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Abstract. For a positive integer n and a real number α, the generalized Laguerre
polynomials are defined by

L(α)
n (x) =

n∑
j=0

(n+ α)(n− 1 + α) · · · (j + 1 + α)(−x)j

j!(n− j)!
.

These orthogonal polynomials are solutions to Laguerre’s Differential Equation
which arises in the treatment of the harmonic oscillator in quantum mechanics.
Schur studied these Laguerre polynomials for its interesting algebraic properties.

He obtained irreducibility results of L
(± 1

2 )
n (x) and L

(± 1
2 )

n (x2) and derived that the

Hermite polynomials H2n(x) and H2n+1(x)
x are irreducible for each n. In this arti-

cle, we extend Schur’s result by showing that the family of Laguerre polynomials

L
(q)
n (x) and L

(q)
n (xd) with q ∈ {± 1

3 ,±
2
3 ,±

1
4 ,±

3
4}, where d is the denominator of q,

are irreducible for every n except when q = 1
4 , n = 2 where we give the complete

factorization. In fact, we derive it from a more general result.

1. Introduction

For a positive integer n and a real number α, the generalized Laguerre polynomials
are defined by

L(α)
n (x) =

n∑
j=0

(n+ α)(n− 1 + α) · · · (j + 1 + α)(−x)j

j!(n− j)!
.

Let d > 1 be an integer and q be a rational number with denominator equal to d
written in its reduced form

q = u+
α

d
where u, α ∈ Z with 1 ≤ α < d and gcd(α, d) = 1. For integers a0, a1, · · · an, let

G(x) := Gq(x) =
n∑
j=0

aj(n+ q)(n− 1 + q) · · · (j + 1 + q)dn−jxj

=
n∑
j=0

ajx
j

(
n∏

i=j+1

(α + (u+ i)d)

)
.
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This is an extension of Hermite polynomials and generalized Laguerre polynomials.

In fact, when aj = (−1)j
(
n
j

)
, we obtain dnn!L

(q)
n (x

d
) and Hermite polynomials are

given by

H2n(x) = (−1)n22nn!L(− 1
2
)(x2) and H2n+1(x) = (−1)n22n+1n!xL( 1

2
)(x2).

Therefore we call G(x) the generalized Hermite-Laguerre polynomial. We have

G(xd) := Gq(x
d) =

dn∑
j=0

bjx
j where bj =

al
n∏

i=l+1

(α + (u+ i)d) if j = dl

0 otherwise.

We observe that the irreducibility of Gq(x
d) implies the irreducibility of Gq(x). There

is a slight difference in the notation of this paper from that of [ShTi10], [LaSh12]
and [LaSh09]; Gq(x) here is Gq+1(x) in the above papers. The first result on the
irreducibility of these polynomials is due to Schur. Schur [Sch29] proved that G− 1

2
(x2)

with an = ±1 and a0 = ±1 are irreducible and this implies the irreducibility of

Hermite poynomial H2n. Schur [Sch31] also established the irreducibility of H2n+1(x)
x

by showing that G 1
2
(x2) with an = ±1 and a0 = ±1 is irreducible except for n = 12

where it may have a quadratic factor. In this paper, we extend Schur’s result by
proving

Theorem 1. Let q ∈ {±1
3
,±2

3
,±1

4
,±3

4
}. The Laguerre polynomials L

(q)
n (x) and

L
(q)
n (xd), where d is the denominator of q, are irreducible for every n except when

q = 1
4
, n = 2 where

L
( 1
4
)

2 (x) =
1

32
(4x− 3)(4x− 15) and L

( 1
4
)

2 (x4) =
1

32
(4x4 − 3)(4x4 − 15).

In fact we derive Theorem 1 from the following general result extending the the-
orems of [LaSh12] and [LaSh09]. For a non-zero integer m, we denote by P (m) the
greatest prime divisor of m with the convention P (±1) = 1. Observe that if a poly-
nomial of degree m has a factor of degree k < m, then it has a co-factor of degree
m− k. Therefore when we consider a factor of a polynomial of degree m, we always
mean the factor whose degree is ≤ m

2
.

Theorem 2. Let q ∈ {±1
3
,±2

3
}. Assume that P (a0an) ≤ 3 and further 2 - a0an if

α+3(n+u) is a power of 2. Then the polynomials G(x) and G(x3) with q ∈ {−1
3
,−2

3
}

are both irreducible except when q = −2
3
, n = 2 where G(x) may have a linear factor

and G(x3) may have a cubic factor or when q = −1
3
, n = 43 where G(x3) may have a

factor of degree 5. Further the polynomials G(x) and G(x3) with q ∈ {1
3
, 2
3
} are both

irreducible except possibly when

(i) 1 + 3n = 2a where G 1
3
(x) may have a linear factor and G 1

3
(x3) may have a

quadratic or a cubic factor.
(ii) 2 + 3n = 2a and n 6= 42 where G 2

3
(x3) may have a quadratic factor.

(iii) 2 + 3n = 2b5c, b ≥ 0, c > 0 where G 2
3
(x) may have a linear factor and G 2

3
(x3)

may have a cubic factor.
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(iv) n = 42 where G 2
3
(x) may have a quadratic factor and G 2

3
(x3) may have a

factor of degree in {2, 4, 5, 6}.

Theorem 3. Let q ∈ {±1
4
,±3

4
}. Assume that P (a0an) ≤ 3 and further P (a0an) ≤

2 if α + 4(n + u) is a power of 3 when q ∈ {−1
4
,−3

4
} and 3|(α + 4n) when q ∈

{1
4
, 3
4
}. Then the polynomials G− 3

4
(x) and G− 3

4
(x4) are both irreducible. Further

G± 1
4
(x), G± 1

4
(x4), G 3

4
(x) and G 3

4
(x4) are irreducible except possibly when 3+4(n−1) =

3a if q = −1
4
; 1 + 4n = 3b5c, b, c ≥ 0, b+ c > 0 if q = 1

4
and 3 + 4n = 7y if q = 3

4
where

Gq(x) may have a linear factor and Gq(x
4) may have a factor of degree 4.

It follows from Theorem 3 that if n is a multiple of 3, then Gq(x
4) is irreducible

for q ∈ {±1
4
,±3

4
}. In Theorem 2, the case q = −2

3
, n = 2 is necessary since Gq(x) =

(x+ 2)2 and Gq(x) = (x3 + 2)2 when a0 = a1 = a2 = 1. The assumptions on a0an in
Theorems 2 and 3 are satisfied if |a0| = |an| = 1; in fact the assumptions of Theorem 3
are satisfied if P (a0an) ≤ 2. Therefore the assertions of Theorems are valid whenever
|a0| = |an| = 1 and further for Theorem 3 whenever P (a0an) ≤ 2. We believe that
for suitable choices of aj’s, many of the polynomials Gq(x) with conditions given in
Theorems 2 and 3 will have linear factor or G(xd) will have a factor of degree ≤ d
but we have not found out examples for the same. It will be interesting to either give
such examples or prove irreducibility completely for those cases.

The proofs of Theorems 2 and 3 are given in Sections 5 − 7. Further we prove
Theorem 1 in Section 8. The following result used in the proof of Theorem 3 is also
of independent interest.

Theorem 4. Let k ≥ 2, n > 4k and 2 - n. Then

P (n(n+ 4) · · · (n+ 4(k − 1))) > 4(k + 1)(1)

unless k = 2, n ∈ {11, 21, 45, 77, 121} and k = 3, n = 117.

As an immediate consequence of Theorem 4, we obtain

Corollary 1.1. Let k ≥ 2, n > 4k and 2 - n. Then

P (n(n+ 4) · · · (n+ 4(k − 1))) > 4k(2)

unless k = 2, n ∈ {21, 45}.

We give a proof of Theorem 4 in Section 4. In Section 2, we give some preliminaries
and in Section 3, we give statements and results on Newton polygons.

The proof of Theorems 1-3 involve combinations of ideas of p−adic Newton poly-
gons with estimates on the greatest prime factor of a product of consecutive terms
of an arithmetic progression. The new ingredients in the paper are Theorem 4 and
the exploitation of arithmetic properties of some special numbers arising out of ap-
plication of Newton polygon ideas and extending the arguments for Gq(x) to Gq(x

d)
where d is the denominator of q.
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2. Preliminaries

For positive integers m, d, k, we write

∆(m, d, k) = m(m+ d) · · · (m+ d(k − 1)).

Recall that for an integer m > 1, we denote by P (m) the greatest prime factor of m
and we put P (1) = 1. The following result is [LaSh12, Theorem 3].

Lemma 2.1. Let k ≥ 2 and d = 3. Let m and k be positive integers such that 3 - m
and m > 3k. Then

P (∆(m, 3, k)) > 3k unless (m, k) = (125, 2).(3)

For a prime p and a nonzero integer r, we define ν(r) = νp(r) to be the nonnegative
integer such that pν(r)|r and pν(r)+1 - r. We define ν(0) = +∞. The following classical
result is due to Legendre. See for example, Hasse [Hasse, Ch. 17, no. 3, p. 263].

Lemma 2.2. Let p be a prime. For any integer m ≥ 1, write m in base p as

m = mtp
t +mt−1p

t−1 + · · ·+m1p+m0

where 0 ≤ mi ≤ p− 1 for 0 ≤ i ≤ t. Then

νp(m!) =
m− sp(m)

p− 1

where sp(m) = mt + mt−1 + · · · + m1 + m0 is the sum of digits of m in base p. In
particular νp(m!) ≤ m−1

p−1 since sp(m) ≥ 1.

The next lemma is on solutions of some equations.

Lemma 2.3. Let x > 0, y > 0, z > 0 be integers. The solutions of the following
equations are given by

Equation Solutions
(i) ax − by = ±1, a, b ∈ {2, 3, 5} 3− 2 = 1, 22 − 3 = 1, 5− 22 = 1, 32 − 23 = 1
(ii) 2x + 3y = 5z 2 + 3 = 5, 24 + 32 = 52

(iii) 2x + 3y = 7z 22 + 3 = 7
(iv) 2x3y − 5z = ±1 2 · 3− 5 = 1, 23 · 3− 52 = −1
(v) 3x5y − 2z = ±1 3 · 5− 24 = −1
(vi) 2x5y − 3z = ±1 2 · 5− 32 = 1, 24 · 5− 34 = −1

The assertion (i) is a special case of Catalan’s Conjecture, now Mihailescu’s The-
orem when x > 1, y > 1, see [Mih04]. The case x = 1 or y = 1 is immediate. The
assertions (ii) and (iii) are due to Nagell [Nag58]. For assertions (iv) − (vi), see
[LaSh06a, Lemma 4].

The next lemma is [LaSh12, Corollary 2.12] together with computations forX ≤ 80.
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Lemma 2.4. Let X ≥ 1, 3 - X and 1 ≤ i ≤ 7. Then the solutions of

P (X(X + 3i)) = 5 and 2|X(X + 3i)

are given by

(i,X) ∈ {(1, 2), (1, 5), (1, 125), (2, 4), (2, 10), (2, 250), (3, 1), (3, 16), (4, 8),

(4, 20), (4, 500), (5, 5), (5, 10), (5, 25), (5, 625), (6, 2), (6, 32), (7, 4)}.

We also need the following result which is [LaSh12, Corollary 2.3] and [LaSh09,
Corollary 4.3].

Lemma 2.5. Let d ∈ {3, 4}, gcd(n, d) = 1 and 6450 < n ≤ 10.6 · 3k if d = 3 and
106 < n ≤ 138 · 4k if d = 4. Then P (∆(n, d, k)) ≥ n.

Let pi,µ,l denote the ith prime congruent to l modulo µ. Let δµ(i, l) = pi+1,µ,l−pi,µ,l.
The following lemma is a computational result.

Lemma 2.6. (i) Let l ∈ {1, 2}. Then δ3(i, l) ≤ 60 for pi,3,l ≤ 7348.

(ii) Let l ∈ {1, 3}. Then δ4(i, l) ≤ 264 for pi,4,l ≤ 1.1 ·107 except when (pi,4,l, pi+1,4,l) ∈
{(7856441, 7856713), (10087201, 10087481), (3358151, 3358423),
(5927759, 5928031), (9287659, 9287939)}.

3. Newton Polygons

Let f(x) =
∑m

j=0 ajx
j ∈ Z[x] with a0am 6= 0 and p be a prime. Let S be the

following set of points in the extended plane:

S = {(0, ν(am)), (1, ν(am−1)), (2, ν(am−2)), · · · , (m− 1, ν(a1)), (m, ν(a0))}.
Consider the lower edges along the convex hull of these points. The left-most endpoint
is (0, ν(am)) and the right-most endpoint is (m, ν(a0)). The endpoints of each edge
belong to S and the slopes of the edges increase from left to right. When referring
to the edges of a Newton polygon, we shall not allow two different edges to have the
same slope. The polygonal path formed by these edges is called the Newton polygon
of f(x) with respect to the prime p and we denote it by NPp(f). The end points of the
edges on NPp(f) are called the vertices of NPp(f). We call the x−axis of the vertices
to be breaks of the Newton polygon and usually write 0 =: x0 < x1 < · · · < xs := m
as the breaks where (xi, ν(am−xi), 0 ≤ i ≤ s are the vertices of NPp(f). We define
the Newton function of f with respect to the prime p as the real function fp(x) on
the interval [0,m] which has the polygonal path formed by these edges as its graph.
Hence fp(i) = ν(am−i) for i = 0,m and at all points i such that (i, ν(am−i)) is a vertex
of NPp(f). We need the following result which is a refinement of a lemma due to
Filaseta [Fil95, Lemma 2]. This was proved in [ShTi10, Lemma 2.13].

Lemma 3.1. Let k,m and r be integers with m ≥ 2k > 0. Let g(x) =
∑m

j=0 bjx
j ∈

Z[x] and let p be a prime such that p - bm. Denote the Newton function of g(x)
with respect to p by gp(x). Let a0, a1, . . . , am be integers with p - a0am. Put f(x) =
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j=0 ajbjx

j ∈ Z[x]. If gp(k) > r and gp(m) − gp(m − k) < r + 1, then f(x) cannot
have a factor of degree k.

Lemma 3.1 implies the following result of Filaseta [Fil95, Lemma 2] together with
a remark just after its proof in [Fil95].

Corollary 3.2. Let l, k,m be integers with m ≥ 2k > 2l ≥ 0. Suppose g(x) =∑m
j=0 bjx

j ∈ Z[x] and p be a prime such that p - bm and p|bj for 0 ≤ j ≤ m− l−1 and

the right most edge of the NPp(g) has slope < 1
k
. Then for any integers a0, a1, . . . , am

with p - a0am, the polynomial f(x) =
∑m

j=0 ajbjx
j cannot have a factor with degree in

[l + 1, k].

Proof. Since p|bj for 0 ≤ j ≤ m − l − 1, we have gp(K) > 0 for K ∈ [l + 1, k]. Let
(m1, gp(m1)) be the starting point of the rightmost edge of NPp(g). Then

1

m−m1

≤ gp(m)− gp(m1)

m−m1

<
1

k

giving m1 < m−k ≤ m−K for K ≤ k. Hence for K ∈ [l+1, k], (m−K, gp(m−K)) lie

on the rightmost edge implying gp(m)−gp(m−K)

K
< 1

k
≤ 1

K
. Thus gp(m)−gp(m−K) < 1.

Now we apply Lemma 3.1 with r = 0 to get the assertion. �

Unless otherwise mentioned, we always take l = k − 1 while using Corollary 3.2.
Next we need the following result generalizing [LaSh09, Lemma 1] where the case
u = −1 was proved.

Lemma 3.3. Let u ∈ {−1, 0} and 1 ≤ k ≤ n
2
. Suppose there is a prime p satisfying

p > d, p > min(2k, d(d− 1)) and further p ≥ (k + .5)d

d− 1
if u = −1, p ≤ 2k(4)

and

p|
k−1∏
j=0

(α + (u+ n− j)d), p -
k∏
j=1

(α + (u+ j)d), p - a0an.

Then G(x) has no factor of degree k and G(xd) does not have a factor of degree in
[dk − d + 1, dk]. Further for n odd and k =

⌊
n
2

⌋
, G(xd) does not have a factor of

degree in [dk + 1, dk + d
2
].

Proof. We use Corollary 3.2. We take (m, k, l) to be (n, k, k − 1) for G(x) having
a factor of degree k and (dn, dk, d(k − 1)) for G(xd) having a factor of degree in
[dk−d+1, dk]. Further for n odd and G(xd) having a factor of degree in (dn0, dn0+ d

2
]

where n0 =
⌊
n
2

⌋
, we take (m, k, l) to be (dn, dn0 +

⌊
d
2

⌋
, dn0). We observe that the

assumptions of Corollary 3.2 are satisfied. Let

∆j = (α + (u+ 1)d) · · · (α + (u+ j)d).
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By Corollary 3.2, it suffices to show that

νp(∆j)

j
<

1

k + 1
2

for 1 ≤ j ≤ n.(5)

Let j0 ≥ 1 be the minimum j such that p|(α+(u+j)d) and we write α+(u+j0)d = pl0.
Then j0 > k since p - ∆k. Note that j0 ≤ p. Further 1 ≤ l0 < d otherwise l0 ≥ d + 1
and p ≤ pl0 − pd = α + (u + j0 − p)d ≤ α + ud < d < p, a contradiction. Also
p(d− 1) ≥ pl0 = α+ (u+ j0)d ≥ α+ (u+ k+ 1)d. Thus p(d− 1) > (k+ 1)d if u = 0.
If u = −1 and p > 2k, we have p(d − 1) ≥ (2k + 1)(d − 1) ≥ (k + .5)d since d > 1.
This together with (4) imply

p ≥ (k + .5)d

d− 1
.(6)

For showing (5), we may restrict to those j such that α + (u + j)d = pl for some l.
Then (j − j0)d = p(l− l0) implying d|(l− l0) since gcd(p, d) = 1. Writing l = l0 + sd,
we get j = j0 + ps. Note that if p|(α + (u + i)d), then α + (u + i)d = p(l0 + rd) for
some r ≥ 0. Hence we have

νp(∆j) = νp((pl0)(p(l0 + d)) · · · (p(l0 + sd)) = s+ 1 + νp(l0(l0 + d) · · · (l0 + sd))

for some integer s ≥ 0. Further we may suppose that s > 0 otherwise the assertion
follows since p > d > l0 and j0 > k. Further from (5), j = j0 + ps ≥ k + 1 + ps and
k+1+ps
k+.5

= 1 + ps+.5
k+.5

, it suffices to show

φs := s+ νp(l0(l0 + d) · · · (l0 + sd)) <
ps+ .5

k + .5
.(7)

We consider two cases.

Case I: Assume that s < p. Then p divides at most one term of {l0 + id : 0 ≤ i ≤ s}
and we obtain from l0 + sd < (s+ 1)d < p2 that φs ≤ s+ 1. To show (7), we need to
show that ps+.5

k+.5
− 1 > s or s(p− k− 1

2
) > k. This is true if p ≥ 2k+ 1. Thus we may

suppose that p ≤ 2k. Since p ≥ (k+.5)d
d−1 by (6), we get (d− 1)(p− k − .5) > k. Thus

s(p− k − .5) > k is valid for s ≥ d− 1 and therefore we may now assume s ≤ d− 2.
Then l0 +sd ≤ d−1+(d−2)d < p and hence φs = s. Now (7) is valid since p ≥ k+1.

Case II: Let s ≥ p. Let r0 ≤ s be such that νp(l0 + r0d) is maximal. Then

φs ≤ s+ νp(l0 + r0d) + νp(r0!(s− r0)!) ≤ s+
log(l0 + sd)

log p
+
s− 1

p− 1

by using Lemma 2.2. We have p ≥ d + 1. This with l0 ≤ d − 1 < p ≤ s imply
log(l0 + sd) ≤ log s(d+ 1) = log s+ log(d+ 1) ≤ log s+ log p. Hence

φs ≤ s+
s

p− 1
+

log s

log p
+ 1− 1

p− 1
.

To show (7), it is enough to show that

1 +
1

p− 1
+

log s

s log p
+

1

s
(1− 1

p− 1
− 1

2k + 1
) <

2p

2k + 1
.
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The left hand side of the above inequality is a decreasing function in s. Since s ≥ p,
the left hand side of the above inequality is at most

1 +
1

p− 1
+

1

p
+

1

p
(1− 1

p− 1
− 1

2k + 1
) = 1 +

3

p
− 1

p(2k + 1)

and therefore it suffices to show

1 +
3

p
− 1

p(2k + 1)
<

2p

2k + 1
.(8)

Let p ≥ 2k + 1. Then p ≥ 3 and the left hand side of (8) is at most

1 + 1− 1

p(2k + 1)
< 2 ≤ 2p

2k + 1
.

Thus we may assume that p ≤ 2k. Then p > d(d − 1). Further d ≥ 3 since
p(d − 1) ≥ α + (u + k + 1)d and p < 2k. Therefore the left hand side of (8) is
at most

1 +
3

d(d− 1)
− 1

p(2k + 1)
< 1 +

1

d− 1
=

d

d− 1
≤ 2p

2k + 1
.

by (6). �

The following corollary easily follows from Lemma 3.3.

Corollary 3.4. Let u ∈ {0,−1} and n ≥ 2k > 0. Suppose that P (a0an) ≤ d and

P ((α + d(u+ n− k + 1)) · · · (α + d(u+ n))) > d(u+ k + 1).

Then Gq(x) does not have a factor of degree k and Gq(x
d) do not have a factor of

degree in [dk − d + 1, dk]. Further for n odd and k =
⌊
n
2

⌋
, Gq(x

d) does not have a

factor of degree in [dk + 1, dk + d
2
].

4. Proof of Theorem 4

Let k ≥ 2, n > 4k and 2 - n. Assume that P (n(n+ 4) · · · (n+ 4(k− 1))) ≤ 4(k+ 1).
Let

SM = {m : m ≥ 1,m odd, P (m(m+ 4)) ≤M}.

The set SM for M ≤ 31 is given in [Leh64] and for M = 100 in [Naj10]. In fact,
m = x− 2 with x listed in the table [Naj10] and m = N − 4 for N listed in [Leh64,
Table IIIA].

Let k = 2. Then P (n(n + 4)) ≤ 11 implying n ∈ S11. Since n > 8, we have
n ∈ {11, 21, 45, 77, 121}.

Let k = 3. Then P (n(n + 4)(n + 8)) ≤ 13 giving P (n(n + 4)) ≤ 13 and P ((n +
4)(n+8)) ≤ 13. Hence both n ∈ S13 and n+4 ∈ S13. Since n > 12, we have n = 117.

Let 4 ≤ k ≤ 8. Since P (∆(n, 4, k)) ≤ 4k + 4, we have P (n(n + 4)) ≤ 31, P ((n +
4)(n+ 8)) ≤ 31 and P ((n+ 8)(n+ 12)) ≤ 31. Hence n+ 4i ∈ S31 for each 0 ≤ i ≤ 2.
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Then n ∈ {17, 19, 21, 23, 27, 87}. For these values n and k such that n > 4k, we check
that P (∆(n, 4, k)) > 4(k + 1). Thus k ≥ 9.

Let 9 ≤ k < 67. Since P (∆(n, 4, k)) ≤ 4k + 4, we have ω(∆(n, 4, k)) ≤ π(4k + 4).
We check that k−π(4k+4)+π(100) >

⌈
k
2

⌉
. Hence there is some i0 with 0 ≤ i0 ≤ k−2

such that P ((n + 4i0)(n + 4(i0 + 1))) ≤ 100. Then n + 4i0 = m ∈ S100. Suppose
m > 107. We check that P (

∏4
i=1(m − 4i)) > 280 and P (

∏4
i=1(m + 4 + 4i)) > 280

for each m ∈ S100 and m > 107. Thus P (
∏k−1

i=0 (n + 4i) > 280 implying the assertion
when n+ 4i0 > 107. Thus we can assume that m ≤ 107. Then n ≤ n+ 4i0 ≤ 107. We
compute that P (

∏8
i=0(n+ 4i)) > 280 except when n ∈ {465, 469, 473, 885, 1513}. For

these values of n, we see that P (
8∏
i=0

(n+ 4i)) > 52 which is > 4(k+ 1) for 9 ≤ k ≤ 12.

Further for these values of n, we also have P (
∏12

i=0(n+ 4i)) > 280 which is > 4(k+ 1)
for 13 ≤ k < 67.

Thus we may suppose that k ≥ 67. Since P (∆(n, 4, k)) ≤ 4k + 4 < n + 4, we see
that each of n+ 4, n+ 8, · · · , n+ 4(k − 1) are composite and hence there is a prime
pi,4,l ≡ n(mod 4) such that pi,4,l ≤ n < n + 4 < n + 4(k − 1) < n + 4k ≤ pi+1,4,l.
Thus pi+1,4,l − pi,4,l ≥ 4k. Let n ≤ 1.1 · 107. By Lemma 2.6, we can assume that
k ∈ {67, 68, 69, 70} and pi,4,l ≤ n < n+ 4(k − 1) < n+ 4k ≤ pi+1,4,l for (pi,4,l, pi+1,4,l)

listed in Lemma 2.6. For such values of n, we check that that P (
∏k

i=0(n+ 4i)) > 284.
Hence we can assume that n > 1.1 · 107.

Let 4k < n < 4k + 4. Since n > 1.1 · 107, we have 106 < n + 4 ≤ 138 · 4(k − 1).
By Lemma 2.5, we have P (∆(n + 4, 4, k − 1)) ≥ n + 4. Hence P (∆(n, 4, k)) ≥
P (∆(n+ 4, 4, k−1)) ≥ n+ 4 > 4k+ 4. Thus we can assume that n > 4k+ 4. Further
again by Lemma 2.5, we can now assume that n > 138 · 4k.

Since P (∆(n, 4, k)) ≤ 4k + 4, we have ω(∆(n, 4, k)) ≤ π(4k + 4)− 1. We continue
as in [LaSh09, Section 3] with d = 4, t = π(4k + 4)− 1 to obtain

n ≤

(
(k − 1)!

∏
p≤pl

pL0(p)

) 1
k+1−π(4k+4)

(9)

for every l ≥ 1 where

L0(p) =

{
min(0, hp(k + 1− π(4k))−

∑hp
u=1

⌊
k−1
pu

⌋
) if p - d

−νp((k − 1)!) if p|d

with hp ≥ 0 such that [ k−1
php+1 ] ≤ k + 1 − π(4k + 4) < [k−1

php
]. Taking l = 3 in (9), we

find that n < 1.1 · 107 when k ≤ 400. Thus k > 400.

We now write n = v · 4k with a real number v ≥ v0 := 138. We continue as in the
last paragraph of [LaSh09, pp. 433] to obtain

log(v0 · 8 · e) <
4 log(v0 · 4k)

log(4k + 3)

(
1 +

1.2762

log(4k + 3)

)
.
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The right hand side of the above inequality is a decreasing function of k and the
inequality does not hold at k = 401. This is a contradiction. �

5. Proof of Gu+α
3
(x3) not having a factor of degree ≥ 4

Let d = 3, α ∈ {1, 2}, u ∈ {0,−1} and P (a0an) ≤ 3. It suffices to show Gu+α
3
(x3)

does not have a factor of degree in {3k, 3k − 1, 3k − 2} for 2 ≤ k ≤ n
2

and further

a factor of degree 3(n−1)
2

+ 1 when n is odd. By Corollary 3.4, we may assume that

P (
∏k−1

i=0 (α + 3(u + n − i))) < 3(u + k + 1). Since n ≥ 2k, by Lemma 2.1, we have
u = 0 and

3k < P (
k−1∏
j=0

(α + 3(n− j))) < 3(k + 1)(10)

except when k = 2 and α + 3(u+ n− k + 1) = 125.

Let k = 2 and α+3(u+n−k+1) = 125. Then α = 2 and (u, n) ∈ {(−1, 43), (0, 42)}.
We consider the Newton polygon with respect to p = 2 of the polynomials Gu+ 2

3
(x3)

with all a′js equal to 1. The breaks of the Newton polygon are 0 < 32 · 3 < 40 · 3 <
43 · 3 = 3n when u = −1, n = 43 and 0 < 32 · 3 < 40 · 3 < 42 · 3 = 3n when
u = 0, n = 42. Further the minimum slope(slope of the left most edge) is 1

3
(1 + 1

32
)

and the maximum slopes (slope of the right most edge) are 4
9

and 1
2

when (u, n) =

(−1, 43), (0, 42), respectively. Thus by Lemma 3.1 with r =
⌊
t
3

⌋
, t ∈ {4, 5, 6}, the

polynomials G−1+ 2
3
(x3) does not have factor of degree t ∈ {4, 6}. Hence G−1+ 2

3
(x3)

may have a factor of degree 5 when n = 43 and G 2
3
(x3) may have factor of degree

t ∈ {4, 5, 6} when n = 42.

Therefore we now suppose that α+ 3(u+n−k+ 1) 6= 125 when k = 2. By Lemma

3.3, we may restrict to those k such that P (
∏k−1

j=0(α + 3(n − j))) = α + 3k. Thus
α = 1 if k is even and α = 2 if k is odd. Let

R(k) = {p : p|
k∏
i=1

(α + 3i), p prime}

where α = 1 if k is even and α = 2 if k is odd. Again by Lemma 3.3, we may suppose
that p|

∏k−1
j=0(α + 3(n − j)) imply p ∈ R(k). Thus ω(

∏k−1
j=0(α + 3(n − j))) ≤ |R(k)|.

Since α + 3k is prime, we now have

|R(k)| =

{
π1(3k + 1) + π2(

3k+1
2

) = π1(3k) + 1 + π2(
3k
2

) if k is even

π2(3k + 2) + π1(
3k+2
2

) = π2(3k) + 1 + π1(
3k+1
2

) if k is odd

where πl(x) = |{p ≤ x : p ≡ l(mod 3)}| for l ∈ {1, 2}.

Let k = 2. Then p|(1+3n)(1+3n−3) imply p ∈ {2, 7}. Hence {1+3n, 1+3n−3} =
{2a, 7b} for some positive integers a, b. Hence 7b − 2a = ±3. If a ≥ 3, we get a
contradiction modulo 8. Hence a ≤ 2 and we have the only solution 7 − 4 = 3.
Therefore 1 + 3n = 7, 1 + 3n− 3 = 4 giving n = 2. This is not possible since n ≥ 2k.
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Thus k ≥ 3. Let k ≥ 20. Let l ∈ {1, 2} and m is congruent to l modulo 3.
Then note that if the set {m,m + 3, · · · ,m + 3(k − 1)} does not contain a prime,
then the difference between two consecutive primes congruent l(mod 3) is at least
(m + 3k) − (m − 3) = 3k + 3 ≥ 63 contradicting Lemma 2.6 (i) if m ≤ 7348.
Therefore the set {m,m+3, · · · ,m+3(k−1)} contains a prime if m ≤ 7348 and hence

P (
∏k−1

i=0 (m+3i)) ≥ m if m ≤ 7348. For 3 ≤ k < 20, we check that P (
∏k−1

i=0 (m+3i)) ≥
min(m, 3(k+1)) for 3k < m ≤ 7348, 3 - m except when k = 3,m = 22. Thus for k ≥ 3,
we may assume by (10) that either α+3(n−k+1) > 7348 or k = 3, α+3(n−k+1) = 22.
Since α = 2 when k is odd, we obtain α + 3(n − k + 1) > 7348. Let 3 ≤ k ≤ 8.
After deleting terms in {α + 3n, α + 3(n − 1), · · · , α + 3(n − k + 1)} divisible by
p ∈ R(k), p ≥ 7 we are left with at least 2 indices 0 ≤ i1 < i2 ≤ 7 such that
p|(α + 3(n− i1))(α + 3(n− i2)) imply p ∈ {2, 5}. By putting X = α + 3(n− i2), we
obtain from Lemma 2.4 that X ≤ 625. But X = α+3(n−i2) ≥ α+3(n−k+1) > 7348
which is a contradiction.

Thus we now have k ≥ 9 and α + 3(n − k + 1) > 7348. Further we may also
assume that α + 3(n − k + 1) ≥ 10.6 · 3k by Lemma 2.5 and (10). By taking m =
α + 3(n − k + 1), t = |R(k)| in [LaSh09, (4)], we obtain from [LaSh09, (6)] that
α + 3(n − k + 1) < 4480 for 9 ≤ k ≤ 180. Thus we may suppose that k > 180. We

proved in the last para of [LaSh12, Section 3(A), pp. 62] that ω(
∏k−1

i=0 (m + 3i)) ≥
π(3k) for k > 180 when m > 3k and 3 - m. Therefore ω(

∏k−1
j=0(α+3(n−j))) ≥ π(3k).

But π(3k) = π1(3k) +π2(3k) + 1 and we will have the contradiction π(3k) > |R(k)| if
π2(3k) > π2(3k/2) if k is even

π1(3k) > π1((3k + 1)/2) if k is odd.
(11)

We check that it is true when 3k/2 ≤ 6450. Hence we now assume 3k/2 > 6450.
Taking (m, k1) = (3k/2 + 1, k/2) if k is even and (m, k1) = ((3k+ 1)/2 + 3, (k− 1)/2)
if k is odd, we see from Lemma 2.5 that P := P (∆(m, 3, k1) ≥ m. We note that
m ≡ 1, 2 modulo 3 according as k is even or k is odd, respectively. Further observe that
2P ≥ 2m > m+3(k1−1) and hence P is one of the terms of m,m+3, · · · ,m+3(k1−1)
giving the assertion (11). �

6. Proof of Gu+α
4
(x4) not having a factor of degree ≥ 5

Let d = 4, u ∈ {0,−1} and α ∈ {1, 3}. It suffices to show that Gu+α
4
(x4) does not

have a factor of degree in {4k, 4k−1, 4k−2, 4k−3} for 2 ≤ k ≤ n
2

and further a factor of

degree in {4(n−1)
2

+1, 4(n−1)
2

+2} when n is odd. Suppose this is not true. By Corollary

3.4, we may assume that P (
∏k−1

i=0 (α+4(u+n−i)) < 4(u+k+1). Then by Theorem 4
and Corollary 1.1, we obtain u = −1, k = 2, α+4(u+n−k+1) ∈ {21, 45} or u = 0, k =
2, α+4(n−k+1) ∈ {11, 21, 45, 77, 121} or u = 0, k = 3, α+4(u+n−k+1) = 117. For
the values of u, k, n, α given by these values, we obtain from Lemma 3.3 that Gu+α

4
(x4)

do not have a factor of degree in {4k, 4k− 1, 4k− 2, 4k− 3}. When u = −1, we have
k = 2 and (n, α) ∈ {(7, 1), (13, 1)} and in both these cases, the prime p = 7 works in
Lemma 3.3. For u = 0, k = 2, we have (n, α) = (3, 3) or α = 1, n ∈ {6, 12, 20, 31}.
Since n ≥ 2k, we have α = 1 and n ∈ {6, 12, 20, 31} and prime p = 7 works for
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n ∈ {6, 12, 20} and p = 11 works for n = 31 in Lemma 3.3. For u = 0, k = 3, we have
α = 1, n = 31 and here the prime p = 11 works in Lemma 3.3. �

7. Proof of Theorems 2 and 3

We observe that if G(xd) has no factor of degree ≥ l with l ≤ dn
2

, then G(x) has no

factor of degree ≥ l
d
. Recall that by a factor, we meant the factor of degree less than

or equal to half of total degree and its co factor is the one whose degree is more than
half of the total degree. If G(xd) has a factor of degree d only, then G(x) may have
a linear factor but no other factor of degree ≥ 2. Further if Gα

3
(x3) has a quadratic

factor only or a factor of degree 5 only, then Gα
3
(x) will be irreducible. Hence if the

assertion of Theorems 2 and 3 are proved for G(xd), then the assertion of Theorems
2 and 3 follow.

Therefore we prove the assertions of Theorems 2 and 3 for G(xd). From Sections
5 and 6, we may assume that G(xd) has a factor of degree in {1, . . . , d} except when
q = −1

3
, n = 43 where Gq(x

3) may have a factor of degree 5 and q = 2
3
, n = 42 where

Gq(x
3) may have a factor of degree in {4, 5, 6}. Then by Lemma 3.3, we may suppose

that prime divisors of α + d(u+ n) are given by

d u α p|α + d(u+ n) d u α p|α + d(u+ n)
3 −1 1 2 4 −1 1 3
3 −1 2 2 4 −1 3 3
3 0 1 2 4 0 1 3, 5
3 0 2 2, 5 4 0 3 3, 7

7.1. Proof of Theorem 3: Let d = 4. We take p to be the smallest prime dividing
α+ 4(u+ n). Thus p = 3 unless α+ 4(u+ n) = 1 + 4n = 5b for some positive integer
b where we take p = 5 and α + 4(u + n) = 3 + 4n = 7c for some positive integer c
where we take p = 7. We use Corollary 3.2. Taking m = 4n, k ∈ {1, 2, 3, 4}, l = k−1,
we observe that the conditions of Corollary 3.2 are satisfied. We follow the notations
as in the proof of Lemma 3.3. Let

∆j = (α + (u+ 1)d) · · · (α + (u+ j)d).

We show that

φj =
νp(∆j)

j
≤ 1 for 1 ≤ j ≤ n(12)

and

φj < 1 for 1 ≤ j ≤ n when p = 3, (u, α) ∈ {(−1, 1), (0, 3)}.(13)

This with Corollary 3.2 with p = 5 and p = 7 according as (u, α) = (0, 1) and
(u, α) = (0, 3) respectively and p = 3 if u = −1 will imply Theorem 3.

We follow as in the proof of Lemma 3.3. We have j0, l0 given by
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u α p j0 l0 u α p j0 l0
−1 1 3 3 3 −1 3 3 1 1
0 1 3 2 3 0 3 3 3 5
0 1 5 1 1 0 3 7 1 1

We find that (12) and (13) are valid for 1 ≤ j ≤ 3. Let j > 3 and we now show that
φj < 1 for j > 3. We can restrict to j such that p|(α+ 4(u+ j)) and such j are given
by j = j0 + ps with s > 0. As in the proof of Lemma 3.3, it suffices to show

νp(∆j) = s+ 1 + νp(l0(l0 + 4) · · · (l0 + 4s)) < j0 + ps.

This is true for 1 ≤ s ≤ 3. For s ≥ 4, we find that the left hand side of the above
inequality is at most s + 1 + νp((l0 + 4s)!) − 1 since there is at least one multiple
of p dividing (l0 + 4s)! but not dividing l0(l0 + 4) · · · (l0 + 4s). This together with
νp(r!) <

r
p−1 , p ≥ 3 and l0

2
< j0 imply

νp(∆j) ≤ s+
l0 + 4s

p− 1
≤ s+

l0 + 4s

2
=
l0
2

+ 3s < j0 + ps.

�

7.2. Proof of Theorem 2: Let d = 3. First assume that u = 0, α = 2 and 5|(2+3n).
We consider the polynomial G 2

3
(x3). We use Corollary 3.2 with p = 5 to show that

G 2
3
(x3) does not have a factor with degree in {1, 2}. As in the proof of Lemma 3.3,

it suffices to show

ν5(5 · 8 · · · (2 + 3j)) <
3j

2

where we may assume that j > 1. We obtain by using Lemma 2.2 that

ν5(5 · 8 · · · (2 + 3j)) ≤ ν5((2 + 3j)!) ≤ 1 + 3j

4
<

3j

2
.

Hence G 2
3
(x3) does not have a factor with degree in {1, 2} in this case.

From now on, we may suppose that 5 - (2 + 3n) when u = 0, α = 2. Therefore
for each u ∈ {0,−1} and for each α ∈ {1, 2}, we have α + 3(u + n) = 2a for some
integer a > 1. We take p = 2 and ν = ν2 from now onwards in this section. We may
assume by Section 5 that G(x3) has a factor of degree in {1, 2, 3}. Let η = 0 if α = 1
and 1 if α = 2. From α + 3(u + n) = 2a, we have a = 2s + η for some s > 0 and
n = −u+ 2η(1 + 22 + · · ·+ 22(s−1)). Put n0 = 0, ns = n and

ni = 2η(22(s−1) + 22(s−2) + · · ·+ 22(s−i)) for 1 ≤ i ≤ s− 1.(14)

Then for 1 ≤ i ≤ s− 1, we have

ni − 1 = 2η(22(s−1) + 22(s−2) + · · ·+ 22(s−i+1)) +

2(s−i)+η−1∑
j=0

2j

and hence by Lemma 2.2, we have

ν((ni − 1)!) = ni − 1− (i− 1 + 2(s− i) + η) = ni − a+ i.(15)
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Also

ν((n− 1)!) =

{
n− s if u = 0, α = 1

n− s− 1 otherwise.
(16)

Let 1 ≤ j < 2h for some h > 0. Write j− 1 = j0 + 2j1 + · · ·+ 2h−1jh−1 in base 2 with

0 ≤ ju ≤ 1 for 0 ≤ u < h. Note that
∑h−1

u=0 ju ≤ h− 1. Hence by Lemma 2.2, we have

ν((j − 1)!) = j − 1−
h−1∑
u=0

ju ≥ j − 1− (h− 1) = j − h.(17)

For 1 ≤ i ≤ n− 1, if α+ 3(u+ i) = 2rt with 2 - t, then from 3(n− i) = 2r(2a−r− t),
we obtain ν(α + 3(u+ i)) = r = ν(n− i). Therefore

ν(
n∏
i=l

(α + 3(u+ i))) = a+ ν((n− l)!) for 1 ≤ l < n− 1.

We now consider theG(x3) with all a′js equal to 1 and call itG∗. Recall thatG = Gu+α
3

with (u, α) ∈ {(−1, 1), (−1, 2), (0, 1), (0, 2)}. Then the Newton Polygon NP2(G
∗) of

G∗ with respect to prime 2 is given by the lower edges along the convex hull of the
following points

{(0, 0), (3, a), (3 · 2, a), · · · , (3l, a+ ν((l − 1)!)), · · · , (3n, a+ ν((n− 1)!))}

in the extended plane. Let a = 2s+η ≤ 5. Then α = 1, (u, n) ∈ {(−1, 2), (−1, 6), (0, 5)}
or α = 2, (u, n) ∈ {(−1, 3), (0, 2), (−1, 11), (0, 10)}. For these values of (α, u, n), we
check that assertion of the Theorem 2 holds by using Lemma 3.1. For example, when
(α, u, n) = (2,−1, 11), we find that the breaks of NP2(G

∗) are given by 0 < 3·8 < 3·11
and the minimum slope is 3

8
and the maximum slope is 4

9
. For t ∈ {1, 2, 3}, taking

r =
⌊
t
3

⌋
in Lemma 3.1, we obtain that G−2

3
(x3) does not have a factor of degree t and

hence irreducible. Similarly we use Lemma 3.1 to get the assertion of Theorem 2 in
the remaining cases.

Hence from now on, we assume that a ≥ 6. If (0, 0) and (3n, a + ν((n − 1)!)) are
the only lattice points on the Newton Polygon NP2(G

∗), then from (16), the unique
slope is

a+ ν((n− 1)!)

3n
≤ 2s+ η + n− s

3n
=

1

3
+

2s+ 2η

2 · 3n
=

1

3
+
a+ η

2 · 3n
≤ 5

4 · 3
since n ≥ 2a−2

3
≥ 2(a + 1) ≥ 2(a + η) for a ≥ 6. Also the unique slope is > 1

3
. Then

by using Lemma 3.1 for t ∈ {1, 2, 3} with r =
⌊
t
3

⌋
, we obtain G(x3) is irreducible.

Hence we may suppose that there is a lattice point of NP2(G
∗) with x co-ordinate

lying in (0, 3n). We prove that the breaks of NP2(G
∗) are given by 0 = 3n0 < 3n1 <

3n2 < · · · < 3ns−2 < 3ns = 3n if (u, α) = (−1, 1) and 0 = 3n0 < 3n1 < 3n2 < · · · <
3ns−1 < 3ns = 3n otherwise.

First we show that (3n1, a+ ν((n1− 1)!)) is a lattice point on NP2(G
∗). It suffices

to show
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(i) a+ν((i−1)!)
i

> a+ν((n1−1)!)
n1

for 1 ≤ i < n1.

(ii) a+ν((nl−1)!)
nl

> a+ν((n1−1)!)
n1

for 2 ≤ l < s.

(iii) a+ν((i−1)!)
i

> a+ν((n1−l)!)
n1

for nl < i < nl+1, 1 ≤ l < s.

(i) : Let 1 ≤ i < n1 = 2a−2. Then from (17) and (15),

n1{a+ ν((i− 1)!)} − i{a+ ν((n1 − 1)!)}
≥ n1{a+ i− a+ 2} − i{a+ n1 − a+ 1} = 2n1 − i > 0.

(ii) : For 2 ≤ l < s, we have from (17)

a+ ν((nl − 1)!)

nl
− a+ ν((n1 − 1)!)

n1

=
nl + l

nl
− n1 + 1

n1

=
l

nl
− 1

n1

> 0

since nl = 2η(22(s−1) + 22(s−2) + · · ·+ 22(s−l)) < l2η+2(s−1) = ln1.

(iii) : Let 1 ≤ l < s. Write i = nl+j with 1 ≤ j < nl+1−nl = 2a−2l−2. Since ν(u) =
ν(nl+u) for any 1 ≤ u < nl+1−nl, we get ν((i−1)!) = ν((nl−1)!)+ν(nl)+ν((j−1)!).
This with (14), (15) and (17) imply

a+ ν((i− 1)!)

i
− a+ ν((n1 − 1)!)

n1

≥ nl + l + j + 2

nl + j
− n1 + 1

n1

=
1

n1(nl + j)
((l + 2)n1 − nl − j)) >

1

n1(nl + j)
{(l + 2)n1 − nl+1} > 0

since nl+1 = 2η(22(s−1) + · · ·+ 22(s−l) + 22(s−l−1)) < (l + 1)22s+η−2 < (l + 2)n1. Hence
the minimum slope is 1

3
(1 + 1

n1
).

Let 1 ≤ l < s − 2. Next we show that if (3nl, a + ν((nl − 1)!)) is a lattice point
on NP2(G

∗), then (3nl+1, a + ν((nl+1 − 1)!)) is a lattice point on NP2(G
∗). Assume

that (3nl, a+ ν((nl − 1)!)) is a point on NP2(G
∗). If (3n, a+ ν((n− 1)!)) is the next

lattice point, then from (14)-(16), we see that slope of the rightmost edge is

ν((n− 1)!)− ν((nl − 1)!)

3(n− nl)
≤ n− s− (nl − a+ l)

3(n− nl)
≤ 1

3
+
s+ η − l
3(n− nl)

≤ 5

4 · 3

since 1 ≤ l < s − 2 and n − nl ≥ 2η 2
2(s−l)−1

3
≥ 4(η + s − l) for s − l ≥ 3. Observe

that n1 > 3 and the slope of the leftmost edge is 1
3
(1 + 1

n1
). We now apply Lemma

3.1 for t ∈ {1, 2, 3} with r =
⌊
t
3

⌋
to obtain G(x3) is irreducible. Thus we may

suppose that (3n, a+ ν((n− 1)!)) is not the next lattice point on NP2(G
∗). To show

(3nl+1, a+ ν((nl+1 − 1)!)) is the next lattice point on NP2(G
∗), it suffices to show

(iv) ν((nu−1)!)−ν((nl−1)!)
nu−nl

> ν((nl+1−1)!)−ν((nl−1)!)
nl+1−nl

for l + 1 < u ≤ s.

(v) ν((i−1)!)−ν((nl−1)!)
i−nl

> ν((nl+1−1)!)−ν((nl−1)!)
nl+1−nl

for nu < i < nu+1, l ≤ u < s.

The assertion (iv) follows from (15) and by observing (u−l)22(s−l−1)+η > 2η(22(s−l−1)+
· · ·+ 22(s−u)). The assertion (v) follows like (iii) above by observing that if i = nu + j
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with 1 ≤ j < nu+1 − nu = 2a−2u−2 and (u − l + 2)22(s−l−1)+η > 2η(22(s−l−1) + · · · +
22(s−u−1)) = nu+1 − nl ≥ nu + j − nl.

Thus we need to check for lattice points after (3ns−2, a+ν((ns−2−1)!)) on NP2(G
∗).

Recall that ns−2 = n + u − 2η − 22+η and ν(n − i) = ν(α + 3(u + i)) for i ≥ 1. For
(u, α) = (−1, 1), we find that ns−2 = n− 6 and check using ν(n− i) = ν(α+ 3(u+ i))
for i ≥ 1 that (3n, a+ν((n−1)!))) is the lattice point after (3ns−2, a+ν((ns−2−1)!))
and hence the maximum slope is 7

18
. For (u, α) = (−1, 2), we find that ns−1 = n− 3

and (3(n − 3), a + ν((n − 3)!)) and (3n, a + ν((n − 1)!))) are the lattice points after
(3ns−2, a + ν((ns−2 − 1)!)) and the maximum slope is 4

9
. For (u, α) = (0, 2), we find

that ns−1 = n−2 and (3(n−2), a+ν((n−3)!)) and (3n, a+ν((n−1)!))) are the lattice
points after (3ns−2, a+ν((ns−2−1)!)) and the maximum slope is 1

2
. For (u, α) = (0, 1),

we find that ns−1 = n − 1 and (3(n − 1), a + ν((n − 3)!)) and (3n, a + ν((n − 1)!)))
are the lattice points after (3ns−2, a + ν((ns−2 − 1)!)) and the maximum slope is 2

3
.

Recall that in all these cases, the slope of the leftmost edge is 1
3
(1 + 1

n1
).

We now use Lemma 3.1 for t ∈ {1, 2, 3} with r =
⌊
t
3

⌋
to obtain that G−1

3
(x3)

and G−2
3

(x3) are irreducible. Further G 1
3
(x3) does not have a factor of degree 1 and

G 2
3
(x3) do not have a factor of degree 1 or 3. �

8. Proof of Theorem 1

We first check that L
( 1
4
)

2 (x) and L
( 1
4
)

2 (x4) are not irreducible and their factoriza-
tions are given in the statement of Theorem 1. Therefore we assume from now

on that n 6= 2 when q = 1
4
. We observe that the irreducibility of L

(q)
n (xd) im-

plies the irreducibility of L
(q)
n (x). Hence we show that L

(q)
n (xd) is irreducible. For

(q, n) ∈ {(−2
3
, 2), (−1

3
, 43), (2

3
, 42)}, we check that L

(q)
n (x3) are irreducible. Thus from

Theorems 2 and 3, we need to consider only the following cases:

q =
1

3
, 1 + 3n = 2a

q =
2

3
, 2 + 3n = 2a5b, a ≥ 0, b ≥ 0

q = −1

4
, 3 + 4(n− 1) = 3a

q =
1

4
, 1 + 4n = 3a5b, a ≥ 0, b ≥ 0

q =
3

4
, 3 + 4n = 7a

(18)

Further it suffices to show that n!L
(q)
n (xd) does not have a factor of degree d and for

q ∈ {1
3
, 2
3
}, n!L

(q)
n (x3) do not have a quadratic or a cubic factor. In fact we show that

it does not have a factor of degree ≤ d. First we prove

Lemma 8.1. For n > 1 given by (18), there is a prime p|n such that

p - d(α + (u− 1)d)(α + ud)(α + (u+ 1)d)
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except when q = 2
3
, n ∈ {2, 6, 10, 16} and q = 1

4
, n ∈ {6, 20}.

Proof. Let n > 1 be given by (18). Suppose that p|n implies p|d(α + (u − 1)d)(α +
ud)(α + (u+ 1)d).

Let q = 1
3
. Then p|n implies p ∈ {2, 3}. Writing n = 2r3s, we have 2a = 1 + 3n =

1+2r31+s implying r = 0, 2a−31+s = 1. By Lemma 2.3, we have 22−3 = 1 or 2a = 4
and 31+s = 3 giving n = 1 which is not possible.

Let q = 2
3
. Then p|n implies p ∈ {2, 3, 5}. Writing n = 2r3s5t, we have 2a5b =

2 + 3n = 2 + 2r31+s5t. If a = 0, then r = t = 0 and 5b = 2 + 31+s. By Lemma 2.3, we
have 5 = 2 + 3 giving n = 1 which is not possible. Hence a 6= 0. If b = 0, then a > 1
giving r = 1, 2a = 2 + 2 · 31+s5t or 2a−1 = 1 + 31+s5t. By Lemma 2.3, we get solutions
22 = 1 + 3 and 24 = 1 + 3 · 5 giving n ∈ {2, 10}. Hence assume that ab 6= 0. Then
t = 0 and 2a5b = 2 + 2r31+s. If a = 1, then 2 · 5b = 2 + 2r31+s or 5b = 1 + 2r−131+s.
By Lemma 2.3, the solution 52 = 1 + 23 · 3 gives n = 16. Finally let a > 1. Then
u = 1 and we get 2a5b = 2 + 2 · 31+s or 2a−15b = 1 + 31+s. By Lemma 2.3, its solution
2 · 5 = 1 + 32 gives n = 6.

Let q = −1
4
. Then p|n implies p ∈ {2, 3, 5}. Writing n = 2r3s5t, we have 3a =

4n−1 = 22+r3s5t−1 implying v = 0 and 22+r5t−3a = 1. By Lemma 2.3, its solution
is 22 − 31 = 1 which gives n = 1. This is not possible.

Let q = 1
4
. Then p|n implies p ∈ {2, 3, 5}. Writing n = 2r3s5t, we have 3a5b =

1 + 4n = 1 + 22+r3s5t. Let a = 0. Then t = 0 and 5b = 1 + 22+r3s and by Lemma 2.3,
its solutions 5 = 1 + 22 and 52 = 1 + 23 · 3 give n = 6 since n > 1. Let b = 0. Then
s = 0, 3a = 1 + 22+r5t and by Lemma 2.3, its solutions 32 = 1 + 23 and 34 = 1 + 24 · 5
give n = 20 since n 6= 2. Finally let ab 6= 0. Then s = t = 0, 3a5b = 1 + 22+r and by
Lemma 2.3, there are no solutions.

Let q = 3
4
. Then p|n implies p ∈ {2, 3, 7}. Writing n = 2r3s7t, we have 7a =

3 + 4n = 3 + 22+r3s7t implying s = t = 0 and 7a = 3 + 22+r. By Lemma 2.3, its
solution 7 = 3 + 22 imply n = 1 which is not possible. �

For n ∈ {2, 6, 10, 16} if q = 2
3

and n ∈ {6, 20} if q = 1
4
, we check that L

(q)
n (xd)

are irreducible. Hence we may suppose that n /∈ {2, 6, 10, 16} if q = 2
3

and n /∈
{2, 6, 20} if q = 1

4
. Then by Lemma 8.1, we find that there is a prime p|n such that

p - d(α + (u− 1)d)(α + ud)(α + (u+ 1)d). Let p be largest with this property. Thus
we always have p ≥ 5 > d. We use Corollary 3.2 with k = d, l = 0. Since p|

(
n
j

)
for

1 ≤ j < p and p|
∏p

i=1(α + (u + i)d), the conditions of Corollary 3.2 are satisfied. It
suffices to show

νp

(
j∏
i=0

(α + (u+ i)d)

)
− νp

((
n

j

))
<
dj

d
= j for 1 ≤ j ≤ n.

Observe that p divides at most one of α+(u+i)d when 1 ≤ i < p and α+(u+p−1)d <
pd < p2. By using p|

(
n
j

)
for 1 ≤ j < p, we obtain that the left hand side of above
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inequality is ≤ 0 for 1 ≤ j < p and hence the assertion follows for 1 ≤ j < p. Let
j ≥ p. Then there is at least one multiple of p dividing (α+(u+j)d)! but not dividing∏j

i=0(α + (u+ i)d). Therefore by using Lemma 2.2, we obtain

νp

(
j∏
i=0

(α + (u+ i)d)

)
− νp

((
n

j

))
≤ νp((α + (u+ j)d)!)− 1

≤ α + (u+ j)d− 1

p− 1
− 1 ≤ u+ j +

α− 1

p− 1
− 1 < j

by using Lemma 2.2 and since p > d > α. �
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