IRREDUCIBILITY OF GENERALIZED HERMITE-LAGUERRE
POLYNOMIALS

SHANTA LAISHRAM AND T. N. SHOREY

1. INTRODUCTION

Let n and 1 < « < d be positive integers with ged(a, d) = 1. Any positive rational
q is of the form ¢ = u+ & where u is a non-negative integer. For integers ag, ay, - - - ay,
let

G(7) == Gy(z) =ap2" + ap_1(a+ (n—1+u)d)z" '+ - +

a (ﬂ(a + (i + u)d)) x + ag (ﬂ(a + (i + u)d)) :

i=1 i=0
This is an extension of Hermite polynomials and generalized Laguerre polynomials.
Therefore we call G(z) the generalized Hermite-Laguerre polynomial. For an integer
v > 1, we denote by P(v) the the greatest prime factor of v and we put P(1) = 1.
We prove

Theorem 1. Let P(apa,) < 3 and suppose 2 { apa,, if degree of G%(:c) is 43. Then
G and Gz are irreducible except possibly when 1 + 3(n—1) and 2+ 3(n—1) is a
power of 2, respectwely where it can be a product of a linear factor times a polynomial
of degree n — 1.

Theorem 2. Let 1 <k <n, 0 <u <k and apa, € {£2":t > 0,t € Z}. Then G, 1
does not have a factor of degree k except possibly when k € {1,n — 1}, u > 1.

Schur [Sch29] proved that G%(SCQ) with a, = +1 and ag = £1 are irreducible and
this implies the irreducibility of Hs, where H,, is the m—th Hermite polynomial.
Schur [Sch73] also established that Hermite polynomials Hy, 1 are x times an irre-
ducible polynomial by showing that GG 3 (2?) with a, = +1 and ag = +1 is irreducible
expect for some explicitly given finitely many values of n where it can have a qua-
dratic factor. Further Allen and Filaseta [AlFi04] showed that G%(xZ) with a; = £1
and 0 < |a,| < 2n — 1 is irreducible. Finch and Saradha [FiSal0] showed that G, 1
with 0 < u < 13 have no factor of degree k € [2,n — 2] except for an explicitly given
finite set of values of u where it may have a factor of degree 2.

From now onwards, we always assume d € {2,3}. A new ingredient in the proofs
of Theorems 1 and 2 is the following result which we shall prove in Section 3.
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Theorem 3. Let k> 2 and d = 2,3. Let m be a positive integer such that d { m and
m > dk. Then

3.5k if d=2 and m < 2.5k
(1) Pm(m+d)---(m+dk—1))) > < 4k if d=2 and m > 2.5k
3k ifd=3

(7,2),(25,2), (243,2), (9, 4), (13,5), (17,6), (15,7), (21,8), (19,9)}
5,

unless (m, k) € {(5,2),
k) = (125,2) when d = 3.

when d = 2 and (m,

If d =2,3 and m > dk, this is an improvement of [LaSh06a].

In Section 4, we shall combine Theorem 3 with the irreducibility criterion from
[ShTil0](see Lemma 4.1) to derive Theorems 1 and 2. This criterion come from
Newton polygons. If p is a prime and m is a nonzero integer, we define v(m) = v,(m)
to be the nonnegative integer such that p*™|m and p*™*! { m. We define v(0) =
+o0. Consider f(z) = Y7 a2’ € Z[z] with apa, # 0 and let p be a prime. Let S
be the following set of points in the extended plane:

S ={(0,v(an)), (1,v(an-1)), (2,v(an-2)), -, (nl,v(a1)), (n,v(ao))}
Consider the lower edges along the convex hull of these points. The left-most endpoint
is (0,v(ay,)) and the right-most endpoint is (n,v(ag)). The endpoints of each edge
belong to S, and the slopes of the edges increase from left to right. When referring
to the edges of a Newton polygon, we shall not allow two different edges to have the
same slope. The polygonal path formed by these edges is called the Newton polygon
of f(z) with respect to the prime p. For the proof of Theorems 1 and 2, we use
[ShTil0, Lemma 10.1] whose proof depends on Newton polygons.

A part of this work was done when the authors were visiting Max-Planck Institute
for Mathematics in Bonn during August-October, 2008 and February-April, 2009,
respectively. We would like to thank the MPIM for the invitation and the hospitality.
We also thank Pieter Moree for his comments on a draft of this paper. The authors are
indebted to the referee for his suggestions and remarks which improved the exposition
of the paper.

2. PRELIMINARIES FOR THEOREM 3

Let m and k be positive integers with m > kd and ged(m, d) = 1. We write
A(m,d, k) =m(m+d)---(m+ (k—1)d).
For positive integers v, u and 1 <[ < p with ged(l, u) = 1, we write

(v, p,l) = Z 1, 7(v) =n(v,1,1)

p<v
p=l(mod pn)

8(V7M7 l) = Z logp

psv
p=l(mod pn)
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Let p;,; denote the ith prime congruent to ! modulo p. Let 0,(¢,1) = pit1,1 — Dipy
and W, (4,1) = (piui, Pit11)- Let My = 1.92367 x 101°.

We recall some well-known estimates on prime number theory.

Lemma 2.1. We have

v 1.2762
) < 1
(@) 7)< e (14

3.965
5—) < 0(r) < 1.00008v for v > 1

log” v
(1ii) vV 27k e FkkemiT < kI < 21k e Fkkerw for k> 1

(tv) ord,(k!) > f;%]f — b“iﬁ% for k> 1 and p < k.

> forv>1
log v

(i) v(1 —

The estimates (7), (i7) are due to Dusart [Dus98, p.14], [Dus99]. The estimate (7i7)
is [Robb5, Theorem 6]. For a proof of (iv), see [LaSh04b, Lemma 2(i)]. O

The following lemma is due to Ramaré and Rumely [RaRu96, Theorems 1, 2].

Lemma 2.2. Letl € {1,2} . For vy < 10'°, we have

, oo = Y(1 - 0.002238) for v > 10"

(2) (v,3,0) > v <1 — —2“\';%5158) for 101 > v > 1y
and

; o3 p) < |5+ 0:002238) for v > 100

(3) (v,3,0) < %(1%—%) for 10" > v > 1y

We derive from Lemmas 2.1 and 2.2 the following result.

Corollary 2.3. Let My <m < 131 x 2k if d = 2 and 6450 < m < 10.6 x 3k if d = 3.
Then P(A(m,d, k)) > m.

Proof. Let My < m < 131 x 2k if d = 2 and 6450 < m < 10.6 x 3k if d = 3. Then
k > k; where ki = 7.34 x 107,203 when d = 2,3, respectively. Let 1 < [ < d and
assume m = [(mod d). We observe that P(A(m,d, k) > m holds if

O(m+d(k—1),d,1)—0(m—1,d1)= >  logp>0.

m<p<m-+(k—1)d
p=l(d)

Now from Lemmas 2.1 and 2.2, we have

b(m—1.d.1) _, {1.00008 if d =2
m—1 1= 2x1.798158 if 7 _
W 1+—>< /6450 1fd—3

and

m+(k—1)d 1— 2x1.798158 if d=3.

Om + (k= 1)dd,l) {1 — s ifd=2
o(d) /6450
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Thus P(A(m,d, k) > m holds if
Oo(m +d(k —1)) > 6m
ie., if
—dUi; DIN Z—; —1.
This is true since for k > kq, we have

dh(1—3) _ k(=) () {131.3 it d =2

a1 T a-1 106 if d=3
2 2
and m is less than the last expression. Hence the assertion. O

Now we give some results for d = 2. The next result follows from Lemma 2.1 (i7).
Corollary 2.4. Let d =2,k > 1 and 2k < m < 4k. Then
3.0k if m < 2.5k
4 P(A(m,d,k)) > _
@ (A(m, d. k) {4k if m > 2.5k

unless (m, k) € {(5,2), (7,2), (9,4), (13,5), (17,6), (15,7), (21,8), (19, 9)}.

Proof. We observe that the set {m,m+2,...,m+2(k—1)} contains all primes between
3.5k and 4k if m < 2.5k and all primes between 4k and 4.5k if 2.5k < m < 4k.
Therefore (4) holds if

6(4k) > 6(3.5k) and 6(4.5k) > 6(4k).
Let (r,s) = (3.5,4) or (4,4.5). Then from Lemma 2.1, we see that §(sk) > 0(rk) if

sk(1— =% )1 00008 x rk
log®(sk)
or
s — 1.00008r S 3.965
1.00008r ~ 1.00008r log?(sk)
or

Lol 3.9655
— eX _— .
s P\ s = 1.00008r

This is true for £ > 88. Thus k£ < 87. For 10 < k < 87, we check that there is
always a prime in the intervals (3.5k,4k) and (4k, 4.5k) and hence (4) follows in this
case. For 2 < k < 9, the assertion follows by computing P(A(m,2,k)) for each
2k <m < 4k. O

The following result concerns Grimm’s Conjecture, [LaSh06b, Theorem 1].

Lemma 2.5. Let m < My and l be such that m+1,m+2,--- ,m+1 are all composite
numbers. Then there are distinct primes P; such that P;|(m + 1) for each 1 <1i <.

As a consequence, we have
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Corollary 2.6. Let 4k < m < My. Then either P(A(m,2,k)) > 4k or P(A(m,2,k)) >
Di+1-

Proof. If m + 2i is prime for some ¢ with 0 < ¢ < k, then the assertion holds clearly
since P(A(m,2,k)) > m + 2i > 4k. Thus we suppose that m + 2i is composite for
all 0 <17 < k. Since m is odd, we obtain that m + 2¢ + 1 with 0 < i < k are all even
and hence composite. Therefore m,m +1,m + 2,--- ,m + 2k — 1 are all composite
and hence, by Lemma 2.5, there are distinct primes P; with P;|(m — 1+ j) for each
1 < j < 2k. Therefore w(A(m,2,k)) > k implying P(A(m,2,k)) > pgi1- O

Corollary 2.7. Let d =2 and 4k < m < My. Then P(A(m,2,k)) > 4k for k > 30.

Proof. By Corollary 2.6, we may assume that P(A(m,2,k)) > pgr1. By Lemma 2.1,
we get pry1 > klogk which is > 4k for £ > 60. For 30 < k < 60, we check that
pr+1 > 4k. Hence the assertion follows. O

The following result follows from [Leh64, Tables ITA, TITA].
Lemma 2.8. Letd =2, m >4k and 2 < k <37,k # 35. Then P(A(m,2,k)) > 4k.

Proof. The case k = 2 is immediate from [Leh64, Table ITA]. Let & > 3 and m > 4k.
For m and 1 < ¢ < k such that m 4+ 2i = N with N given in [Leh64, Tables IIA,
ITITA], we check that P(A(m,2,k)) > 4k. Hence assume that m + 2i with 1 <i < k
is different from those N given in [Leh64, Tables ITA, IITA].

For every prime 31 < p < 4k, we delete a term in {m,m +2,--- ,m+2(k — 1)}
divisible by p. Let ¢, < iy < ... <14 be such that m+2¢; is in the remaining set where
[ > k—(m(4k) —7(31)). From [Leh64, Tables IIA, IITA], we observe that i;.1 —i; > 3
implying k — 1 > 4 — iy > 3(l — 1) > 3(k — 7(4k) + 10). However we find that the
inequality k — 1 > 3(k — m(4k) + 10) is not valid except when k = 28,29. Hence the
assertion of the Lemma is valid except possibly for £ = 28, 29.

Therefore we may assume that & = 28,29. Further we suppose that [ = k— (7 (4k)—
7(31)) = 10 otherwise 3(I — 1) > 30 > k — 1, a contradiction. Thus we have either
t1o— 0 = 27 implying 41 = 0,441 = 4;+3 =3jfor 1 < j < 9ori; = 1,441 = ¢, +3 =
37 if1<5j<r
3j+1 ifr<j<9
for some r > 1. Let X = m + 2i; — 6. Note that X is odd since m is odd. Also
X >4k +1—6 > 107. We have either

37+ 1for1 <j <9oriy—1i =28 implying ¢; = 0,441 =

(5) P((X +6)-- (X +54)(X +60)) < 31
or there is some r > 1 for which
(6) P(X+6)- - (X+6r)(X+6(r+1)+2)---(X+60+2)) <31

Note that (5) is the only possibility when k& = 28. Now we consider (5). Suppose 3|X.
Then putting Y = 3, we get P((Y+2) - - - (Y +18)(Y +20)) < 31 which implies Y +2 <
20 by Corollary 2.4 and Lemma 2.8 with k£ = 10. Since X +6 > m > 113, we get a
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contradiction. Hence we may assume that 31 X. Then 31 (X+6)--- (X +54)(X+60).
After deleting terms X + 6¢ divisible by primes 11 < p < 31, we are left with three
terms divisible by primes 5 and 7 and hence m < X + 6 < 35 which is again a
contradiction. Therefore (5) is not possible.

Now we consider (6) which is possible only when k& = 29. Since X +6 = m > 4k =
116, we have X > 110. Suppose r = 1,9. Then we have P((X +12+2)--- (X +54 +
2)(X +60+2) <3lifr=1and P((X +6)---(X +54)) < 31 if r = 9. Putting
Y = X+8in the first case and Y = X in the latter, we get P((Y+6) - - - (Y +54)) < 31.
Suppose 3|Y. Then putting Z = ¥, we get P((Z+2)---(Z+18)) < 31 which implies
Z 4+ 2 < 18 by Corollary 2.4 and Lemma 2.8 with £ = 9. Since Z + 2 > % > %, we
get a contradiction. Hence we may assume that 34Y. Then 3¢ (Y +6)--- (Y + 54).
After deleting terms Y + 6¢ divisible by primes 11 < p < 31, we are left with two
terms divisible by primes 5 and 7 only. Let Y +6i = 527" and Y +6;j = 5%7% where
by <1<byand ap <1< ay. Since |i — j| <8, the equality 6(i — j) = 517 — 597"
implies 5¢—7° = £6, 12, £18, £24, £36, +-48. By taking modulo 6, we get (—1)¢ =
modulo 6 implying a is even. Taking modulo 8 again, we get either

bis even, 5% — 7" = (5% — 72)(5% + 73) = +24, +48
giving
(7) 5% = 25,7" = 49
or
bis odd, 5 — 7° = —6, 18.

Let 5 — 7 = —6. Considering modulo 5, we get 2° = 1 implying 4|b, a contradiction.

Let 5¢ — 7° = 18. By considering modulo 7 and modulo 9 and since a is even,
we get 3|(a — 2) and 3|(b — 1) implying (5“5 )® + 35(=7"3 )® = 90. Solving the
Thue equation 3 4 35y% = 90 gives ¢ = 5,y = —1 or 25 — 7 = 18 is the only

solution. Hence 6 -3 =25 —7 = X + 6i — (X + 67). Also the solution (7) implies
—6-4=25—-49= X +6i — (X 4+ 65). Thus X < 25 which is not possible.

Assume now that 2 < r < 8. Then P((X + 6)(X + 12)(X + 56)(X + 62)) < 31.
Suppose 3|X (X + 2). Putting Y = 2% if 3|X and Y = 2450 if 3|(X + 2), we get
either P(Y (Y +2)(3Y +50)(6Y +56)) < 31 or P(Y (Y +2)(3Y — 50)(3Y —44)) < 31.
In particular P(Y (Y +2)) < 31. For Y = N —2 given by [Leh64, Table ITA] such that
P(Y (Y +2)) <31, we check that P((3Y +50)(3Y +56)) > 31 and P((3Y —50)(3Y —
44)) > 31 except when Y € {55,145,297,1573}. This gives m = X +6 = 3Y — 50
and then we further check that P(A(m,2,k)) > 116. Hence we suppose 3 t X (X +2).
Then 3t (X+6) - - (X467)(X+6(r+1)+2) - - - (X460+2). If a prime power p® divides
two terms of the product, then p®|(X+67), p*|(X +6i) or p*|(X +65+2), p*|(X +6i+2)
or p*|(X +67), p?|(X + 6i+2) for some 7, j. Hence p*|6(i — j) or p*|6(i — j) + 2. Since
1 <j<i<10, weget p* € {5,7,11,13,19,25}. After deleting terms divisible by
primes 5 < p < 31 to their highest powers, we are left with two terms such that their
product divides 25-7-11-13-19 and hence X +6 < v/25-7-11-13-19 or X +6 < 689.
We check that P((X +6)(X + 12)(X + 56)(X +62)) > 31 for 110 < X < 683 except
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when X € {113,379}. Further we check that P(A(m,2,k)) > 116 for m = X + 6.
Hence the result. U

The remaining results in this section deal with the case d = 3. The first one is a
computational result.

Lemma 2.9. Let | € {1,2}. If p;3; < 6450, then d3(i,1) < 60.

As a consequence, we obtain

Corollary 2.10. Let d = 3 and 3k < m < 6450 with ged(m,3) = 1. Then (1) holds
unless (m, k) = (125,2).

Proof. For k < 20, it follows by direct computation. For k > 20, (1) follows as
3(k—1) > 60 and, by Lemma 2.9, the set {m + 3i : 0 < i < k} contains a prime. [J

We shall also need the following result of Nagell [Nag58](see [Ca099]) on diophantine
equations.

Lemma 2.11. Let a,b,c € {2,3,5} and a <b. Then the solutions of
a® 4+ b = c* in integers x > 0,y > 0,z > 0
are given by
(a®,b¥,c*) € {(2,3,5), (2%, 3%,5%), (2,5%,3°),
(2%,5,3%),(3,5,2%),(3%,5,2°), (3,5°,27)}.

As a corollary, we have

Corollary 2.12. Let X > 80,31 X and 1 <1i < 7. Then the solutions of
P(X(X 4+ 3i)) =5 and 2|X (X + 3i)
are given by

(4, X) € {(1,125), (2,250), (4,500), (5, 625)}.

Proof. Let 1 < i < 7. We observe that 2| X, 2|(X + 3i¢) only if X and i are both even
and 5|X,5[(X + 3i) only if i = 5. Let the positive integers r, s and § =ordy(i) €
{0,1,2} be given by

(8) X =21 X431 =25 or X =205°, X +3i=2""ifi#£5
and

(9) X=5"" X+4+3i=5x2" or X=5x2", X+3i=5"ifi=5,
where r +2>r+6 > 7 and s > 2 since X > 80. Hence we have

o X + 3i X i
(10) 2" =5 = (2ord2(i) . fords (1) B 9orda (i) . 5ord5(i)) =£3 Qords (i) . Fords (i) ©
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Let i € {1,2,4,5}. Then 2" — 5° = 4+3. By Lemma 2.11, we have 2" = 27 5% = 53
and 27 — 5% = 3 implying X = 207420 . 53+ords () and X 4 3 = 270 . 5d5(0) These
give the solutions stated in the Corollary.

Let i € {3,6}. Then 2" — 5% = +9 = £32. Since min(2",5%) > 16, we observe from
Lemma 2.11 that there is no solution.

Let i = 7. Then 2" — 5° = £21. Let s be even. Since 2" > 16, taking modulo 8, we
find that —1 = £21( modulo 8) which is not possible. Hence s is odd. Then 2" —5° =
2" 4+ 2% = 0 modulo 7. Since 2",2° = 1,2,4 modulo 7, we get a contradiction. 0]

3. PROOF OF THEOREM 3

Let D = 4,3 according as d = 2, 3, respectively. Let v = 7. Assume that

(11) P(A(m,d,k)) = P(m(m+d)---(m+ (k—1)d) < Dk.
Then
(12) w(A(m,d, k)) < m(Dk) — 1.

For every prime p < Dk dividing A, we delete a term m +1,d such that ord,(m +1,d)
is maximal. Note that p|(m + id) for at most one ¢ if p > k. Then we are left
with a set 7" with 1 +¢ := |T| > k — n(Dk) + 1 := 1 4+ t5. Let ty > 0 which we
assume in this section to ensure that 7" is non-empty. We arrange the elements of T’
asm+igd <m+id < --- <m+iyd <. <m+id. Let

to k—m(Dk)
(13) Pi=[[m+i,d) >a"PO T (vk +9).
v=0 =0

We now apply [LaSh04b, Lemma 2.1, (14)] to get
;’B < (k’ . 1)!d—ordd(k—1)!‘
Comparing the upper and lower bounds of ¢, we have

k—m(Dk .
PRCOES "1 P9 (vl + 1)
- (k _ 1)!d—0rdd(k—1)!

which imply
dF 1 gordalk=D)! (g Y +1=m (D)
(k—1)!
By using the estimates for ordy((k — 1)!) and (k — 1)! given in Lemma 2.1, we obtain
(vdk)F+1 k=@ ( — 1)1
20k — D (= eap( i)

(14> dﬂ‘(Dk?)

v

(vdk)™ PR >

= (evdT £ AL h ex (—;)
- k—1) ea/@nyazV k-1 12k — 1)
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implying

k:log(evd%) + (k+ 3)log(:%) — o + 5 log vik

k

—1) 7 121 g
15 Dk amed T
(15)  w(Dk) > log (vdk)

log(vdk) log %4

log(Dk) — L+ log(Dk) ’

Again by using the estimates for 7(v) given in Lemma 2.1 and
we derive

0 >1 | v’k 1
— O —_
2% greras 12(k—1)

g log ¥4 1.2762
k1 di-1y)—D (1 D 1 .
! (Og(“’ =) ( +1og<m>)( +1og<m>)>

Let v be fixed with vd > D. Then expression

, log vd 1.2762
F(k,v) == log(evdat) — D [ 1 o= (1
(k. v) = log(evd™™T) ( ﬂog(m:))( ﬂog(m))

(16)

is an increasing function of k. Let ky := k;(v) be such that F'(k,v) > 0 for all & > k.
Then we observe that the right hand side of (16) is an increasing function for k& > k;.
Let ko := ko(v) > k; be such that the right hand side of (16) is positive. Then (16)
is not valid for all k > ko implying (15) and hence (14) are not valid for all k& > k.

Also for a fixed k, if (16) is not valid at some v = vy, then (14) is also not valid at
v = vy. Observe that for a fixed k, if (14) is not valid at some v = v, then (14) is
also not valid when v > vg.

Therefore for a given v = vy with vod > D, the inequality (14) is not valid for all
k > ko(vo) and v > vy.

3(A). PROOF OF THEOREM 3 FOR THE CASE d = 3

Let d = 3 and let the assumptions of Theorem 3 be satisfied. Let 2 < k£ < 11
and m > 3k. Observe that k — 7(3k) + 1 =0 for Kk < 8 and k — 7(3k) + 1 = 1 for
9<k<11. If T # ¢, then m <23 x 5 x 7 = 280.

By Corollary 2.10, we may assume that 2 < k£ < 8 m > 6450 and T = ¢.
Further i, exists for each prime p < 3k, p # 3 and ¢, # i, for p # ¢ otherwise
7| > k—7n(3k)+1+1 > 0. Also pg { (m + id) for any i whenever p,q > k
otherwise T # ¢. Thus P((m + 3i2)(m + 3i5)) = 5 if k < 8. For k = 8, we
get P((m + 3iz)(m + 3i5)) < 7 with P((m + 3iz)(m + 3i5)) = 7 only if 7|m and
fiz,is} N{0,7} # 6.

Let k < 7or k = 8 with P((m+3i2)(m+3is)) = 5. Let jo =min(is,i5), X = m+3jo
and ¢ = |iz — i5]. Then X > 6450 and this is excluded by Corollary 2.12.



10 S. LAISHRAM AND T. N. SHOREY

Let k = 8 and P((m + 3iz)(m + 3i5)) = 7. Then 7|m and {is,i5} N {0,7} # ¢.
Hence iz =0 or 7 and 7 € {iy,i5} if i = 0 and 0 € {iy,i5} if i; = 7. If 54 m(m + 21),
then {is,17} = {0,7} and either

m=7x2", m+21=7" or m=7" m+21=7x2"

implying 2" — 7% = 43. Since 2" > % > 40, we get by taking modulo 8 that
(—1)*™! = 43 which is a contradiction. Thus 5m(m+21) implying 2x5x 7|m(m+21).
By taking the prime factorization, we obtain

m = 2%5°7% m + 21 = 295" 7%
with min(ag, a1) =min(bg, b;) = 0, min(cy, ¢;) = 1 and further by+b, = 1 if iy € {0, 7}
and ag + a; < 2 if i5 € {0,7}. From the identity 2+21 — Z = 3, we obtain one of
(1) 20— 5-7°=+3 or (ii) 5-2° — 7° = £3
or (i1) 5° —2° -7 =43 or (iw) 2° 5" — 7° = +3
with 0 € {1,2}. Further from m > 6450, we obtain ¢ > 3 and
(17) 0>9a>Tb>4b>3

according as (1), (i7), (i17), (iv) hold, respectively. These equations give rise to a Thue
equation

(18) X3+ AY? =B
with integers X, Y, A > 0, B > 0 given by

c Equation A B X Y
(mod 3)
() | 0,1 |20 —5.-7°=43| 5.2¢.7¢ 3.2 +2°5° | £75%
(id) | 0,1 |5-29—7°=43| 25.-27.7¢ 75-29 | 4£5.2%5 | £7°%
(iid) | 0,1 |50 —20.7¢=43]| 29.5Y.7¢ 3.5 +5°5 | 7%
(iv) | 0,1 [20-50—7e=43|230.5Y.7¢ | 23050 .3| £2.5"5 | £7°%°
(v) 2 |20-5.7=43| 175.2¢ 525 +5. 7% | £2°%°
(vi) 2 | 5.20-7°=43 35 - 2% 21 +75% | 22
(vit) | 2 |5P—20.7c=43| 285.57.7 | 21.289 | £2.7% | £5°5
(viii) | 2 |20-Bb—7e==43| 20.5Y.7 21 +75 | 57

where 0 < a/, 0’ < 3 are such that X, Y are integers and ¢ = 0, 1 according as ¢(mod
3) = 0,1, respectively. For example, 2* — 5. 7° = £3 with ¢ = 0, 1(mod 3) implies

a+a’ | - c—c'

(£2757)3 4+ 52779 (£7557)3 = 3. 29 where o is such that 3|(a + a’). This give a
Thue equation (18) with A =5-297¢ and B = 3-2%.

By using (17), we see that at least two of
(19) ordy(XY) > 2 or ords(XY) > 1 or ord;(XY) > 1

hold except for (vi) and (viii) where ords(XY) > 1, ord;(XY) > 1 in case of (vi)
and ordy(XY') =0, ord7(XY) > 1 in case of (viii). Using the command
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T:=Thue(X? + A); Solutions(T, B);

in Kash, we compute all the solutions in integers X, Y of the above Thue equations.
We find that none of solutions of Thue equations satisfy (19).

Hence we have k > 12. For the proof of Theorem 3, we may suppose from Corol-
laries 2.10 and 2.3 that

(20) m > max(6450,10.6 x 3k).

Let 12 <k <19. Since tg > 1,2 for 12 < k <16 and 17 < k < 19, respectively, we
have

m < /P <V4EX8x52x T2 x 11 x 13 < 6450 if 12<k<16
m< P < VAEX8x 16 x 53 x 72 x 11 x 13 x 17 < 6450 if 17 < k < 19.
This is not possible by (20).

Thus k£ > 20. Then m > 6450 and v > 10.6 by (20) satisfying vod > D = d = 3.
Now we check that kg < 180 for v = 10.6. Therefore (14) is not valid for £ > 180 and
v > 10.6. Thus k < 180. Further we check that (15) is not valid for 20 < k < 180 at
v = % except when k € {21,25,28,37,38}. Hence (14) is not valid for 20 < k < 180

when v > 6;1% except when k € {21,25,28,37,38}. Thus it suffices to consider

k € {21,25,28,37} where we check that (14) is not valid at v = %2 and hence it

is not valid for all v > %0 Finally we consider k = 38 where we find that (14) is

not valid at v = 83%. Thus m < 8000. For [ € {1,2} and p;3; < 8000, we find that
93(7,3,1) < 90 implying the set {m, m+3,...,m+3(38—1)} contains a prime. Hence
the assertion follows since m > 3k. [l

3(B). PROOF OF THEOREM 3 FOR d = 2

Let d = 2 and let the assumptions of Theorem 3 be satisfied. The assertion for
Theorem 3 with k£ > 2 and m < 4k follows from Corollary 2.4. Thus m > 4k. For
2 < k <37, k # 35, Lemma 2.8 gives the result. Hence for the proof of Theorem 3,
we may suppose that k& = 35 or k£ > 38. Further from Corollaries 2.3 and 2.7, we may
assume that

(21) m > max (Mo, 131 x 2k).

Let k = 35,38. Then ty = 1,2 for k = 35, 38, respectively and we have
m<\/P<V27-9-25-5-72-112-132-172-19-23-29 - 31 < 10" if k=35
m< Y/ P<V27-92.25.52.73.113-132-172-19-23-29 - 31 - 37 < 10'% if k = 38.
This is not possible by (21).

Thus we assume that & > 39. Let v > 131 and we check that ky < 500 for v = 131.
Therefore (14) is not valid for £ > 500 and v > 131. Hence from (21), we get k& < 500.
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Further v > ;20 > 107. We check that ko < 70 at v = 107 implying (14) is not valid

for k > 70 and v > 107. Thus k < 70. For each 39 < k < 70, we find that (14) is not

valid at v = % and hence for all v > 2o This is a contradiction. [l

4. PROOF OF THEOREMS 1 AND 2

Recall that ¢ = v 4 § with 1 < a < d. We observe that if G(z) has a factor of
degree k, then it has a cofactor of degree n — k. Hence we may assume from now on
that if G(z) has a factor of degree k, then k < §. The following result is [ShTi10,
Lemma 10.1].

Lemma 4.1. Let 1 <k < 5 and
d<2a+2 if (ku)=(1,0).
If there is a prime p with
plla+(n+u—k)d)---(a+ (n+u—1)d), pfaan.
such that

(k+u—1d+a+2 ifu=0
Then G(z) has no factor of degree k.

p> {(k+u—1)d+oz—l—1 it u>0

Let d = 3. By putting m = o+ 3(n — k) and taking p = P(A(m,3,k)), we find
from Lemma 4.1 and Theorem 3 that G1 and G 2 does not have a factor of degree
k > 2 except possibly when k = 2, a0 = 2, m =2+ 3(n —2) = 125. This gives n = 43
and we use [ShTil0, Lemma 2. 13] with p = 2,7 = 2 to show that G2 do not have a

factor of degree 2. Further except possibly when m = o + 3(n — 1) = 2! for positive
integers [, G 1 and G 2 do not have a linear factor. This proves Theorem 1.

Let d = 2. Let k = 1,u = 0. We have P(1 4+ 2(n — 1)) > 3 and hence tak-
ing p = P(1+2(n —1)) in Lemma 4.1, we find that G'1 does not have a factor
of degree 1. Hence from now on, we may suppose that & >2and 0 < u < k.
For (m, k) € {((5,2),(7,2),(9,4), (13 5),(17,6), (15,7),(21,8),(19,9)}, we check that
P(A(m,2,k)) > m. For 0 < u < k, by putting m =14 2(n + u — k), we find from
n > 2k and Theorem 3 that

3.5k) if u < 0.5k
Ak) i 05k <u <k

except when k = 2, (u,m) € {(1,25),(2,25),(2,243)}. Observe that if p > 2(k + u),
then p > 2(k +u) + 1. Now we take p = P(A(m,2,k)) in Lemma 4.1 to obtain
that G wtl do not have a factor of degree k with k > 2 except possibly when k =
2,u = 1,n =13 or k = 2,u = 2,n € {12,121}. We use [ShTil0, Lemma 2.13]
with (p,r) = (3,1),(7,1) to show that Gy1 do not have a factor of degree 2 when

(u,n) = (1,13),(2,12) and (u,n) = (2,121), respectively. O

P(A(m,2,k)) > 2(k +u) = {
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