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Abstract. For positive integers n and k, it is possible to choose primes P1, P2, · · · , Pk

such that Pi|(n+ i) for 1 ≤ i ≤ k whenever n+1, n+2, · · · , n+k are all composites
and n ≤ 1.9× 1010. This provides a numerical verification of Grimm’s Conjecture.

Let n ≥ 0 and k ≥ 1 be integers. For an integer ν > 1, we denote by ω(ν) and
P (ν) the number of distinct prime divisors of ν and the greatest prime factor of ν,
respectively, and let ω(1) = 0, P (1) = 1. Let pi denote the i− th prime number. We
shall always write p for a prime number. Let N0 = 8.5× 108.

We state a Conjecture of Grimm [2].

Suppose n + 1, · · · , n + k are all composite numbers and there are distinct primes
Pi such that Pi|(n+ i) for 1 ≤ i ≤ k. Then we say that Grimm’s Conjecture holds for
n and k. Further we say that Grimm’s Conjecture holds if there are distinct primes
Pi such that Pi|(n+ i) for 1 ≤ i ≤ k whenever n+ 1, · · · , n+ k are all composites.

If k ≥ n, it is well-known that the interval [n + 1, n + k] contains a prime. Thus
k < n if n + 1, · · · , n + k are all composite numbers. According to Erdős (see [1]),
this conjecture implies

pi+1 − pi ≤ c1p
1
2
−α

i

for some α > 0 and an absolute constant c1. The best known result on Grimm’s
Conjecture is due to Ramachandra, Shorey and Tijdeman [4]:

There exists an absolute constant c2 > 0 such that for n ≥ 3 and g = g(n) =

[c2

(
logn

log logn

)3
], it is possible to choose distinct primes P1, P2, · · · , Pg such that Pi|(n+i)

for 1 ≤ i ≤ g.

The constant c2 turns out to be very small. Therefore the above result is valid only
for large values of n. In this paper, we confirm Grimm’s Conjecture for n ≤ 1.9×1010

and for all k.

Theorem 1. Grimm’s Conjecture holds for n ≤ pN0 and for all k.

We observe that pN0 = 19236701629 > 1.9× 1010. As a consequence of Theorem 1,
we have
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Corollary 0.1. Assume that n+ 1, · · · , n+ k are all composite and n ≤ pN0. Then

ω((n+ 1) · · · (n+ k)) ≥ k.(1)

A weaker version of Grimm’s Conjecture states that (1) is valid for all n and k such
that n+ 1, · · · , n+ k are all composite numbers. For results in this direction, see [5].
A Conjecture of Cramer states that

pN+1 − pN < (log pN)2 for N > 1.

We check

Lemma 0.2. Let k(N) = pN+1 − pN − 1. Then

k(N) < (log pN)2 for N ≤ N0.(2)

We observe that (2) can be sharpened for several values of N and this is important
for the value of N0 in Theorem 1. For the proof of Theorem 1, it suffices to prove the
following.

Theorem 2. Grimm’s Conjecture is valid when n = pN and k = k(N) = pN+1−pN−1
for 1 < N ≤ N0.

The computations in this paper were done by using MATHEMATICA. The
computations were carried out in an Intel Xeon 2.40 GHz processor with 2.5 GB
RAM and it took around a week. The computations turn out to be very slow for
N > N0 and this is the reason that we have stated Theorem 2 for N ≤ N0.

Proof of Theorem 2: Let 1 < N ≤ N0. We put n = pN and k = k(N) =
pN+1 − pN − 1. We check that Theorem 2 is valid for N ≤ 9. Thus we may suppose
that 10 ≤ N ≤ N0. Assume that the assertion of Theorem 2 is not valid. Then we
derive from a result of Phillip Hall [3] on distinct representations that there exists
t > 0 and integers n < n0 < n1 < · · · < nt < n+ k + 1 with

ω(n0n1 · · ·nt) ≤ t.(3)

Let t = t(N) be minimal in the above assertion. Then P (ni) < k for 0 ≤ i ≤ t and (3)
holds with equality sign. We apply a fundamental argument of Sylvester and Erdős.
For every prime divisor p of n0n1 · · ·nt, we take an nip such that p does not appear
to a higher power in the factorisation of any element of {n0, n1, · · · , nt} =: S. By
deleting all nip with p dividing n0n1 · · ·nt in S, we are left with at least one ni0 ∈ S.
If pν is the highest power of a prime p dividing ni0 , then pν also divides nip and hence
it divides |ni0 − nip| < k. Therefore

n < ni0 < kt(4)

since ω(ni0) ≤ t. By Lemma 0.2, we get

log pN
log log pN

< 2t(N).(5)
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We see that the left hand side of (5) is an increasing function of N . For i ≥ 2, let Ni

be the largest integer N such that

log pN
log log pN

< 2i.

Then we calculate

N2 = 727, N3 = 1514619, N4 = 8579289335.(6)

Let Ar and Mr be defined by

A2r−1 =
∏

pα<2r−1≤pα+1

pα, M2r−1 = π(A2r−1).

Then

Lemma 0.3. Suppose that Theorem 2 is not valid at N with N > M2r−1. Then
k(N) > 2r − 1.

Proof. Assume that k(N) = pN+1 − pN − 1 ≤ 2r − 1. Since Theorem 2 is not valid,
(3) holds for some t and hence there exists a term n̄ such that

pN < n̄ ≤ A2r−1.

This is a contradiction since N > M2r−1. �

We compute M2r−1 for some values of r :

M11 = 368,M13 = 3022,M15 = 30785,M17 = 58083,M19 = 803484,

M21 = M23 = 12787622,M25 = 250791570.

Let

SN = {pN + i : P (pN + i) < k, 1 ≤ i ≤ k}
and put t′ = t′(N) = |SN |. We see that t′ ≥ t + 1. For the proof of Theorem 2, it
suffices to find distinct prime divisors of the elements of SN since a prime ≥ k divides
at most one pN + i with 1 ≤ i ≤ k.

First we consider N ≤ N2. Let t = 1. Then there are 1 ≤ j < i ≤ k and a prime p
such that pN + i = pα and pN + j = pβ. This gives

pN + j = pβ ≤ pβ(pα−β − 1) = i− j < k = pN+1 − pN − 1

implying 2pN < pN+1− 1, a contradiction. Let t = 2. Then (4) holds only when N =
30. We have S30 = {120, 121, 125, 126} and we choose 3, 11, 5 and 7 as distinct prime
divisors of 120, 121, 125 and 126, respectively. Therefore the assertion of Theorem
2 holds for N = 30. Thus t ≥ 3 implying t′ ≥ t + 1 ≥ 4. Now, by calculating t′,
we see that N = 30, 99, 217, 263, 327, 367, 457, 522, 650 and we verify the assertion of
Theorem 2 as above in each of these values of N .

Hence N > N2. Therefore t ≥ 3 by the definition of N2 and thus t′ ≥ 4. Next we
consider N2 < N ≤ N3. We divide this interval into the following subintervals:

I11 = (N2,M13], I13 = (M13,M15], I15 = (M15,M17], I17 = (M17,M19], I19 = (M19, N3].
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By Lemma 0.3, we restrict to those N for which k(N) > 2r − 1 whenever N ∈ I2r−1
with 6 ≤ r ≤ 10. Let t = 3. By (4) and t′ ≥ 4, we find that N is one of the following:

757, 1183, 1229, 1315, 1409, 1831, 1879, 2225, 2321, 2700, 2788, 2810, 3302, 3385,

3427, 3562, 3644, 3732, 3793, 3795, 3861, 4009, 4231, 4260, 4522, 4754, 5349, 5949,

6104, 6880, 9663, 9872, 10229, 10236, 11214, 11684, 12542, 14357, 14862, 15783,

16879, 17006, 17625, 18266, 19026, 19724, 23283, 23918, 25248, 28593, 31545, 31592,

33608, 34215, 38590, 40933, 44903, 47350, 66762, 104071, 118505, 126172, 141334, 149689.

Let P (SN) = {P (pN + i) : pN + i ∈ SN}. For the proof of Theorem 2, we may suppose
that

|P (SN)| < |SN |.(7)

In view of (7), all above possibilities for N other than the following are excluded:

1409, 1831, 2225, 2788, 3302, 3385, 3562, 3644, 4522,

14862, 16879, 17006, 23283, 28593, 34215, 104071.
(8)

Let N be given by (8). We check that |P (SN)| = |SN | − 1. Let (i, j) with i < j be
the unique pair satisfying P (pN + i) = P (pN + j). We check that ω(pN + i) ≥ 2.
Now we take Pµ = P (pN + µ) if µ 6= i and Pi to be the least prime divisor of pN + i.
Thus all the possibilities in (8) are excluded. Therefore t ≥ 4 implying t′ ≥ 5. If
pN < k3, then N is already excluded. Consequently we suppose that pN ≥ k3. Now
we calculate t′ to find that N is one of the following:

11159, 19213, 30765, 31382, 40026, 42673, 51943, 57626, 65274, 65320, 80413,

81426, 88602, 106286, 184968, 189747, 192426, 212218, 245862, 256263, 261491,

271743, 278832, 286090, 325098, 327539, 405705, 415069, 435081, 484897, 491237,

495297, 524270, 528858, 562831, 566214, 569279, 629489, 631696, 822210, 870819,

894189, 938452, 1036812, 1150497, 1178800, 1319945, 1394268, 1409075.

By (7), it suffices to restrict N to

57626, 65320, 80413, 106286, 271743, 415069, 822210.

These cases are excluded as in (8).

Thus we may assume that N > N3. Then t ≥ 4 by the definition of N3 and t′ ≥ 5.
We divide the interval (N3, N0] into the following subintervals:

J19 = (N3,M23], J23 = (M23, N0].
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By Lemma 0.3, we restrict to those N for which k(N) > 2r− 1 whenever N ∈ J2r−1,
r = 10, 12. By calculating t′, we find that N is one of the following:

1515930, 1539264, 1576501, 1664928, 2053917, 2074051, 2219883, 2324140,

2341680, 2342711, 2386432, 2775456, 2886673, 3237613, 3695514, 5687203,

6169832, 6443469, 6860556, 7490660, 7757686, 8720333, 9558616, 10247124,

10600736, 10655462, 11274670, 11645754, 12672264, 13377906, 14079145,

14289335, 18339279, 24356055, 28244961, 33772762, 42211295, 53468932,

64955634, 110678632, 118374763, 231921327, 264993166, 398367036.

By (7), it suffices to consider only the following values of N :

1539264, 2053917, 2775456, 12672264, 110678632

which are excluded as in (8). This completes the proof of Theorem 2. �
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