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1 Introduction
With n, d and k positive integers, we set

∆(n, k, d) = n(n + d) · · ·
(
n + (k − 1)d

)
.

Fix d as above and real numbers ε > 0 and C ≥ d. We are interested in establishing that the
equation

(1) ∆(n, k, d) = by2

has finitely many solutions in positive integers n, k, b and y with

(2) gcd(n, d) = 1, k ≥ 3, n ≥
(
C − d + εd

)
k and P (b) ≤ Ck,

where P (b) denotes the largest prime dividing b. As we shall describe at the beginning of the third
section, traditional methods allow one to establish such a result when C is small and, in particular,
for C ≤ 2 (and a little beyond). But for large C, these methods fail. In this paper, we describe an
improvement on these methods which allows one to handle this problem for larger C as well. Our
main result is the following.
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Theorem 1. Fix a positive integer d. Let ε ∈ (0, 1) and C ≥ d be arbitrary. There is a finite effec-
tively computable set S = S(d, ε, C) of 4-tuples such that if (1) and (2) hold, then (n, k, b, y) ∈ S.

The above result is formulated in the way that we will establish it. We note, however, that
the condition gcd(n, d) = 1 can be dropped and the expression εd appearing in the lower bound
for n can be replaced by ε. Indeed, these are not actual improvements on Theorem 1 but rather
equivalent formulations of it.

2 Preliminaries
We suppose as we may that b is squarefree. For m a positive integer, we will also make use of the
notation νp(m) = e where pe‖m. Observe that it suffices to bound n and k as above for which (1)
has a solution satisfying (2). In fact, for each fixed k ≥ 3, there are finitely many possibilities for
squarefree b satisfying the last condition in (2). For each such b and solution to (1), we can consider
the product ∆(n, 3, d) which will necessarily be a square times a positive squarefree integer having
all of its prime factors ≤ Ck. Thus, we obtain

∆(n, 3, d) = b′y2,

where P (b′) ≤ Ck. There are finitely many possibilities then for b′, and we deduce (1) has finitely
many integer solutions as solutions correspond to integer points on the elliptic curve described by
∆(n, 3, d) = b′y2. That these integer points can be effectively computed is a consequence of, for
example, Theorem 4.2 in [1]. Thus, it suffices to show that (1) and (2) imply k is bounded.

Beginning with (1), for 0 ≤ j < k, we can write

n + jd = ajx
2
j , aj, xj ∈ Z, aj squarefree.

We will want to know that P
(
∆(n, k, d)

)
is large, so we state this as a first result.

Theorem 2. Fix a positive integer d. Let ε ∈ (0, 1) and C ≥ d be arbitrary. There is a finite
effectively computable set S ′ = S ′(d, ε, C) of 2-tuples such that if n and k are positive integers for
which

k ≥ 2, gcd(n, d) = 1, n ≥ (C − d + εd)k, (n, k) 6∈ S ′,

then
P

(
∆(n, k, d)

)
> Ck.

Proof. An asymptotic form of Dirichlet’s Theorem implies that there is a k0 such that if k ≥ k0,
then there is a prime in the set

{n + (k − bεkc+ 1)d, n + (k − bεkc+ 2)d, . . . , n + (k − 2)d, n + (k − 1)d}

for all n satisfying
(C − d + εd)k ≤ n ≤ e3Ck.

We deduce that if P
(
∆(n, k)

)
≤ Ck, then either k < k0 or n > e3Ck.
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Suppose that n > e3Ck. We show in this case that P
(
∆(n, k)

)
> Ck provided k is sufficiently

large. We use an idea of Erdős [3]. For each prime p ≤ Ck, we consider np from the set

(3) T = {n, n + d, . . . , n + (k − 1)d}

for which νp(np) is maximal. If x is the number of integers < np in T and y the number > np, then
x + y = k − 1. We also have

νp

( ∏
m∈T
m6=np

m

)
≤

∞∑
j=1

(⌊
x

pj

⌋
+

⌊
y

pj

⌋)
≤

∞∑
j=1

⌊
x + y

pj

⌋
= νp

(
(k − 1)!

)
.

We deduce that ∏
p≤Ck

pe‖∆(n,k,d)

pe ≤ (k − 1)!
∏

p≤Ck

np ≤ kk(n + kd)π(Ck) ≤ kk(2n)π(Ck).

Hence,

log
∏

p≤Ck
pe‖∆(n,k,d)

pe ≤ k log k + π(Ck) log(2n) ≤ k log k +
2Ck

log k
log(2n).

On the other hand,
log

∏
m∈T

m > log nk ≥ k log n.

Thus, ∏
p≤Ck

pe‖∆(n,k,d)

pe <
∏
m∈T

m

provided

log n ≥ log k +
2C

log k
log(2n).

The latter holds provided (
1− 2C

log k

)
log n ≥ log k +

2C log 2

log k
.

Since n > e3Ck, it suffices here for(
1− 2C

log k

)(
log k + 3C

)
≥ log k +

2C log 2

log k
,

which is easily seen to hold for k ≥ k′0, say.
We are left then with the task of considering finitely many k < max{k0, k

′
0}. A result of

G. Pólya [8] implies that P (n(n + d)) tends to infinity with n. In particular, there is an n0 such
that if n > n0, then for all k satisfying 2 ≤ k < max{k0, k

′
0}, one has

P
(
∆(n, k, d)

)
≥ P

(
n(n + d)

)
≥ C max{k0, k

′
0} > Ck.

What remains are pairs (k, n) satisfying 2 ≤ k < max{k0, k
′
0} and (C − d + εd)k ≤ n ≤ n0.

There are finitely many such pairs. The prime distribution results used above are effective, so we
deduce that the set S ′ given in the theorem is effectively computable, and the result follows.
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We note that [9] provides some explicit estimates that can be used for obtaining k0 for small d,
for example d ≤ 72. The use of Pólya’s result can be replaced by work in [7] for d ∈ {1, 2, 4} or
a use of estimates on linear forms of logarithms or by use of algorithms for Thue equations as in
[2] and [11]. The reader may also want to see [6] for related work on the largest prime factor of a
product of consecutive numbers in an arithmetic progression.

Given Theorem 2, one can show effectively that, with the conditions on n in (2), the inequality

P
(
∆(n, k, d)

)
> Ck

holds for all but finitely many pairs (n, k). This is more than enough to allow one to consider the
case that the aj are distinct. This is accomplished as follows. Since some xj is divisible by a prime
> Ck ≥ dk, we deduce that

n + kd > ajx
2
j ≥ (kd + 1)2 > k2d2 + kd.

Hence, n > k2d2. Now, if au = av with u 6= v, then

(k − 1)d ≥ |aux
2
u − avx

2
v| = au(xu + xv)|xu − xv| > auxu ≥

√
aux2

u >
√

k2d2 = kd,

which is impossible. Note that we also obtain that

n + kd > C2k2.

This implies kd < n so that n + kd ≤ 2n. We also have as a consequence of (1) that P (aj) ≤ Ck
for each j. Before proceeding, we prefer a stronger lower bound on n or, more precisely, on the
numbers xj . We address that next.

Lemma 1. If (1) and (2) hold and k is sufficiently large, then n > Ck2.8.

Proof. Assume n ≤ Ck2.8. We use that n + kd > C2k2 which easily implies n > k2/2. The basic
idea is to find a lower bound on the number of integers in the set T given in (3) that are squarefree.
We show that at least 57% of the elements of T are squarefree by making use of the assumption
n ≤ Ck2.8. We explain first why this leads us to a contradiction.

Let t = d0.57ke. Suppose there are ≥ t elements of T that are squarefree. Then

log
∏

0≤j<k

aj ≥ log
∏

0≤j<t

(n + jd) > t log n ≥ 0.57k log(k2/2) > 1.1k log k.

On the other hand, each prime p ≤ Ck divides at most bk/pc + 1 of the numbers aj . Recall that
the aj are squarefree and satisfy P (aj) ≤ Ck. For k sufficiently large, we deduce that

log
∏

0≤j<k

aj ≤
∑
p≤Ck

(⌊
k

p

⌋
+ 1

)
log p ≤ k

∑
p≤Ck

log p

p
+

∑
p≤Ck

log p

≤ 1.05k log k + 1.1Ck ≤ 1.1k log k.

Thus, we have a contradiction.
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We finish the proof by showing that there are at least t squarefree numbers in T . We consider
primes in three different ranges.

Let z = log k. We start with primes ≤ z. Since gcd(n, d) = 1, the number of multiples of m2

in T is 0 if m has a prime factor in common with d. Otherwise, the number of multiples of m2 in
T is ⌊

k

m2

⌋
+ Rm =

k

m2
+ R′

m

where Rm ∈ {0, 1} and R′
m ∈ (−1, 1]. Let P denote the product of the primes ≤ z. Note that

we are considering k sufficiently large. Then the sieve of Eratosthenes implies that number of
elements of T that are not divisible by p2 for every prime p ≤ z is∑

m|P

µ(m)

(
k

m2
+ R′

m

)
=

∏
p≤z

(
1− 1

p2

)
k + E,

where
|E| ≤ 2π(z) ≤ 2log k = klog 2 ≤ 0.01k.

Since ∏
p≤z

(
1− 1

p2

)
≥

∏
p

(
1− 1

p2

)
=

6

π2
> 0.6,

we deduce that there are at least 0.59k elements of T that are not divisible by p2 for every prime
p ≤ z.

Next, we observe that the number of elements of T divisible by p2 for some prime p ∈ (z, kd]
is bounded by ∑

z<p≤kd

(⌊
k

p2

⌋
+ 1

)
≤ k

∑
m>z

1

m2
+ π(kd) ≤ k

z − 1
+

2kd

log k
< 0.01k.

We deduce that there are at least 0.58k elements of T that are not divisible by p2 for every prime
p ≤ kd.

Finally, we consider the primes p > kd for which p2 divides some element of T . Observe that
necessarily p <

√
n + kd ≤

√
2n. Recall that we are assuming n ≤ Ck2.8. As a consequence

k ≥ (n/C)1/2.8 > n0.35. Thus, we are interested in primes p for which

n0.35 < kd < p ≤
√

2n.

Observe that, for each such p, there is at most one multiple of p2 in T . Furthermore, if ap2 is such
a multiple, then a is a positive integer satisfying

a ≤ n + kd

p2
≤ 2n

n2·0.35
= 2n0.3 < 2k0.3/0.35 < k0.9.

On the other hand, if we also have a second prime q ∈ (kd,
√

2n] for which aq2 ∈ T , then

kd > |ap2 − aq2| = a|p + q||p− q| ≥ a|p + q| > kd,
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an impossibility. Thus, the primes p > kd for which there is an element of T divisible by p2

correspond to distinct positive integer multipliers a < k0.9. In particular, we deduce that there are
< k0.9 such primes. Hence, there are also < k0.9 < 0.01k elements of T divisible by the square
of a prime exceeding kd. We obtain then that there are at least 0.57k elements of T that are not
divisible by the square of a prime, and the result follows.

The main idea behind the proof of Lemma 1 comes from the study of gaps between squarefree
numbers. Using [4], the lower bound can easily be sharpened further to obtain that n ≥ k5−ε

for any ε > 0. For our purposes, we only need the above weaker version of the lemma. In fact,
something considerably weaker would also do. Our interest is in the following result.

Corollary 1. Let α be such that 0 < α ≤ k0.8, and let T be as in (3). For k sufficiently large, the
numbers xj , with 0 ≤ j < k, for which aj ≤ αk are distinct.

Proof. By Lemma 1, we have n > Ck2.8. If aj ≤ αk, then we obtain from ajx
2
j ≥ n that

x2
j ≥

n

αk
>

Ck2.8

αk
=

Ck1.8

α
≥ dk.

We deduce that there can be at most one multiple of x2
j in T , and the corollary follows.

3 The Main Lemma
For the moment, consider the case d = 2. Let tj denote the jth odd squarefree number. The prior
approach to obtaining the solutions to (1) given (2) is to combine a lower bound and an upper
bound on

∑
0≤j<k log aj . The lower bound is obtained from

(4)
∑

0≤j<k

log aj ≥
∑

0≤j<k

log tj+1

and a fairly precise estimate for this last sum. The upper bound is obtained using an approach of
Erdős already used in the proof of Theorem 2. Here, the approach can be described roughly as
follows. For each prime p ≤ Ck, one can bound the number of aj divisible by p by estimating the
number of j ∈ {0, 1, . . . , k − 1} for which νp(n + jd) is odd. If the number of such j is s(p), then

(5)
∑

0≤j<k

log aj ≤
∑
p≤Ck

s(p) log p.

We deduce by combining the above estimates that∑
p≤Ck

s(p) log p ≥
∑

0≤j<k

log tj+1.

Ideally, we want appropriate estimates for each side of this inequality to lead to a contradiction
when k is large. Observe that the right side is independent of C. As a consequence, this approach
seemingly is bound to fail when C is large.
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We modify the above idea. To understand the modification, it helps to examine s(p) more
closely. The condition gcd(n, d) = 1 in (2) implies that s(p) = 0 if p|d. We observe that otherwise
we have

s(p) ≤


1 if k ≤ p ≤ Ck

2 if k/2 ≤ p < k

3 if k/3 ≤ p < k/2
...

...

These bounds on s(p) are in some sense best possible. Although we cannot hope to do better, what
we will show is that, as p varies, if s(p) takes many values near the upper bound indicated above,
then typically aj is considerably larger than tj+1. In other words, if the bounds for s(p) are near the
upper bounds suggested above, at least on average, then the lower bound for

∑
0≤j<k log aj given

by (4) can be improved.
We elaborate on the details of this idea next. We no longer restrict d to being 2. Our main

improvement is based on the following lemma.

Lemma 2. Let k be a positive integer. Fix positive real numbers α and β, possibly depending on
k, with β < 1. Let

A = [1, αk] ∩ {a0, a1, . . . , ak−1} and J = [βk, k).

Then there are at most ⌊
α

β

⌋2⌊
2
√

2α + β

β

⌋
·
⌊

4dα + β2

β2

⌋
different primes p in J with the property that p|a for two or more different a ∈ A.

Proof. We only consider α < k1/2 since the result is trivial for larger (and somewhat smaller)
values of α. Observe that if p ∈ J and p|a for some a ∈ A, then

1 ≤ a

p
≤ αk

βk
= α/β.

As a/p is also an integer, there are ≤ α/β possibilities for a/p. Suppose that p and q are primes in
J such that

(6)
ai

p
=

au

q
and

aj

p
=

av

q
,

where
ai, aj, au, av ∈ A, p|ai, p|aj, q|au, q|av.

Since aix
2
i ≥ n and ai ≤ αk, we have that xi ≥

√
n/(αk). On the other hand, aix

2
i ≤ n +

(k − 1)d ≤ 2n and p|ai so that xi ≤
√

2n/p ≤
√

2n/(βk). Similar arguments hold for bounding
xj , xu and xv. Hence,

(7)
√

n/(αk) ≤ xi, xj, xu, xv ≤
√

2n/(βk).

Observe that ∣∣(ai/p)x2
i − (aj/p)x2

j

∣∣ ≤ (k − 1)d/p ≤ d/β
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∣∣(au/q)x
2
u − (av/q)x

2
v

∣∣ ≤ (k − 1)d/q ≤ d/β.

Setting
X = x2

v

(
(ai/p)x2

i − (aj/p)x2
j

)
− x2

j

(
(au/q)x

2
u − (av/q)x

2
v

)
,

we see that

|X| ≤
d(x2

j + x2
v)

β
≤ 4dn

β2k
.

From (6), we also have

|X| =
ai

p

∣∣x2
i x

2
v − x2

jx
2
u

∣∣ ≥ ∣∣xixv + xjxu

∣∣∣∣xixv − xjxu

∣∣ ≥ 2n

αk

∣∣xixv − xjxu

∣∣.
Therefore,

(8)
∣∣xixv − xjxu

∣∣ ≤ 2dα

β2
.

For the moment, view p, xi and xj as fixed. We bound the number of distinct pairs (xu, xv)
satisfying (7) and (8). Observe that if δ = gcd(xi, xj), then aix

2
i and ajx

2
j are both divisible by pδ2.

Two multiples of pδ2 in the arithmetic progression n + jd with difference d must differ by at least
pδ2d ≥ βkδ2d. On the other hand, aix

2
i and ajx

2
j differ by at most (k−1)d. Hence, δ ≤ 1/

√
β. For

a fixed integer t ∈ [−2dα/β2, 2dα/β2], if xixv − xjxu = t, then the integer pairs (x, y) satisfying
xix− xjy = t are given by

x = xv +
xjs

δ
, y = xu +

xis

δ
, where s ∈ Z.

Due to (7), we are interested in the case that

xj

δ
≥

√
n/(αk)

1/
√

β
=

√
βn√
αk

and
∣∣∣∣xv +

xjs

δ

∣∣∣∣ ≤ √
2n√
βk

.

We deduce that there can be at most

2
√

2n√
βk

×
√

αk√
βn

+ 1 =
(
2
√

2α/β
)

+ 1

different values of s. Hence, we have
(
2
√

2α/β
)
+1 as an upper bound on the number of possibil-

ities for xu and xv satisfying (7) and xixv − xjxu = t for a fixed t ∈ [−2dα/β2, 2dα/β2]. Letting
t vary, we get the upper bound

B =

⌊
2
√

2α + β

β

⌋
·
⌊

4dα + β2

β2

⌋
on the total number of distinct pairs (xu, xv) that can satisfy (7) and (8). This includes the solution
xu = xi and xv = xj .

Set

N =

⌊
α

β

⌋2⌊
2
√

2α + β

β

⌋
·
⌊

4dα + β2

β2

⌋
+ 1.
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Observe that if we consider ≥ N pairs (u, v) of positive integers with each of u and v being
≤ α/β, then the pigeon-hole principle implies that there must be some pair that occurs > B times.
Assume that there are ≥ N different primes p in J with the property that p|ap and p|a′p for distinct
ap, a

′
p ∈ A. Then some pair (ap/p, a

′
p/p) occurs for > B primes. Let P be such a set of primes in

J so that, in particular,

(9) |P| > B.

For p ∈ P , let xp and x′p be such that apx
2
p and a′p(x

′
p)

2 are among the numbers n, n + d, . . . , n +
(k − 1)d. Thus, if q is in P , then we have that

ap

p
=

aq

q
,

a′p
p

=
a′q
q

,
∣∣xpx

′
q − x′pxq

∣∣ ≤ 2dα

β2

and, furthermore, that there are ≤ B distinct possibilities for the pair (xq, x
′
q). From (9), we deduce

that some pair (xq, x
′
q) is repeated. Recalling that α < k1/2, we obtain a contradiction to Corollary

1. Hence, the proof is complete.

4 Proof of Theorem 1
We will make use of the following result.

Lemma 3. Let sj denote the jth squarefree positive integer. There is an m0 such that if m is an
integer ≥ m0, then

(10)
m∏

j=1

sj ≥ (1.6)mm!.

We note that the above result is an easy consequence of the fact that the squarefree integers
have asymptotic density 6/π2. The reader can consult [5] for details. For the approach below, we
can also manage with the weaker and trivial estimate sj ≥ j instead of Lemma 3. Presumably,
Lemma 3 will, however, help in obtaining effective results for specific C.

We set α = k0.12 and β = e−33C in Lemma 2. Let U be the set of j ∈ {0, 1, . . . , k − 1} for
which aj ≤ αk, and let W be the set of j ∈ {0, 1, . . . , k− 1} for which aj > αk. In particular, we
have

|U |+ |W | = k.

It suffices to consider k large and, in particular, k ≥ 2m0. We set

m = k −
⌊

30Ck

log k

⌋
in Lemma 3. We use that either (i) |U | > m or (ii) |U | ≤ m. In the case of (i), we have

∏
j∈U

aj ≥
m∏

j=1

sj ≥ (1.6)mm!.
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We use the simple inequality m! ≥ mm/em which follows by observing em =
∑∞

j=0 mj/j! ≥
mm/m!. Thus, still in the case of (i), we deduce∑

j∈U

log aj ≥
m∑

j=1

log sj ≥ m log(k/2) + m
(
log(1.6)− 1

)
≥ m log k + m

(
log(1.6)− 1− log 2

)
≥ k log k − (30C + 1.23)k.

Observe that primes ≥ k can divide at most one aj . Hence, Lemma 2 implies that there is a
constant C ′ depending on C and d such that for all but ≤ C ′α3.5 ≤ C ′k0.5 primes p ∈ [βk, Ck],
there is at most one j ∈ U such that p|aj . For each of the ≤ C ′k0.5 primes p ∈ [βk, Ck] for which
there is more than one j ∈ U such that p|aj , we use that there are at most⌊

k

p

⌋
+ 1 ≤

⌊
k

βk

⌋
+ 1 ≤ 1

β
+ 1

such j. Observe also that such p are necessarily ≤ k so that log p ≤ log k for such p. For each
p < βk, we simply use the upper bound bk/pc + 1 on the number of j ∈ U for which p|aj . We
obtain ∑

j∈U

log aj ≤
∑
p≤Ck

log p +
C ′k0.5

β
log k +

∑
p≤βk

k log p

p
.

It is not difficult to estimate these sums, but we note that one can appeal to Theorem 4 and Theo-
rem 6 of [10]. Since k is sufficiently large, we easily deduce that∑

j∈U

log aj ≤ k log k + (1.5C + log β)k = k log k − 31.5Ck.

This contradicts the lower bound we had for the sum; hence, we are done in the case of (i).
Suppose now that (ii) holds. Then we must have |W | ≥

⌊
30Ck/ log k

⌋
. Since all of the prime

divisors of each aj are ≤ Ck and the aj are squarefree, we deduce

k−1∑
j=0

log aj ≤
∑
p≤Ck

(⌊
k

p

⌋
+ 1

)
log p ≤ k

∑
p≤k

log p

p
+

∑
p≤Ck

log p ≤ k log k + 2Ck,

where again we can appeal to Theorem 4 and Theorem 6 of [10] for estimates on the sums. On the
other hand,

k−1∑
j=0

log aj =
∑
j∈U

log aj +
∑
j∈W

log aj ≥
|U |∑
j=1

log sj + |W | log(αk).

Since |U | ≤ k, in the last sum each sj is easily ≤ 2k. On the other hand, αk = k1.12 > 2k. As
|U |+ |W | = k, we can find a lower bound for the right-hand expression above by setting

|U | = k −
⌊

30Ck

log k

⌋
= m and |W | =

⌊
30Ck

log k

⌋
.

We deduce
k−1∑
j=0

log aj ≥
m∑

j=1

log sj +

⌊
30Ck

log k

⌋
log

(
k1.12

)
.
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Appealing to the earlier estimate for this last sum, we deduce

k−1∑
j=0

log aj ≥ k log k − (30C + 1.23)k + 33.6Ck − 1.12 log k ≥ k log k + 2.3Ck.

Thus, in this case, we also obtain a contradiction.
Summarizing, we deduce that if k is sufficiently large, then there are no solutions to (1) and

(2). As we have seen, this implies the result stated in the theorem.
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