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ABSTRACT. Let g(n) be the largest positive integer k such that there
are distinct primes pi for 1 ≤ i ≤ k so that pi|n + i. This function is
related to a celebrated conjecture of C.A. Grimm. We establish upper
and lower bounds for g(n) by relating its study to the distribution of
smooth numbers. Standard conjectures concerning smooth numbers in
short intervals imply g(n) = O(nε) for any ε > 0. We also prove
unconditionally that g(n) = O(nα) with 0.45 < α < 0.46. The study
of g(n) and cognate functions has some interesting implications for gaps
between consecutive primes.

1. INTRODUCTION

In 1969, C.A. Grimm [8] proposed a seemingly innocent conjecture re-
garding prime factors of consecutive composite numbers. We begin by stat-
ing this conjecture.

Let n ≥ 1 and k ≥ 1 be integers. Suppose n + 1, · · · , n + k are all
composite numbers. Then there are distinct primes Pi such that Pi|(n + i)
for 1 ≤ i ≤ k. That this is a difficult conjecture having several inter-
esting consequences was first pointed out by Erdös and Selfridge [5]. For
example, the conjecture implies there is a prime between two consecutive
square numbers, something which is out of bounds for even the Riemann
hypothesis. In this paper, we will pursue this theme. We will relate sev-
eral results and conjectures regarding smooth numbers (defined below) to
Grimm’s conjecture.

To begin, we say that Grimm’s conjecture holds for n and k if there are
distinct primes Pi such that Pi|(n+i) for 1 ≤ i ≤ k whenever n+1, . . . , n+
k are all composites. For positive integers n > 1 and k, we say that (n, k)
has a prime representation if there are distinct primes P1, P2, . . . , Pk with
Pj|(n+ j), 1 ≤ j ≤ k. We define g(n) to be the maximum positive integer
k such that (n, k) has a prime representation. It is an interesting problem
to find the best possible upper bounds and lower bounds for g(n). If n′
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is the smallest prime greater than n, Grimm’s conjecture would imply that
g(n) > n′ − n. On the other hand, it is clear that g(2m) < 2m for m > 3.

The question of obtaining lower bounds for g(n) was attacked using
methods from transcendental number theory by Ramachandra, Shorey and
Tijdeman [15] who derived

g(n) ≥ c

(
log n

log log n

)3

for n > 3 and an absolute constant c > 0. In other words, for any suf-
ficiently large natural number n, (n, k) has a prime representation if k �
(log n/ log log n)3.

We prove:

Theorem 1.
(i) There exists an α < 1

2
such that g(n) < nα for sufficiently large n.

(ii) For ε > 0, we have |{n ≤ X : g(n) ≥ nε}| � Xexp(−(logX)
1
3
−ε)

where the implied constant depends only on ε.

We show in Section 3 that 0.45 < α < 0.46 is permissible in Theorem
1(i).

For real x, y, let Ψ(x, y) denote the number of positive integers ≤ x all
of whose prime factors do not exceed y. These are y-smooth numbers and
have been well-studied. In 1930, Dickman [3] proved that for any α ≤ 1,

lim
x→∞

Ψ(x, xα)

x

exists and equals ρ(1/α) where ρ(t) is defined for t ≥ 0 as the continuous
solution of the equations ρ(t) = 1 for 0 ≤ t ≤ 1 and −tρ′(t) = ρ(t − 1)
for t ≥ 1. Later authors derived refined results. We refer to [11] for an
excellent survey on smooth numbers. An important conjecture on smooth
numbers in short intervals is the following.

Conjecture 1.1. Let ε > 0. For sufficiently large x, we have

Ψ(x+ xε, xε)−Ψ(x, xε)� xε.

This is still open. Assuming Conjecture 1.1, we have the following.

Theorem 2. Let ε > 0. Then g(n) < nε for large n assuming Conjecture
1.1.

Let pi denote the ith prime. As a consequence of Theorem 2, we obtain

Corollary 1.2. Assume Grimm’s conjecture and Conjecture 1.1. Then for
any ε > 0,

pi+1 − pi < pεi(1)
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for sufficiently large i.

If we assume Grimm’s conjecture alone, then Erdős and Selfridge[5]
have shown that

pi+1 − pi � (pi/ log pi)
1/2,

which is something well beyond what the Riemann hypothesis would imply
about gaps between consecutive primes. Indeed, the Riemann hypothesis
implies an upper bound of O(p

1/2
i (log pi)). It was conjectured by Cramér

[1] in 1936 that
pi+1 − pi � (log pi)

2

If Cramér’s conjecture is true, then the result of Ramachandra, Shorey and
Tijdeman [15] would imply Grimm’s conjecture, at least for sufficiently
large numbers. In [13], Laishram and Shorey verified Grimm’s conjecture
for all n < 1.9× 1010. They also checked that pi+1 − pi < 1 + (log pi)

2 for
i ≤ 8.5× 108.

It is worth mentioning that there are several weaker versions of Grimm’s
conjecture that have also been attacked using methods of transcendental
number theory. For an integer ν > 1, we denote by ω(ν) the number of
distinct prime divisors of ν and let ω(1) = 0. A weaker version of Grimm’s
conjecture states that if n + 1, n + 2, . . . , n + k are all composite num-
bers, then ω(

∏k
i=1(n + i)) ≥ k. This conjecture is also open though much

progress has been made towards it by Ramachandra, Shorey and Tijdeman
[16].

We define g1(n) to be the maximum positive integer k such that

ω(
l∏

i=1

(n+ i)) ≥ l

for all 1 ≤ l ≤ k. Observe that g1(n) ≥ g(n). We prove

Theorem 3. There exists a γ with 0 < γ < 1
2

such that

g(n) ≤ g1(n) < nγ(2)

for large values of n.

We show in Section 5 that γ = 1
2
− 1

390
is permissible. This result will be

proved as a consequence of the following theorem which is of independent
interest.

Theorem 4. Suppose there exists 0 < α < 1
2

and δ > 0 such that∑
j≤mα

{
π(
m+mα

j
)− π(

m

j
)

}
≥ δmα(3)
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holds for large m. Then g1(n) < nγ with

γ = max(α,
1− δ(1− α)

2− δ
) <

1

2
.

for large n.

A conjecture coming from primes in short intervals states that(see for
example Maier [12]):

π(x+ xα)− π(x) ∼ xα

log x
as x→∞.

Assuming this conjecture, we obtain for m→∞,∑
j≤mα

{
π(
m+mα

j
)− π(

m

j
)

}
∼
∑
j≤mα

mα

j

log m
j

=
mα

logm

∑
j≤mα

1

j(1− log j
logm

)

∼ mα

logm

∫ mα

1

dt

t(1− log t
logm

)
.

Taking u = log t
logm

, we get∑
j≤mα

{
π(
m+mα

j
)− π(

m

j
)

}
∼ mα

∫ α

0

du

1− u
= mα[− log(1− u)]α0 = −mα log(1− α)

as m → ∞. Continuing as in the proof of Theorem 4, we obtain g1(n) <
nα1 with

α1 = max(α,
1 + (1− α) log(1− α)

2 + log(1− α)
).

Since log(1− α) ≈ −α for 0 < α < 1, we see that

1 + (1− α) log(1− α)

2 + log(1− α)
≈ 1− α(1− α)

2− α
=

1

2
(1− α + α2)(1− α

2
)−1

≈ 1

2
(1− α + α2)(1 +

α

2
) =

1

4
(2− α + α2 + α3)

and the function 1
4
(2 − α + α2 + α3) attains its maximum at α = 1

3
where

the value of α1 ≈ 0.4567. Hence, it is unlikely that we can get a result with
g1(n) < nγ with γ < .4567, by these methods. As such, this value g1(n) =
O(nα) seems to agree with the permissible value of 0.45 < α < 0.46 in
g(n) = O(nα).

It was noted by Erdös and Selfridge in [5] that “the assertion γ < 1
2

seems
to follow from a recent result of Ramachandra [14] but we do not give the
details here.” In [6], Erdös and Pomerance noted again that “Indeed from
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the proof in [14], it follows that there is an α > 0 such that for all large
n a positive proportion of the integers in (n, n + nα] are divisible by a
prime which exceeds n

15
26 . Using this result with the method in [5] gives

g(n) < n
1
2
−c for some fixed c > 0 and all large n.” However there is no

proof anywhere in the literature about this fact. We give a complete proof
in this paper by generalizing the result of Ramachandra [14] in Lemma 2.5.

2. PRELIMINARIES AND LEMMAS

We introduce some notation. We shall always write p for a prime number.
Let Λ(n) be the von Mangoldt function which is defined as Λ(n) = log p
if n = pr for some positive integer r and 0 otherwise. We write θ(x) =∑

p≤x log p. For real x, y, let Ψ(x, y) denote the number of positive integers
≤ x all of whose prime factors do not exceed y. We also write log2 x for
log log x. We begin with some results from prime number theory.

Lemma 2.1. Let k, t ∈ Z and x ∈ R. We have
(i) π(x) < x

log x
(1 + 1.2762

log x
) for x > 1.

(ii) pt > t(log t+ log2 t− c1) for some c1 > 0 and for large t.
(iii) θ(x) ≤ 1.00008x for x > 0.
(iv) θ(pt) > t(log t+ log2 t− c2) for some c2 > 0 and for large t.
(v) k! >

√
2πk e−kkke

1
12k+1 for k > 1.

The estimate (ii) is due to Rosser and Schoenfeld [18]. Inequalities
(i), (iii) and (iv) are due to Dusart [4]. The estimate (v) is Stirling’s for-
mula, see [17].

The following results are due to Friedlander and Lagarias [7].

Lemma 2.2. Let 0 < ε < 1 be fixed. Then there are positive constants c0
and c1 depending only on ε such that there are at most c1Xexp(−(logX)

1
3
−ε)

many n with 1 ≤ n ≤ X which do not satisfy

Ψ(n+ nε, nε)−Ψ(n, nε) ≥ c0n
ε.(4)

Lemma 2.3. There exist positive absolute constants α and c1 with 3
8
< α <

1
2

such that

Ψ(n+ nα, nα)−Ψ(n, nα) > c1n
α.(5)

for sufficiently large n.

Lemma 2.2 is obtained by taking α = β = ε in [7, Theorem 5] and
Lemma 2.3 is obtained by taking x = n, y = z = nα with α = 1

2
− η

2
in [7, Theorem 2.4]. From [10, Theorem 2] and the remarks after that, a
permissible value of α in Lemma 2.3 is given by an αwith 0.45 < α < 0.46.

The following is the key lemma which follows from the definition of g(n)
and relates the study of g(n) to smooth numbers.



6 SHANTA LAISHRAM AND M. RAM MURTY

Lemma 2.4. Let x, y, z ∈ R be such that Ψ(x + z, y) − Ψ(x, y) > π(y).
Then g(bxc) < z.

Proof. Let x ≤ n1 < n2 < · · · < nt ≤ x + z be all y-smooth numbers
with t > π(y). Then, (n1, nt−n1) does not have a prime representation. In
particular, (bxc, bzc) has no prime representation. Thus g(bxc) < z. �

The next result is a generalization of a result of Ramachandra [14].

Lemma 2.5. Let 1
33
< λ < 1

29
. For α = 1−λ

2
and for sufficiently large x, we

have ∑
n≤xα

{
π(
x+ xα

n
)− π(

x

n
)

}
≥ (

1

4
+
λ

2
− ε′)xα(6)

where ε′ > 0 is arbitrary small.

We postpone the proof of Lemma 2.5 to Section 4.

3. PROOF OF THEOREMS 1 AND 2

Proof of Theorem 1: (i) Let α be given by Lemma 2.3. We apply Lemma
2.4 by taking x = n, z = y = nα. Since π(y) = π(nα) < 2 nα

α logn
< c1n

α

for sufficiently large n, the assertion follows from Lemma 2.4 and Lemma
2.3. As remarked after Lemma 2.3, a permissible value of α is given by
0.45 < α < 0.46.
(ii) Let ε > 0 be given. By (i), we may assume that ε < 1

2
. Since π(nε) <

2 nε

ε logn
< c0n

ε for sufficiently large n where c0 is given by Lemma 2.2, the
assertion now follows from Lemma 2.4 by taking x = n, z = y = nε and
Lemma 2.2. �

Proof of Theorem 2: Let ε > 0 be given. We apply Lemma 2.4 by taking
x = n, z = y = nε. Since π(y) = π(nε) < 2 nε

ε logn
� nε for sufficiently

large n, the assertion follows from Lemma 2.4 and Conjecture 1.1. �

4. PROOF OF LEMMA 2.5

We follow the proof of Ramachandra in [14] and fill in the details as we
go along. Let α < 1

2
and 0 < β < 1

2
. By taking ε = xα−1 in [14, Lemma

1], we obtain∑
n≤x1−α

{
π(
x+ xα

n
)− π(

x

n
)

}
log

x

n
= (1− α)xα log x+O(xα).(7)
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We divide the interval [β, 1− α] as 0 < β = β0 < β1 < . . . < βm = 1− α
for some m. For 0 < r < s < 1, let

S(r, s) =
∑

xr≤n≤xs

{
π(
x+ xα

n
)− π(

x

n
)

}
log

x

n
.(8)

We would like to get an upper bound for S(β, 1− α) =
∑m−1

i=0 S(βi, βi+1).
We first prove the following lemma which is minor refinement of [14, Lemma
3].

Lemma 4.1. Let x ≥ 1 and 1 ≤ R ≤ S ≤ x1−α. For an integer d ≥ 1, let

Rd =
∑

R≤n≤S

{[x+ xα

nd

]
−
[ x
nd

]}
.(9)

Then

∑
R≤n≤S

{
π(
x+ xα

n
)− π(

x

n
)

}
≤ (2− ε)xα

log z
log(

S

R
+ 2)

(
1 +O(

1

R
+

1

log z
)

)
+O(zmax

d≤z
|Rd|)

(10)

where z ≥ 3 is an arbitrary real number and ε > 0 is arbitrary small.

Proof. Let

T = ∪
R≤n≤S

(
(
x

n
,
x+ xα

n
] ∩ Z

)
.

From T , we remove those which are divisible by primes ≤
√
z and let T1

be the remaining set. We note that for each d, the number of integers in T
divisible by d is

xα

d

∑
R≤n≤S

1

n
+Rd

Using Selberg’s sieve as in [14], we obtain the assertion of lemma. �

Let φ(u) = u− [u]− 1
2
. Then we can write[x+ xα

nd

]
−
[ x
nd

]
=
xα

nd
− φ(

x+ xα

nd
) + φ(

x

nd
).

The following result is a restatement of [14, Lemma 2] which follows from
a result of van der Corput (see [14]).

Lemma 4.2. Let u ≥ 1, V, V1 be real numbers satisfying 3 ≤ V < V1 ≤
2V, V1 ≥ V + 1 and u ≤ η ≤ 2u. Then∑

V≤n≤V1

φ(
η

n
) = O(V

1
2 log V + V

3
2u−

1
2 + u

1
3 ).(11)
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To get an upper bound for S(βi, βi+1), we take R = xβi , S = xβi+1 in
Lemma 4.1. Recall that βi+1 ≤ 1 − α. We subdivide (R, S] into intervals
of type (V, 2V ] and at most one interval of type (V, V1] with V1 ≤ 2V . We
apply Lemma 4.2 twice by taking η = x

d
and η = x+xα

d
to get

Rd = O
((
x

1
2
βi+1 + x

1
2
(3βi+1−1)d

1
2 + (

x

d
)
1
3

)
(log x)2

)
= O

((
x1−

3
2
αd

1
2 + x

1
3

)
(log x)2

)
,

since βi+1 ≤ 1− α Let 3α− 4
3
< δ < 5α−2

3
and take z = xδ. Then

zmax
d≤z
|Rd| = O(x1−

3
2
α+ 3

2
δ(log x)2)

and 1− 3
2
α + 3

2
δ < α. From (10), we obtain∑

xβi≤n≤xβi+1

{
π(
x+ xα

n
)− π(

x

n
)

}
≤ 2xα

δ
(βi+1 − βi).

Therefore an upper bound for∑
xβ≤n≤x1−α

{
π(
x+ xα

n
)− π(

x

n
)

}
log

x

n

is

2xα log x

δ
×

{(β1 − β0)(1− β0) + (β2 − β1)(1− β1) + · · ·+ (βm − βm−1)(1− βm−1)}.

We take βi’s to be equally spaced and take m sufficiently large. Since

2xα log x

δ

∫ 1−α

β

(1− t)dt =
xα log x

δ
(1− α2 − β(2− β)),

we obtain with (7) that

∑
n≤xβ

{
π(
x+ xα

n
)− π(

x

n
)

}
≥ (1− α− ε′ − 1− α2 − β(2− β)

δ
)xα.

(12)

where 1− 3
2
α + 3

2
δ < α and ε′ > 0 is arbitrary small.

Let 1
33
< λ < 1

29
and we put α = β = 1−λ

2
and δ = 4λ. Then 1 − 3

2
α +

3
2
δ < α and hence we obtain (6) from (12). �
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5. PROOF OF THEOREM 4 AND THEOREM 3

We begin with the proof of Theorem 4.

Proof. Recall that g1(n) is the largest integer k such that

ω(
l∏

i=1

(n+ i)) ≥ l

for 1 ≤ l ≤ k. Suppose that g1(n) > nγ . Then g1(n) > nα. Let k = [nα].
Then

ω(P ) ≥ k, P =
k∏
i=1

(n+ i).

By (3), ∑
j≤k

π

(
n+ k

j

)
− π

(
n

j

)
≥ δk.

Now the intervals [n, n + k], [n/2, (n + k)/2], ... are disjoint intervals.
In fact, if we write Ij = [n/j, (n + k)/j] = [aj, bj](say), then it is easily
seen b1 > a1 > b2 > a2 > b3 > a3 · · · by virtue of the condition that
k < nα with α < 1/2. A prime qi (say) lying in the interval Ij satisfies
n < jqi < n+k and consequently is a prime dividing P . Since these primes
qi are all distinct, and all of these primes are greater than n/k ≥ n1−α, we
deduce that there are at least δk distinct primes greater than n1−α dividing
P . Let δ′ ≥ δ be such that δ′k = dδke. Since ω(P ) ≥ k, there are at least
(1 − δ′)k other primes dividing P and (1 − δ′)k ∈ Z. Also k!|P since P
is a product of k consecutive numbers. All the prime factors of k! are less
than or equal to k < nα < n1−α since α < 1/2. Hence we get

P ≥ k!

 ∏
k<p<p(1−δ′)k

p

 (n1−α)δ
′k.

Now we apply the bounds provided by Lemma 2.1. By Lemma 2.1 (iii)
and (iv), we obtain

log

 ∏
k<p≤p(1−δ′)k

p

 =θ(p(1−δ′)k)− θ(k)

≥(1− δ′)k log(1− δ′)k + (1− δ′)k{log2(1− δ′)k − c2}
− 1.00008k

>(1− δ′)k log(1− δ′)k + k(c3 log2 c3k − c4)
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where c3, c4 are positive constants. This together with k! > (k
e
)k by Lemma

2.1 (v) and P < (2n)k imply

2n >
k

e
(1− δ′)1−δ′k1−δ′c5(log c3k)c3nδ

′(1−α)

=
1

e
(1− δ′)1−δ′c5(log c3k)c3(

k

nγ
)2−δ

′
nγ(2−δ

′)nδ
′(1−α)

> 2nγ(2−δ
′)+δ′(1−α) ≥ 2nγ(2−δ)+δ(1−α)2n

for large n since δ′ > δ and 1 − α > 1
2
> γ. This is a contradiction. Thus

g1(n) < k ≤ nα ≤ nγ . �

Proof of Theorem 3: From Lemma 2.5, we obtain (3) with α = 1−α
2

and
δ = 1

4
+ λ

2
− es′ for some 1

33
< λ < 1

29
. Now the assertion follows from (4).

Taking λ = 1
30

+ 2ε′ for instance, we get γ ≤ 1
2
− 1

390
. �

Remark: It is possible to improve the result we have obtained. However
the improvement is not substantial. Indeed the result of van der Corput has
been improved and using methods of Harman and Baker [2], it is possible
to obtain a small refinement. The details are rather technical and will be
discussed in a future paper by the junior author.
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