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Abstract. It is proved that equation (1) with 4 ≤ k ≤ 109 does not hold. The
paper contains analogous result for k ≤ 100 for more general equation (2) under
certain restrictions.

1. Introduction

The theorem of Euler ([Eul80], cf. [Mor69, p.21-22], [MS03]) referred in the title of
this paper is that a product of four terms in arithmetic progression is never a square.
Let n, d, k ≥ 2 and y be positive integers such that gcd(n, d) = 1. We consider the
equation

n(n+ d) · · · (n+ (k − 1)d) = y2(1)

in n, d, k and y. It has infinitely many solutions when k = 2 or 3. A well-known
conjecture states that (1) with k ≥ 4 is not possible. We claim

Theorem 1. Equation (1) with 4 ≤ k ≤ 109 is not possible.

By Euler, Theorem 1 is valid when k = 4. The case when k = 5 is due to Obláth
[Obl50]. Independently of the authors, Bennett, Bruin, Győry and Hajdu [BBGH06]
proved that (1) with 6 ≤ k ≤ 11 does not hold. Theorem 1 has been confirmed by
Erdős [Erd39] and Rigge [Rig39], independently of each other, when d = 1.

Theorem 1 is derived from a more general result and we introduce some notation
for stating this. For an integer ν > 1, we denote by P (ν) the greatest prime factor
of ν and we put P (1) = 1. Let b be a squarefree positive integer such that P (b) ≤ k.
We consider a more general equation than (1), namely

n(n+ d) · · · (n+ (k − 1)d) = by2.(2)

We write

n+ id = aix
2
i for 0 ≤ i < k(3)

where ai are squarefree integers such that P (ai) ≤ max(P (b), k−1) and xi are positive
integers. Every solution to (2) yields a k-tuple (a0, a1, · · · , ak−1). We re-write (2) as

m(m− d) · · · (m− (k − 1)d) = by2, m = n+ (k − 1)d.(4)

The equation (4) is called the mirror image of (2). The corresponding k-tuple
(ak−1, ak−2, · · · , a0) is called the mirror image of (a0, a1, · · · , ak−1).
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Let P (b) < k. Erdős and Selfridge [ES75] proved that (2) with d = 1 never holds
under the assumption that the left-hand side of (2) is divisible by a prime greater
than or equal to k. The result does not hold unconditionally. As mentioned above,
equation (2) with k = 2, 3 and b = 1 has infinitely many solutions. This is also the
case when k = 4 and b = 6, see Tijdeman [Tij89]. On the other hand, equation (2)
with k = 4 and b 6= 6 does not hold. We consider (2) with d > 1 and k ≥ 5. We prove

Theorem 2. Equation (2) with d > 1, P (b) < k and 5 ≤ k ≤ 100 implies that
(a0, a1, · · · , ak−1) is among the following tuples or their mirror images.

k = 8 : (2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10);

k = 9 : (2, 3, 1, 5, 6, 7, 2, 1, 10);

k = 14 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 24 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).

(5)

Theorem 2 with k = 5 is due to Mukhopadhyay and Shorey [MS03]. Initially, Ben-
nett, Bruin, Győry, Hajdu [BBGH06] and Hirata-Kohno, Shorey (unpublished), inde-
pendently, proved Theorem 2 with k = 6 and (a0, a1, · · · .a5) 6= (1, 2, 3, 1, 5, 6), (6, 5, 1, 3, 2, 1).
Next Bennett, Bruin, Győry and Hajdu [BBGH06] removed the assumption on (a0, a1,
· · · , a5) in the above result. Thus (2) with k = 6 does not hold and we shall refer
to it as the case k = 6. Bennett, Bruin, Győry and Hajdu [BBGH06], independently
of us, showed that (2) with 7 ≤ k ≤ 11 and P (b) ≤ 5 is not possible. This is now a
special case of Theorem 2.

Let P (b) = k. Then we have no new result on (2) with k = 5. For k ≥ 7, we prove

Theorem 3. Equation (2) with d > 1, P (b) = k and 7 ≤ k ≤ 100 implies that
(a0, a1, · · · , ak−1) is among the following tuples or their mirror images.

k = 7 : (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10);

k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15),

(1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22);

k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).

(6)

It has been conjectured that (2) with k ≥ 5 never holds. Granville (unpublished)
showed that k is bounded by an absolute constant whenever abc-conjecture holds, see
Laishram [Lai04] for a proof. For the convenience of the proofs, we consider Theorems
2 and 3 together. Therefore we formulate

Theorem 4. Let d > 1, P (b) ≤ k and 5 ≤ k ≤ 100. Suppose that k 6= 5 if P (b) = k.
Then (2) does not hold except for the (a0, a1, · · · , ak−1) among (5), (6) and their
mirror images.

It is clear that Theorem 4 implies Theorems 2 and 3. In fact the proof of Theorem
4 provides a method for solving (2) for any given value of k unless (a0, a1, · · · , ak−1)
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is given by (5), (6) and their mirror images. This is a new and useful feature of the
paper. We have restricted k up to 100 for keeping the computational load under
control. It is an open problem to solve (2) for an infinite sequence of values of k. A
solution to this problem may be an important contribution towards the Conjecture
stated just after Theorem 3. Theorem 4 has been applied in [LS] to show that (2)
with k ≥ 6 implies that d > 1010. For more applications, see [LS].

Now we give a sketch of the proof of Theorem 4. Let the assumptions of Theorem
4 be satisfied. Assume (2) such that (a0, a1, · · · , ak−1) is not among (5), (6) or their
mirror images. As already stated, the cases k = 5 and k = 6 have already been solved
in [MS03] and [BBGH06]. Therefore we suppose that k ≥ 7. Further it suffices to
assume that k is prime and we proceed inductively on k. Let k be given. Then we
choose a suitable pair (q1, q2) of distinct primes ≤ k such that(

p

q1

)
=

(
p

q2

)
for small primes p. For example, when k = 29, we take (q1, q2) = (19, 29) so that the
above relation holds with p = 2, 3, 5, 7. We show that q1 - d and q2 - d, see Lemma
8. Assume q1|d or q2|d. Then we find two primes Q1 and Q2 such that Q1|d or Q2|d
whenever k ≥ 29, see Lemma 7. Now we arrive at a contradiction by a counting
argument using (9) and Lemmas 1, 2. Hence q1 - d and q2 - d but this is excluded
by Lemma 6, the proof of which depends on Lemma 5. In fact, we need to apply it
repeatedly for k > 11.

In the case k = 6, Bennett, Bruin, Győry and Hajdu [BBGH06] solved the cases
(a0, a1, · · · .a5) ∈ {(1, 2, 3, 1, 5, 6), (6, 5, 1, 3, 2, 1)} by using explicit Chabauty tech-
niques due to Bruin and Flynn [BF05]. These cases appear to be similar to our
exceptional cases (5) and (6) where we have, in fact, more freedom in the sense that
there are at least 7 curves where we may consider applying Chabauty method. Fi-
nally we remark that it suffices to solve the cases k = 7 in (6) or its mirror images for
Theorems 2 and 3 and hence Theorem 4. Further it suffices to solve the cases k = 8
in (5) or its mirror images for Theorem 2.

2. Notation and lemmas

We define some notation. Let

R = {ai : 0 ≤ i < k}
and for a prime q, we put

S = S(q) = {a ∈ R : P (a) ≤ q}, S1 = S1(q) = {a ∈ R : P (a) > q}.(7)

Further we write

T = T (q) = {i : ai ∈ S}, T1 = T1(q) = {i : ai ∈ S1}.(8)

Then we see that

|T |+ |T1| = k.(9)
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For a ∈ R, let

ν(a) = |{i : ai = a}|, νo(a) = |{i : ai = a, 2 - xi}|, νe(a) = |{i : ai = a, 2|xi}|.
We observe that

|T | =
∑
a∈S

ν(a).(10)

Let

δ = min(3, ord2(d))

and

ρ =

{
3 if 3|d,
1 otherwise.

We have

Lemma 1. For a ∈ R, let Ka = k
a23−δ

, K′a = k
16a

,

f1(k, a, δ) =


1 if k ≤ a23−δ⌈
Ka
⌉
− [

⌈
Ka
⌉

4
] if k > a23−δ, 3|d

2∑
i=1

(⌈Ka
3i
⌉
− [

⌈Ka
3i

⌉
4

]

)
if k > a23−δ, 3 - d

and

f2(k, a) =



1 if k ≤ 4a⌈
K′a
⌉

+ 1 if 4a < k ≤ 32a
2∑
i=1

(⌈K′a
i

⌉
− [

⌈K′a
i

⌉
4

]

)
if k > 32a, 3|d

2∑
i=1

(⌈K′a
3i
⌉
− [

⌈K′a
3i

⌉
4

]

)
+

2∑
i=1

(⌈ K′a
2 · 3i

⌉
− [

⌈ K′a
2·3i
⌉

4
]

)
if k > 32a, 3 - d

Then we have

νo(a) ≤ f1(k, a, δ), νe(a) ≤ f2(k, a)

and

ν(a) ≤ F (k, a, δ) :=


1 if k ≤ a

f1(k, a, δ) if k > a and d even

f1(k, a, 0) + f2(k, a) if k > a and d odd.

Proof. Let I1 = {i : ai = a, xi odd}, I2 = {i : ai = a, 2||xi} and I3 = {i : ai = a, 4|xi}.
Further for l = 1, 2, 3, let

Il1 := {i ∈ Il : 3 - xi}, Il2 := {i ∈ Il : 3|xi}.

Let τ := τ(l,m) be defined by τ
a

= 23−δ · 3ρ−1, 23−δ · 9, 32 · 3ρ−1, 32 · 9, 16 · 3ρ−1, 16 · 9
for (l,m) = (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2), respectively. Since x2i ≡ 1(mod
8) for i ∈ I1, (xi

2
)2 ≡ 1(mod 8) for i ∈ I2, 16|x2i for i ∈ I3 and x2i ≡ 1(mod 3)
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for i ∈ Il1, 9|x2i for i ∈ I12 for l = 1, 2, 3, we see from (i − j)d = a(x2i − x2j) that
τ |(i − j) for i, j ∈ Ilm. Since a|(i − j) whenever ai = aj, we get ν(a) = 1 for k ≤ a.
Thus we suppose that k > a. We have ν(a) = νo(a) + νe(a). It suffices to show
νo(a) ≤ f1(k, a, δ) and νe(a) ≤ f2(k, a) since νe(a) = 0 for d even. We observe that
νo(a) = |I1| and νe(a) = |I2| + |I3|. Since a23−δ|(i − j) whenever i, j ∈ I1, we get
|I1| ≤ 1 if k ≤ a23−δ. Thus we suppose k > a23−δ for proving |I1| ≤ f1(k, a, δ).
Further from 4a|(i − j) for i, j ∈ I2 ∪ I3, 32a|(i − j) for i, j ∈ I2 and 16a|(i − j) for
i, j ∈ I3, we get |I2|+ |I3| ≤ f2(k, a) for k ≤ 32a. Hence we suppose that k > 32a for
showing |I2|+ |I3| ≤ f2(k, a).

Let (l,m) be with 1 ≤ l ≤ 3, 1 ≤ m ≤ 2. Let i0 = min
i∈Ilm

i, N = n+i0d
a

and

D = τ
a
d. Then we see that ax2i with i ∈ Ilm come from the squares in the set

{N,N + D, · · · , N + (
⌈
k−i0
τ

⌉
− 1)D}. Dividing this set into consecutive intervals of

length 4 and using Euler’s result, we see that there are at most
⌈
k−i0
τ

⌉
− [

⌈
k−i0
τ

⌉
4

] ≤⌈
k
τ

⌉
− [

⌈
k
τ

⌉
4

] of them which can be squares. Hence |Ilm| ≤
⌈
k
τ

⌉
− [

⌈
k
τ

⌉
4

]. Now the

assertion follows from |Il| =
∑2

m=1 |Ilm| for l = 1, 2, 3 since |Il2| = 0 for 3|d. �

We observe that there are p−1
2

distinct quadratic residues and p−1
2

distinct quadratic
nonresidue modulo an odd prime p. The next lemma follows easily from this fact.

Lemma 2. Assume (2) holds. Let k be an odd prime. Suppose that k - d. Let

T ′ = {i :
(ai
k

)
= 1, 0 ≤ i < k}, T ′′ = {i :

(ai
k

)
= −1, 0 ≤ i < k}.

Then

|T ′| = |T ′′| = k − 1

2
.

Lemma 3. Assume that (2) with P (b) ≤ k has no solution at k = k1 with k1 prime.
Then (2) with P (b) ≤ k has no solution at k with k1 ≤ k < k2 where k2 is the smallest
prime larger than k1.

Proof. Let k1 and k2 be consecutive primes such that k1 ≤ k < k2. Assume that (2)
does not hold at (n, d, k1). Suppose

n(n+ d) · · · (n+ (k − 1)d) = by2.

Using (3), we see that

n(n+ d) · · · (n+ (k1 − 1)d) = b′y′2

with P (b′) ≤ k1. This is not possible. �

Let q1, q2 be distinct primes and

Λ1(q1, q2) := {p ≤ 97 :

(
p

q1

)
6=
(
p

q2

)
}.

We write Λ(q1, q2) = Λ(q1, q2, k) := {p ∈ Λ1(q1, q2) : p ≤ k}.
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Lemma 4. We have

(q1, q2) Λ1(q1, q2)
(5, 11) {3, 19, 23, 29, 37, 41, 47, 53, 61, 67, 79, 97}
(7, 17) {11, 13, 19, 23, 29, 37, 47, 59, 71, 79, 83, 89}
(11, 13) {5, 17, 29, 31, 37, 43, 47, 59, 61, 67, 71, 79, 89, 97}
(11, 59) {7, 17, 19, 23, 29, 31, 37, 41, 47, 67, 79, 89, 97}
(11, 61) {13, 19, 23, 31, 37, 41, 53, 59, 67, 71, 73, 83, 89}
(19, 29) {11, 13, 17, 43, 47, 53, 59, 61, 67, 71, 73}
(23, 73) {13, 19, 29, 31, 37, 47, 59, 61, 67, 79, 89, 97}
(23, 97) {11, 13, 29, 41, 43, 53, 59, 61, 71, 79, 89}
(31, 89) {7, 11, 17, 19, 41, 53, 59, 73, 79}
(37, 83) {17, 23, 29, 31, 47, 53, 59, 61, 67, 71, 73}
(41, 79) {11, 13, 19, 37, 43, 59, 61, 67, 89, 97}
(43, 53) {7, 23, 29, 31, 37, 41, 67, 79, 83, 89}
(43, 67) {11, 13, 19, 29, 31, 37, 41, 53, 71, 73, 79, 89, 97}
(53, 67) {7, 11, 13, 19, 23, 43, 71, 73, 83, 97}
(59, 61) {7, 13, 17, 29, 47, 53, 71, 73, 79, 83, 97}
(73, 97) {11, 19, 23, 31, 37, 41, 43, 47, 53, 67, 71}
(79, 89) {13, 17, 19, 23, 31, 47, 53, 71, 83}

Definition: Let P be a set of primes and I ⊆ [0, k) ∩ Z. We say that I is covered
by P if, for every j ∈ I, there exists p ∈ P such that p|aj. Further for i ∈ I, let

i(P) = |{p ∈ P : p divides ai}|.(11)

For a prime p with gcd(p, d) = 1, let ip be the smallest i ≥ 0 such that p|n+ id. For
I ⊆ [0, k) ∩ Z and primes p1, p2 with gcd(p1p2, d) = 1, we write

I ′ = I(p1, p2) = I \ ∪2
j=1{ipj + pji : 0 ≤ i <

⌈ k
pj

⌉
}.

Lemma 5. Let P0 be a set of primes. Let p1, p2 be primes such that gcd(p1p2, d) = 1.
Let (i1, i2) = (ip1 , ip2), I ⊆ [0, k) ∩ Z and I ′ = I(p1, p2) be such that i(P0 ∩ Λ(p1, p2))
is even for each i ∈ I ′. Define

I1 = {i ∈ I ′ :
(
i− i1
p1

)
=

(
i− i2
p2

)
} and I2 = {i ∈ I ′ :

(
i− i1
p1

)
6=
(
i− i2
p2

)
}.

Let P = Λ(p1, p2) \ P0. Let ` be the number of terms n + id with i ∈ I ′ divisible by
primes in P. Then either

|I1| ≤ `, I1 is covered by P , I2 = {i ∈ I ′ : i(P) is even}

or

|I2| ≤ `, I2 is covered by P , I1 = {i ∈ I ′ : i(P) is even}.

We observe that ` ≤
∑

p∈P
⌈
k
p

⌉
.
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Proof. Let i ∈ I ′. Let U0 = {p : p|ai}, U1 = {p ∈ U0 : p /∈ Λ(p1, p2)}, U2 = {p ∈ U0 :
p ∈ P0 ∩Λ(p1, p2)} and U3 = {p ∈ U0 : p ∈ P}. Then we have from ai =

∏
p∈U0 p that(

ai
p1

)
=
∏
p∈U1

(
p

p1

) ∏
p∈U2

(
p

p1

) ∏
p∈U3

(
p

p1

)
= (−1)i(P)+|U2|

∏
p∈U0

(
p

p2

)
= (−1)i(P)

(
ai
p2

)
since |U2| = i(P0 ∩ Λ(p1, p2)) is even. Therefore

L := {i ∈ I ′ :
(
ai
p1

)
6=
(
ai
p2

)
} = {i ∈ I ′ : i(P) is odd}.(12)

In particular L is covered by P and hence

|L| ≤ `.(13)

We see that
(
ai
pj

)
=
(
n+id
pj

)
=
(
i−ij
pj

)(
d
pj

)
for i ∈ I ′ and j = 1, 2. Therefore L = I1

or I2 according as
(
d
p1

)
6=
(
d
p2

)
or
(
d
p1

)
=
(
d
p2

)
, respectively. Now the assertion of

the Lemma 5 follows from (12) and (13). �

Remark: Let P consist of one prime p. We observe that p|n + id if and only if
p|(i− ip). Then I1 or I2 is contained in one residue class modulo p and p - ai for i in
the other set.

Corollary 1. Let p1, p2, i1, i2,P0,P , I, I ′, I1, I2 and ` be as in Lemma 5. Assume
that

` <
1

2
|I ′|.(14)

Then |I1| 6= |I2|. Let

M =

{
I1 if |I1| < |I2|
I2 otherwise

(15)

and

B =

{
I2 if |I1| < |I2|
I1 otherwise.

(16)

Then |M| ≤ `, M is covered by P and B = {i ∈ I ′|i(P) is even}.

Proof. We see from Lemma 5 that min(|I1|, |I2|) ≤ ` and from (14) that max(|I1|, |I2|) ≥
1
2
|I ′| > `. Now the assertion follows from Lemma 5. �

We say that (M,B,P , `) has Property H if |M| ≤ `,M is covered by P and i(P)
is even for i ∈ B.

Lemma 6. Let k be a prime with 7 ≤ k ≤ 97 and assume (2). For k ≥ 11, assume
that Theorem 4 is valid for all primes k1 with 7 ≤ k1 < k. For 11 ≤ k ≤ 29,
assume that k - d and k - n + id for 0 ≤ i < k − k′ and k′ ≤ i < k where k′ < k
are consecutive primes. Let (q1, q2) = (5, 7) if k = 7; (5, 11) if k = 11; (11, 13) if
13 ≤ k ≤ 23; (19, 29) if 29 ≤ k ≤ 59; (59, 61) if k = 61; (43, 67) if k = 67, 71; (23, 73)
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if k = 73, 79; (37, 83) if k = 83; (79, 89) if k = 89 and (23, 97) if k = 97. Then q1|d
or q2|d unless (a0, a1, · · · , ak−1) is given by the following or their mirror images.

k = 7 : (2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10);

k = 13 : (3, 1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15), (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1);

k = 19 : (1, 5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22);

k = 23 : (5, 6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3),

(6, 7, 2, 1, 10, 11, 3, 13, 14, 15, 1, 17, 2, 19, 5, 21, 22, 23, 6, 1, 26, 3, 7).

We shall prove Lemma 6 in section 3.

Lemma 7. Let k be a prime with 29 ≤ k ≤ 97 and Q0 a prime dividing d. Assume
(2) with k - d and k - n + id for 0 ≤ i < k − k′ and k′ ≤ i < k where k′ < k are
consecutive primes. Then there are primes Q1 and Q2 given in the following table
such that either Q1|d or Q2|d.

k Q0 (Q1, Q2) k Q0 (Q1, Q2)
29 ≤ k ≤ 59 19 (7, 17) 73, 79 23 (53, 67)
31 ≤ k ≤ 59 29 (7, 17) 79 73 (53, 67)

61 59 (11, 61) 83 37 (23, 73)
67, 71 43 (53, 67) 89 79 (23, 73)

71 67 (43, 53) 97 23 (73, 97), (37, 83)

The proofs of Lemmas 6 and 7 depend on the repeated application of Lemma 5
and Corollary 1. We shall prove Lemma 7 in section 4. Next we apply Lemmas 1, 2
and 7 to prove the following result.

Lemma 8. Let k be a prime with 7 ≤ k ≤ 97. Assume (2) with k - d. Further for
k ≥ 29, assume that k - n + id for 0 ≤ i < k − k′ and k′ ≤ i < k where k′ < k are
consecutive primes. Let (q1, q2) be as in Lemma 6. Then q1 - d and q2 - d.

The section 5 contains a proof of Lemma 8. Assume that 3 - d and 5 - d. We define
some more notation. For a subset J ⊆ [0, k) ∩ Z, let

I03 = I03 (J ) := {i ∈ J |i ≡ i3(mod 3)}, I+3 = I+3 (J ) := {i ∈ J |
(
i− i3

3

)
= 1},

I−3 = I−3 (J ) := {i ∈ J |
(
i− i3

3

)
= −1}

and

I+5 = I+5 (J ) := {i ∈ J |
(
i− i5

5

)
= 1}, I−5 = I−5 (J ) := {i ∈ J |

(
i− i5

5

)
= −1}.

Assume that ai ∈ {1, 2, 7, 14} for i ∈ I+3 ∪ I−3 . Then either ai ∈ {1, 7} for i ∈ I+3 ,
ai ∈ {2, 14} for i ∈ I−3 or ai ∈ {2, 14} for i ∈ I+3 , ai ∈ {1, 7} for i ∈ I−3 . We define
(I13 , I23 ) = (I+3 , I−3 ) in the first case and (I13 , I23 ) = (I−3 , I+3 ) in the latter. We observe
that i’s have the same parity whenever ai ∈ {2, 14}. Thus if i’s have the same parity
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in one of I+3 or I−3 but not in both, then we see that (I13 , I23 ) = (I+3 , I−3 ) or (I−3 , I+3 )
according as i’s have the same parity in I−3 or I+3 , respectively. Further we write

J1 = I13 ∩ I+5 , J2 = I13 ∩ I−5 , J3 = I23 ∩ I+5 , J4 = I23 ∩ I−5

and aµ = {ai|i ∈ Jµ} for 1 ≤ µ ≤ 4. Since
(
1
5

)
=
(
14
5

)
= 1 and

(
2
5

)
=
(
7
5

)
= −1, we

see that

(a1, a2, a3, a4) ⊆ ({1}, {7}, {14}, {2}) or ({7}, {1}, {2}, {14})(17)

where (a1, a2, a3, a4) ⊆ (S1, S2, S3, S4) denotes aµ ⊆ Sµ, 1 ≤ µ ≤ 4. We use 7|(i − i′)
whenever ai, ai′ ∈ {7, 14} to exclude one of the above possibilities.

3. Proof of Lemma 6

Let k′ < k be consecutive primes. We may suppose that if (2) holds for some
k > 29, then k - d and k - ai for 0 ≤ i < k−k′ and k′ ≤ i < k, otherwise the assertion
follows from Theorem 4 with k replaced by k′. The subsections 3.1 to 3.10 will be
devoted to the proof of Lemma 6. We may assume that q1 - d and q2 - d otherwise
the assertion follows.

3.1. The case k = 7. Then 5 - d. By taking mirror images (4) of (2), there is
no loss of generality in assuming that 5|n + i5d, 7|n + i7d for some pair (i5, i7) with
0 ≤ i5 < 5, 0 ≤ i7 ≤ 3. Further we may suppose i7 ≥ 1, otherwise the assertion follows
from the case k = 6. We apply Lemma 5 with P0 = ∅, p1 = 5, p2 = 7, (i1, i2) = (i5, i7),
I = [0, k) ∩ Z, P = Λ(5, 7) = {2} and ` ≤ `1 =

⌈
k
2

⌉
to conclude that either

|I1| ≤ `1, I1 is covered by P , I2 = {i ∈ I ′|i(P) is even}

or

|I2| ≤ `1, I2 is covered by P , I1 = {i ∈ I ′|i(P) is even}.

Let (i5, i7) = (3, 1). Then I1 = {0, 2, 6} and I2 = {4, 5}. We see that I1 is covered by
P and hence i(P) is even for i ∈ I2. Thus 2 - ai for i ∈ I2. Therefore a4, a5 ∈ {1, 3}
and a0, a2, a6 ∈ {2, 6}. If a0 = 6 or a6 = 6, then 3 - a4a5 so that a4 = a5 = 1. This

is not possible by modulo 3. Thus a0 = a6 = 2. Since
(
a0
5

) (
a2
5

)
=
(

(−3d)(−d)
5

)
= −1,

we get a2 = 6. Hence a4 = 1. Further a5 = 3 since
(
a5
5

) (
a4
5

)
=
(

(2d)(1d)
5

)
= −1.

Also 5|a3 and 7|a1, otherwise the assertion follows from the results [MS03] for k = 5
and [BBGH06] for k = 6, respectively, stated in section 1. In fact a1 = 7, a3 = 5
by gcd(a1a3, 6) = 1. Thus (a0, a1, a2, a3, a4, a5, a6) = (2, 7, 6, 5, 1, 3, 2). The proofs for
the other cases of (i5, i7) are similar. We get (a0, · · · , a6) = (1, 5, 6, 7, 2, 1, 10) when
(i5, i7) = (1, 3), (a0, · · · , a6) = (1, 2, 7, 6, 5, 1, 3) when (i5, i7) = (4, 2) and all the other
pairs are excluded. Hence Lemma 6 with k = 7 follows.
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3.2. The case k = 11. Then 5 - d. By taking mirror images (4) of (2), there is
no loss of generality in assuming that 5|n + i5d, 11|n + i11d for some pair (i5, i11)
with 0 ≤ i5 < 5, 4 ≤ i11 ≤ 5. We apply Lemma 5 with P0 = ∅, p1 = 5, p2 = 11,
(i1, i2) = (i5, i11), I = [0, k) ∩ Z, P = Λ(5, 11) = {3} and ` ≤ `1 =

⌈
k
3

⌉
to derive that

either

|I1| ≤ `1, I1 is covered by P , I2 = {i ∈ I ′|i(P) is even}
or

|I2| ≤ `1, I2 is covered by P , I1 = {i ∈ I ′|i(P) is even}.

We compute I1, I2 and we restrict to those pairs (i5, i11) for which min(|I1|, |I2|) ≤
`1 and either I1 or I2 is covered by P . We find that (i5, i11) = (0, 4), (1, 5). Let
(i5, i11) = (0, 4). Then I1 = {3, 9} is covered by P , i3 = 0 and i(P) is even for
i ∈ I2 = {1, 2, 6, 7, 8}. Thus 3 - ai for i ∈ I2. Further p ∈ {2, 7} whenever p|ai
with i ∈ I2. Therefore ai ∈ {1, 2, 7, 14} for i ∈ I2. By taking J = I2, we have
I2 = I03 ∪ I+3 ∪ I−3 and I2 = I+5 ∪ I−5 with

I03 = {6}, I+3 = {1, 7}, I−3 = {2, 8}, I+5 = {1, 6}, I−5 = {2, 7, 8}.

Let (I13 , I23 ) = (I+3 , I−3 ). Then

J1 = {1},J2 = {7},J3 = ∅,J4 = {2, 8}.

The possibility (a1, a2, a3, a4) ⊆ ({7}, {1}, {2}, {14}) is excluded since 7|(i− i′) when-
ever ai, ai′ ∈ {7, 14}. Therefore a1 = 1, a7 = 7, a2 = a8 = 2. Further a6 = 1 since

6 ∈ I+5 and a1 = 1, a7 = 7. This is not possible since 1 =
(
a6
7

) (
a8
7

)
=
(

(−d)(d)
7

)
= −1.

Let (I13 , I23 ) = (I−3 , I+3 ). Then we argue as above to conclude that a2 = a8 = 1, a1 =
2, a7 = 14 which is not possible since n+ 2d and n+ 8d cannot both be odd squares.
The other case (i5, i11) = (1, 5) is excluded similarly.

3.3. The cases 13 ≤ k ≤ 23. Then 11 - d and 13 - d. There is no loss of generality
in assuming that 11|n+ i11d, 13|n+ i13d for some pair (i11, i13) with 0 ≤ i11 < 11, 0 ≤
i13 ≤ k−1

2
and further i13 ≥ 2 if k = 13. We have applied Lemma 5 once in each of

cases k = 7 and k = 11 but we apply it twice for every case 13 ≤ k ≤ 23 in this section.
Let P0 = ∅, p1 = 11, p2 = 13, (i1, i2) = (i11, i13), I = [0, k) ∩ Z, P = P1 := Λ(11, 13)
and ` ≤ `1 where `1 = 3 if k = 13; `1 =

⌈
k
5

⌉
+
⌈
k
17

⌉
if k > 13. Then `1 <

1
2
|I ′|

since |I ′| ≥ k −
⌈
k
11

⌉
−
⌈
k
13

⌉
. By Corollary 1, we derive that I ′ is partitioned into

M =:M1 and B =: B1 such that (M1,B1,P1, `1) has Property H. Now we restrict
to all such pairs (i11, i13) satisfying |M1| ≤ `1 and M1 is covered by P1. We check
that |M1| > 2. Therefore 5 - d since M1 is covered by P1. Thus there exists i5 with
0 ≤ i5 < 5 such that 5|n+ i5d.

Now we apply Lemma 5 with p1 = 5, p2 = 11 and partition B1(5, 11) into two sub-
sets. Let P0 = Λ(11, 13) ∪ {11, 13}, (i1, i2) = (i5, i11), I = B1, P = P2 := Λ(5, 11) ⊆
{3, 19, 23} and ` ≤ `2 where `2 = 5, 6, 8, 11 if k = 13, 17, 19, 23, respectively. Hence
B′1 is partitioned into I1 and I2 satisfying either

|I1| ≤ `2, I1 is covered by P2, I2 = {i ∈ I ′|i(P2) is even}
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or

|I2| ≤ `2, I2 is covered by P2, I1 = {i ∈ I ′|i(P2) is even}.

We compute I1, I2 and we restrict to those pairs (i11, i13) for which min(|I1|, |I2|) ≤
`2 and either I1 or I2 is covered by P2. We find that (i11, i13) = (4, 2), (5, 3) if
k = 13; (0, 0), (5, 3) if k = 17; (0, 0), (0, 9), (7, 5), (7, 9), (8, 6), (9, 7), (10, 8) if k = 19
and (0, 0), (0, 9), (1, 10), (2, 11), (4, 0), (5, 1), (5, 7), (6, 2), (6, 8), (7, 9), (8, 10), (9, 11) if
k = 23.

Let (i11, i13) be such a pair. We write M for the one of I1 or I2 which is covered
by P2 and B for the other. For i ∈ B′1, we see that p - ai whenever p ∈ P0 since 17|ai
implies 5|ai. Therefore

i(P2) is even for i ∈ B and p - ai for i ∈ B whenever p ∈ P0,(18)

since B ⊆ B′1. Further we check that |M | > 1 if k 6= 23 and > 3 if k = 23 implying
3 - d.

By taking J = B, we get B = I03 ∪ I+3 ∪ I−3 and B = I+5 ∪ I−5 . Then p ∈ {2, 7}
whenever p|ai with i ∈ I+3 ∪ I−3 by (18). By computing I+3 , I−3 , we find that i’s have
the same parity in exactly one of I+3 , I−3 . Therefore we get from (17) that

(a1, a2, a3, a4) ⊆ ({1}, {7}, {14}, {2}) or ({7}, {1}, {2}, {14}) .

Let k = 13 and (i11, i13) = (4, 2). Then we have M1 = {0, 5, 10}, i5 = 0,M =
{3, 9, 12} and B = {1, 6, 7, 8, 11} since the latter set is not covered by P2 = {3}.
Further i3 = 0, I03 = {6}, I13 = I−3 = {8, 11}, I23 = I+3 = {1, 7}, I+5 = {1, 6, 11}, I−5 =
{7, 8}, J1 = {11},J2 = {8}, J3 = {1},J4 = {7}. Therefore a11 = 1, a8 = 7, a1 =
14, a7 = 2 or a11 = 7, a8 = 1, a1 = 2, a7 = 14. The second possibility is excluded
since a11 = 7, a7 = 14 is not possible. Further from (18), we get a6 = 1 since
2 - a6 and 7 - a6. Since 13|n + 2d and 7|n + d, we get

(
i−2
13

)
=
(
aia6
13

)
=
(
ai
13

)
and

−
(
i−1
7

)
=
(
aia6
7

)
=
(
ai
7

)
. We observe that 13|n+2d, 11|n+4d, 7|n+d, 5|n, 3|n, 2|n+d,

5|ai for i ∈ M and 3|ai for i ∈ M1. Now we see that a0 ∈ {5, 15} and a0 = 5 is
excluded since

(
5
7

)
6= −

(−1
7

)
. Thus a0 = 15. Next a1 = 14, a2 = 13 and a3 = 3.

Also a4 ∈ {1, 11} and a4 6= 1 since
(
a4
13

)
=
(

2
13

)
= −1. Similarly we derive that

a5 = 10, a6 = 1, a7 = 2, a8 = 7, a9 = 6, a10 = 5, a11 = 1 and a12 = 3. Thus
(a0, a1, · · · , a12) = (15, 14, 13, · · · , 5, 1, 3). The other case (i11, i13) = (5, 3) is similar
and we get (a0, a1, · · · , a12) = (1, 15, 14, · · · , 5, 1).

Let k = 17 and (i11, i13) = (0, 0). Then we have M1 = {5, 10, 15} and i5 = 0.
We see from the assumption of Lemma 6 with k = 17, k′ = 13 that 4 ≤ i17 < 13.
Hence, from i17 ∈ ∪

p=5,11,13
{ip + pj : 0 ≤ j <

⌈
k
p

⌉
}, we get i17 ∈ {5, 10, 11}. Further

M = {3, 6, 12}, B = {1, 2, 4, 7, 8, 9, 14, 16}, i3 = 0, I03 = {9}, I13 = {1, 4, 7, 16}, I23 =
{2, 8, 14}, I+5 = {1, 4, 9, 14, 16}, I−5 = {2, 7, 8}, J1 = {1, 4, 16}, J2 = {7}, J3 = {14}
and J4 = {2, 8}. Therefore a1 = a4 = a16 = 1, a7 = 7, a14 = 14, a2 = a8 = 2.
Thus a9 = 1 by (18) and 2 - a9, 7 - a9. Now we see by Legendre symbol mod 17
that a1 = a4 = a9 = a16 = 1 is not possible. The case (i11, i13) = (5, 3) is excluded
similarly.
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Let k = 19 and (i11, i13) = (0, 0). Then we have M1 = {5, 10, 15, 17}, i5 =
0, i17 = 0, M = {3, 6, 12}, B = {1, 2, 4, 7, 8, 9, 14, 16, 18} and i3 = 0. We see
from i19 ∈ ∪

p=3,5,11,13,17
{ip + pj : 0 ≤ j <

⌈
k
p

⌉
} and 2 ≤ i19 < 17 that i19 ∈

{3, 5, 6, 9, 10, 11, 12, 13, 15}. Further I03 = {9, 18}, I13 = {1, 4, 7, 16}, I23 = {2, 8, 14},
I+5 = {1, 4, 9, 14, 16}, I−5 = {2, 7, 8, 18}, J1 = {1, 4, 16},J2 = {7}, J3 = {14}
and J4 = {2, 8}. Therefore a1 = a4 = a16 = 1 which is not possible by mod
19. The case (i11, i13) = (7, 5) is excluded similarly. Let (i11, i13) = (0, 9). Then
M1 = {2, 5, 7, 12, 17}, i5 = 2, i17 = 5, M = {1, 3, 10, 16}, B = {4, 6, 8, 13, 14, 15, 18},
i3 = 1 and i19 = 3. We now consider (n + 6d)(n + 7d) · · · (n + 18d) = b′y′2.
Then P (b′) ≤ 13. By the case k = 13, we get (a6, a7, · · · , a18) = (1, 15, · · · 6, 5, 1)
since 5|a7 and 3|a16. From 19|n + 3d, we get

(
ai
19

)
=
(
aia6
19

)
= −

(
i−3
19

)
which

together with 13|n + 9d, 11|n, 7|n + d, 2|n, 5|a2, 17|a5, 3|a1 implies a0 ∈ {2, 22},
a1 ∈ {3, 21}, a2 = 5, a3 = 19, a4 = 2 and a5 = 17. Now from

(
ai
17

)
=
(
aia6
17

)
=
(
i−5
17

)
,

we get a0 = 22, a1 = 21. Thus (a0, a1, · · · , a18) = (22, 21, · · · , 6, 5, 1). The case
(i11, i13) = (7, 9) is similar and we get (a0, a1, · · · , a18) = (1, 5, 6, · · · , 21, 22). For the
pair (i11, i13) = (10, 8), we get similarly (a0, a1, · · · , a18) = (21, 5, · · · , 6, 5, 1, 3). This
is excluded by considering (n + 3d)(n + 6d) · · · (n + 18d) and k = 6. For the pairs
(i11, i13) = (8, 6), (9, 7), we get i19 = 0, 1, respectively, which is not possible since
i19 ≥ 2 by the assumption of the Lemma.

Let k = 23 and (i11, i13) = (0, 0). Then M1 = {5, 10, 15, 17, 20}, i5 = 0, i17 =
0, M = {3, 6, 12, 19, 21}, B = {1, 2, 4, 7, 8, 9, 14, 16, 18}, i3 = 0 and i19 = 0 since
23 - a19. We have i23 ∈ {5, 6, 9, 10, 11, 12, 13, 15, 17, 18} since 4 ≤ i23 < 19. Here
we observe that 23 - a19 and 4 ≤ i23 < 19 in view of our assumption that k - ai
for 0 ≤ i < k − k′ and k′ ≤ i < k with k = 23, k′ = 19. Further I03 = {9, 18},
I13 = {1, 4, 7, 16}, I23 = {2, 8, 14}, I+5 = {1, 4, 9, 14, 16}, I−5 = {2, 7, 8, 18}, J1 =
{1, 4, 16},J2 = {7}, J3 = {14} and J4 = {2, 8}. Therefore a1 = a4 = a16 = 1, a7 =
7, a14 = 14, a2 = a8 = 2. This is not possible since

(
a1
23

)
=
(
a4
23

)
=
(
a16
23

)
=
(
a2
23

)
=(

a8
23

)
= 1. The cases (i11, i13) = (0, 9), (1, 10), (2, 11), (4, 0), (7, 9), (8, 10), (9, 11) are

excluded similarly. Let (i11, i13) = (5, 1). Then M1 = {7, 10, 12, 17, 22}, i5 = 2, i17 =
10, M = {0, 3, 4, 6, 8, 15, 21}, B = {9, 11, 13, 18,
19, 20} and i3 = 0. This implies either 23|a4, 19|a8 or 23|a8, 19|a4. Further I03 =
{9, 18}, I13 = {11, 20}, I23 = {13, 19}, I+5 = {11, 13, 18}, I−5 = {9, 19, 20}, J1 =
{11},J2 = {20}, J3 = {13} and J4 = {19}. Therefore a11 = 1, a20 = 7, a13 =
14, a19 = 2. Further from (18), we get a9 ∈ {1, 2}, a18 = 1 since 7 - a9a18, 2 -
a18. However a9 = 2 as 9 ∈ I−5 , 18 ∈ I+5 . Since

(
a11
23

)
=
(
a18
23

)
= 1, we see that

23|a4, 19|a8. By using
(
ai
p

)
=
(
aia11
p

)
=
(

(i−ip)(11−ip)
p

)
, we get

(
ai
23

)
= −

(
i−4
23

)
,
(
ai
11

)
=

−
(
i−5
11

)
,
(
ai
7

)
= −

(
i−6
7

)
and

(
ai
5

)
=
(
i−2
5

)
. Now from 23|a4, 19|a8, 17|a10, 13|n +

d, 11|n+ 5d, 7|n+ 6d, 5|n+ 2d, 3|n, 2|n+d,M1 is covered by {5, 17}, M is covered by
{3, 19, 23}, we derive that (a0, a1, · · · , a22) = (3, 26, · · · , 6, 5). The pairs (i11, i13) =
(5, 7), (6, 2), (6, 8) are similar and we get (a0, a1, · · · , a22) = (6, 7, · · · , 3, 7),
(7, 3, · · · , 7, 6), (5, 6, 7, · · · , 3), respectively.

3.4. Introductory remarks on the cases k ≥ 29. Assume q1 - d and q2 - d. Then,
by taking mirror image (4) of (2), there is no loss of generality in assuming that
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q1|n + iq1d, q2|n + iq2d for some pair (iq1 , iq2) with 0 ≤ iq1 < q1, 0 ≤ iq2 ≤ k−1
2

and
further iq2 ≥ k − k′ if q2 = k. For k = 61, by taking (n + 8d) · · · (n + 60d) and
k = 53, we may assume that max(i59, i61) ≥ 8 if i59 ≥ 2. Let P0 = ∅, p1 = q1, p2 =
q2, (i1, i2) = (iq1 , iq2), I = [0, k)∩Z, P = P1 := Λ(q1, q2) and ` ≤ `1 =

∑
p∈P1

⌈
k
p

⌉
. We

check that `1 <
1
2
|I ′| since |I ′| ≥ k −

⌈
k
q1

⌉
−
⌈
k
q2

⌉
. By Corollary 1, we get M =:M1

and B =: B1 with (M1,B1,P1, `1) having Property H. We now restrict to all such
pairs (iq1 , iq2) for which |M1| ≤ `1 and M1 is covered by P1. We find that there is
no such pair (iq1 , iq2) when k = 97.

3.5. The cases 29 ≤ k ≤ 59. As stated in Lemma 6, we have q1 = 19, q2 = 29 and
P1 = Λ(19, 29) ⊆ {11, 13, 17, 43, 47, 53, 59}. Then the pairs (iq1 , iq2) are given by

k = 29 : (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (15, 5), (16, 6), (17, 7), (18, 8);

k = 31 : (0, 0), (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (11, 1),

(12, 2), (13, 3), (14, 4), (15, 5), (16, 6), (17, 7), (18, 8);

k = 37 : (0, 0), (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (17, 7), (18, 8);

k = 41 : (0, 0), (2, 11), (3, 12), (4, 13);

k = 43 : (0, 0), (1, 1), (3, 12), (4, 13), (5, 14), (6, 15), (7, 16), (8, 17);

k = 47 : (0, 0), (1, 1), (7, 16), (8, 17), (9, 18), (10, 19), (11, 20),

(12, 21), (13, 22), (13, 23), (14, 23);

k = 53 : (0, 0), (1, 0), (1, 1), (13, 22), (13, 23), (14, 23), (14, 24),

(15, 24), (15, 25), (16, 25), (16, 26), (17, 26);

k = 59 : (0, 0), (0, 28), (1, 0), (1, 1), (2, 1), (3, 2), (17, 27), (18, 28).

Let k = 31 and (i19, i29) = (0, 9). We see that P1 = {11, 13, 17},M1 = {4, 5, 12, 16,
21, 25, 27} and B1 = {1, 2, 3, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 20, 22, 23, 24, 26, 28, 29, 30}.
Since M1 is covered by P1, we get 11 divides a5, a16, a27; 13 divides a12, a25 and 17
divides a4, a21 so that i11 = 5, i13 = 12, i17 = 4. We see that gcd(11 · 13 · 17, ai) = 1
for i ∈ B1. Now we take P0 = P1 ∪ {19, 29}, p1 = 11, p2 = 13, (i1, i2) := (i11, i13) =
(5, 12), I = B1, P = P2 := Λ(11, 13) \ P0 = {5, 31} and ` ≤ `2 =

∑
p∈P2

⌈
k
p

⌉
= 8.

Thus |I ′| = |B1| = 21 > 2`2. Then the condition of Corollary 1 are satisfied
and we have M =: M2, B =: B2 and (M2,B2,P2, `2) has Property H. We get
M2 = {1, 3, 7, 8, 18, 23, 28}. This is not possible since M2 is not covered by P2.
Further the following pairs (i19, i29) are excluded similarly:

k = 29 : (0, 9), (1, 10), (2, 11), (3, 12), (4, 13), (15, 5), (16, 6), (17, 7), (18, 8);

k = 31 : (1, 10), (2, 11), (3, 12), (4, 13), (18, 8).

Thus k > 29.

Let k = 59 and (i19, i29) = (0, 0). Then we see that P1 = {11, 13, 17, 43, 47, 53, 59},
M1 = {11, 13, 17, 22, 26, 33, 34, 39, 43, 44, 47, 51, 52, 53, 55}, B1 = {1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 48, 49,
50, 54, 56}, i11 = i13 = i17 = 0, {43, 47, 53} is covered by {43, 47, 53, 59} =: P ′1. Let
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p|ai for i ∈ B1 and p ∈ P1. Then we show that i ∈ {4, 6, 10}. Let 59|a43. Then
{47, 53} is covered by {43, 47, 53}. Let 43|a47. If 43|ai with i ∈ B1, then i = 4 and
43 · p|a4 with p ∈ {47, 53} since i(P1) is even. This implies either 53|a53, 43 · 47|a4 or
47|a53, 43 · 53|a4. Similarly we get i ∈ {4, 6, 10} by considering all the cases 59|a43,
59|a47 and 59 - a43a47a53. We observe that 59 - a53 since 6 ≤ i59 < 53. Hence we
conclude that p - ai for i ∈ B1 \ {4, 6, 10} and p ∈ P ′1. Further we observe that

i59 ∈M1 ∪ {19, 29, 38} ∪ {6, 10}.(19)

Now we take P0 = P1∪{19, 29}, p1 = 11, p2 = 13, (i1, i2) := (0, 0), I = B1 \{4, 6, 10},
P = P2 := Λ(11, 13) \ P0 = {5, 31, 37} and ` ≤ `2 =

∑
p∈P2

⌈
k
p

⌉
= 16. Thus

|I ′| = |B1| − 2 > 2`2. Then the conditions of Corollary 1 are satisfied and we
have M =: M2, B =: B2 with (M2,B2,P2, `2) having Property H. We get M2 =
{5, 15, 20, 30, 31, 35, 37, 40, 45}, B2 = {1, 2, 3, 7, 8, 9, 12, 14, 16, 18, 21, 23, 24, 25, 27, 28,
32, 36, 41, 42, 46, 48, 49, 50, 54, 56}, i5 = 0, 31|a31, 37|a37 or 31|a37, 37|a31. Now we
take P0 = P1 ∪ P2 ∪ {19, 29}, p1 = 5, p2 = 11, (i1, i2) := (0, 0), I = B2, P = P3 :=
Λ(5, 11) \ P0 = {3, 23, 41} and ` ≤ `3 =

∑
p∈P3

⌈
k
p

⌉
. Then by Lemma 5, we see

that M = {3, 6, 12, 21, 23, 24, 27, 41, 42, 46, 48, 54} is covered by P3 and i(P3) is even
for i ∈ B = {1, 2, 7, 8, 9, 14, 16, 18, 28, 32, 36, 49, 56}. Thus i3 = i23 = i41 = 0 and
p ∈ {2, 7} whenever p|ai with i ∈ B. Putting J = B, we have B = I03 ∪ I13 ∪ I23 and
B = I+5 ∪ I−5 with

I03 = {9, 18, 36}, I13 = {1, 7, 16, 28, 49}, I23 = {2, 8, 14, 32, 56}
and

I+5 = {1, 9, 14, 16, 36, 49, 56}, I−5 = {2, 7, 8, 18, 28, 32}.
so that

J1 = {1, 16, 49}, J2 = {7, 28}, J3 = {14, 56}, J4 = {2, 8, 32}.
Hence (a1, a2, a3, a4) ⊆ ({1}, {7}, {14}, {2}) by (17). Thus a1 = a16 = a49 = 1,
a7 = a28 = 7, a14 = a56 = 14, a2 = a8 = a32 = 2. Further we get a9 = a36 = 1 and
a18 = 2 since 9, 36 ∈ I+5 and 18 ∈ I−5 . Since( ai

59

)
= 1 for ai ∈ {1, 7},(20)

we see that
(
ai
59

)
= 1 for i ∈ {1, 7, 9, 16, 28, 36, 49} which is not possible by (19).

Let k = 41 and (i19, i29) = (2, 11). Then we see that P1 = {11, 13, 17}, M1 =
{1, 6, 7, 14, 18, 23, 27, 29}, B1 = {0, 3, 4, 5, 8, 9, 10, 12, 13, 15, 16, 17, 19, 20, 22, 24, 25, 26,
28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39}, i11 = 7, i13 = 1, i17 = 6. Further gcd(ai, 11 · 13 ·
17) = 1 for i ∈ B1. Now we take P0 = P1 ∪ {19, 29}, p1 = 11, p2 = 13, (i1, i2) :=
(7, 1), I = B1, P = P2 := Λ(11, 13) \ P0 = {5, 31, 37} and ` ≤ `2 =

∑
p∈P2

⌈
k
p

⌉
= 13.

Then |I ′| = |B1| > 2`2. Thus the conditions of Corollary 1 are satisfied and we get
M =: M2 and B =: B2 such that (M2,B2,P2, `2) has Property H. We have M2 =
{0, 3, 5, 9, 10, 20, 25, 30, 35}, B2 = {4, 8, 12, 13, 15, 16, 17, 19, 22, 24, 26, 28, 31, 32, 33, 34,
36, 37, 38, 39}, i5 = 0. Further 31 · 37|a3a9, 31 - a34. We take P0 = P1 ∪ P2 ∪
{19, 29}, p1 = 5, p2 = 11, (i1, i2) := (0, 7), I = B2, P = P3 := Λ(5, 11) \ P0 =
{3, 23, 41}, ` ≤

∑
p∈P3

⌈
k
p

⌉
and apply Lemma 5 to see thatM = {13, 16, 17, 19, 28, 34, 37}

is covered by P3, i3 = 1, i(P3) is even for i ∈ B = {4, 8, 12, 22, 24, 26, 31, 32, 33, 36, 38, 39}.
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Further i23 = 17, i41 ∈ {2, 11, 21} ∪M1 ∪M2 ∪M ∪ {4, 22, 31} or vice-versa. Here
we observe that i41 exists since 41 - d. Thus 23 · 41|

∏
ai where i runs through the set

{2, 11, 21} ∪M1 ∪M2 ∪ {4, 22, 31}. Therefore ai ∈ {1, 2, 7, 14} for i ∈ I13 ∪ I23 where
B = I03 ∪ I13 ∪ I23 , B = I+5 ∪ I−5 with

I03 = {4, 22, 31}, I13 = {12, 24, 33, 36, 39}, I23 = {8, 26, 32, 38}

and

I+5 = {4, 24, 26, 31, 36, 39}, I−5 = {8, 12, 22, 32, 33, 38}

by taking J = B. We get

J1 = {24, 36, 39}, J2 = {12, 33}, J3 = {26}, J4 = {8, 32, 38},

and a24 = a36 = a39 = 1, a12 = a33 = 7, a26 = 14, a8 = a32 = a38 = 2 by (17). Since( ai
41

)
= 1 for ai ∈ {1, 2},(21)

we see that
(
ai
41

)
= 1 for i ∈ {8, 24, 32, 36, 38, 39} which is not valid by the possibilities

of i41.

All other cases are excluded similarly. Analogous to (20) and (21), we use
(
ai
k

)
= 1

for

ai ∈ {1, 7} if k = 37, 53, 59; ai ∈ {1, 2} if k = 31, 41, 47; ai ∈ {1, 14} if k = 43

to exclude the remaining possibilities.

3.6. The case k = 61. We have q1 = 59, q2 = 61 and P1 = {7, 13, 17, 29, 47, 53}.
Then the pairs (iq1 , iq2) are given by (8, 6), (9, 7), (10, 8), (11, 9), i.e. (i + 2, i) with
6 ≤ i ≤ 9.

Let (i59, i61) = (8, 6). Then P1 = {7, 13, 17, 29, 47, 53},M1 = {2, 4, 9, 11, 14, 15, 16, 20,
25, 28, 32, 33, 38, 39, 41, 46, 50, 53, 54, 60}, B1 = {0, 1, 3, 5, 7, 10, 12, 13, 17, 18, 19, 21, 22,
23, 24, 26, 27, 29, 30, 31, 34, 35, 36, 37, 40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 55, 56, 57, 58, 59},
i7 = 4, i13 = 2, i17 = 16, i29 = 9 and a14, a20 are divisible by 47, 53. Further
gcd(p, ai) = 1 for i ∈ B1 and p ∈ P1. Let P0 = P1 ∪ {59, 61}, p1 = 7, p2 =
17, (i1, i2) := (4, 16), I = B1, P = P2 := Λ(7, 17) \ P0 = {11, 19, 23, 37} and
` ≤ `2 =

∑
p∈P2

⌈
k
p

⌉
= 15. Then 2`2 < |I ′| = |B1| − 1. By Corollary 1, we get

M =: M2, B =: B2 and (M2,B2,P2, `2) has Property H. We find that M2 =
{1, 10, 12, 21, 23, 29, 30, 34, 44, 45, 48, 56}, B2 = {0, 3, 5, 7, 13, 17, 19, 22, 24, 26, 27, 31,
35, 36, 37, 40, 42, 43, 47, 49, 51, 52, 55, 57, 58, 59}, i11 = 1, i19 = 10, i23 = 21, i37 = 30.
Now we take P0 = P1 ∪ P2 ∪ {59, 61}, p1 = 11, p2 = 59, (i1, i2) := (1, 8), I = B2,
P = P3 := Λ(11, 59) \ P0 = {31, 41} and ` ≤ `3 =

∑
p∈P3

⌈
k
p

⌉
= 4. Then

2`3 < |I ′| = |B2|. By Corollary 1, we get M =: M3 and B =: B3 such that
(M3,B3,P3, `3) has Property H. We get M3 = {0, 5, 26, 36} which cannot be cov-
ered by P3. This is a contradiction. The remaining cases are excluded similarly.
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3.7. The cases k = 67, 71. We have q1 = 43, q2 = 67 and P1 ⊆ {11, 13, 19, 29, 31, 37, 41,
53, 71}. Then the pairs (iq1 , iq2) are given by

k = 67 : (i, i), 6 ≤ i ≤ 33;

k = 71 : (i, i), 0 ≤ i ≤ 35, i 6= 24, 25 and (24, 0), (25, 1), (26, 2), (27, 3).

Let k = 71 and (i43, i67) = (27, 3). We see that P1 = {11, 13, 19, 29, 31, 37, 41, 53, 71},
M1 = {4, 5, 8, 12, 13, 15, 17, 18, 26, 29, 31, 32, 33, 37, 39, 41, 44, 48, 51, 57, 59}, B1 =
{0, 1, 2, 6, 7, 9, 10, 11, 14, 16, 19, 20, 21, 22, 23, 24, 25, 28, 30, 34, 35, 36, 38, 40, 42, 43, 45,
46, 47, 49, 50, 52, 53, 54, 55, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69}, i11 = 4, i13 = 5,
i19 = 13. Therefore {8, 12, 17, 29, 33, 39, 41} is covered by 29, 31, 37, 41, 53, 71 imply-
ing either i29 = 12 or i29 ∈ {17, 29, 33}, i31 = 8. Let i ∈ B1 and p|ai with p ∈ P1.
Then there is a q ∈ P1 such that pq|ai since i(P1) is even. Next we consider the
case i31 = 8. Then {12, 17, 29, 33, 41} =: M′

1 is covered by 29, 37, 41, 53, 71 and
i29 6= 12. For 29 ∈ M′

1, we may suppose that either 29|a29, 41|a17, 29 · 41|a58 or
29|a29, 41|a41, 29 · 41|a0. Thus 0 or 58 in B1 correspond to 29. We argue as above
that for any other element of M′

1, there is no corresponding element in B1. For
the first case, we derive similarly that 31|a33, 37|a39, 31 · 37|a2 or 37|a17, 37 · 71|a54 or
37|a29, 37 · 71|a63 or 41|a17, 37 · 71|a58. Therefore

29 · 31 · 37 · 41 · 53 · 71 |
∏

(n+ id) for i ∈M1 ∪ {3, 27, 70} ∪ B′1

where B′1 = {2, 54, 58, 63} if i29 = 12 and {0, 58} otherwise. Further

i71 ∈M1 ∪ {27} ∪ B′1 and i71 6= 32.(22)

For each possibility i29 ∈ {0, 4, 12, 17}, we now take P0 = P1∪{43, 67}, p1 = 19, p2 =
29, (i1, i2) := (13, i29), I = B1 \ B′1, P = P2 := Λ(19, 29) \ P0 = {17, 47, 59, 61}
and ` = `2 =

∑
p∈P2

⌈
k
p

⌉
= 11. Then |I ′| = |B1| − 4 > 2`2. Thus the conditions of

Corollary 1 are satisfied and we getM =:M2 and B =: B2 with (M2,B2,P2, `2) hav-
ing Property H. We check that |M2| ≤ `2 only at i29 = 12 in which case we getM2 =
{9, 11, 19, 23, 36, 53}, B2 = {0, 1, 6, 7, 10, 14, 6, 20, 21, 22, 24, 25, 28, 30, 34, 35, 38, 40, 42,
43, 45, 46, 47, 49, 50, 52, 55, 56, 60, 61, 62, 63, 64, 65, 67, 68, 69}, i17 = 2, {9, 11, 23} is
covered by 47, 59, 61. Thus 47 · 59 · 61 | a9a11a23. Further p - ai for i ∈ B2 and p ∈ P2.
We now take P0 = P1 ∪P2 ∪ {43, 67}, p1 = 11, p2 = 13, (i1, i2) := (4, 5), I = B2, P =
P3 := Λ(11, 13) \P0 = {5} and ` = `3 =

⌈
k
5

⌉
= 15. Then |I ′| = |B2| > 2`3. By Corol-

lary 1, we getM =:M3 and B =: B3 such that (M3,B3,P3, `3) has Property H. We
calculate M3 = {0, 10, 25, 30, 35, 40, 50, 55, 60, 65}, B3 = {1, 6, 7, 14, 16, 20, 21, 22, 24,
28, 34, 38, 42, 43, 45, 46, 47, 49, 52, 54, 56, 58, 61, 62, 63, 64, 66, 67, 68, 69}, i5 = 0 and fur-
ther 5 - a20a45. Lastly we take P0 = P1 ∪ P2 ∪ P3 ∪ {43, 67}, p1 = 5, p2 = 11,
(i1, i2) := (0, 4), I = B3, P = P4 := Λ(5, 11) \ P0 = {3, 23} and ` = `4 =

∑
p∈P4

⌈
k
p

⌉
.

By Lemma 5, we see that M = {16, 22, 24, 28, 43, 46, 47, 49, 64, 67} is covered by
P4, i3 = i23 = 1, B = {1, 6, 7, 14, 21, 34, 38, 42, 52, 56, 61, 62, 63, 68, 69} and hence
3 - a7a34a52a61 and possibly 3 · 23|a1. Therefore ai ∈ {1, 2, 7, 14} for i ∈ B \ {1}. By
taking J = B \ {1}, we have B \ {1} = I03 ∪ I13 ∪ I−3 = I+5 ∪ I−5 with

I03 = {7, 34, 52, 61}, I13 = {6, 21, 42, 63, 69}, I−3 = {14, 38, 56, 62, 68}
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and

I+5 = {6, 14, 21, 34, 56, 61, 69}, I−5 = {7, 38, 42, 52, 62, 63, 68}.
Therefore

J1 = {6, 21, 69}, J2 = {42, 63}, J3 = {14, 56}, J4 = {38, 62, 68}.
and hence a6 = a21 = a69 = 1, a42 = a63 = 7, a14 = a56 = 14, a38 = a62 = a68 = 2 by
(17). Further we get a34 = a61 = 1 and a52 = 2 by taking residue classes modulo 5.
Since

(
1
71

)
=
(

2
71

)
= 1, we see that

(
ai
71

)
= 1 for i ∈ {6, 21, 34, 38, 52, 61, 62, 68, 69}

which is not valid by the possibilities of i71 given by (22).

Let k = 67 and (i43, i67) = (9, 9). We see that P1 = {11, 13, 19, 29, 31, 37, 41, 53},
M1 = {20, 22, 28, 31, 35, 38, 40, 42, 46, 47, 48, 50, 53, 61, 62, 64, 66}, B1 = {0, 1, 2, 3, 4,
5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 29, 30, 32, 33, 34, 36, 37,
39, 41, 43, 44, 45, 49, 51, 54, 55, 56, 57, 58, 59, 60, 63, 65}, i11 = i13 = i19 = 9 and {38, 40,
46, 50, 62} is covered by 29, 31, 37, 41, 53. Further p - ai for i ∈ B1 and p ∈ P1 except
possibly when 29|a50, 41|a62, 29·41|a21. Now we take P0 = P1∪{43, 67}, p1 = 11, p2 =
13, (i1, i2) := (9, 9), I = B1 \ {21} and P = P2 := Λ(11, 13) \ P0 = {5, 17, 47, 59, 61}.
If 5 - d, we observe that there is at least 1 multiple of 5 among n + (i11 + 11i)d,
0 ≤ i ≤ 5 and ` ≤

∑
p∈P2

⌈
k
p

⌉
− 1 = 23. Thus we always have ` ≤ 23 = `2. Then

|I ′| = |B1| − 1 > 2`2 since |B1| = 48. Thus the conditions of Corollary 1 are sat-
isfied and we get M =: M2, B =: B2 and (M2,B2,P2, `2) has Property H. We
haveM2 = {0, 1, 2, 3, 5, 6, 7, 8, 14, 19, 24, 26, 29, 39, 43, 44, 49, 54, 56, 60} which cannot
be covered by P2. This is a contradiction. The cases k = 67, (i43, i67) = (i, i) with
9 ≤ i ≤ 28 and k = 71, (i43, i67) = (i, i) with 13 ≤ i ≤ 28, i 6= 24, 25 are ex-
cluded similarly as in this paragraph. The remaining cases are excluded similarly as
k = 71, (i43, i67) = (27, 3) given in the preceding paragraph.

3.8. The cases k = 73, 79. We have q1 = 23, q2 = 73 and P1 ⊆ {13, 19, 29, 31, 37, 47,
59, 61, 67, 79}. Then the pairs (iq1 , iq2) are given by

k = 73 : (6, 2), (7, 3), (8, 4), (9, 5);

k = 79 : (0, 0), (1, 1), (2, 2), (7, 3), (8, 4), (9, 5), (10, 6), (11, 7), (12, 8),

(13, 9), (14, 10), (15, 11), (16, 12), (17, 13), (18, 14), (19, 15).

These pairs are of the form (i+ 4, i) except for (0, 0), (1, 1), (2, 2) in the case k = 79.

Let k = 79 and (i23, i73) = (8, 4). We see that P1 = {13, 19, 29, 31, 37, 47, 59, 61, 67, 79},
M1 = {1, 3, 10, 12, 15, 16, 18, 19, 20, 25, 30, 38, 39, 40, 46, 48, 51, 58, 64, 78}, B1 = {0, 2, 5,
6, 7, 9, 11, 13, 14, 17, 21, 22, 23, 24, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44, 45, 47,
49, 50, 52, 53, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76}, i13 =
12, i19 = 1 and {3, 10, 15, 16, 18, 19, 30, 40, 46, 48, 78} is covered by 29, 31, 37, 47, 59, 61,
67, 79. Thus

29 · 31 · 37 · 47 · 59 · 61 · 67 · 79 |
∏

(n+ id) for i ∈ {3, 10, 15, 16, 18, 19, 30, 40, 46, 48, 78}.

Further we have

i79 ∈ {10, 15, 16, 18, 19, 30, 40, 46, 48}(23)
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and either i29 = 19 or i29 ∈ {1, 10, 16, 18}, i31 = 15, i37 = 3, i59 = 19. Also for
p ∈ P1, we have p - ai for i ∈ B1 since i(P1) is even for i ∈ B1. For each possi-
bility i29 ∈ {1, 10, 16, 18, 19}, we now take P0 = P1 ∪ {23, 73}, p1 = 19, p2 = 29,
(i1, i2) := (1, i29), I = B1, P = P2 := Λ(19, 29)\P0 = {11, 17, 43, 53, 71} and ` = `2 =∑

p∈P2

⌈
k
p

⌉
= 19. Then |I ′| ≥ |B1| − 2 > 2`2. Thus the conditions of Corollary 1 are

satisfied and we haveM =:M2, B =: B2 and (M2,B2,P2, `2) has Property H imply-
ing i29 = 19 in which case we getM2 = {0, 6, 9, 11, 22, 24, 26, 33, 34, 43, 44, 55, 60, 66},
B2 = {2, 5, 7, 13, 14, 17, 21, 23, 27, 28, 29, 32, 35, 36, 37, 41, 42, 45, 47, 49, 50, 52, 53, 56, 57,
59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76}, i11 = 0, i17 = 9, {6, 24, 34} is cov-
ered by 43, 53, 71. Thus 43 · 53 · 71 | a6a24a34. Further p - ai for i ∈ B2 and
p ∈ P2. We now take P0 = P1 ∪ P2 ∪ {23, 73}, p1 = 11, p2 = 13, (i1, i2) :=
(0, 12), I = B2, P = P3 := Λ(11, 13) \ P0 = {5} and ` = `3 =

⌈
k
5

⌉
= 16. Then

|I ′| = |B2| > 2`3. By Corollary 1, we getM =:M3 and B =: B3 with (M3,B3,P3, `3)
having Property H. We calculate M3 = {7, 17, 32, 37, 42, 47, 57, 62, 67, 72}, B3 =
{2, 5, 13, 14, 21, 23, 27, 28, 29, 35, 36, 41, 45, 49, 50, 52, 53, 56, 59, 61, 63, 65, 68, 69, 70, 71,
73, 74, 75, 76}, i5 = 2 and 5 - ai for i ∈ B3. Lastly we take P0 = P1∪P2∪P3∪{23, 73},
p1 = 5, p2 = 11, (i1, i2) := (2, 0), I = B3, P = P4 := Λ(5, 11) \ P0 = {3, 41} and ` =
`4 =

∑
p∈P4

⌈
k
p

⌉
. By Lemma 5, we see that M = {23, 29, 35, 36, 50, 53, 56, 65, 71, 74} is

covered by P4, i3 = 2, i41 = 36, B = {5, 13, 14, 21, 28, 41, 45, 49, 59, 61, 63, 68, 69, 70, 73,
75, 76} and hence ai ∈ {1, 2, 7, 14} for i ∈ B. By taking J = B, we have B =
I03 ∪ I13 ∪ I23 = I+5 ∪ I−5 with

I03 = {5, 14, 41, 59, 68}, I13 = {13, 28, 49, 61, 70, 73, 76}, I23 = {21, 45, 63, 69, 75}
and

I+5 = {13, 21, 28, 41, 61, 63, 68, 73, 76}, I−5 = {5, 14, 45, 49, 59, 69, 70, 75}.
Thus

J1 = {13, 28, 61, 73, 76}, J2 = {49, 70}, J3 = {21, 63}, J4 = {45, 69, 75}.
and hence a13 = a28 = a61 = a73 = a76 = 1, a49 = a70 = 7, a21 = a63 = 14, a45 = a69 =
a75 = 2 by (17). Further we get a41 = a68 = 1 and a5 = a59 = 2 by residue modulo 5.
Since

(
1
79

)
=
(

2
79

)
= 1, we see that

(
ai
71

)
= 1 for i ∈ {5, 13, 28, 41, 45, 59, 61, 68, 69, 75, 76}

which is not valid by the possibilities of i79 given by (23). The other cases are excluded
similarly.

3.9. The case k = 83. We have q1 = 37, q2 = 83 and P1 = {17, 23, 29, 31, 47, 53, 59, 61,
67, 71, 73}. Then the pairs (iq1 , iq2) are given by

(13, 4), (14, 5), (15, 6), (16, 7), (17, 8), (18, 9), (19, 10),

(20, 11), (21, 12), (22, 13), (23, 14), (24, 15), (25, 16), (26, 17).

These pairs are of the form (i+ 9, i) with 4 ≤ i ≤ 17.

Let (i37, i83) = (13, 4). We see that P1 = {17, 23, 29, 31, 47, 53, 59, 61, 67, 71, 73},
M1 = {0, 2, 14, 16, 18, 19, 20, 25, 26, 28, 29, 34, 36, 40, 41, 53, 56, 58, 64, 70}, B1 = {1, 3,
5, 6, 7, 8, 9, 10, 11, 12, 15, 17, 21, 22, 23, 24, 27, 30, 31, 32, 33, 35, 37, 38, 39, 42, 43, 44, 45,
46, 47, 48, 49, 51, 52, 54, 55, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76,
77, 78, 79, 80, 81, 82}, i17 = 2, i23 = 18, i29 = 0, i31 = 25 and {14, 16, 20, 26, 28, 34, 40}
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is covered by 47, 53, 59, 61, 67, 71, 73. Further p - ai for i ∈ B1 and p ∈ P1. For
each possibility i73 ∈ {14, 16, 20, 26, 28, 34, 40}, we take P0 = P1 ∪ {37, 83}, p1 =
23, p2 = 73, (i1, i2) := (18, i73), I = B1, P = P2 := Λ(23, 73) \ P0 = {13, 19, 79} and
` = `2 =

∑
p∈P2

⌈
k
p

⌉
= 14. Then |I ′| = |B1| > 2`2. Thus the conditions of Corollary

1 are satisfied and we get M =: M2, B =: B2 and (M2,B2,P2, `2) has Property H
which is possible only if i73 = 14. Then M2 = {8, 9, 11, 22, 30, 35, 48, 49, 61, 68, 74}.
Therefore i13 = 9, i19 = 11 and i79 = 8. This is not possible by applying the case
k = 73 to (n + 9d) · · · (n + 81d). Similarly for (i37, i83) = (14, 5), we get i73 = 15,
i79 = 9 and this is excluded by applying the case k = 73 to (n + 10d) · · · (n + 82d).
For all the remaining cases, we continue similarly to find that M2 is not covered by
P2 for possible choices of i73 and hence they are excluded.

3.10. The case k = 89. We have q1 = 79, q2 = 89 and P1 = {13, 17, 19, 23, 31, 47, 53,
71, 83}. Then the pairs (iq1 , iq2) are given by (16, 6), (17, 7), (18, 8), (19, 9), (20, 10),
(21, 11). These pairs are of the form (i+ 10, i) with 6 ≤ i ≤ 11.

Let (i79, i89) = (16, 6). We see that P1 = {13, 17, 19, 23, 31, 47, 53, 71, 83}, M1 =
{0, 1, 2, 3, 4, 10, 12, 17, 19, 24, 26, 27, 30, 33, 38, 42, 43, 44, 48, 49, 56, 57, 61, 64, 69, 72, 76,
78, 82}, B1 = {5, 7, 8, 9, 11, 13, 14, 15, 18, 20, 21, 22, 23, 25, 28, 29, 31, 32, 34, 35, 36, 37,
39, 40, 41, 45, 46, 47, 50, 51, 52, 53, 54, 55, 58, 59, 60, 62, 63, 65, 66, 67, 68, 70, 71, 73, 74,
75, 77, 79, 80, 81, 83, 84, 85, 86, 87, 88}, i13 = 4, i17 = 10, i19 = 0, i23 = 3, i31 = 2,
i47 = 1 and {12, 24, 42} is covered by 53, 71, 83. Further p - ai for i ∈ B1 and
p ∈ P1. Now we take P0 = P1 ∪ {79, 89}, p1 = 31, p2 = 89, (i1, i2) := (2, 6),
I = B1 and P = P2 := Λ(31, 89) \ P0 = {7, 11, 41, 59, 73}. If 7 - d, we ob-
serve that there is at least 1 multiple of 7 among n + (i13 + 13i)d, 0 ≤ i ≤ 6
and ` ≤ `2 =

∑
p∈P2

⌈
k
p

⌉
− 1 = 28. Thus in all cases, we have ` ≤ `2 and

|I ′| = |B1| > 2`2. Therefore the conditions of Corollary 1 are satisfied and we
get M =: M2 and B =: B2 with (M2,B2,P2, `2) having Property H. We find
M2 = {7, 11, 13, 22, 25, 29, 32, 36, 39, 40, 51, 53, 54, 60, 62, 67, 73, 74, 81, 84, 88}, B2 =
{5, 8, 9, 14, 15, 18, 20, 21, 23, 28, 31, 34, 35, 37, 41, 45, 46, 47, 50, 52, 55, 58, 59, 63, 65, 66, 68,
70, 71, 75, 77, 79, 80, 83, 85, 86, 87}, i7 = 4, i11 = 7, i41 = 13 and {22, 36} is covered by
59, 73. Further for p ∈ P2, p - ai for i ∈ B2 \ {18}. We take P0 = P1 ∪ P2 ∪ {79, 89},
p1 = 41, p2 = 79, (i1, i2) := (13, 16), I = B2 \ {18}, P = P3 := Λ(41, 79) \ P0 =
{37, 43, 61, 67} and ` = `3 =

∑
p∈P3

⌈
k
p

⌉
= 10. Then |I ′| = |I| = |B2| − 1 > 2`3.

Thus the conditions of Corollary 1 are satisfied and we have M =: M3, B =: B3
and (M3,B3,P3, `3) has Property H. We get M3 = {9, 21, 28, 34, 52, 58}, B3 =
{5, 8, 14, 15, 20, 23, 31, 35, 37, 41, 45, 46, 47, 50, 55, 59, 63, 65, 66, 68, 70, 71, 75, 77, 79, 80,
83, 85, 86, 87}, i37 = 21, i43 = 9 and {28, 34} is covered by 61, 67. Therefore p ∈
{2, 3, 5, 29} whenever p|ai for i ∈ B3. Now we take P0 = P1∪P2∪P3∪{79, 89}, p1 =
7, p2 = 17, (i1, i2) := (4, 10), I = B3, P = P4 := Λ(7, 17) \ P0 = {29} and ` = `4 =⌈
k
29

⌉
= 4. Then |I ′| = |B3| − 1 since 46 ∈ B3 and |B3| − 1 > 2`3. By Corollary 1, we

getM =:M4 and B =: B4 with (M4,B4,P4, `4) having Property H. We findM4 =
{8, 37, 66}, B4 = {5, 14, 15, 20, 23, 31, 35, 41, 45, 47, 50, 55, 59, 63, 65, 68, 70, 71, 75, 77,
79, 80, 83, 85, 86, 87}, i29 = 8 and P (ai) ≤ 5 for i ∈ B4. Now we get a contradiction
by taking k = 6 and (n+ 47d)(n+ 55d)(n+ 63d)(n+ 71d)(n+ 79d)(n+ 87d) = b′y′2.
Similarly the pair (i79, i89) = (17, 7) is excluded by applying k = 6 to (n + 48d)(n +



20 NORIKO HIRATA-KOHNO, SHANTA LAISHRAM, T. N. SHOREY, AND R. TIJDEMAN

56d)(n + 64d)(n + 72d)(n + 80d)(n + 88d). For all the remaining cases, we continue
similarly to find that M3 is not covered by P3 and hence they are excluded.

4. Proof of Lemma 7

Assume that Q1 - d and Q2 - d. Then, by taking mirror image (4) of (2), there
is no loss of generality in assuming that 0 ≤ iQ1 < Q1, 0 ≤ iQ2 ≤ min(Q2 − 1, k−1

2
).

Further iQ2 ≥ k− k′ if Q2 = k. Let P0 = {Q0}, p1 = Q1, p2 = Q2, (i1, i2) := (iQ1 , iQ2),
I = [0, k) ∩ Z and P = P1 := Λ(Q1, Q2) \ P0. Then |I ′| ≥ k −

⌈
k
Q1

⌉
−
⌈
k
Q2

⌉
and ` ≤ `1 where `1 =

∑
p∈P1

⌈
k
p

⌉
. In fact we can take `1 =

∑
p∈P1

⌈
k
p

⌉
− 1 if

(k,Q0) = (79, 23) or (k,Q0) = (59, 29) with i7 ≤ 2 by considering multiples of 13, 11
or 19, 7, 11, respectively.

Let (k,Q0) 6= (79, 73). Then `1 <
1
2
|I ′|. We observe that i(P0) = 0 for i ∈ I ′

since Q0|d and by Corollary 1, we get M =: M1, B =: B1 and (M1,B1,P1, `1) has
Property H. We now restrict to all such pairs (iQ1 , iQ2) with |M1| ≤ `1 and M1 is
covered by P1. These pairs are given by

k Q0 (Q1, Q2) (iQ1 , iQ2)
29 19 (7, 17) (0, 0), (0, 11)
37 19 or 29 (7, 17) (0, 0), (1, 2)
47 29 (7, 17) (0, 0), (4, 12)
59 29 (7, 17) (1, 1), (1, 6)
71 43 (53, 67) (0, 0)
89 79 (23, 73) (0, 0), (19, 15)

Let (k,Q0) = (79, 73) and (Q1, Q2) = (53, 67). We apply Lemma 5 to derive that
either |I1| ≤ `1, I1 is covered by P1, i(P1) is even for i ∈ I2 or |I2| ≤ `1, I2 is covered
by P1, i(P1) is even for i ∈ I1. We compute I1, I2 and we find that both I1 and I2
are not covered by P1 for each pair (i53, i67) with 0 ≤ i53 < 53, 0 ≤ i67 ≤ k−1

2
.

Let (k,Q0) = (37, 29), (Q1, Q2) = (7, 17) and (i7, i17) = (1, 2). Then P1 =
{11, 13, 19, 23, 37}. We find thatM1 = {3, 7, 10, 13, 14, 17, 23, 25}, B1 = {0, 4, 5, 6, 9, 11,
12, 16, 18, 20, 21, 24, 26, 27, 28, 30, 31, 32, 33, 34, 35}, i11 = 3, i13 = 10 and {7, 13, 17}
is covered by 19, 23, 37. Further p - ai for p ∈ P1, i ∈ B1. Now we take P0 =
P1∪{7, 17, 29}, p1 = 11, p2 = 13, (i1, i2) := (3, 10), I = B1, P = P2 := Λ(11, 13)\P0 =
{5, 31} and ` = `2 =

∑
p∈P2

⌈
k
p

⌉
= 10. Thus |I ′| = |I| = |B1| = 21 > 2`2.

Then the conditions of Corollary 1 are satisfied and we have M =: M2,B =: B2
and (M2,B2,P2, `2) has Property H. We get M2 = {5, 6, 16, 21, 26, 31}, B2 =
{0, 4, 9, 11, 12, 18, 20, 24, 27, 28, 30, 32, 33, 34, 35}, i5 = 1, 31|a5 and 5 - a11. Also
P (ai) ≤ 3 for i ∈ B2 and P (a31) = 5. Thus P (a30a31 · · · a35) ≤ 5 and this is ex-
cluded by the case k = 6. The other cases for k = 29, 37, 47 are excluded similarly.
Each possibility is excluded by the case k = 6 after showing P (a1a2 · · · a6) ≤ 5 when
(k,Q0) ∈ {(29, 19), (37, 19), (37, 29), (47, 29)}, (i7, i17) = (0, 0); P (a22a23 · · · a27) ≤ 5
when (k,Q0) = (29, 19), (i7, i17) = (0, 11); P (a30a31 · · · a35) ≤ 5 when (k,Q0) =
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(37, 19), (i7, i17) = (1, 2) and P (a40a41 · · · a45) ≤ 5 when (k,Q0) = (47, 29), (i7, i17) =
(4, 12).

Let (k,Q0) = (59, 29), (Q1, Q2) = (7, 17) and (i7, i17) = (1, 1). Then P1 =
{11, 13, 19, 23, 37, 47, 59}. We find thatM1 = {0, 12, 14, 20, 23, 24, 27, 30, 34, 38, 39, 40,
45, 47, 48, 53, 56, 58}, B1 = {2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 16, 17, 19, 21, 25, 26, 28, 31, 32, 33,
37, 41, 42, 44, 46, 49, 51, 54, 55}, i11 = i13 = i19 = i23 = 1, {30, 38, 48} is covered by
37, 47, 59. Further p - ai for p ∈ P1, i ∈ B1. Now we take P0 = P1 ∪ {7, 17, 29}, p1 =
11, p2 = 13, (i1, i2) := (1, 1), I = B1, P = P2 := Λ(11, 13) \ P0 = {5, 31, 43} and ` =
`2 =

∑
p∈P2

⌈
k
p

⌉
. By Lemma 5, we get M = {6, 11, 16, 21, 31, 32, 41, 44, 46}, i5 = 1, 31·

43|a32a44 and i(P2) is even for i ∈ B = {2, 3, 4, 5, 7, 9, 10, 13, 17, 19, 25, 26, 28, 33, 37, 42,
49, 51, 54, 55}. Further for p ∈ P2, p - ai for i ∈ B. Finally we apply Lemma 5
with P0 = P1 ∪ P2 ∪ {7, 17, 29}, p1 = 5, p2 = 11, (i1, i2) := (1, 1), I = B and
P = P3 := Λ(5, 11) \ P0 = {3, 41, 53}. We get M1 = {4, 7, 13, 25, 28, 42, 49, 54, 55}
which is covered by P3, i3 = 1, {42, 54} is covered by {41, 53} and i(P3) is even for
i ∈ B1 = {2, 3, 5, 9, 10, 17, 19, 33, 37}. Hence P (ai) ≤ 2 for i ∈ B1. Since

(
ai
29

)
=
(
n
29

)
and

(
2
29

)
6= 1, we see that ai = 1 for i ∈ B1. By taking J = B1, we derive that

either I+5 = ∅ or I−5 = ∅ which is a contradiction. The other case (i7, i17) = (1, 6) is
excluded similarly.

Let (k,Q0) = (71, 43), (Q1, Q2) = (53, 67), (i53, i67) = (0, 0). Then P1 = {7, 11, 13, 19,
23, 71}. We getM1 = {7, 11, 13, 14, 19, 21, 22, 23, 26, 28, 33, 35, 38, 39, 42, 43, 44, 46, 52,
55, 56, 57, 63, 65, 66, 69, 70}, B1 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 17, 18, 20, 24, 25, 27,
29, 30, 31, 32, 34, 36, 37, 40, 41, 45, 47, 48, 49, 50, 51, 54, 58, 59, 60, 61, 62, 64, 68}, i7 = i11
= i13 = i19 = i23 = 0, i71 = 43. Further, for p ∈ P1, p - ai for i ∈ B1. Now we
take P0 = P1 ∪ {43, 53, 67}, p1 = 11, p2 = 13, (i1, i2) := (0, 0), I = B1, P = P2 :=
Λ(11, 13)\P0 = {5, 17, 29, 31, 37, 47, 59, 61} and ` = `2 =

∑
p∈P2

⌈
k
p

⌉
. By Lemma 5, we

see that M = {5, 10, 15, 17, 20, 29, 30, 31, 34, 37, 40, 45, 47, 51, 58, 59, 60, 61, 62, 68} is
covered by P2, i(P2) is even for i ∈ B = {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 41,
48, 49, 50, 54, 64}. We get i5 = i17 = i29 = i31 = 0, and {37, 47, 59, 61} is covered by
37, 47, 59, 61. Thus 37 · 47 · 59 · 61|a37a47a59a61. Further p - ai for i ∈ B and p ∈ P2.
We take P0 = P1 ∪ P2 ∪ {43, 53, 67}, p1 = 5, p2 = 11, (i1, i2) := (0, 0), I = B2,
P = P3 := Λ(5, 11) \ P0 = {3, 41} and ` = `3 =

∑
p∈P3

⌈
k
p

⌉
. By Lemma 5,

we see that M1 = {3, 6, 12, 24, 27, 41, 48, 54} is covered by P3, i(P3) is even for
i ∈ B1 = {1, 2, 4, 8, 9, 16, 18, 32, 36, 49, 64}. Thus i3 = 0 implying i41 = 0 and p = 2
whenever p|ai for i ∈ B1. By taking J = B1, we have B1 = I+5 ∪ I−5 with

I+5 = {1, 4, 9, 16, 36, 49, 64}, I−5 = {2, 8, 18, 32}.

Thus ai = 1 for i ∈ I+5 and ai = 2 for i ∈ I−5 since ai ∈ {1, 2} for i ∈ B1. This is a
contradiction since 43|d,

(
ai
43

)
=
(
n
43

)
and

(
1
43

)
6=
(

2
43

)
.

Let k = 89, Q0 = 79, (Q1, Q2) = (23, 73), (i23, i73) = (19, 15). Then P1 =
{13, 19, 29, 31, 37, 47, 59, 61, 67, 79, 89}. We find thatM1 = {1, 9, 10, 12, 14, 21, 23, 26,
27, 29, 30, 31, 36, 41, 49, 50, 51, 57, 59, 62, 69, 75}, B1 = {0, 2, 3, 4, 5, 6, 7, 8, 11, 13, 16, 17,
18, 20, 22, 24, 25, 28, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 47, 48, 52, 53, 54, 55, 56, 58,
60, 61, 63, 64, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87}, i13 =
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10, i19 = 12, i29 = 1, i31 = 26, i37 = 14 and {9, 21, 27, 29, 41} is covered by 47, 59, 61, 67, 89.
Thus i89 ∈ {9, 21, 27, 29, 41}. Further for p ∈ P1, p - ai for i ∈ B1. Now we take
P0 = P1 ∪ {23, 73, 79}, p1 = 19, p2 = 29, (i1, i2) := (12, 1), I = B1, P = P2 :=
Λ(19, 29) \ P0 = {11, 17, 43, 53, 71} and ` = `2 =

∑
p∈P2

⌈
k
p

⌉
= 22. Thus |I ′| = |I| =

|B1| > 2`2. By Corollary 1, we have M =: M2, B =: B2 and (M2,B2,P2, `2) has
Property H. We get M2 = {0, 2, 3, 11, 17, 20, 22, 33, 35, 37, 44, 45, 54, 55, 66, 71, 77},
B2 = {4, 5, 6, 7, 8, 13, 16, 18, 24, 25, 28, 32, 34, 38, 39, 40, 43, 46, 47, 48, 52, 53, 56, 58, 60,
61, 63, 64, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87}, i11 = 0, i17 = 3,
i43 = 2 and {17, 35} is covered by 53, 71. Further p - ai for i ∈ B2 and p ∈ P2.
We take P0 = P1 ∪ P2 ∪ {23, 73, 79}, p1 = 11, p2 = 13, (i1, i2) := (0, 10), I = B2,
P = P3 := Λ(11, 13) \ P0 = {5} and ` = `3 =

∑
p∈P2

⌈
k
p

⌉
= 18. Thus |I ′| =

|I| = |B2| > 2`3. Then the conditions of Corollary 1 are satisfied and we have
M =: M3, B =: B3 with (M3,B3,P3, `3) having Property H. We get M3 =
{8, 18, 28, 43, 48, 53, 58, 68, 73, 78, 83}, B3 = {4, 5, 6, 7, 13, 16, 24, 25, 32, 34, 38, 39, 40, 46,
47, 52, 56, 60, 61, 63, 64, 67, 70, 72, 74, 76, 79, 80, 81, 82, 84, 85, 86, 87}, i5 = 3. Lastly
we take P0 = P1 ∪ P2 ∪ P3 ∪ {23, 73, 79}, p1 = 5, p2 = 11, (i1, i2) := (3, 0), I = B3,
P = P4 := Λ(5, 11) \ P0 = {3, 41} and ` = `4 =

∑
p∈P4

⌈
k
p

⌉
. By Lemma 5, we

see that M = {4, 6, 34, 40, 46, 47, 61, 64, 67, 76, 82, 85} is covered by P4, i(P4) is even
for i ∈ B = {5, 7, 16, 24, 25, 32, 39, 52, 56, 60, 70, 72, 74, 79, 80, 81, 84, 86, 87}. Thus
i3 = 1, i41 = 6 and p ∈ {2, 7, 83} whenever p|ai for i ∈ B. Since 79|d, we see that
ai ∈ {1, 2, 83, 2 · 83} or ai ∈ {7, 14, 7 · 83, 14 · 83} for i ∈ B. The latter possibility is
excluded since 7 - (i − i′) for all i, i′ ∈ B. By taking J = B, we have B = I+5 ∪ I−5
with

I+5 = {7, 24, 32, 39, 52, 72, 74, 79, 84, 87}, I−5 = {5, 16, 25, 56, 60, 70, 80, 81, 86}.

Then we observe that either ai ∈ {1, 2 · 83} for i ∈ I+5 and ai ∈ {2, 83} for i ∈ I−5 or
vice-versa. This is not possible by parity argument. The other case (i23, i73) = (0, 0)
is excluded similarly.

5. Proof of Lemma 8

Let 7 ≤ k ≤ 97 be primes. Suppose that the assumptions of Lemma 8 are satisfied.
Assume that q1|d or q2|d and we shall arrive at a contradiction. We divide the proof
in subsections 5.1 and 5.2

5.1. The cases 7 ≤ k ≤ 23. We take q = 5 in (7) and (8). We may suppose that 5|d
if k = 7, 11 and 11|d if k = 13. Let 5|d. Then

S ⊆ {1, 6} or S ⊆ {2, 3}(24)

according as (n
5
) = 1 or −1, respectively. Thus (24) holds if k = 7, 11. Let 11|d. Then

S ⊆ {1, 3, 5, 15} or S ⊆ {2, 6, 10, 30}(25)

according as ( n
11

) = 1 or −1, respectively. Let 13|d. Then

S ⊆ {1, 3, 10, 30} or S ⊆ {2, 5, 6, 15}(26)
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according as ( n
13

) = 1 or −1, respectively. Thus either (25) or (26) holds if 13 ≤ k ≤
23.

By observing that ai’s divisible by a prime p can occur in at most
⌈
k
p

⌉
terms, we

have

|T1| ≤ t′1 :=


∑

p>5

⌈
k
p

⌉
if k = 7, 11∑

p>5

⌈
k
p

⌉
− 2 if 13 ≤ k < 23∑

p>5

⌈
k
p

⌉
− 3 if k = 23

(27)

where the sum is taken over all p ≤ k. For the last sum, we observe that 7 and 11
together divide at most six ai’s when k = 23. We divide the proof into 4 cases.

Case I. Let 2 - d and 3 - d. From (24), (25), (26), (10) and Lemma 1, we get

|T | ≤ t1 :=

{
max(f1(k, 1, 0) + f1(k, 6, 0), f1(k, 2, 0) + f1(k, 3, 0)) +

⌈
k
4

⌉
if k = 7, 11,

f1(k, 1, 0) + f1(k, 3, 0) + f1(k, 5, 0) + f1(k, 15, 0) +
⌈
k
4

⌉
if k > 11

since f1(k, a, δ) is non-increasing function of a and
∑

a∈R νe(a) ≤
⌈
k
4

⌉
. We check that

k = |T |+ |T1| ≤ t1 + t′1 < k, a contradiction.

Thus we have either 2|d or 3|d. Let k = 7, 11. If 2|d, then S ⊆ {1} or S ⊆ {3}. If
3|d, we have S ⊆ {1} or S ⊆ {2}. By Lemma 2, we get |T | ≤ k−1

2
. We check that

k = |T |+ |T1| ≤ k−1
2

+ t′1 < k by (27). This is a contradiction. From now on, we may
also that suppose that 13 ≤ k ≤ 23.

Case II. Let 2|d and 3 - d. Then S ⊆ {1, 3, 5, 15} if 11|d and S ⊆ {1, 3} or S ⊆ {5, 15}
if 13|d. Let 2||d. From (10) and Lemma 1 with δ = 1, we get

|T | ≤ F (k, 1, 1) + F (k, 3, 1) + F (k, 5, 1) + F (k, 15, 1) =: t2.

Let 4||d. From ai ≡ n(mod 4), we see that S ⊆ {1, 5} or S ⊆ {3, 15} if 11|d and
either S = ∅ or S = {1}, {3}, {5} or {15} if 13|d. Therefore

|T | ≤ F (k, 1, 2) + F (k, 5, 2) =: t3.

by Lemma 1 with δ = 2. Let 8|d. Then ai ≡ n(mod 8) and Lemma 1 with δ = 3
imply

|T | ≤ F (k, 1, 3) =: t4.

Thus |T | ≤max(t2, t3, t4). This with (27) contradicts (9).

Case III. Let 2 - d and 3|d. From ai ≡ n(mod 3), we see that either S = ∅ or
S = {1}, {2}, {5} or {10} if 11|d and S ⊆ {1, 10} or S ⊆ {2, 5} if 13|d. By (10) and
Lemma 1, we get

|T | ≤ F (k, 1, 0) + F (k, 5, 0),

which together with (27) contradicts (9).

Case IV. Let 2|d and 3|d. Then S ⊆ {1}, {5}. By Lemma 2, we get |T | ≤ k−1
2

. We

check that k = |T |+ |T1| ≤ k−1
2

+ t′1 < k, a contradiction.
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5.2. The cases k ≥ 29. Let 29 ≤ k ≤ 59 and 19|d. Then by Lemma 7 with Q0 = 19,
we get 7|d or 17|d. Thus we get a prime pair (Q,Q′) = (7, 19) or (Q,Q′) = (17, 19)
such that QQ′|d. Similarly we get (Q,Q′) = (7, 29) or (Q,Q′) = (17, 29) with QQ′|d
when 31 ≤ k ≤ 59 and 29|d. Let k = 71. Then we have either 43|d, 67|d or 43|d, 67 - d
or 43 - d, 67|d. We get prime pair (Q,Q′) = (43, 67) with QQ′|d if 43|d, 67|d. If
43|d, 67 - d, we get from Lemma 7 with Q0 = 43 that 53|d and we take (Q,Q′) =
(43, 53) such that QQ′|d. If 43 - d, 67|d, we get from Lemma 7 with Q0 = 67 that
53|d and we take (Q,Q′) = (53, 67) such that QQ′|d. Similarly we get prime pairs
(Q,Q′) with QQ′|d for each 61 ≤ k ≤ 97 are given in the table below. For q ≤ 17, we
see that

|T1| ≤
∑
p>q

p6=Q,Q′

⌈k
p

⌉
≤ t′2 :=


∑

p>q

⌈
k
p

⌉
− 2 if 29 ≤ k ≤ 61∑

p>q

⌈
k
p

⌉
− 4 if 61 < k < 97∑

p>q

⌈
k
p

⌉
− 7 if k = 97

(28)

where the sum is taken over primes ≤ k.

Case I. Let 2 - d and 3 - d. We take q = 11 if k = 71, (Q,Q′) = (43, 67) and

q = 7 otherwise, in (7) and (8). From
(
ai
Q

)
=
(
n
Q

)
and

(
ai
Q′

)
=
(
n
Q′

)
, we get

S ⊆ S ′ = {s : s squarefree, P (s) ≤ q,
(
s
Q

)
=
(
n
Q

)
,
(
s
Q′

)
=
(
n
Q′

)
}. By considering((

n
Q

)
,
(
n
Q′

))
= (1, 1), (1,−1), (−1, 1) and (−1,−1), we get four possibilities of S ′.

For each value of k, we give below a table for (Q,Q′) and S ′.

k (Q,Q′) S ⊆ S ′ with S ′ given by one of
29 ≤ k ≤ 59 (7, 19), (7, 29) {1, 30}, {2, 15}, {3, 10}, {5, 6}
29 ≤ k ≤ 59 (17, 19), (17, 29) {1, 30, 35, 42}, {2, 15, 21, 70}, {3, 10, 14, 105}, {5, 6, 7, 210}

61 (11, 59) {1, 3, 5, 15}, {2, 6, 10, 30}, {7, 21, 35, 105}, {14, 42, 70, 210}
67, 71 (43, 53) {1, 6, 10, 15}, {2, 3, 5, 30}, {7, 42, 70, 105}, {14, 21, 35, 210}

71 (43, 67) See (29)
71 (53, 67) {1, 6, 10, 15}, {2, 3, 5, 30}, {7, 42, 70, 105}, {14, 21, 35, 210}
73 (23, 53) {1, 6, 70, 105}, {2, 3, 35, 210}, {5, 14, 21, 30}, {7, 10, 15, 42}
73 (23, 67) {1, 6, 35, 210}, {2, 3, 70, 105}, {5, 7, 30, 42}, {10, 14, 15, 21}
79 (23, 53), (53, 73) {1, 6, 70, 105}, {2, 3, 35, 210}, {5, 14, 21, 30}, {7, 10, 15, 42}
79 (23, 67), (67, 73) {1, 6, 35, 210}, {2, 3, 70, 105}, {5, 7, 30, 42}, {10, 14, 15, 21}
83 (23, 37), (37, 73) {1, 3, 70, 210}, {2, 6, 35, 105}, {5, 14, 15, 42}, {7, 10, 21, 30}
89 (23, 79), (73, 79) {1, 2, 105, 210}, {3, 6, 35, 70}, {5, 10, 21, 42}, {7, 14, 15, 30}
97 (23, 37), (23, 83) {1, 3, 70, 210}, {2, 6, 35, 105}, {5, 14, 15, 42}, {7, 10, 21, 30}

For k = 71, (Q,Q′) = (43, 67), we get S ⊆ S ′ with S ′ given by one of

{1, 6, 10, 14, 15, 21, 35, 210}, {2, 3, 5, 7, 30, 42, 70, 105}
{11, 66, 110, 154, 165, 231, 385, 2310}, {22, 33, 55, 77, 330, 462, 770, 1155}.

(29)
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From the possibilities of S ⊆ S ′ given by the above table, (10) and Lemma 1, we get

|T | ≤ t5 := max
∑
s∈S′

F (k, s, 0)

where the maximum is taken over all the four choices of S ′. This with (28) gives
|T |+ |T1| ≤ t5 + t′2 < k a contradicting (9).

Case II. Let 2|d and 3 - d. We take q = 7 for 2||d, 4||d and q = 11 for 8|d. Let 2||d.
Then S ⊆ {1, 3, 5, 7, 15, 21, 35, 105} =: S2. From (10) and Lemma 1 with δ = 1, we
get

|T | ≤
∑
s∈S2

F (k, s, 1) =: t6

Let 4||d. Then we see that either S ⊆ {1, 5, 21, 105} =: S41 or S ⊆ {3, 7, 15, 35} =:
S42. From (10) and Lemma 1 with δ = 2, we get

|T | ≤ max
i=1,2

∑
s∈S4i

F (k, s, 2) =: t7.

Hence, if 8 - d, then |T | ≤max(t6, t7). This with (28) implies |T |+ |T1| ≤ max(t6, t7)+
t′2 < k, contradicting (9).

Let 8|d. Then we see from ai ≡ n(mod 8) that S ⊆ {1, 33, 105, 385} =: S81 or S ⊆
{3, 11, 35, 1155} =: S82 or S ⊆ {5, 21, 77, 165} =: S83 or S ⊆ {7, 15, 55, 231} =: S84.
Then

|T | ≤ max
1≤i≤4

∑
s∈S8i

F (k, s, 3) =: t8.

by Lemma 1 with δ = 3. This with (28) implies |T |+|T1| ≤ t8+t
′
2 < k, a contradiction.

Case III. Let 2 - d and 3|d. We take q = 11. Then by modulo 3, we get either
S ⊆ {1, 7, 10, 22, 55, 70, 154, 385} =: S31 or S ⊆ {2, 5, 11, 14, 35, 77, 110, 770} =: S32.
By (10) and Lemma 1, we get

|T | ≤ max
i=1,2

∑
s∈S3i

F (k, s, 0) =: t9.

This together with (28) contradicts (9).

Case IV. Let 2|d and 3|d. Let 2||d. We take q = 7. Then we see that either
S ⊆ {1, 7} or S ⊆ {5, 35}. By (10) and Lemma 1, we get |T | ≤ F (k, 1, 1) +F (k, 7, 1)
which together with (28) contradicts (9).

Let 4||d. We take q = 13. From ai ≡ n(mod 12), we see that

S ⊆ S ′ ∈ S := {{1, 13, 385, 5005}, {5, 65, 77, 1001}, {7, 55, 91, 715}, {11, 35, 143, 455}}.
Then

|T | ≤ max
S′∈S

∑
s∈S′

F (k, s, 2)

which together with (28) contradicts (9).
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Let 8|d. We take q = 17. From ai ≡ n(mod 24), we see that S ⊆ S ′ =
{1, 385, 1105, 17017} or S ⊆ S

′′ ∈ S1 where S1 is the union of sets

{5, 77, 221, 85085}, {7, 55, 2431, 7735}, {11, 35, 1547, 12155}, {13, 85, 1309, 5005},
{17, 65, 1001, 6545}, {91, 187, 595, 715}, {119, 143, 455, 935}.

Let S ⊆ S
′′ ∈ S1. Then

|T | ≤ max
S′′∈S1

∑
s∈S′′

F (k, s, 3) =: t10.

Let S ⊆ S ′. By Lemma 2, we get ν(1) ≤ k−1
2

. This together with ν(1105)+ν(17017) ≤
1 by 13·17|gcd(1105, 17017) and ν(385) ≤ 1 by Lemma 1 gives |T | ≤ k−1

2
+2. Therefore

|T | ≤max(t10,
k−1
2

+ 2). This with (28) contradicts (9). �

6. Proof of Theorem 4

Let k = 7. By the case k = 6, we may assume that 7 - d. Now the assertion
follows from Lemmas 8 and 6. Let k = 8. Then by applying the case k = 7 twice to
n(n+ d) · · · (n+ 6d) = b′y′2 and (n+ d) · · · (n+ 7d) = b′′y′′2, we get

(a0, · · · , a6), (a1, · · · , a7) ∈ {(2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10),

(2, 7, 6, 5, 1, 3, 2), (1, 2, 7, 6, 5, 1, 3), (10, 1, 2, 7, 6, 5, 1)}.
This gives (a0, · · · , a7) = (2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10) or their mirror im-
ages and the assertion follows. Let k = 9. By applying the case k = 8 twice to
n(n + d) · · · (n + 7d) = b′y′2 and (n + d) · · · (n + 8d) = b′′y′′2, we get the result.
Let k = 10. By applying k = 9 twice, we get (a0, a1, · · · , a8), (a1, a2, · · · , a8, a9) ∈
{(2, 3, · · · , 1, 10), (10, 1, · · · , 3, 2)} which is not possible.

Let k ≥ 11 and k′ < k be consecutive primes. We suppose that Theorem 4 is
valid with k replaced by k′. Let k|d. Then

(
ai
k

)
=
(
n
k

)
for all 0 ≤ i < k. By

applying the case k = k′ to n(n + d) · · · (n + (k′ − 1)d) = b′y′2 with P (b′) ≤ k′, we
get k′ ≤ 23 and 1, 2, 3, 5 ∈ {a0, a1, a2, · · · , ak′−1} in view of (5) and (6). Therefore(
2
k

)
=
(
3
k

)
=
(
5
k

)
= 1 which is not possible.

Thus we may assume that k - d and k|n+id for some 0 ≤ i ≤ k−1
2

by considering the
mirror image (4) of (2) whenever Theorem 4 holds at k′. We shall use this assertion
without reference in the proof of Theorem 4.

Let k = 11. By Lemmas 8 and 6, we see that 11|n + id for 0 ≤ i ≤ 3. If
11|n, the assertion follows by the case k = 10. Let 11|n + d. We consider (n +
2d) · · · (n + 10d) = b′y′2 with P (b′) ≤ 7 and the case k = 9 to get (a2, a3, · · · , a10) ∈
{(2, 3, 1, 5, 6, 7, 2, 1, 10), (10, 1, 2, 7, 6, 5, 1, 3, 2)}. The first possibility is excluded since
1 =

(
14
11

)
=
(
a2a7
11

)
=
(
1·6
11

)
= −1. For the second possibility, we observe P (a0) ≤

5 since gcd(a0, 7 · 11) = 1 and this is excluded by the case k = 6 applied to
n(n + 2d)(n + 4d)(n + 6d)(n + 8d)(n + 10d). Let 11|n + 2d. Then by the case
k = 8, we have (a3, a4, · · · , a10) ∈ {(2, 3, 1, 5, 6, 7, 2, 1), (3, 1, 5, 6, 7, 2, 1, 10),
(1, 2, 7, 6, 5, 1, 3, 2), (10, 1, 2, 7, 6, 5, 1, 3)}. The first three possibilities are excluded by
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considering the values of Legendre symbol mod 11 at a3, a8; a3, a4 and a3, a5, respec-
tively. If the last possibility holds, then a0 = 1 since gcd(a0, 2 · 3 · 5 · 7 · 11) = 1 and

this is not possible since 1 =
(
a0a4
11

)
=
(

(−2)2
11

)
= −1. Let 11|n + 3d. We consider

(n+ 4d) · · · (n+ 10d) = b′y′2 with P (b′) ≤ 7 and the case k = 7 to get (a4, · · · , a10) ∈
{(2, 3, 1, 5, 6, 7, 2), (3, 1, 5, 6, 7, 2, 1), (1, 5, 6, 7, 2, 1, 10), (2, 7, 6, 5, 1, 3, 2), (1, 2, 7, 6, 5, 1, 3),
(10, 1, 2, 7, 6, 5, 1)} which is not possible as above. This completes the proof for k = 11.
The assertion for k = 12 follows from that of k = 11.

Let k = 13. Then the assertion follows from Lemmas 8, 6 and the case k = 11.
Let k = 14. By applying k = 13 to n(n+ d) · · · (n+ 12d) = b′y′2 and (n+ d) · · · (n+
13) = b′′y′′2, we get the assertion. Let k = 15. Then applying k = 14 both to
n(n + d) · · · (n + 13d) and (n + d) · · · (n + 14d) gives the result. Now k = 16 follows
from the case k = 15.

Let k = 17. Then 17|n + 2d or 17|n + 3d by Lemmas 8, 6 and the case k = 15.
Let 17|n + 2d. Then by applying the case k = 14 to (n + 3d) · · · (n + 16d) = b′y′2

with P (b′) ≤ 13, we get (a3, a4, · · · , a16) ∈ {(3, 1, · · · , 15, 1), (1, 15, · · · , 1, 3)}. The
first possibility is excluded by Legendre symbol mod 17 at a3, a4. For the second, we
observe that gcd(a1, 7 ·11 ·13 ·17) = 1 which is not possible by the case k = 6 applied
to (n+ d)(n+ 4d)(n+ 7d)(n+ 10d)(n+ 13d)(n+ 16d). Let 17|n+ 3d. By considering
(n + 4d) · · · (n + 16d) = b′y′2 with P (b′) ≤ 13, it follows from the case k = 13 that
(a4, · · · , a16) ∈ {(3, 1, · · · , 14, 15), (1, 5, · · · , 15, 1), (15, 14, · · · , 1, 3), (1, 15, · · · , 5, 1)}.
The first three possibilities are excluded by considering Legendre symbol mod 17 at
a4, a5. If the last possibility holds, we observe that a1 = 1 since gcd(a1,

∏
p≤17 p) = 1

and then 1 =
(
a1a4
17

)
=
(

(−6)(−3)
17

)
= −1, a contradiction. The assertion for k = 18

follows from that of k = 17.

Let k = 19. Then the assertion follows from Lemmas 8, 6 and the case k = 17. By
applying k = 19 twice to n(n+ d) · · · (n+ 18d) and (n+ d) · · · (n+ 18d)(n+ 19d), the
assertion for k = 20 follows and this implies the cases k = 21, 22.

Let k = 23. We see from Lemmas 8, 6 and the case k = 20 that 23|n+ 3d. We con-
sider k = 19 and (n+4d) · · · (n+22d) = b′y′2 with P (b′) ≤ 19 to get (a4, a5, · · · , a22) =
(1, 5, · · · , 21, 22) or (22, 21, · · · , 5, 1). By considering the values of Legendre symbol
mod 23 at a4 and a5, we may assume the second possibility. Now P (a2) ≤ 11 and
this is not possible by the case k = 11 applied to (n + 2d)(n + 4d) · · · (n + 22d).
Let k = 24. We get (a0, a1, · · · , a23) = (5, 6, · · · , 3, 7), (7, 3, · · · , 6, 5) by considering
k = 23 both to n(n+ d) · · · (n+ 22d) and (n+ d) · · · (n+ 23d). Further the assertion
for 25 ≤ k ≤ 28 follows from k = 24.

Let k ≥ 29. First we consider k = 29. We see from Lemmas 8, 6 and the
case k = 25 that 29|n + 4d or 29|n + 5d. Let 29|n + 4d. Then considering k =
24 and (n + 5d)(n + 6d) · · · (n + 28d), we get (a5, a6, · · · , a28) = (5, 6, · · · , 3, 7) or
(7, 3, · · · , 6, 5). By observing 1 =

(
30
29

)
=
(
a5a6
29

)
=
(
1·2
29

)
= −1, we may assume the

second possibility. Then a1 = 1 implying 1 =
(
a2a8
29

)
=
(

(−2)4
29

)
= −1, a contradic-

tion. Let 29|n + 5d. Now by considering k = 23 and (n + 6d) · · · (n + 28d), we get
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(a6, a7, · · · , a28) ∈ {(5, 6, · · · , 26, 3), (6, 7, · · · , 3, 7), (3, 26, · · · , 6, 5),
(7, 3, · · · , 7, 6)}. Then we may restrict to the last possibility by considering the Le-
gendre symbol mod 29 at the first two entries in the remaining possibilities. It follows

that a3 = 1 implying 1 =
(
a3a9
29

)
=
(

(−2)4
29

)
= −1, a contradiction. This completes the

proof for k = 29. We now proceed by induction. By Lemmas 8 and 6, the assertion
follows for all primes k. Now Lemma 3 completes the proof of Theorem 4. �

7. Proof of Theorem 1

Observe that for all tuples in (5) and (6), the product of the ai’s is not a square.
Hence, by Theorem 4, we may assume that 101 ≤ k ≤ 109. Assume (1). Then
ordp(a0a1 · · · ak−1) is even for each prime p. Let 101 ≤ k ≤ 105. Then P (a4a5 · · · a100) ≤
97. Now the assertion follows from Theorem 4 by considering (n+ 4d) · · · (n+ 100d)
and k = 97. Let k = 106, 107. Then P (a4a5 · · · a102) ≤ 101. We may suppose
that P (a4a5) = 101 or P (a101a102) = 101 otherwise the assertion follows by the case
k = 99 in Theorem 4. Let P (a4a5) = 101. Then P (a6 · · · a102) ≤ 97 and the asser-
tion follows by k = 97 in Theorem 4. This is also the case when P (a101a102) = 101
since P (a4 · · · a100) ≤ 97 in this case. Let k = 108, 109. Then P (a6 · · · a102) ≤ 101.
Thus either P (a6a7) = 101 or P (a101a102) = 101. Let P (a6a7) = 101. Then
P (a8 · · · a102) ≤ 97. We may assume that 97|a8a9a10a11 or 97|a97 · · · a101a102. Let
97|a8a9a10a11. Then P (a12a13 · · · a102) ≤ 89 and the assertion follows by the case
k = 91 of Theorem 4. Let 97|a97 · · · a102. Then P (a8a9 · · · a96) ≤ 89 and the assertion
follows from the case k = 89 of Theorem 4. When P (a101a102) = 101, we argue as
above to get the assertion.

�
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[Erd39] P. Erdős, Note on the product of consecutive integers (II), Jour. London Math. Soc. 14
(1939), 245-249.
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[Obl50] R. Obläth, Über das Produkt fünf aufeinander folgender Zahlen in einer arithmetischen
Reihe, Publ. Math. Debrecen 1 (1950), 222-226.



AN EXTENSION OF A THEOREM OF EULER 29
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