ao,a1,a2,...,0504)—1,0p(A); - - - Qg(A)+L5—1}-
where (3 > (5 is the prime next to ¢5. Finally we compute
M =min{ajyp1—a; : j=1,2,...,6(A)}.
For 7 < ¢ < 18, computing a;’s and A\, were fast and we list the values in the following

table. For 19 < ¢ < 22, we start with ¢; = 17,45 = 19 to compute A,. For 23 < ¢ < 28,
we take ¢1 = 19,/5 = 23 and compute \,. We stop at £ = 28 since computations increase
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exponentially when we go to the next prime. Here we list the values of £, A, ¢(A), A, a1, aga)
and ag(a)4¢—1 for 6 < £ < 28.

l A GA) | Mo | aga) | asayre
6 30 8 16 | 7 31 49
7 210 48 20 |11 211 239
8 210 48 26 |11 211 241
9 210 48 30 |11 211 247
10 210 48 32 |11 211 251
11 2310 480 36 |13 2311 2357
12 2310 480 42 |13 2311 2363
13 30030 5760 48 | 17 30031 30091
14 30030 5760 50 | 17 30031 30097
15 30030 5760 56 | 17 30031 30101
16 30030 5760 60 | 17 30031 30103
17| 510510 92160 66 | 19| 510511 510593
18 | 510510 92160 70 19| 510511 510599
191 9699690 | 1658880 | 76 |23 | 9699691 9699791
20| 9699690 | 1658880 | 80 | 23| 9699691 9699793
21| 9699690 | 1658880 | 84 | 23| 9699691 9699797
22| 9699690 | 1658880 | 90 | 23| 9699691 9699799
23 | 223092870 | 36495360 | 94 | 29 | 223092871 | 223092997
24 | 223092870 | 36495360 | 100 | 29 | 223092871 | 223093001
25| 223092870 | 36495360 | 110 | 29 | 223092871 | 223093007
26 | 223092870 | 36495360 | 114 | 29 | 223092871 | 223093009
27| 223092870 | 36495360 | 120 | 29 | 223092871 | 223093019
28 | 223092870 | 36495360 | 126 | 29 | 223092871 | 223093021
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