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1. Introduction

Let d ≥ 1, k ≥ 2, n ≥ 1 and y ≥ 1 be integers with gcd(n, d) = 1. We write

∆ = ∆(n, d, k) = n(n+ d) · · · (n+ (k − 1)d).

For an integer ν > 1, we denote by ω(ν) and P (ν) the number of distinct prime
divisors of ν and the greatest prime factor of ν, respectively, and we put ω(1) = 0,
P (1) = 1. Further we write πd(ν) for the number of primes ≤ ν coprime to d and we
put π(ν) = π1(ν). Let W (∆) be the number of terms in ∆ divisible by a prime > k.

Let d = 1. A well known theorem of Sylvester [15] states that

P (∆) > k if n > k.(1)

We observe that P (∆(1, 1, k)) ≤ k and therefore, the assumption n > k in (1) cannot
be removed. For n > k, Moser [10] sharpened (1) to P (∆) > 11

10
k and Hanson [4]

to P (∆) > 1.5k unless (n, k) = (3, 2), (8, 2), (6, 5). Further Laishram and Shorey [5]
proved that P (∆) > 1.95k with n > k except for an explicitly given finite set of pairs
(n, k). We refer to [5] for a precise formulation of the above result. We observe that
P (∆(k + 1, 1, k)) ≤ 2k and therefore 1.95 cannot be replaced by 2 in the preceding
result. Further it has been proved in [5] that P (∆) > 2k for n > max(k + 13, 279

262
k).

Now we consider (1) when d > 1. Let d = 2. If n > k, then (2) follows
from Laishram and Shorey [7, Theorem 1]. Let n ≤ k. Then we observe that
P (∆(n, 2, k)) ≤ 2k implies P (∆(n + k, 1, k)) ≤ 2k. Therefore the case d = 2 when
considering P (∆(n, 2, k)) > 2k reduces to considering P (∆(n + k, 1, k)) > 2k dis-
cussed above in the case d = 1. Therefore we may suppose that d > 2. Sylvester [15]
proved that

P (∆) > k if n ≥ d+ k.

Langevin [8] sharpened it to P (∆) > k if n > k. Shorey and Tijdeman [14] improved
it to P (∆) > k for k ≥ 3 unless (n, d, k) = (2, 7, 3). The case k = 2 is clear since
P (∆(n, d, 2)) = 2 if and only if n = 1, d = 2r − 1 with r > 1. We prove

Theorem 1. Let d > 2 and k ≥ 3. Then

P (∆) = P (n(n+ d) · · · (n+ (k − 1)d)) > 2k(2)

1
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unless (n, d, k) is given by

k = 3, n = 1, d = 4, 7;

n = 2, d = 3, 7, 23, 79;

n = 3, d = 61; n = 4, d = 23;

n = 5, d = 11; n = 18, d = 7;

k = 4, n = 1, d = 3, 13; n = 3, d = 11;

k = 10, n = 1, d = 3.

It is necessary to exclude the exceptions stated in Theorem 1. Lower bounds for
P (∆) have been useful at several places. For example, see [12].

The computations in this paper were carried out using MATHEMATICA and
MAGMA. We thank Professor R. Tijdeman for his useful remarks and for pointing
out an exception (9, 247) in (6).

2. Lemmas

We begin with

Lemma 1. It suffices to prove Theorem 1 for k such that 2k − 1 is prime.

Proof. Let (n, d, k) be as in Theorem 1. Let k1 and k2 be such that k1 < k < k2 and
2k1 − 1, 2k2 − 1 are consecutive primes. Assume that (2) holds at (n, d, k1). Then

P (n(n+ d) · · · (n+ (k − 1)d) ≥ P (n · · · (n+ (k1 − 1)d)) > 2k1

implying P (∆(n, d, k)) ≥ 2k2 − 1 > 2k. Thus (2) holds at (n, d, k).

Therefore (2) is valid except possibly for those triples (n, d, k) with (n, d, k1) as one
of the exceptions in Theorem 1. We check the validity of (2) at those (n, d, k). For
instance, let k = 11. Then k1 = 10. We see that (1, 3, 10) is the only exception in
Theorem 1. We check that (2) holds at (1, 3, 11). �

For a proof of the following result, we refer to de Weger [16, Theorem 5.2]. It is a
particular case of Catalan equation which has been solved completely by Mihăilescu
[9].

Lemma 2. Let a, b ∈ {2, 3, 5} and a < b. Then the solutions of

ax − by = ±1 in integers x > 0, y > 0

are given by

(ax, by) ∈ {(22, 3), (2, 3), (23, 32), (22, 5)}.

The next result is due to Nagell [11], see [1].
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Lemma 3. Let a, b, c ∈ {2, 3, 5} and a < b. Then the solutions of

ax + by = cz in integers x > 0, y > 0, z > 0

are given by

(ax, by, cz) ∈ {(2, 3, 5), (24, 32, 52), (2, 52, 33),

(22, 5, 32), (3, 5, 23), (33, 5, 25), (3, 53, 27)}.

We shall also need some more equations given by the following. See also de Weger
[16, Theorem 5.5].

Lemma 4. Let δ ∈ {1,−1}. The solutions of

(i) 2x − 3y5z = δ

(ii) 3x − 2y5z = δ

(iii) 5x − 2y3z = δ

in integers x > 0, y > 0, z > 0 are given by

(x, y, z, δ) =


(4, 1, 1, 1) for (i);

(4, 4, 1, 1), (2, 1, 1,−1) for (ii);

(2, 3, 1, 1), (1, 1, 1,−1) for (iii),

respectively.

Proof. (i) Let δ = 1. By 2x ≡ 1(mod 5), we get 4|x. This implies 2
x
2 −1 = 3y, 2

x
2 +1 =

5z and the assertion follows from Lemma 2. Let δ = −1. Then 2x ≡ −1(mod 5) and
2x ≡ −1(mod 3) implying 2|x and 2 - x, respectively. This is a contradiction.

(ii) Let δ = 1. By 3x ≡ 1(mod 5) giving 4|x and the assertion follows as in (i)
with δ = 1. Let δ = −1. Let y ≥ 2. Then 3x ≡ −1(mod 5) and 3x ≡ −1(mod 4)
implying 2|x and 2 - x, respectively. Therefore y = 1 and we rewrite equation (ii) as
2 · 5z − 3x = 1. We may assume that z ≥ 2 and further x is even by reading mod 4.
Thus 3x ≡ −1(mod 25) giving x ≡ 10(mod 20). Then x

10
is odd and

1 + 95 divides 1 + (95)
x
10 = 2 · 5z,

a contradiction.

(iii) Let δ = 1. By mod 3, we get x even and the assertion follows as in (i) with
δ = 1. Let δ = −1. We may assume that y = 1 by mod 4 and z ≥ 2. Then we derive
as in (ii) with δ = −1 that x

3
is odd by using mod 9 and 1 + 53 divides 1 + 5x = 2 · 3z,

a contradiction. �

Now we state a result due to Saradha, Shorey and Tijdeman [13] for k = 6, 7.

Lemma 5. Let n ≥ 1, d > 2 and k = 6, 7. Assume that

(n, d, k) /∈ {(1, 3, 6), (1, 3, 7), (1, 4, 7), (2, 3, 7), (2, 5, 7)}.
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Then

ω(∆) ≥ π(k) + 2.

For k ≥ 9, Laishram and Shorey [7, Theorem 1] proved the following result.

Lemma 6. Let n ≥ 1, d > 2 and k ≥ 9. Assume (n, d, k) /∈ V where V is given by
n = 1, d = 3, k = 9, 10, 11, 12, 19, 22, 24, 31;

n = 2, d = 3, k = 12; n = 4, d = 3, k = 9, 10;

n = 2, d = 5, k = 9, 10;n = 1, d = 7, k = 10.

Then

W (∆) ≥ π(2k)− πd(k).

We observe that ∆ is divisible by every prime p ≤ k with p - d and ω(∆) ≥
W (∆) + πd(k). Therefore Lemma 6 implies the following result immediately.

Corollary 1. Let n, d and k be as in Lemma 6. Then

ω(∆) ≥ π(2k).

We shall also need some estimates for the number of primes due to Dusart [2, p.14].

Lemma 7. For ν > 1, we have

π(ν) ≤ ν

log ν

(
1 +

1.2762

log ν

)
We write p(d) for the least prime divisor of d. We shall use the following compu-

tational result.

Lemma 8. Assume that p(d) > k if k = 6, 7 and p(d) > 2k if k = 9, 10, 12, 15, 16.
Then (2) holds if

n+ d ≤ N

where

N =


20 · 35 if k = 6, 7,

40 · 36 if k = 9, 10,

360 if = 12, 15, 16.

Proof. For each n with 1 ≤ n ≤ N and P (n) ≤ 2k, we check the validity of max{P (n+
(k − 1)d), P (n+ (k − 2)d), P (n+ (k − 3)d)} > 2k whenever d ≤ N − n and p(d) > k
if k = 6, 7 and p(d) > 2k if k ≥ 9. If max{P (n + (k − 1)d), P (n + (k − 2)d), P (n +
(k− 3)d)} ≤ 2k, then we check the validity of max{P (n+ d), P (n+ 2d)} > 2k. Then
we find that either max{P (n+ d), P (n+ 2d)} > 2k or

(n, d) ∈ {(33, 31), (64, 31)} if k = 12 and (n, d) ∈ {(3, 31), (34, 31), (35, 43)} if k = 15.
(3)

For (n, d, k) given by (3), we check that P (∆(n, d, k)) > 2k. �
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Let n ≥ 1, d > 2 and k ≥ 3. By Lemma 1, we may restrict to those k for which
2k−1 is prime. For the exceptions (n, d, k) given in Lemma 5 and (n, d, k) ∈ V given
by Lemma 6, we check that P (∆(n, d, k)) > 2k. Therefore we assume that (n, d, k) is
different from the exceptions in Lemma 5 and (n, d, k) /∈ V . If p(d) ≤ k for k = 6, 7
and p(d) ≤ 2k for k ≥ 9, then the assertion follows from Lemma 5 and Corollary 1,
respectively. Thus we may suppose that p(d) > k for k = 6, 7 and p(d) > 2k for k ≥ 9.
Therefore the assumption of Lemma 8 is satisfied. We shall follow the assumptions
stated in this paragraph throughout the paper. We split the proof of Theorem 1 for
k = 3; k = 4; k = 6, 7, 9, 10; k = 12, 15, 16 and k ≥ 19 with 2k − 1 prime in sections
3, 4, 5, 6 and 7, respectively.

3. The case k = 3

We assume that P (n(n+d)(n+ 2d)) ≤ 5 and (n, d) is different from the exceptions
given in Theorem 1. Let 5 - ∆. Then either

n = 1, 1 + d = 2α, 1 + 2d = 3β or n = 2, 2 + d = 3β, 2 + 2d = 2α.

Assume the first possibility. Then 2α+1−3β = 1 implying 2α+1 = 4, 3β = 3 by Lemma
2. Thus d = 1, a contradiction. Now we turn to the second. We get 3β − 2α−1 = 1.
Therefore either 3β = 2, 2α−1 = 2 or 3β = 9, 2α−1 = 8 by Lemma 2. The former is not
possible since d > 1 and the latter implies that d = 7 which is excluded. Hence 5|∆.

Suppose 3 - ∆. We observe that 5 - n since gcd(n+d, n+2d) = 1. Let 5|n+2d. Then
n = 1, 1+d = 2α, 1+2d = 5γ implying 2α+1−5γ = 1 which is not possible by Lemma
2. Let 5|n+ d. Then n = 2η, n+ d = 5γ, n+ 2d = 2α implying n = 2, 5γ − 2α−1 = 1.
Therefore by Lemma 2, we get n = 2, d = 3 which is excluded. Hence 3|∆.

Let 15|n+id for some i ∈ {0, 1, 2}. We observe that 15 - n since gcd(n+d, n+2d) =
1. Let 15|n+d. Then n = 2, 2+d = 3β5γ, 2+2d = 2α giving 2α−1−3β5γ = −1 which
is not possible by Lemma 4 (i). Let 15|n+ 2d. Then n = 1, 1 + d = 2α, 1 + 2d = 3β5γ

giving 2α+1 − 3β5γ = 1. Therefore by Lemma 4 (i), we get n = 1, d = 7 which is
excluded. Thus 15 - n+ id for i = 0, 1, 2.

Suppose 2 - ∆. Then

n = 1, 1 + d = 3β, 1 + 2d = 5γ or n = 1, 1 + d = 5γ, 1 + 2d = 3β

which imply 5γ−2 ·3β = −1 or 3β−2 ·5γ = −1, respectively. Therefore (n, d) = (1, 2)
or (1, 4) by Lemma 4. This is not possible. Hence 2|∆.

Let n = 1. In view of the above conclusions in this section, we have

1 + d = 2α3β, 1 + 2d = 5γ or 1 + d = 2α5γ, 1 + 2d = 3β

implying 5γ−2α+1 ·3β = −1 or 3β−2α+1 ·5γ = −1, respectively, contradicting Lemma
4 since α ≥ 1. Let n = 2. Then 2 +d = 3β, 2 + 2d = 2α5γ or 2 +d = 5γ, 2 + 2d = 2α3β

implying 3β − 2α−1 · 5γ = 1 or 5γ − 2α−1 · 3β = 1, respectively. By Lemma 4, the first
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equation gives d = 79 and the second one gives d = 23 which are excluded. Thus
n > 2. Now we have

n = 2α, n+ d = 3β, n+ 2d = 2 · 5γ or n = 2α, n+ d = 5γ, n+ 2d = 2 · 3β

or n = 2 · 3β, n+ d = 5γ, n+ 2d = 2α or n = 2 · 5γ, n+ d = 3β, n+ 2d = 2α

or n = 3β, n+ d = 2α, n+ 2d = 5γ or n = 5γ, n+ d = 2α, n+ 2d = 3β.

By using the identity

n+ (n+ 2d)− 2(n+ d) = 0,(4)

we see that the above relations imply equations of the form given by Lemma 3. Now
we use Lemma 3 to find all the pairs (n, d) arising out of the solutions of these
equation. Finally we observe that these pairs (n, d) are already excluded.

4. The case k = 4

We shall derive Theorem 1 with k = 4 from the case k = 3 and the following more
general result. We put ∆1 = n(n+ 2d)(n+ 3d) and ∆2 = n(n+ d)(n+ 3d). Let

S1 = {(1, 13), (3, 11), (4, 7), (6, 7), (6, 13), (18, 119), (30, 17)}
and

S2 = {(1, 3), (1, 5), (1, 8), (1, 53), (3, 2), (3, 5), (3, 17),

(3, 29), (3, 47), (9, 7), (9, 247), (15, 49), (27, 23)}.

Lemma 9. We have

P (∆1) ≥ 7 unless (n, d) ∈ S1(5)

and

P (∆2) ≥ 7 unless (n, d) ∈ S2.(6)

Proof. First we prove (5). Assume that (n, d) /∈ S1 and P (∆1) ≤ 5. Suppose 5 - ∆1.
Then either

n = 1, 1 + 2d = 3β, 1 + 3d = 2α or n = 6, 6 + 2d = 2α, 6 + 3d = 3β.

This is not possible by Lemma 2 since d > 1. Suppose 3 - ∆1. Then either n =
1, 1+2d = 5γ, 1+3d = 2α or n = 2, 2+2d = 2α, 2+3d = 5γ. This is again not possible
by Lemma 4 (i), (iii). Suppose 2 - ∆1. Then either n = 1, 1 + 2d = 3β, 1 + 3d = 5γ

or n = 3, 3 + 2d = 5γ, 3 + 3d = 3β. This is not valid by Lemma 4 (ii), (iii). Hence
2 · 3 · 5 | ∆1.

Let n = 1. Then either 1 + 2d = 3β5γ, 1 + 3d = 2α or 1 + 2d = 3β, 1 + 3d = 2α5γ.
The first possibility is excluded by Lemma 4 (i) and second possibility implies d = 13
by Lemma 4 (ii). Let n = 2. Then 2+2d = 2α3β, 2+3d = 5γ which is not possible by
Lemma 4 (iii). Let n = 3. Then 3+2d = 5γ, 3+3d = 2α3β implying d = 11 by Lemma
4 (iii). Let n = 6. Then either 6+2d = 2α5γ, 6+3d = 3β or 6+2d = 2α, 6+3d = 3β5γ.
The first possibility implies d = 7 by Lemma 4 (ii) and second implies d = 13 by
Lemma 4 (i).
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Let n = 4, 5 or n > 6. We observe that n = 2δ15γ with δ1 ≥ 1 or 3δ25γ with δ2 ≥ 1
are not possible since otherwise P (n + 3d) > 5 or P (n + 2d) > 5, respectively. Let
n = 2δ13δ2 or n = 2δ13δ25γ with δ1 ≥ 1, δ2 ≥ 1. Then

δ1 = 1, n = 2 · 3β, n+ 2d = 2α, n+ 3d = 3 · 5γ

or δ2 = 1, n = 3 · 2α, n+ 2d = 2 · 5γ, n+ 3d = 3β.

if n = 2δ13δ2 and

δ1 = 1, δ2 = 1, n = 6 · 5γ, n+ 2d = 2α, n+ 3d = 3β

if n = 2δ13δ25γ. Further

n+ 2d = 2 · 3β, n+ 3d = 5γ if n = 2α

n+ 2d = 5γ, n+ 3d = 3 · 2α if n = 3β

n+ 2d = 3β, n+ 3d = 2α if n = 5γ.

This exhaust all the possibilities. For each of the above relations, we use the identity

n+ 2(n+ 3d)− 3(n+ 2d) = 0(7)

to obtain an equation of the form given by Lemma 3. Finally we apply Lemma 3 as
in the preceding section to conclude that (n, d) ∈ S1, a contradiction.

The proof of (6) is similar to that of (5). Here we use the identity 2n+ (n+ 3d)−
3(n+ d) = 0 in place of (7). �

Now we turn to the proof of Theorem 1 for k = 4. We assume P (∆) ≤ 7. In view
of the case k = 3, we may assume that 7|n+d or 7|n+ 2d. Thus P (∆1) ≤ 5 if 7|n+d
and P (∆2) ≤ 5 if 7|n+2d. Now we conclude from Lemma 9 that (n, d) ∈ S1 if 7|n+d
and (n, d) ∈ S2 if 7|n + 2d. Finally we check that P (∆) ≥ 11 for (n, d) ∈ S1 ∪ S2

unless (n, d) ∈ {(1, 3), (1, 13), (3, 11)}.

5. The cases k = 6, 7, 9, 10

We assume P (∆) ≤ 2k. Further by Lemma 8, we may assume that

n+ d >

{
20 · 35 if k = 6, 7,

40 · 36 if k = 9, 10.
(8)

There are at most 1 + [k−1
p

] terms in ∆ divisible by a prime p. After removing all

the terms in ∆ divisible by p ≥ 7, we are left with at least 4 terms divisible by 2, 3
and 5 only. After deleting the terms in which 2, 3, 5 appear to maximal power, we
are left with a term n+ i0d with 0 ≤ i0 < k such that P (n+ i0d) ≤ 5 and n+ i0d is
at most 4 · 3 · 5 if k = 6, 7; 8 · 3 · 5 if k = 9 and 8 · 9 · 5 if k = 10. If i0 > 0, we get
n + d ≤ 360 contradicting (8). Thus we may suppose that i0 = 0 and the terms in
which 2, 3, 5 appear to maximal power are different. Let n + i2d and n + i3d be the
terms in which 2 and 3 appear to maximal power, respectively. Since 5 can divide at
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most 2 terms, we see that 5 can divide at most one of n+ i2d and n+ i3d. Also 5 - n
if 5|(n+ i2d)(n+ i3d). We write

n+ i2d = 2α23β25γ2 , n+ i3d = 2α33β35γ3(9)

with (γ2, γ3) ∈ {(0, 0), (1, 0), (0, 1). We observe that α3 is at most 2 and 3 if k = 6, 7
and k = 9, 10, respectively, and β2 is at most 1 and 2 if k = 6, 7, 9 and k = 10,
respectively. If k = 6, 7, then α2 ≥ 7 otherwise n+d ≤ n+i2d ≤ 26 ·3 ·5 contradicting
(8). Similarly we derive β3 ≥ 6 if k = 6, 7 and α2 ≥ 8, β3 ≥ 7 if k = 9, 10. From
i3(n+ i2d)− i2(n+ i3d) = (i3 − i2)n, we get

i32
α23β25γ2 − i22α33β35γ3 = (i3 − i2)n(10)

Let

α = ord2

(
i32

α2

i22α3

)
, β = ord3

(
i23

β3

i33β2

)
.(11)

We show that α ≥ α2 − δ where δ = 2 if k = 6, 7 and δ = 3 if k = 9, 10. It suffices to
prove ord2(

i3
i22α3

) ≥ −δ. If ord2(i3) ≥ord2(i2), then it is clear. Thus we may assume

that ord2(i3) <ord2(i2). From (9), we get (i2− i3)d = 2α3(2α2−α3O2−O3) with O2, O3

odd. Therefore α3 =ord2(i2 − i3) since α2 > α3. Thus ord2(i3) = α3. Since i2 < k,
we get the desired inequality ord2(

i3
i22α3

) ≥ −δ. Hence α ≥ α2 − δ ≥ 5. Similarly we
derive β ≥ 5.

We obtain from (10) the equation

i2α − j3β = t(12)

with

α ≥ 5, β ≥ 5,(13)

i, j ∈ {1, 5, 7, 25, 35}, t ∈ {±1,±5,±7,±25,±35} and gcd(i, j) =gcd(i, t) =gcd(j, t) =
1. From Lemmas 2, 3 and 4, we see that equations of the form

2α − 3β = ±1, 2α − 3β = ±5,±25,

2α − 5 · 3β = ±1, 5 · 2α − 3β = ±1,

2α − 25 · 3β = ±1, 25 · 2α − 3β = ±1

are not possible by (13). Let the equations given by (12) be different from the above.
Each of the equation gives rise to a Thue equality

X3 + AY 3 = B(14)

with integers X, Y,A > 0, B > 0 given by
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Equation A B X Y

(i) 2α − 3β = ±7 2a
′
3b
′

7 · 2a′ ±2
α+a′

3 ±3
β−b′

3

(ii) 7 · 2α − 3β = ±1,±5,±25 7 · 2a′3b′ 3b
′
, 5 · 3b′ , 25 · 3b′ ±3

β+b′
3 ±2

α−a′
3

(iii) 2α − 7 · 3β = ±1,±5,±25 7 · 2a′3b′ 2a
′
, 5 · 2a′ , 25 · 2a′ ±2

α+a′
3 ±3

β−b′
3

(iv) 25 · 2α − 3β = ±7 5 · 2a′3b′ 35 · 2a′ ±5 · 2α+a′
3 ±3

β−b′
3

(v) 2α − 25 · 3β = ±7 5 · 2a′3b′ 35 · 3b′ ±5 · 3β+b′
3 ±2

α−a′
3

(vi) 5 · 2α − 7 · 3β = ±1 25 · 7 · 2a′3b′ 25 · 2a′ ±5 · 2α+a′
3 ±3

β−b′
3

(vii) 7 · 2α − 5 · 3β = ±1 25 · 7 · 2a′3b′ 25 · 3b′ ±5 · 3β+b′
3 ±2

α−a′
3

(viii) 2α − 5 · 3β = ±7 5 · 2a′3b′ 7 · 2a′ ±2
α+a′

3 ±3
β−b′

3

(ix) 5 · 2α − 3β = ±7 5 · 2a′3b′ 7 · 3b′ ±3
β+b′

3 ±2
α−a′

3

(x) 35 · 2α − 3β = ±1 35 · 2a′3b′ 3b
′ ±3

β+b′
3 ±2

α−a′
3

(xi) 2α − 35 · 3β = ±1 35 · 2a′3b′ 2a
′ ±2

α+a′
3 ±3

β−b′
3

(xii) 2α − 3β = ±35 2a
′
3b
′

35 · 2a′ ±2
α+a′

3 ±3
β−b′

3

(xiii) 7 · 2α − 25 · 3β = ±1 5 · 7 · 2a′3b′ 5 · 3b′ ±5 · 3β+b′
3 ±2

α−a′
3

(xiv) 25 · 2α − 7 · 3β = ±1 5 · 7 · 2a′3b′ 5 · 2a′ ±5 · 2α+a′
3 ±3

β−b′
3

where 0 ≤ a′, b′ < 3 are such that X, Y are integers. Further

max{ord2(X), ord3(X)} ≥ 2, max{ord2(Y ), ord3(Y )} ≥ 1(15)

by (13). Using Magma, we compute all the solutions in integers X, Y of the above
Thue equations. We find that all the solutions of Thue equations other than (ii) and
(viii) do not satisfy (15). Further we check that the solutions of (ii) and (viii) satisfy
(15) but they do not satisfy (13).

6. The cases k = 12, 15, 16

We assume P (∆) ≤ 2k. Let k = 12, 15. Then P ((n + d) · · · (n + (k − 1)d)) ≤ 2k.
After deleting the terms from {n + d, · · · , n + (k − 1)d} divisible by primes p with
7 ≤ p ≤ 2k, we get at least 4 terms n + id composed of 2, 3 and 5 only. This is also
the case when k = 16 since 7 and 13 together divide at most 4 terms. Therefore there
exists an i with 1 ≤ i ≤ k − 1 such that n + id divides 8 · 9 · 5. Thus n + d ≤ 360.
Now the assertion follows from Lemma 8.

7. The case k ≥ 19 with 2k − 1 prime

It suffices to prove W (∆) ≥ π(2k)−π(k)+1 since π(k) = πd(k) by our assumption.
We may suppose that W (∆) = π(2k)− π(k) by Lemma 6.

We observe that d > 2k since p(d) > 2k. We follow the proof of Lemma 6. Taking
R = π(2k) − π(k), we apply the fundamental inequality of Sylvester and Erdős [6,
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Lemma 1, (14)] to conclude that

dk−π(2k)−1 ≤ (k − 2) · · · (k − π(2k))(16)

and hence

2k < d < (k − 2)
π(2k)−1

k−π(2k)−1 .(17)

Using Lemma 7, we see that

k − 2π(2k) ≥ k

log 2k

(
log 2k − 4(1 +

1.2762

log 2k
)

)
≥ 0

for k ≥ 76. With exact values of π function, we see that k ≥ 2π(2k) for 60 ≤ k < 76.
This implies π(2k)− 1 ≤ k− π(2k)− 1 for k ≥ 60. Therefore for k ≥ 60, we see that
(17) does not hold. Thus k < 60. From (16), we see that d ≤ 2k for k ≥ 30, k 6= 31.
Thus it remains to consider k = 19, 21, 22, 24, 27, 31. We see that d ≤ 71 if k = 27, 31;
d ≤ 83 if k = 19, 21 and d ≤ 113 if k = 22, 24.

The next argument is analogous to [6, (41), (42)] where k − π(2k) + 1 has been
replaced by k − π(2k). Let ne, de, no and do be positive integers with ne even and no
odd. For (n, d, k) with n even, n ≥ ne, d ≤ de, we have

dk−π(2k)−1
Ae−1∏
i=1

(
ne
2de

+ i

) k−π(2k)−Ae∏
j=1

(
ne
de

+ 2j − 1

)
≤min

(
1,
k − 1

ne
2−θ+1

)
(k − 2)!

× 2ord2([
k−2
2

]!)−ord2((k−2)!)

(18)

where Ae =min(k − π(2k), d2
3
(k − π(2k)) + ne

6de
− 1

3
e), θ = 1 if k is odd, 0 otherwise.

For (n, d, k) with n odd, n ≥ no, d ≤ do, we have

dk−π(2k)−1
Ao∏
i=1

(
no
2do

+ i− 1

2

) k−π(2k)−Ao−1∏
j=1

(
no
do

+ 2j

)
≤min

(
1,
k − 1

no

)
(k − 2)!

× 2ord2([
k−2
2

]!)−ord2((k−2)!)

(19)

where Ao =min(k− π(2k), d2
3
(k− π(2k)) + no

6do
− 5

6
e). Here we have used k− π(2k) ≤

[k−2
2

] for the expressions given by Ae and Ao. We take ne = 2, no = 1, de = do =
83 if k = 19, 21, 27, 31 and ne = 2, no = 1, de = do = 113 if k = 22, 24. We
get a contradiction for k = 27, 31 since d > 2k. Thus we may assume that k ∈
{19, 21, 22, 24}. We obtain d ≤ De if n is even where De = 47, 47, 67 and 61 according
as k = 19, 21, 22 and 24, respectively. If n is odd, then d ≤ Do where Do = 53, 47, 71
and 67 according as k = 19, 21, 22 and 24, respectively. By taking ne = 4k, de =
De and no = 4k + 1, do = Do, we derive from (18) and (19) that d < 2k. This
is a contradiction. Thus n < 4k. For these values of n, d and k, we check that
P (∆(n, d, k)) > 2k is valid. This completes the proof.
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