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Abstract. In this paper, we show that for each n ≥ 1, the generalised

Hermite-Laguerre Polynomials G 1
4

and G 3
4

are either irreducible or linear

polynomial times an irreducible polynomial of degree n− 1.

1. Introduction

Let n and 1 ≤ α < d be positive integers with gcd(α, d) = 1. Let q = α
d and let

(α)j = α(α+ d) · · · (α+ (j − 1)d)

for non negative integer j. We define

F (x) := Fq(x) = an
dnxn

(α)n
+ an−1

dn−1xn−1

(α)n−1
+ · · ·+ a1

dx

(α)1
+ a0

where a0, a1, · · · an ∈ Z and P (|a0an|) ≤ 2. Here P (ν) is the maximum prime
divisor for |ν| > 1 and P (1) = P (−1) = 1. We put

G(x) := Gq(x) =(α)nFq(
x

d
)

=anx
n + an−1(α+ (n− 1)d)xn−1 + · · ·+

a1

(
n−1∏
i=1

(α+ id)

)
x+ a0

(
n−1∏
i=0

(α+ id)

)
.

Schur [Sch29] proved that G 1
2

with |a0| = |an| = 1 is irreducible. Laishram and

Shorey [LaiSho] showed that G 1
3

and G 2
3

are either irreducible or linear polynomial

times an irreducible polynomial of degree n − 1 whenever |a0| = |an| = 1. For an
account of earlier results, we refer to [ShTi] and [FiFiLe]. We prove

Theorem 1. For each n, the polynomials G 1
4
and G 3

4
are either irreducible or

linear polynomial times an irreducible polynomial of degree n− 1.

For Theorem 1, we prove the following lemma in Section 2.

Lemma 1. Let 1 ≤ k ≤ n
2 . Suppose there is a prime p satisfying

p > d, p ≥ min(2k, d(d− 1))

and

p|
k∏
j=1

(α+ (n− j)d), p -
k∏
j=1

(α+ (j − 1)d).(1)

Then G(x) has no factor of degree k.
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We compare Lemma 1 with [ShTi, Lemma 10.1]. The assumption on p in [ShTi,
Lemma 10.1] has been relaxed. For any integer ν > 1, we denote by ω(ν) the
number of distinct prime factors of ν and ω(1) = 0. In Section 3, we give an

upper bound for m when ω(
∏k−1
i=0 (m + id)) ≤ t for some t. In Section 4, we give

preliminaries for the proof of Theorem 1. In Section 5, we complete the proof.

2. Proof of Lemma 1

Let

∆j = α(α+ d) · · · (α+ (j − 1)d).

For each 1 ≤ l < d and gcd(l, d) = 1, we observe that q|∆k for all primes q ≡
l−1α(mod d) and q ≤ kd

l . Since p > α and p - ∆k, we have p > kd
d−1 . Let j0 be

the minimum j such that p|(α+ (j − 1)d) and we write α+ (j0 − 1)d = pl0. Then
j0 > k since p - ∆k and we observe that 1 ≤ l0 < d by the minimality of j0. As in
the proof of [ShTi, Corollary 2.1], it suffices to show that

φj =
ordp(∆j)

j
<

1

k
for 1 ≤ j ≤ n.

We may restrict to those j such that α+ (j− 1)d = pl for some l. Then (j− j0)d =
p(l − l0) implying d|(l − l0). Writing l = l0 + sd, we get j = j0 + ps. Note that if
p|(α+ (i− 1)d), then α+ (i− 1)d = p(l0 + rd) for some r ≥ 0. Hence we have

ordp(∆j) = ordp((pl0)(p(l0 + d)) · · · (p(l0 + sd)) = s+ 1 + ordp(l0(l0 + d) · · · (l0 + sd))

(2)

for some integer s ≥ 0. Further we may suppose that s > 0 otherwise the assertion
follows since p > d > l0. Let r0 be such that ordp(l0+r0d) is maximal. We consider
two cases.
Case I: Assume that s < p. Then p divides at most one term of {l0+id : 0 ≤ i ≤ s}
and we obtain from (2) and l0 + sd < (s+ 1)d < p2 that φj ≤ s+2

jo+ps
. Thus φj <

1
k

if s(p − k) ≥ k since j0 − k + s(p − k) − k ≥ 1 + s(p − k) − k. If p ≥ 2k, then
s(p − k) ≥ k. Thus we may suppose that p < 2k. Then p ≥ d(d − 1). Since
p > kd

d−1 , we obtain s(p − k) ≥ k if s ≥ d − 1. We may suppose s ≤ d − 2. Then

l0 + sd ≤ d− 1 + (d− 2)d < p and therefore φj = s+1
j0+ps

≤ s+1
k+1+(k+1)s <

1
k .

Case II: Let s ≥ p. Then

ordp(∆j) ≤ s+ 1 + ordp(l0 + r0d) + ordp(s!) ≤ s+ 1 +
log(l0 + sd)

log p
+

s

p− 1
.

We have p ≥ d+ 1. This with l0 ≤ d−1 < p ≤ s imply log(l0 + sd) ≤ log s(d+ 1) =
log s+ log(d+ 1) ≤ log s+ log p. Hence

ordp(∆j) ≤ s+ 1 +
s

p− 1
+

log s

log p
+ 1.

Since j
k = j0+ps

k > 1 + p
ks, it is enough to show that

p

k
≥ 1 +

1

p− 1
+

1

s
+

log s

s log p
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Since s ≥ p, the right hand side of the above inequality is at most 1 + 1
p−1 + 2

p and

therefore it suffices to show

1 +
1

p− 1
+

2

p
≤ p

k
.(3)

Let p ≥ 2k. Then p ≥ 2k + 1 ≥ k + 2 and the left hand side of (3) is at most

1 +
1

2k
+

2

2k + 1
≤ 1 +

2

k
=
k + 2

k
≤ p

k
.

Thus we may assume that p < 2k. Then p > d(d − 1) since p - d. Further d ≥ 3
since p ≥ kd

d−1 . Therefore the left hand side of (3) is at most

1 +
3

d(d− 1)
≤ 1 +

1

d− 1
=

d

d− 1
≤ p

k
.

Hence the proof. �

3. An upper bound for m when ω(∆(m, d, k)) ≤ t

Let m and k be positive integers with m > kd and gcd(m, d) = 1. We write

∆(m, d, k) = m(m+ d) · · · (m+ (k − 1)d).

Assume that

ω(∆(m, d, k)) ≤ t.(4)

for some integer t. For every prime p dividing ∆, we delete a term m + ipd such
that ordp(m+ ipd) is maximal. Then we have a set T of terms in ∆(m, k) with

|T | = k − t := t0.

We arrange the elements of T as m+ i1d < m+ i2d < · · · < m+ it0d. Let

P :=

t0∏
ν=1

(m+ iνd) ≥ mt0 .(5)

Now we deduce an upper bound for P. For a prime p, let r be the highest power
of p such that pr ≤ k− 1. Let wl = #{m+ id : pl|(m+ i),m+ i ∈ T} for 1 ≤ l ≤ r.
By Sylvester and Erdős argument, we have wl ≤ [ i0

pl
]+[k−1−io

pl
] ≤ [k−1

pl
]. Let hp > 0

be such that [ k−1
php+1 ] ≤ t0 < [k−1

php
]. Then |{m + id ∈ T : ordp(n + id) ≤ hp}| ≤

t0 − whp+1. Hence

ordp(P) ≤ rwr +

r−1∑
u=hp+1

u(wu − wu+1) + hp(t0 − whp+1)

= wr + wr−1 + · · ·+ whp+1 + hpt0

≤
r∑

u=1

⌊k − 1

pu
⌋

+ hpt0 −
hp∑
u=1

⌊k − 1

pu
⌋

= ordp((k − 1)!) + hpt0 −
hp∑
u=1

⌊k − 1

pu
⌋
.

It is also easy to see that ordp(P) ≤ordp(k − 1)!) if p - d and ordp(P) = 0 if p|d.
Therefore

mt0 ≤ P ≤ (k − 1)!
∏
p≤k

pL0(p)
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where

L0(p) =

{
min(0, hpt0 −

∑hp
u=1

⌊
k−1
pu

⌋
) if p - d

−ordp((k − 1)!) if p|d.

Observe that

mt0 ≤ (k − 1)!
∏
p|d

p−ordp((k−1)!).(6)

We also note that L0(p) ≤ 0 for any prime p. Hence for any l ≥ 1, we have from
(5) that

m ≤ (P)
1
t0 ≤

(k − 1)!
∏
p≤pl

pL0(p)

 1
t0

=: L(k, l).(7)

4. Preliminaries for Theorems 1

Let m and k be positive integers with m > kd and gcd(m, d) = 1. We write

∆(m, d, k) = m(m+ d) · · · (m+ (k − 1)d).

For positive integers ν, µ and 1 ≤ l < µ with gcd(l, µ) = 1, we write

π(ν, µ, l) =
∑
p≤ν

p≡l(mod µ)

1, π(ν) = π(ν, 1, 1)

θ(ν, µ, l) =
∑
p≤ν

p≡l(mod µ)

log p.

Let pi,µ,l denote the ith prime congruent to l modulo µ. Let δµ(i, l) = pi+1,µ,l−pi,µ,l
and Wµ(i, l) = (pi,µ,l, pi+1,µ,l). We recall some well-known estimates from prime
number theory.

Lemma 4.1. Let k ∈ Z and ν ∈ R be positive. We have

(i) π(ν) ≤
(

1 + 1.2762
log ν

)
for ν > 1

(ii) ordp(k − 1)! ≥ k−p
p−1 −

log(k−1)
log p for k ≥ 2.

(iii)
√

2πk e−kkke
1

12k+1 < k! <
√

2πk e−kkke
1

12k .

The estimates (i) is due to Dusart([Dus99]. The estimate (iii) is due to Robbins
[Rob55, Theorem 6]. For a proof of (ii), see [LaSh04, Lemma 2(i)]. �

The following lemma is due to Ramaré and Rumely [RaMu96, Theorems 1, 2].

Lemma 4.2. Let d = 4 and l ∈ {1, 3}. For ν0 ≤ 1010, we have

θ(ν, d, l) ≥

{
ν
2 (1− 0.002238) for ν ≥ 1010

ν
2

(
1− 2×1.798158√

ν0

)
for 1010 > ν ≥ ν0

(8)

and

θ(ν, d, l) ≤

{
ν
2 (1 + 0.002238) for ν ≥ 1010

ν
2

(
1 + 2×1.798158√

ν0

)
for 1010 > ν ≥ ν0.

(9)

We derive from Lemmas 4.1 and 4.2 the following result.
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Corollary 4.3. Let 106 < m ≤ 138× 4k. Then P (∆(m, 4, k)) ≥ m.

Proof. Let d = 4 and 106 ≤ m ≤ 138 × dk. Let l ∈ {1, 3} and assume m ≡ l(mod
d). We observe that P (∆(m, d, k) ≥ m holds if

θ(m+ d(k − 1), d, l)− θ(m− d, d, l) =
∑

m<p≤m+(k−1)d
p≡l(d)

log p > 0.

From Lemmas 4.1 and 4.2, we have

θ(m− d, d, l)
m−d
φ(d)

< 1 +
2× 1.798158√

106

and

θ(m+ (k − 1)d, d, l)
m−d+dk
φ(d)

> 1− 2× 1.798158√
106

Thus P (∆(m, d, k) ≥ m holds if

(1− 2× 1.798158

103
)dk >

4× 1.798158

103
(m− d)

which is true since

m

dk
≤ 138 <

103

4× 1.798158
− 1

2
.

Hence the assertion. �

The following lemma is a computational result.

Lemma 4.4. Let l ∈ {1, 3}. Then δ4(i, l) ≤ 24, 32, 60, 200 according as pi,4,l ≤
120, 250, 2400, 106, respectively.

As a consequence, we obtain

Corollary 4.5. Let d = 4, k ≥ 6 and m be such that m ≤ 120, 250, 2400, 106

when 6 ≤ k < 8, 8 ≤ k < 15, 15 ≤ k < 50 and k ≥ 50 respectively. Then
P (∆(m, d, k)) ≥ m.

Proof. We may assume that pi,d,l < m < m+(k−1)d < pi+1,d,l for some i otherwise
the assertion follows. Thus pi+1,d,l ≥ d+m+(k−1)d and pi,d,l ≤ m−d. Therefore
δd(i, l) = pi+1,d,l − pi,d,l ≥ d + m + (k − 1)d − (m − d) = d(k + 1) > dk. Now the
assertion follows from Lemma 4.4. �

5. Proof of Theorem 1

Let 2 ≤ k ≤ n
2 and assume that G(x) has a factor of degree k. We take m = α+

4(n− k). Since n ≥ 2k, we have m > 4k. We may assume that P (∆(m, 4, k)) ≤ 4k
otherwise the assertion follows from Lemma 1 since α + 4(k − 1) < 4k. Thus
P (∆(m, 4, k)) ≤ 4k < m.

Let k ≤ 6. Then P (∆(m, 4, k)) ≤ 4k ≤ 23 implying P (m(m + 4)) ≤ 24. Then
m + 4 = N where N is given by [Leh64, Table IIA] for p ≤ 23. For each such
N and for each 2 ≤ k ≤ 6, we first restrict to those m = N − 4 > 4k such that
P (∆(m, 4, k)) ≤ 4k. They are given by k = 2, m ∈ {21, 45}. Here P (m(m+4)) = 7
and since m ≡ 1 modulo 4, the assertion follows by taking p = 7 in Lemma 1.
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Therefore k ≥ 7. Let ω1(k) := max
α∈{1,3}

ω(∆(α, 4, k)). If ω(∆(m, 4, k)) > ω1, then

there is a prime p satisfying (1) implying p > k ≥ 7. Observe that 11|∆(3, 4, k) and
11|∆(1, 4, k) for k ≥ 9. For k ∈ {7, 8}, if ω(∆(m, 4, k)) > ω1, then there are two
primes p > k dividing ∆(m, 4, k) but p - ∆(1, 4, k) and hence there is a prime p > 11
satisfying (1). Therefore by Lemma 1, we may assume that ω(∆(m, 4, k)) ≤ ω1.
Taking t = ω1, we obtain from (7) with pl = 7 that m ≤ 104, 245, 2353 according
as k ≤ 10, 20, 400, respectively. This is not possible by Corollary 4.5.

Hence k > 400 and further m > 106 by Corollary 4.5. By Corollary 4.3, we may
further suppose that m ≥ v0 · 4k where v0 := 138. Since P (∆(m, d, k)) ≤ 4k, we
have ω(∆(m, d, k)) ≤ π(4k) − 1. Taking t = π(4k) − 1 in (4), we obtain from (6)
that

(v0 · 4k)k−π(4k)+1 ≤ (k − 1)!2−ord2((k−1)!) =
k!

k
2−ord2((k−1)!).

By using estimates of ordp(k − 1)!) and k! from Lemma 4.1, we obtain

(v0 · 4k)k−π(4k) <
1

k(v0 · 4k)
(
k

e
)k
(

(2πk)
1
2 exp(

1

12k
)

)
(2−k+2(k − 1)

or

(v0 · 4 · e · 2)k < (v0 · 4k)π(4k)

(
(2π)

1
2 exp( 1

12k )
)

v0 ·
√
k

< (v0 · 4k)π(4k)

since k > 400. By using estimates of π(4k) from Lemma 4.1, we get

log(v0 · 8 · e) <
4 log(v0 · 4k)

log(4k)

(
1 +

1.2762

log(4k)

)
.

The right hand side of the above expression is a decreasing function of k and the
inequality does not hold at k = 401. This is a contradiction. �
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[Dus99] P. Dusart, Inégalitiés explicites pour ψ(X), θ(X), π(X) et les nombres premiers, C. R.

Math. Rep. Acad. Sci. Canada 21(1)(1999), 53-59.

[FiFiLe] M. Filaseta, Carrie Finch and J Russell Leidy, T. N. Shorey’s influence in the theory
of irreducible polynomials, Diophantine Equations, ed. by N. Saradha, Narosa Publ., New

Delhi etc., (2008), 77-102.
[LaSh04] S. Laishram and T. N. Shorey, Number of prime divisors in a product of terms of an

arithmetic progression, Indag. Math., 15(4), (2004), 505-521.

[LaiSho] S. Laishram and T. N. Shorey, Irreducibility of generalized Hermite-Laguerre Polynomi-
als, submitted.
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