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Abstract. Diophantine problems involving recurrence sequences
have a long history and is an actively studied topic within number
theory. In this paper, we connect to the field by considering the
equation

BmBm+d . . . Bm+(k−1)d = y`

in positive integers m, d, k, y with gcd(m, d) = 1 and k ≥ 2, where
` ≥ 2 is a fixed integer and B = (Bn)∞n=1 is an elliptic divisibility
sequence, an important class of non-linear recurrences. We prove
that the above equation admits only finitely many solutions. In
fact, we present an algorithm to find all possible solutions, provided
that the set of `-th powers in B is given. (Note that this set is
known to be finite.) We illustrate our method by an example.

1. Introduction

Finding perfect powers among the terms or the products of terms
of recurrence sequences is a classical Diophantine problem. The case
of linear recurrences has a vast literature already. We only mention
several important results, without going into details. Pethő [12] and
independently Shorey and Stewart [18] showed that any non-degenerate
binary recurrence can admit only finitely many perfect powers and their
sizes are effectively bounded. Further, in case when a general linear re-
currence of order k has a so-called dominant root, Shorey and Stewart
[18] proved that the sequence cannot contain a q-th power if q is large
enough. These results, together with other general theorems concern-
ing the perfect powers among the terms (see e.g. the book of Shorey
and Tijdeman [19] and the references there) suggest that the effective
determination of perfect power terms is possible, at least in princi-
ple. However, listing all of them for an individual sequence is a highly
non-trivial problem. For instance, it was just recently that Bugeaud,
Mignotte and Siksek [4], applying modular techniques, came up with a
result that gives all perfect powers in the sequences of Fibonacci and
Lucas numbers. Note that these are the most basic examples of binary
recurrences. For perfect powers in products of terms, the situation
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is roughly the same. Results for certain infinite families of sequences
promise effective determination of all solutions, but usually the bounds
are so high that explicit computation cannot be carried out. Concern-
ing the general setting, we mention the paper of Luca and Shorey [11],
where they gave an effective upper bound for the size of the solutions
to the equation when a product of terms from a Lucas sequence or
from its companion sequence equals a perfect power. In case of indi-
vidual recurrences, we refer to Bravo, Das, Guzmán and Laishram [3]
who considered the previously mentioned equations with the Pell and
Pell-Lucas sequences, listing all solutions. Their proofs also provide a
method for Lucas and their companion sequences, in general. For more
details on these topics, we point the reader to the above mentioned pa-
pers and the references given there.

It is natural to investigate analogous problems for non-linear recur-
rences. One of the classical and most studied family of such recurrences
is given by the elliptic divisibility sequences. The notion of elliptic di-
visibility sequence was introduced by Ward [23] as a class of non-linear
recurrences satisfying certain arithmetic properties. It is important to
note that some special cases of his definition give back Lucas sequences.
We follow Silverman [20], whose definition is a conventional and widely
used one. Take an elliptic curve E over Q and a point P ∈ E(Q) of
infinite order. We can write the multiples of P as

nP =

(
An
B2
n

,
Cn
B3
n

)
with integers An, Bn, Cn such that gcd(AnCn, Bn) = 1 and Bn > 0.
(Note that the assumption Bn > 0 is made only for convenience.) The
sequence B = (Bn)∞n=1 is called an elliptic divisibility sequence. Due
to their relation with elliptic curves and various applications, such se-
quences have attracted increased attention for the last few decades. For
example, Shipsey [17] and Swart [22] established connections between
elliptic divisibility sequences and the elliptic curve discrete logarithm
problem, while Stange [21] applied them and their generalizations, the
so-called elliptic nets, in the computation of the Weil and Tate pair-
ings. As an exotic application, Poonen [14] used them to prove the
undecidability of Hilbert’s tenth problem over certain rings of integers.
In this paper, we are interested in a Diophantine problem concerning
perfect powers represented as products of terms of elliptic divisibility
sequences.

Questions about finiteness and effective determination of perfect
powers among the terms of elliptic divisibility sequences themselves
have already been considered by several authors and various results
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appeared in this direction. Let us take an elliptic divisibility sequence
B = (Bn)∞n=1, an integer ` ≥ 2 and introduce the notation

P`(B) = {i : Bi is an `-th power}.

For later use, also set

N` = |P`(B)| and M` = max
i∈P`(B)

i.

Everest, Reynolds and Stevens [5] showed finiteness for the set P`(B),
however, their proof is ineffective and hence does not give an upper
bound for the size of its elements. Further, they noted that under the
assumption of the abc-conjecture one can let the exponent ` vary and
prove finiteness for the set of all perfect powers in the sequence. As in
the case of linear recurrences, listing the elements of P`(B) is a highly
non-trivial problem. A paper of Reynolds [15] explains a procedure to
find every perfect power in the sequence when B1 is divisible by 2 or 3.
There are more explicit results for square and cube terms by Bizim and
Gezer [1, 2]. (Note that their definition of elliptic divisibility sequence
differs from ours, since it involves a torsion point rather than a point
of infinite order.)

Let B = (Bn)∞n=1 be an elliptic divisibility sequence such that B1 = 1
and ` ≥ 2 is fixed. We will point out later in the Introduction that
B1 = 1 is unnecessary, but makes the presentation smoother. Consider
the diophantine equation

(1.1) BmBm+d . . . Bm+(k−1)d = y`

in positive integers m, d, k, y with k ≥ 2 and gcd(m, d) = 1. We prove
that (1.1) admits only finitely many solutions. Further, we bound
m, d, k, y in terms of N` and M`. In fact, our method provides an
algorithm to find all the solutions to equation (1.1), whenever P`(B)
is given explicitly.

Theorem 1.1. Let ` ≥ 2 be a fixed integer. Then, equation (1.1)
has only finitely many solutions. Further, there exists an effectively
computable constant c1(N`,M`) depending only on N` and M` such that
max(m, d, k, y) < c1(N`,M`). In particular, if P`(B) is given then all
solutions to (1.1) can be effectively determined.

To prove Theorem 1.1, we need to combine several tools, including
arithmetic properties of elliptic divisibility sequences, arguments from
[3, 11] and new variants of bounds, developed in this paper, concerning
the greatest prime divisor and the number of prime divisors of blocks
of consecutive terms of arithmetic progressions.
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Finally, we mention a possible generalization of (1.1), which could
be handled by our arguments. In their paper, Everest, Reynolds and
Stevens [5] remark that it is possible to modify their proof on the
finiteness of P`(B) to deduce finiteness also for S-unit multiples of `-th
powers, where S is any given finite set of primes. Then with slight
changes (but more technicality involved) we could prove the analogue
of Theorem 1.1 for the equation

BmBm+d . . . Bm+(k−1)d = by`,

where b is an arbitrary S-unit, i.e. b is composed of fixed primes (com-
ing from S) with unspecified non-negative exponents. Observe that it
also makes the assumption B1 = 1 unnecessary. Indeed, dividing both
sides by Bk

1 , we get an equation of the form

B′mB
′
m+d . . . B

′
m+(k−1)d = b′y`.

Since the sequence B′ = (B′n)∞n=1 = (Bn/B1)
∞
n=1 preserves the arith-

metic properties of B we rely on (see Remark 2.6), one can solve the
above more general equation, as well (and hence omit the condition
B1 = 1).

2. Auxiliary tools

Recall that throughout the paper we use the assumption B1 = 1.
Thus, in particular, we have P`(B) 6= ∅, N` ≥ 1 and M` ≥ 1.

Arithmetic properties of elliptic divisibility sequences have been well-
studied, see for instance the fundamental paper of Ward [23] and theses
of Shipsey [17] and Swart [22] and the references given there. Let
B = (Bn)∞n=1 be an elliptic divisibility sequence, p be a prime and
denote by rp the smallest number such that p | Brp holds. Then rp is
called the rank of apparition of p in B. Further, let νp(z) stand for the
exponent of p in z.

Lemma 2.1. Let B = (Bn)∞n=1 be an elliptic divisibility sequence. Then
we have the following properties.

(i) If p | Bm, then

νp(Bm) = νp

(
m

rp

)
+ νp(Brp).

(ii) B is a strong divisibility sequence, that is, for every m,n ≥ 1
we have

gcd(Bm, Bn) = Bgcd(m,n).

(iii) For every prime p we have

rp ≤ p+ 1 + 2
√
p.
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(iv) For m | n we have

gcd

(
Bm,

Bn

Bm

)∣∣∣∣ nm.

Proof. For (i) see formula (13) in [20]. Part (ii) is exactly Theorem 6.4
in [23] and also follows from (i), while (ii) is an immediate consequence
of the famous Hasse-Weil theorem, see Section 4.7.2 in [17]. Applying
(iii) for m | n yields

νp

(
Bn

Bm

)
= νp

(
n

rp

)
+ νp(Brp)− νp

(
m

rp

)
− νp(Brp) = νp

( n
m

)
and hence

min

(
νp(Bm), νp

(
Bn

Bm

))
≤ νp

( n
m

)
which proves part (iv). �

We write P (z) for the greatest prime divisor of the positive integer
z, with the convention P (1) = 1. Further, for 0 ≤ i < k we put

m+ id = aixi

with P (ai) ≤ k and gcd

(
xi,
∏
p≤k

p

)
= 1.

Our next lemma plays a crucial role later on. As we are not aware
of such a result appearing in the literature, we give its simple proof, as
well.

Lemma 2.2. Let 0 ≤ i < k. Then

gcd

(
Bxi ,

∏
j 6=i

Bm+jd

)
= 1 and gcd

(
Bxi ,

Bm+id

Bxi

)∣∣∣∣ ai.
Proof. If xi = 1, then the assertion of the lemma follows from B1 = 1.
Thus assume that xi 6= 1. Then for every p | xi we have p > k. Since a
prime greater than k can divide at most one ofm,m+d, . . . ,m+(k−1)d,
for every j 6= i we get gcd(xi,m+ jd) = 1 and from part (i) of Lemma
2.1 the first formula follows. The second part of the statement is an
immediate consequence of part (iv) of Lemma 2.1. �

Using the above lemmas, we can already prove Theorem 1.1 for small
values of k.

Lemma 2.3. Let (m, d, k, y) be a solution to (1.1) with k ≤ 48. Then
we have max(m, d) ≤ c2M`, where c2 = 1 for k ≤ 16, c2 = 2 for
17 ≤ k ≤ 24 and c2 = 3 for 25 ≤ k ≤ 48.
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Proof. Suppose first that k ≤ 16. Then by a classical result of Pillai
[13] there is a term m + id with gcd(m + id,m + jd) = 1 for every
j 6= i. Observe that here we may assume that i > 0. Indeed, if i = 0
then by gcd(m,m + jd) = 1 for all j = 1, . . . , k − 1, using Pillai’s
result again for the terms m + d, . . . ,m + (k − 1)d, we can find an
index i > 0 with the desired property. Then, by B1 = 1 and part (i)
of Lemma 2.1 we have gcd(Bm+id, Bm+jd) = 1. Hence m+ id ∈ P`(B)
and max(m, d) ≤ m+ d ≤ m+ id ≤M`, and the lemma follows in this
case.

Assume next that 17 ≤ k ≤ 24. Then by Theorem 2.2 of Hajdu and
Saradha [6] there is a term m + id with gcd(m + id,m + jd) ≤ 2 for
every j 6= i. Similarly as in the case k ≤ 16, we may assume that i > 0.
If in fact gcd(m + id,m + jd) = 1 for all j 6= i, then just as before,
we get m + id ∈ P`(B) and max(m, d) ≤ M`. So we may assume that
gcd(m+ id,m+ jd) = 2 for some j 6= i; in particular, ai is even. Write
ai = 2t, and observe that gcd(t,m+jd) = 1 for all j 6= i. Rewrite (1.1)
as

(2.1) Btxi

Bm+id

Btxi

∏
j 6=i

Bm+jd = y`.

Observe that gcd(txi,m + jd) = 1 and hence gcd(Btxi , Bm+jd) = 1 for
every j 6= i. On the other hand, by part (iv) of Lemma 2.1 we have

gcd

(
Btxi ,

Bm+id

Btxi

)∣∣∣∣ 2.
Now if 2 | Btxi , then we have r2 | txi. This by r2 ≤ 5 following
from part (ii) of Lemma 2.1, implies that r2 | t. However, this would
clearly contradict the choice of m + id. So Btxi is odd, and hence
coprime to Bm+id/Btxi . Thus (2.1) yields that txi ∈ P`(B) and we get
max(m, d) ≤ m+ id = 2txi ≤ 2M`, proving our claim also in this case.

Finally, assume that 25 ≤ k ≤ 48. Then, using again Theorem 2.2
of [6], by a similar argument as before we obtain that there is an i > 0
such that gcd(m + id,m + jd) ≤ 3 for every j 6= i. Now if this gcd is
in fact ≤ 2 for all j 6= i, then the same argument as for 17 ≤ k ≤ 25
gives max(m, d) ≤ 2M`. Hence we may assume that there is a j 6= i
such that gcd(m + id,m + jd) = 3. In particular, 3 | ai, and we can
write ai = 3t. Now we can just follow the argument for 17 ≤ k ≤ 24
to conclude that txi ∈ P`(B) and get max(m, d) ≤ 3M`. This finishes
the proof. �

Remark 2.4. In certain cases, Lemma 2.3 can be extended for larger
values of k. This is based on quantitites concerning a problem of Pillai
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[13] and its generalizations, obtained by Hajdu and Saradha [6] and by
Hajdu and Szikszai [7, 8]. To do so, one needs to know which terms
Bn satisfy Bn = 1 and compare the set of the corresponding indices
with the tables in [7, 8]. For example, if we take the sequence generated
by the point P = (0, 0) on the curve y2 + y = x3 − x, then we have
B1 = B2 = B3 = B4 = B6 = 1. Using Table 2 in [8] we could extend
Lemma 2.3 for k ≤ 78.

Fix now m, d and k and consider the indices m + id (0 ≤ i < k).

Write k′ = k + 1 + 2
√
k and put

W1 = {i : ∃p | (m+ id) with p > k}, w1 := |W1|;
W2 = {i ∈ W1 : ∃p | (m+ id) with k < p ≤ k′}, w2 := |W2|;
W0 = W1 \W2, w0 := |W0|.

Here p always denotes a prime number. Clearly, we have w0 = w1−w2.
Further,

w2 ≤ πd(k
′)− πd(k) ≤ π(k′)− π(k),

where πd(x) stands for the number of primes up to x which does not
divide d.

An important connection between the sets W0 and P`(B) is given by
the following lemma.

Lemma 2.5. Let (m, d, k, y) be a solution to (1.1). Then xi ∈ P`(B)
for each i ∈ W0. In particular, we have w0 ≤ N`, and also k < M` if
w0 > 0.

Proof. Observe that for i ∈ W0 the numbers xi are distinct, and also
that we have q > k′ for every prime divisor q of xi. Let i ∈ W0 and
let p be a prime divisor of ai. Then by part (ii) of Lemma 2.1 we have
rp ≤ p+ 1 + 2

√
p ≤ k′. Thus rp - xi, whence p - Bxi , and by Lemma 2.2

we have gcd(Bxi , Bm+id/Bxi) = 1. This immediately gives xi ∈ P`(B).
As the xi are distinct for i ∈ W0, we obtain w0 ≤ N`. Finally, as if
i ∈ W0 then we have k < xi ≤M`, the lemma follows. �

Remark 2.6. Concerning properties of elliptic divisibility sequences,
Lemma 2.5 is the last we state. With little effort one can prove that
the sequence B′ = (B′n)∞n=0 = (Bn/B1)

∞
n=0 preserves (i) even if B1 6= 1.

Hence (ii) and (iv) also remain valid. Since (iii) is true for arbitrary
curves (Hasse’s theorem holds), we find that the statements of Lemma
2.1 are independent of the condition B1 = 1. This also implies the
truth of Lemma 2.2 and 2.5 for B′. As it was mentioned already in
the Introduction, this allows one to omit B1 = 1 and consider (1.1)
without restrictions on B.
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In what follows, we shall establish lower bounds for w0. For this,
we need results concerning the number of terms W (∆) of ∆ having a
prime factor > k, where

∆ = m(m+ d) . . . (m+ (k − 1))d.

Lemma 2.7. Let k ≥ 31. Then we have

(i) W (∆) ≥ min
(⌊

3
4
π(k)

⌋
− 1, π(2k)− π(k)− 1

)
if d = 1 and m >

k,
(ii) W (∆) > π(2k)− πd(k)− ρ if d > 1, where ρ = 1 for d = 2 and

ρ = 0 otherwise.

Proof. Part (i) immediately follows from Corollary 1 of [10]. Though
the assertion was stated for the number of distinct prime factors of ∆,
it is in fact valid for W (∆) as given by the proof. Part (ii) is a simple
consequence of Theorem 1 of [9]. �

We also use estimates for π(x), due to Rosser and Schoenfeld [16].

Lemma 2.8. For any x ≥ 17 we have

x

log x
< π(x) <

x

log x

(
1 +

3

2 log x

)
.

Proof. The upper bound is part of Theorem 1 of [16], while the lower
bound is in Corollary 1 in the same paper. �

Lemma 2.7 combined with Lemma 2.8 easily implies the following
assertion.

Lemma 2.9. Let k ≥ 2. Further, assume that m > k if d = 1. Then
there exists an absolute constant c > 0 such that

w0 >
ck

log k
.

Proof. Recall that w0 = w1 −w2 and w2 ≤ πd(k + 1 + 2
√
k)− πd(k) ≤

π(k + 1 + 2
√
k) − π(k). By observing that w1 ≥ W (∆), the assertion

follows from Lemmas 2.7 and 2.8 by a simple calculation. �

Under a certain assumption, we can establish a much better lower
bound for w0.

Lemma 2.10. Let k ≥ 48, and assume that m + d ≥ (k − 1)4. Then
we have

w0 ≥
3(k − 1)

4
− πd(k + 1 + 2

√
k).
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Proof. We follow standard arguments, going back to Erdős. For similar
results, see e.g. [9] and the references given there.

For each prime p ≤ k and p - d, choose an index ip with 0 ≤ ip < k
such that

νp(m+ ipd) ≥ νp(m+ id) (i = 0, 1, . . . , k − 1).

Put
I = {ip : p ≤ k, p - d},

and write J for the complement of I ∪W0 ∪ {0} in {0, 1, . . . , k − 1}.
We clearly have |J | ≥ k − w1 − πd(k)− 1. Let

∆′ =
∏
i∈J

(m+ id),

and observe that all prime divisors of ∆′ is at most k, and also that
(∆′, d) = 1. Let p be any prime with p ≤ k and p - d. Then for any
i = 0, 1, . . . , k − 1 we have

νp(m+ id) ≤ νp(m+ id− (m+ ipd)) ≤ νp(i− ip).
This easily gives νp(∆

′) ≤ νp((k − 1)!), implying ∆′ | (k − 1)!. Hence
we get

(m+ d)k−w1−πd(k)−1 ≤ (k − 1)!.

Now our assumption m+ d ≥ (k − 1)4 yields

w1 ≥
3(k − 1)

4
− πd(k).

Using w0 = w1 − w2 and w2 ≤ πd(k + 1 + 2
√
k)− πd(k), the assertion

follows. �

3. Proof of Theorem 1.1

Proof of Theorem 1.1. If k ≤ 48, then the statement is given by Lemma
2.3. So we may assume that k ≥ 49. We split the proof into two parts.

Suppose first that d > 1, or d = 1 and m > k. Then by Lemmas 2.5
and 2.9 we get that k is bounded in terms of N` (and also in terms of
M`). Now if m + d ≤ (k − 1)4, then we are done. Otherwise, Lemma
2.10 gives that

w0 ≥
3(k − 1)

4
− πd(k + 1 + 2

√
k).

Now apart from at most πd(k) indices i, we have that νp(ai) ≤ νp((k−
1)!). (The exceptions are those indices ip for which νp(aip) is maximal.)
This shows that if

(3.1)
3(k − 1)

4
− πd(k + 1 + 2

√
k)− πd(k) > 1,
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then there are at least two indices i 6= j such that all ai, aj, xi, xj are
bounded in terms of N` and M`. As one of these indices, say i, is
positive, by m + d ≤ m + id = aixi we obtain that m and d are also
bounded in terms of N` and M`. A simple calculation based upon
Lemma 2.8 shows that (3.1) holds whenever k ≥ 62. Then, working
with the concrete values of the π(x) function, we get that (3.1) holds
in fact for k ≥ 42. Hence the theorem follows in this case.

Assume next that d = 1 and m ≤ k. Then there exists an effectively
computable constant c3 = c3(N`) > 0 depending only on N` such that
if m + k − 1 > c3(N`), then the interval

(
2
3
(m+ k − 1),m+ k − 1

)
contains more than N` primes. Observe that by m ≤ k these primes
are among m,m + 1, . . . ,m + k − 1, and further that each of these
primes divides exactly one of these numbers. Let q be any of these
primes, and write q = m+ i. Observe that then by part (i) of Lemma
2.1, gcd(Bm+i, Bm+j) = B1 = 1 for any j 6= i with 0 ≤ j < k. Hence
m + i ∈ P`(B). However, since we have more than N` primes among
m, . . . ,m+k−1, this yields a contradiction. Thus m+k−1 ≤ c3(N`),
and our claim follows also in this case. �

4. An example

Consider the elliptic curve E : y2 + xy = x3 + x2 − 7x + 5 and
the elliptic divisibility sequence Bn = (Bn)∞n=1 generated by the point
P = (2,−3). Reynolds [15] found the following perfect powers in Bn:

B1 = B2 = B3 = B4 = B7 = 1, B12 = 27.

Now we illustrate how our method works, assuming that there are no
other perfect powers in Bn. (Note that once the set of all perfect powers
is given, our method describes all solutions to (1.1).)

Under the above assumption, we have

P`(B) =

{
{1, 2, 3, 4, 7, 12}, if ` = 7;

{1, 2, 3, 4, 7}, otherwise,

and hence

N` =

{
6, if ` = 7;

5, otherwise;
and M` =

{
12, if ` = 7;

7, otherwise.

Following the proof of Lemma 2.9, by a simple calculation we get
that for k ≥ 49 we have w0 ≥ 1. However, then by Lemma 2.5 we
obtain that k < M` ≤ 12, a contradiction.

Hence we conclude that k ≤ 48. Then following the proof of Lemma
2.3, we get m + d ≤ 3M` ≤ 36. As m, d and k are small, we can
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easily check all possibilities. (Note that for this we can work with
the indices and not with the terms of Bn themselves.) We find that
(under our assumption) the only solutions (m, d, k, y) of equation (1.1)
for arbitrary ` are given by

(1, 1, 2, 1), (1, 1, 3, 1), (1, 1, 4, 1), (1, 2, 2, 1), (1, 3, 2, 1), (1, 3, 3, 1), (1, 6, 2, 1), (2, 1, 2, 1),

(2, 1, 3, 1), (2, 5, 2, 1), (3, 1, 2, 1), (3, 4, 2, 1), (4, 3, 2, 1)}
and further, for ` = 7, we also have the solutions

(1, 11, 2, 2), (2, 5, 3, 2), (7, 5, 2, 2).
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