SQUARES IN PRODUCTS IN ARITHMETIC PROGRESSION WITH AT MOST TWO TERMS OMITTED AND COMMON DIFFERENCE A PRIME POWER

SHANTA LAISHRAM AND T. N. SHOREY

ABSTRACT. It is shown that a product of k - 2 terms out of $k \ge 15$ terms in arithmetic progression with common difference a prime power > 1 is not a square. In fact it is not of the form by^2 where the greatest prime factor of b is less than k.

1. INTRODUCTION

For an integer x > 1, we denote by P(x) and $\omega(x)$ the greatest prime factor of x and the number of distinct prime divisors of x, respectively. Further we put P(1) = 1 and $\omega(1) = 0$. Let p_i be the *i*-th prime number. Let $k \ge 4, t \ge k-2$ and $\gamma_1 < \gamma_2 < \cdots < \gamma_t$ be integers with $0 \le \gamma_i < k$ for $1 \le i \le t$. Thus $t \in \{k, k-1, k-2\}, \gamma_t \ge k-3$ and $\gamma_i = i-1$ for $1 \le i \le t$ if t = k. We put $\psi = k - t$. Let b be a positive squarefree integer and we shall always assume, unless otherwise specified, that $P(b) \le k$. We consider the equation

(1.1)
$$\Delta = \Delta(n, d, k) = (n + \gamma_1 d) \cdots (n + \gamma_t d) = by^2$$

in positive integers n, d, k, b, y, t. We prove

Theorem 1. Let $\psi = 2, k \ge 15$ and $d \nmid n$. Assume that P(b) < k if k = 17, 19. Then (1.1) with $\omega(d) = 1$ does not hold.

From Theorem 1, we obtain the following results immediately.

Corollary 1. Let $\psi = 1, k \ge 15$ and $d \nmid n$. Then (1.1) with $\omega(d) = 1$ does not hold.

Corollary 2. Let $\psi = 0, k \ge 15$ and $d \nmid n$. Assume that $P(b) \le p_{\pi(k)+1}$ if k = 17, 19 and $P(b) \le p_{\pi(k)+2}$ otherwise. Then (1.1) with $\omega(d) = 1$ does not hold.

For the proof of Corollary 1, we may suppose P(b) = k otherwise it follows from (2.1) and Theorem 1. Then we delete the term divisible by k on the left hand side of (1.1) and the assertion follows from Theorem 1. Further Corollary 2 also follow similarly from Theorem 1.

Let $\psi = 0$. If d = 1, then (1.1) has been completely solved for P(b) < k by Erdős and Selfridge [ErSe75] and for P(b) = k by Saradha [Sar97]. Let d > 1. We observe that (1.1) has infinitely many solutions if k = 2, 3 and b = 1. Also (1.1) with k = 4 and b = 6 has infinitely many solutions. It has been conjectured that (1.1) with gcd(n, d) = 1 and $k \ge 5$ does not hold. Let $\omega(d) = 1$. It has been shown in [SaSh03a] for k > 29 and [MuSh03] for $4 \le k \le 29$ that (1.1) with gcd(n, d) = 1 implies that either k = 4, (n, d, b, y) = (75, 23, 6, 140) or

AMS Classification: Primary 11D61; Keywords: Diophantine equations, Arithmetic Progressions, Legendre symbol.

k = 5, P(b) = k. In fact we shall derive the preceding result with $k \ge 10$ and P(b) < k from Theorem 1, see Corollary 3.11. We refer to [LaSh06a] for results on (1.1) with $1 < \omega(d) \le 4$.

Let $\psi = 1$. We may assume that $\gamma_1 = 0$ and $\gamma_t = k - 1$. It has been shown in [SaSh03b] that

$$\frac{6!}{5} = (12)^2, \frac{10!}{7} = (720)^2$$

are the only squares that are products of k-1 distinct integers out of k consecutive integers confirming a conjecture of Erdős and Selfridge [ErSe75]. This corresponds to the case b = 1and d = 1 in (1.1). In general, it has been proved in [SaSh03b] that (1.1) with d = 1 and $k \ge 4$ implies that (b, k, n) = (2, 4, 24) under the necessary assumption that the left hand side of (1.1) is divisible by a prime > k. Further it has been shown in [SaSh03a, Theorem 4] and [MuSh04a] that (1.1) with d > 1, gcd(n, d) = 1, $\omega(d) = 1$ and P(b) < k implies that $k \le 8$. Thus we derive the preceding result with $k \ge 15$ from Corollary 1. Further the assumption P(b) < k has been relaxed to $P(b) \le k$ and the assumption gcd(n, d) = 1 has been replaced by $d \nmid n$.

Let $\psi = 2$. Let d = 1. Then it has been shown in [MuSh04b, Corollary 3] that a product of k - 2 distinct terms out of k consecutive positive integers is a square only if it is given by

$$\frac{6!}{1.5} = \frac{7!}{5.7} = 12^2, \ \frac{10!}{1.7} = \frac{11!}{7.11} = 720^2.$$

and

$$\begin{array}{l} \begin{array}{l} \frac{4!}{2.3} = 2^2, \ \frac{6!}{4.5} = 6^2, \ \frac{8!}{2.5.7} = 24^2, \ \frac{10!}{2.3.4.6.7} = 60^2, \ \frac{9!}{2.5.7} = 72^2, \\ \frac{10!}{2.3.6.7} = 120^2, \ \frac{10!}{2.7.8} = 180^2, \ \frac{10!}{7.9} = 240^2, \ \frac{10!}{4.7} = 360^2, \\ \frac{21!}{13!.17.19} = 5040^2, \ \frac{14!}{2.3.4.11.13} = 5040^2, \ \frac{14!}{2.3.11.13} = 10080^2. \end{array}$$

The above result corresponds to (1.1) with b = 1. For the general case, we have

Theorem 2. Let $\psi = 2, d = 1$ and $k \ge 6$. Assume that the left hand side of (1.1) is divisible by a prime > k. Then (1.1) is not valid unless k = 6 and n = 45, 240.

We observe that $n > k^2$ since the left hand side of (1.1) is divisible by a prime > k. Then the assertion follows immediately from [MuSh04b, Theorem 2].

Therefore we take d > 1 from now onwards in this paper. For the proof of Theorem 1, we show without loss of generality that gcd(n, d) = 1. Let gcd(n, d) > 1. Let $p^{\beta} = gcd(n, d)$, $n' = \frac{n}{p^{\beta}}$ and $d' = \frac{d}{p^{\beta}}$. Then d' > 1 since $d \nmid n$. Now, by dividing $(p^{\beta})^t$ on both sides of (1.1), we have

(1.2)
$$(n' + \gamma_1 d') \cdots (n' + \gamma_t d') = p^{\epsilon} b' y'^2$$

where y' > 0 is an integer, b' squarefree, P(b') < k when k = 17 and $\epsilon \in \{0, 1\}$. Since p|d' and gcd(n', d') = 1, we see that $p \nmid (n' + \gamma_1 d') \cdots (n' + \gamma_t d')$ giving $\epsilon = 0$ and assertion follows.

2. NOTATIONS AND PRELIMINARIES

We assume (1.1) with gcd(n, d) = 1 in this section. Then we have

(2.1)
$$n + \gamma_i d = a_{\gamma_i} x_{\gamma_i}^2 \text{ for } 1 \le i \le t$$

3

with a_{γ_i} squarefree such that $P(a_{\gamma_i}) \leq \max(k-1, P(b))$. Thus (1.1) with b as the squarefree part of $a_{\gamma_1} \cdots a_{\gamma_t}$ is determined by the t-tuple $(a_{\gamma_1}, \cdots, a_{\gamma_t})$. Also

(2.2)
$$n + \gamma_i d = A_{\gamma_i} X_{\gamma_i}^2 \text{ for } 1 \le i \le t$$

with $P(A_{\gamma_i}) \leq k$ and $gcd(X_{\gamma_i}, \prod_{p \leq k} p) = 1$. Further we write

$$b_i = a_{\gamma_i}, \ B_i = A_{\gamma_i}, \ y_i = x_{\gamma_i}, \ Y_i = X_{\gamma_i}.$$

Since gcd(n, d) = 1, we see from (2.1) and (2.2) that

(2.3)
$$(b_i, d) = (B_i, d) = (y_i, d) = (Y_i, d) = 1 \text{ for } 1 \le i \le t$$

Let

$$R = \{b_i : 1 \le i \le t\}.$$

For $b_{i_0} \in R$, let $\nu(b_{i_0}) = |\{j : 1 \le j \le t, b_j = b_{i_0}\}|$. Let

$$T = \{1 \le i \le t : Y_i = 1\}, \ T_1 = \{1 \le i \le t : Y_i > 1\}, \ S_1 = \{B_i : i \in T_1\}.$$

Note that $Y_i > k$ for $i \in T_1$. For $i_0 \in T_1$, we denote by $\nu(B_{i_0}) = |\{j \in T_1 : B_j = B_{i_0}\}|$. Let

(2.4)
$$\delta = \min(3, \operatorname{ord}_2(d)), \ \delta' = \min(1, \operatorname{ord}_2(d)),$$

(2.5)
$$\eta = \begin{cases} 1 & \text{if } \operatorname{ord}_2(d) \le 1, \\ 2 & \text{if } \operatorname{ord}_2(d) \ge 2, \end{cases}$$

(2.6)
$$\rho = \begin{cases} 3 & \text{if } 3|d, \\ 1 & \text{if } 3 \nmid d. \end{cases}$$

and

(2.7)
$$\theta = \begin{cases} 1 & \text{if } d = 2, 4 \\ 0 & \text{otherwise.} \end{cases}$$

Let $d = p^{\alpha}$. Then we say (d_1, d_2) is a partition of d if $d = d_1 d_2$ and $gcd(d_1, d_2) = \eta$ and we take (1, 2) as the partition of d = 2. Further (2, 2) is the only partition if d = 4. For $d \neq 2, 4$, we see that $(\eta, \frac{d}{\eta})$ and $(\frac{d}{\eta}, \eta)$ are the only distinct partitions of d. Let $b_i = b_j, i > j$. Then from (2.1) and (2.3), we have

(2.8)
$$\frac{(\gamma_i - \gamma_j)}{b_i} = \frac{y_i^2 - y_j^2}{d} = \frac{(y_i - y_j)(y_i + y_j)}{d}$$

such that $gcd(d, y_i - y_j, y_i + y_j) = 2^{\delta'}$. Thus a pair (i, j) with i > j and $b_i = b_j$ corresponds to a partition (d_1, d_2) of d such that $d_1|(y_i - y_j)$ and $d_2|(y_i + y_j)$ and this partition is unique. Similarly, we have unique partition of d corresponding to every pair (i, j) with $i > j, i, j \in T_1$ and $B_i = B_j$. Let q be a prime $\leq k$ and coprime to d. Then the number of i's for which b_i are divisible by q is at most $\sigma_q = \lceil \frac{k}{q} \rceil$. Let $\sigma'_q = |\{b_i : q | b_i\}|$. Then $\sigma'_q \leq \sigma_q$. Let $r \geq 3$ be any positive integer. Define F(k, r) and F'(k, r) as

$$F(k,r) = |\{\gamma_i : P(b_i) > p_r\}| \text{ and } F'(k,r) = \sum_{i=r+1}^{\pi(k)} \sigma_{p_i}.$$

Then $|\{b_i : P(b_i) > p_r\}| \le F(k, r) \le F'(k, r) - \sum_{p|d, p > p_r} \sigma_p$. Let

$$\mathcal{B}_r = \{b_i : P(b_i) \le p_r\}, \ I_r = \{\gamma_i : b_i \in \mathcal{B}_r\} \text{ and } \xi_r = |I_r|.$$

We have

(2.9)
$$\xi_r \ge t - F(k,r) \ge t - F'(k,r) + \sum_{p \mid d, p > p_r} \sigma_p$$

and

(2.10)
$$t - |R| \ge t - |\{b_i : P(b_i) > p_r\}| - |\{b_i : P(b_i) \le p_r\}|$$

(2.11)
$$\ge t - F(k, r) - |\{b_i : P(b_i) \le p_r\}|$$

(2.12)
$$\geq t - F'(k,r) + \sum_{p \mid d, p > p_r} \sigma_p - |\{b_i : P(b_i) \le p_r\}$$

(2.13)
$$\geq t - F'(k,r) + \sum_{p|d,p>p_r} \sigma_p - 2^r.$$

We write S := S(r) for the set of positive squarefree integers composed of primes $\leq p_r$. Let $p = 2^{\delta}$ if d is even and p = P(d) if d is odd. Let $p = 2^{\delta}$. Then $b_i \equiv n \pmod{2^{\delta}}$. Considering modulo 2^{δ} for elements of S(r), we see by induction on r that

(2.14)
$$|\{b_i : P(b_i) \le p_r\}| \le 2^{r-\delta} =: g_{2\delta}$$

Let p = P(d). Then all b_i 's are either quadratic residues mod p or non-quadratic residues mod p. We consider two sets

(2.15)
$$\mathcal{S}_1(p,r) = \{s \in \mathcal{S} : \left(\frac{s}{p}\right) = 1\},\$$
$$\mathcal{S}_2(p,r) = \{s \in \mathcal{S} : \left(\frac{s}{p}\right) = -1\}$$

and define

(2.16)
$$g_p(r) = \max(|\mathcal{S}_1(p, r)|, |\mathcal{S}_2(p, r)|).$$

Then

(2.17)
$$|\{b_i : P(b_i) \le p_r\}| \le g_p.$$

In view of (2.14) and (2.17), the inequality (2.12) is improved as

(2.18)
$$t - |R| \ge k - \psi - F'(k, r) + \sum_{p|d, p > p_r} \sigma_p - g_p.$$

THE EQUATION $\Delta(n, d, k) = by^2$ WITH $\omega(d) = 1$ AND AT MOST TWO TERMS OMITTED

Let r = 3, 4, 2 . Then we calculate

(2.19)
$$g_p(r) = \begin{cases} 2^{r-2} & \text{if } p \le p_r \\ 2^{r-1} & \text{if } p > p_r \end{cases}$$

except when $r = 3, p \in \{71, 191\}$ where $g_p = 2^r$. We close this section with the following Lemmas which are independent of (1.1). The first Lemma is an estimate on $\pi(x)$ due to Dusart [Dus99].

Lemma 2.1. We have

$$\pi(x) \le \frac{x}{\log x} \left(1 + \frac{1.2762}{\log x} \right) \text{ for } x > 1.$$

The following lemma is contained in [LaSh04, Theorem 1].

Lemma 2.2. Let $k \ge 9$, gcd(n,d) = 1, n > k if d = 2 and $(n,d,k) \notin V$ where V is given by

(2.20)
$$\begin{cases} n = 1, \ d = 3, \ k = 9, 10, 11, 12, 19, 22, 24, 31; \\ n = 2, \ d = 3, \ k = 12; \ n = 4, \ d = 3, \ k = 9, 10; \\ n = 2, \ d = 5, \ k = 9, 10; \\ n = 1, \ d = 7, \ k = 10. \end{cases}$$

Then

 $(2.21) \quad W(n(n+d)\cdots(n+(k-1)d)) := |\{i: 0 \le i < k, P(n+id) > k\}| \ge \pi(2k) - \pi_d(k).$ Let d = 2 and $n \le k$. Then $(2.22) \qquad W(n(n+d)\cdots(n+(k-1)d)) \ge \pi(2k) - \pi_d(k) - 1.$

The following lemma is contained in [Lai06, Lemma 8].

Lemma 2.3. Let s_i denote the *i*-th squarefree positive integer. Then

(2.23)
$$\prod_{i=1}^{l} s_i \ge (1.6)^{l} l! \quad for \quad l \ge 286.$$

3. Lemmas for the equation (1.1)

All the lemmas in this section are under the assumption that (1.1) with $\omega(d) = 1$ is valid and we shall suppose it without reference.

Lemma 3.1. Let ψ be fixed. Suppose that (1.1) with $P(b) \leq k$ has no solution at $k = k_1$ with k_1 prime. Then (1.1) with $P(b) \leq k$ and $k_1 \leq k < k_2$ has no solution where k_1, k_2 are consecutive primes.

Proof. Let k_1, k_2 be consecutive primes such that $k_1 \leq k < k_2$. Suppose (n, d, b, y) is a solution of

$$(n + \gamma_1 d) \cdots (n + \gamma_t d) = by^2$$

with $P(b) \le k$. Then $P(b) \le k_1$. We observe that $\gamma_{k_1 - \psi} < k_1$ and by (2.1),
 $(n + \gamma_1 d) \cdots (n + \gamma_{k_1 - \psi} d) = b'y'^2$

holds for some b' with $P(b') \leq k_1$ giving a solution of (1.1) at $k = k_1$. This is a contradiction.

In view of Lemma 3.1, there is no loss of generality in assuming that k is prime whenever $k \ge 23$ in the proof of Theorem 1. Therefore we suppose from now onward without reference that k is prime if $k \ge 23$. The following Lemma gives a lower bound for $|T_1|$, see [LaSh06a, Lemma 4.1].

Lemma 3.2. Let $k \ge 4$. Then

(3.1)

$$|T_1| > t - \frac{(k-1)\log(k-1) - \sum_{p|d,p < k} \max\left(0, \frac{(k-1-p)\log p}{p-1} - \log(k-2)\right)}{\log(n+(k-1)d)} - \pi_d(k) - 1$$

We apply Lemmas 2.2 and 3.2 to derive the following result.

Corollary 3.3. Let $k \ge 9$. Then we have

(3.2)
$$|T_1| > 0.1754k \text{ for } k \ge 81$$

and

$$(3.3) n + \gamma_t d > \eta^2 k^2.$$

Proof. We observe that $\pi(2k) - \pi(k) > 2$ since $k \ge 9$. Therefore $P(\Delta) > k$ by Lemma 2.2. Now we see from (1.1) that

$$(3.4) n+\gamma_t d > k^2.$$

By (3.1), $t \ge k - 2$, $\pi_d(k) \le \pi(k)$ and Lemma 2.1, we get

$$|T_1| > k - 3 - \frac{(k-1)\log k}{2\log k} - \frac{k}{\log k} \left(1 + \frac{1.2762}{\log k}\right)$$

Since the right hand side of the above inequality exceeds 0.1754k for $k \ge 81$, the assertion (3.2) follows.

Now we turn to the proof of (3.3). By (3.4), it suffices to consider $d = 2^{\alpha}$ with $\alpha > 1$. From Lemma 2.2 and (1.1), we have $n + (k-1)d > p_{\pi(2k)-2}^2$. Now we see from (3.1) that

$$|T_1| + \pi_d(k) - \pi(2k) > k - 3 - \frac{(k-1)\log(k-1) - (k-3)\log 2 + \log(k-2)}{2\log p_{\pi(2k)-2}} - \pi(2k)$$

and

$$|T_1| + \pi_d(k) - \pi(2k) > k - 3 - \frac{(k-1)\log k - (k-3)\log 2 + \log k}{2\log k} - \frac{2k}{\log 2k} \left(1 + \frac{1.2762}{\log 2k}\right)$$

by Lemma 2.1. When $k \ge 60$, we observe that the right hand side of the preceding inequality is positive. Therefore $|T_1| + \pi_d(k) > \pi(2k)$ implying $n + \gamma_t d > 4k^2$ for $k \ge 60$. Thus we may assume k < 60. Now we check that the right hand side of (3.5) is positive for $k \ge 33$. Therefore we may suppose that k < 33 and $n + (k-3)d \le n + \gamma_t d \le 4k^2$. Hence $d = 2^{\alpha} < \frac{4k^2}{k-3}$. For n, d, k satisfying $k < 33, d < \frac{4k^2}{k-3}, n + (k-3)d \le 4k^2$ and $n + (k-1)d \ge p_{\pi(2k)-2}^2$, we check that there are at least three i with $0 \le i < k$ such that n + id is divisible by a prime > k to the first power. This is not possible. \Box

The next Lemma follows from (3.3) and [LaSh06a, Corollaries 3.5, 3.7].

Lemma 3.4. For any pair (i, j) with $b_i = b_j$, the partition $(d\eta^{-1}, \eta)$ of d is not possible. Further $\nu(b_{i_0}) \leq 2^{1-\theta}$ and $\nu(B_{i_0}) \leq 2^{1-\theta}$.

The following Lemma follows from (3.3), Lemma 3.4 and [LaSh06a, Corollary 3.9].

Lemma 3.5. Let $z_0 \in \{2,3,5\}$. Assume that either d is odd or 8|d and $z_0 = 5$ if 8|d. Further let $d = \theta_1(k-1)^2$, $n = \theta_2(k-1)^3$ with $\theta_1 > 0$ and $\theta_2 > 0$. Suppose that $t - |R| \ge z_0$. Then we have the partition $(\eta, d\eta^{-1})$ of d such that

(3.6)
$$d\eta^{-1} < \frac{4(k-1)}{q_2}$$

and

(3.7)
$$\theta_2 < \frac{1}{2} \left\{ \frac{1}{q_1 q_2} - \theta_1 + \sqrt{\frac{1}{(q_1 q_2)^2} + \frac{\theta_1}{q_1 q_2}} \right\}$$

hold with $q_1 \ge Q_1, q_2 \ge Q_2$ where (Q_1, Q_2) is given by (1, 1), (2, 2), (4, 4) according as $z_0 = 2, 3, 5$, respectively when d is odd and $(Q_1, Q_2) = (2, 8)$ when $z_0 = 5, 8|d$.

Lemma 3.6. Let $z_1 > 1$ be a real number, $h_0 > i_0 \ge 0$ be integers such that $\prod_{b_i \in R} b_i \ge z_1^{|R|-i_0}(|R|-i_0)!$ for $|R| \ge h_0$. Suppose that t - |R| < g and let $g_1 = k - t + g - 1 + i_0$. For $k \ge h_0 + g_1$ and for any real number $\mathfrak{m} > 1$, we have

(3.8)
$$g_{1} > \frac{k \log \left(\frac{z_{1} \mathfrak{n}_{0}}{2.71851} \prod_{p \leq \mathfrak{m}} p^{\frac{2}{p^{2}-1}}\right) + (k + \frac{1}{2}) \log(1 - \frac{g_{1}}{k})}{\log(k - g_{1}) - 1 + \log z_{1}} - \frac{(1.5\pi(\mathfrak{m}) - .5\ell - 1) \log k + \log \left(\mathfrak{n}_{1}^{-1}\mathfrak{n}_{2} \prod_{p \leq \mathfrak{m}} p^{.5 + \frac{2}{p^{2}-1}}\right)}{\log(k - g_{1}) - 1 + \log z_{1}}$$

where

$$\ell = |\{p \le \mathfrak{m} : p|d\}|, \ \mathfrak{n}_0 = \prod_{\substack{p|d \\ p \le \mathfrak{m}}} p^{\frac{1}{p+1}}, \ \mathfrak{n}_1 = \prod_{\substack{p|d \\ p \le \mathfrak{m}}} p^{\frac{p-1}{2(p+1)}} \text{ and } \mathfrak{n}_2 = \begin{cases} 2^{\frac{1}{6}} & \text{if } 2 \nmid d \\ 1 & \text{otherwise.} \end{cases}$$

For a proof, see [LaSh06a, Lemma 5.3]. The assumption $\omega(d) = 1$ is not necessary for Lemmas 3.1, 3.2, 3.6 and Corollary 3.3.

Lemma 3.7. We have

(3.9)
$$t - |R| \ge \begin{cases} 5 \text{ for } k \ge 81\\ 5 - \psi \text{ for } k \ge 55\\ 4 - \psi \text{ for } k \ge 28, k \ne 31\\ 3 - \psi \text{ for } k = 31. \end{cases}$$

Proof. Suppose t - |R| < 5 and $k \ge 292$. Then $|R| \ge 286$ since $t \ge k - 2$ and $\prod_{b_i \in R} b_i \ge (1.6)^{|R|}(|R|)!$ by (2.23). We observe that (3.8) hold for $k \ge 292$ with $i_0 = 0, h_0 = 286, z_1 = 1.6, g_1 = 6, \mathfrak{m} = 17, \ell = 0, \mathfrak{n}_0 = 1, \mathfrak{n}_1 = 1$ and $\mathfrak{n}_2 = 2^{\frac{1}{6}}$. We check that the right hand side of (3.8) is an increasing function of k and it exceeds g_1 at k = 292 which is a contradiction.

Therefore $t - |R| \ge 5$ for $k \ge 292$. Thus we may assume that k < 292. By taking r = 3 for k < 50, r = 4 for $50 \le k \le 181$ and r = 5 for 181 < k < 292 in (2.11) and (2.13), we get $t - |R| \ge k - \psi - F'(k, r) - 2^r \ge 7 - \psi, 5 - \psi, 4 - \psi$ for $k \ge 81, 55, 28$, respectively except at k = 29, 31, 43, 47 where $t - |R| \ge k - \psi - F(k, r) - 2^r \ge k - \psi - F'(k, r) - 2^r = 3 - \psi$. We may suppose that $k = 29, 43, 47, t - |R| = 3 - \psi$ and F(k, r) = F'(k, r). Further we may assume that for each prime $7 \le p \le k$, there are exactly σ_p number of *i*'s for which $p|b_i$ and for any *i*, $pq \nmid b_i$ whenever $7 \le q \le k, q \ne p$. Now we get a contradiction by considering the *i*'s for which b_i 's are divisible by primes 7, 13; 7, 41; 23, 11 when k = 29, 43, 47, respectively. For instance let k = 29. Then $7|b_i$ for $i \in \{0, 7, 14, 21, 28\}$. Then $13|b_i$ for $i \in \{h + 13j : 0 \le j \le 2\}$ with h = 0, 1, 2. This is not possible.

Lemma 3.8. Let $9 \le k \le 23$ and d odd. Suppose that $t - |R| \ge 3$ for k = 23 and $t - |R| \ge 2$ for k < 23. Then (1.1) does not hold.

Proof. Suppose (1.1) holds. Let Q = 2 if k = 23 and Q = 1 if k < 23. We now apply Lemma 3.5 with $z_0 = 3$ for k = 23 and $z_0 = 2$ for k < 23 to get $d < \frac{4}{Q}(k-1)$, $\theta_1 < \frac{4}{Q(k-1)}$ and

$$\theta_1 + \theta_2 < \frac{1}{2} \left\{ \frac{1}{Q^2} + \frac{4}{Q(k-1)} + \sqrt{\frac{1}{Q^4} + \frac{4}{Q^3(k-1)}} \right\} =: \Omega(k-1)$$

Further from (2.21), we have $n + (k-1)d \ge n + \gamma_t d \ge p_{\pi(2k)-2}^2$. Therefore $p^{\alpha} = d < \frac{4}{Q}(k-1)$ and $p_{\pi(2k)-2}^2 \le n + (k-1)d < (k-1)^3\Omega(k-1)$. For these possibilities of n, d and k, we check that there are at least three i with $0 \le i < k$ such that n + id is divisible by a prime > k to an odd power. This contradicts (1.1).

Lemma 3.9. Equation (1.1) with $k \ge 9$ implies that $t - |R| \le 1$.

Proof. Assume that $k \ge 9$ and $t - |R| \ge 2$. Let d = 2, 4. Then $|R| \le t - 2$ contradicting |R| = t by Lemma 3.4. Thus $d \ne 2, 4$. By Lemma 3.4, we have $\nu(b_{i_0}) \le 2$ and $\nu(B_{i_0}) \le 2$.

Let $k \ge 81$. Then $t - |R| \ge 5$ by Lemma 3.7. Now we derive from Lemma 3.5 with $z_0 = 5$ that d < k - 1 giving $\theta_1 < \frac{1}{k-1}$ and hence

$$n + (k-1)d = (\theta_1 + \theta_2)(k-1)^3 < \frac{(k-1)^3}{2} \left\{ \frac{1}{16} + \frac{1}{k-1} + \sqrt{\frac{1}{(16)^2} + \frac{1}{16(k-1)}} \right\}.$$

On the other hand, we get from (3.2) and $\nu(B_{i_0}) \leq 2$ that $n + (k-1)d \geq \frac{0.1754k}{2}k^2 \geq 0.1754\frac{k^3}{2}$. Comparing the upper and lower bounds of n + (k-1)d, we obtain

$$0.1754 < \left\{ \frac{1}{16} + \frac{1}{k-1} + \sqrt{\frac{1}{(16)^2} + \frac{1}{16(k-1)}} \right\} \le 0.144$$

since $k \ge 81$. This is a contradiction.

Thus k < 81. Let d be even. Then 8|d and we see from $\nu(a_i) \leq 2$ and (2.14) that $\xi_r \leq 2g_{2^{\delta}} \leq 2^{r-2}$. Let r = 3. From (2.9), we get $k - 2 - F'(k, r) \leq \xi_r \leq 2^{r-2}$. We find $k - 2 - F'(k, r) > 2^{r-2}$ by computation. This is a contradiction.

Thus d is odd. Since $\psi \leq 2$, we get from Lemmas 3.7 and 3.5 with $z_0 = 3, 2$ that d < 2(k-1) if $k \geq 55$ and d < 4(k-1) if k < 55. Since $g_p(r) \leq 2^{r-1}$ for r = 4, p < 220 by (2.19), we get from (2.18) with r = 4 that $t - |R| \geq k - 2 - F'(k, r) - 2^{r-1}$ which is ≥ 5 for $k \geq 29$ and ≥ 3 for k = 23.

Let $k \ge 29$. Then we get from Lemma 3.5 with $z_0 = 5$ that d < k - 1. By taking r = 3 for k < 53 and r = 4 for $53 \le k < 81$, we derive from (2.17), (2.19), $\nu(a_i) \le 2$ and (2.9) that $k - 2 - F'(k, r) \le \xi_r \le 2g_p \le 2^r$. On the other hand, we check by computation that $k - 2 - F'(k, r) > 2^r$. This is a contradiction.

Thus $k \leq 23$. Then $t - |R| \geq 3$ for k = 23 and $t - |R| \geq 2$ for k < 23. By Lemma 3.8, this is not possible.

Corollary 3.10. Let $k \ge 9$. Equation (1.1) implies that either $k \le 23$ or k = 31. Also P(d) > k.

Proof. By Lemmas 3.7 and 3.9, we see that either $k \leq 23$ or k = 31. Suppose that $P(d) \leq k$. Since $g_{P(d)}(r) \leq 2^{r-1}$ for r = 3 by (2.19), we get from (2.18) with r = 3 that $t - |R| \geq k - 2 - F'(k, r) - 2^{r-1} \geq 2$ except at k = 9 where t - |R| = 1. This contradicts Lemma 3.9 for k > 9. Let k = 9. By taking r = 4, we get from $g_{P(d)}(r) \leq 2^{r-2}$ by (2.19) and (2.18) that $t - |R| \geq k - 2 - F'(k, 4) - 2^{4-2} \geq 2$. This contradicts Lemma 3.9.

As a consequence, we derive the following Corollary which is [SaSh03a, Theorem 1 (ii)].

Corollary 3.11. Let $\psi = 0$. Equation (1.1) with P(b) < k implies that $k \leq 9$.

Proof. Let $k \ge 10$. By Corollary 3.10, we see that either $k \le 23$ or k = 31. Let k = 10. Then we get from (2.13) with r = 2 that $t - |R| \ge k - F'(k, r) - 2^r = 2$ contradicting Lemma 3.9. Thus (1.1) does not hold at k = 10. By induction, we may assume $k \in \{12, 14, 18, 20\}$ and further there is at most one *i* for which $p|a_i$ with p = k - 1. We take r = 2 for k = 12, 14 and r = 3 for k = 18, 20. Now we get from $|\{b_i : P(b_i) > p_r\}| \le F'(k, r) - 1$ and (2.10) that $t - |R| \ge k - F'(k, r) + 1 - 2^r \ge 2$. This contradicts Lemma 3.9.

4. Proof of Theorem 1

Suppose that the assumptions of Theorem 1 are satisfied and assume (1.1) with $\omega(d) = 1$. By Corollary 3.10, we have P(d) > k and further we restrict to $k \leq 23$ and k = 31. Also $t - |R| \leq 1$ by Lemma 3.9. Further it suffices to prove the assertion for $k \in \{15, 18, 20, 23, 31\}$ since the cases k = 16, 17; k = 19 and k = 21, 22 follows from those of k = 15, 18 and 20, respectively.

We shall arrive at a contradiction by showing $t - |R| \ge 2$. For a prime $p \le k$, we observe that $p \nmid d$ and let i_p be such that $0 \le i_p < p$ and $p|n + i_p d$. For any subset $\mathcal{I} \subseteq [0, k) \cap \mathbb{Z}$ and primes p_1 and p_2 , we define

$$\mathcal{I}_{1} = \{i \in \mathcal{I} : \left(\frac{i - i_{p_{1}}}{p_{1}}\right) = \left(\frac{i - i_{p_{2}}}{p_{2}}\right)\} and \mathcal{I}_{2} = \{i \in \mathcal{I} : \left(\frac{i - i_{p_{1}}}{p_{1}}\right) \neq \left(\frac{i - i_{p_{2}}}{p_{2}}\right)\}.$$

Then from $\left(\frac{a_i}{p}\right) = \left(\frac{i-i_p}{p}\right) \left(\frac{d}{p}\right)$, we see that either

(4.1)
$$\left(\frac{a_i}{p_1}\right) \neq \left(\frac{a_i}{p_2}\right)$$
 for all $i \in \mathcal{I}_1$ and $\left(\frac{a_i}{p_1}\right) = \left(\frac{a_i}{p_2}\right)$ for all $i \in \mathcal{I}_2$

or

(4.2)
$$\left(\frac{a_i}{p_1}\right) \neq \left(\frac{a_i}{p_2}\right)$$
 for all $i \in \mathcal{I}_2$ and $\left(\frac{a_i}{p_1}\right) = \left(\frac{a_i}{p_2}\right)$ for all $i \in \mathcal{I}_1$.

We define $(\mathcal{M}, \mathcal{B}) = (\mathcal{I}_1, \mathcal{I}_2)$ in the case (4.1) and $(\mathcal{M}, \mathcal{B}) = (\mathcal{I}_2, \mathcal{I}_1)$ in the case (4.2). We call $(\mathcal{I}_1, \mathcal{I}_2, \mathcal{M}, \mathcal{B}) = (\mathcal{I}_1^k, \mathcal{I}_2^k, \mathcal{M}^k, \mathcal{B}^k)$ when $\mathcal{I} = [0, k) \cap \mathbb{Z}$. Then for any $\mathcal{I} \subseteq [0, k) \cap \mathbb{Z}$, we have

$$\mathcal{I}_1 \subseteq \mathcal{I}_1^k, \mathcal{I}_2 \subseteq \mathcal{I}_2^k, \mathcal{M} \subseteq \mathcal{M}^k, \mathcal{B} \subseteq \mathcal{B}^k$$

and

(4.3)
$$|\mathcal{M}| \ge |\mathcal{M}^k| - (k - |\mathcal{I}|), \ |\mathcal{B}| \ge |\mathcal{B}^k| - (k - |\mathcal{I}|).$$

By taking $m = n + \gamma_t d$ and $\gamma'_i = \gamma_t - \gamma_{t-i+1}$, we re-write (1.1) as

(4.4)
$$(m - \gamma'_1 d) \cdots (m - \gamma'_t d) = by^2.$$

The equation (4.4) is called the mirror image of (1.1). The corresponding *t*-tuple $(a_{\gamma'_1}, a_{\gamma'_2}, \cdots, a_{\gamma'_t})$ is called the mirror image of $(a_{\gamma_1}, \cdots, a_{\gamma_t})$.

4.1. The case k = 15. Then $\sigma'_7 = 3$ implies that $7|a_{7j}$ for j = 0, 1, 2 and $\sigma'_7 \leq 2$ if $7 \nmid a_0 a_7 a_{14}$. Similarly $\sigma'_{13} = 2$ implies $13|a_0, 13|a_{13}$ or $13|a_1, 13|a_{14}$ and $\sigma'_{13} \leq 1$ otherwise. Thus $|\{a_i : 7|a_i \text{ or } 13|a_i\}| \leq 4$. It suffices to have

(4.5)
$$|\{a_i : p | a_i \text{ for } 5 \le p \le 13\}| \le 7$$

since then $t - |R| \ge k - 2 - |\{a_i : p | a_i \text{ for } 5 \le p \le 13\}| - 4 \ge 2$ by (2.10) with r = 2, a contradiction.

Let $p_1 = 11$, $p_2 = 13$ and $\mathcal{I} = \{\gamma_1, \gamma_2, \cdots, \gamma_t\}$. We observe that $P(a_i) \leq 7$ for $i \in \mathcal{M} \cup \mathcal{B}$. Since $\left(\frac{5}{11}\right) \neq \left(\frac{5}{13}\right)$ but $\left(\frac{q}{11}\right) = \left(\frac{q}{13}\right)$ for a prime q < k other than 5, 11, 13, we observe that $5|a_i$ whenever $i \in \mathcal{M}$. Since $\sigma_5 \leq 3$ and $|\mathcal{I}| = k - 2$, we obtain from (4.3) that $|\mathcal{M}^k| \leq 5$ and $5|a_i$ for at least $|\mathcal{M}^k| - 2$ i's with $i \in \mathcal{M}^k$. Further $5 \nmid a_i$ for $i \in \mathcal{B}$.

By taking the mirror image (4.4) of (1.1), we may suppose that $0 \leq i_{13} \leq 7$. For each possibility $0 \leq i_{11} < 11$ and $0 \leq i_{13} \leq 7$, we compute $|\mathcal{I}_1^k|, |\mathcal{I}_2^k|$ and restrict to those pairs (i_{11}, i_{13}) with $\min(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \leq 5$. We see from $\max(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \geq 6$ that \mathcal{M}^k is exactly one of \mathcal{I}_1^k or \mathcal{I}_2^k with minimum cardinality and hence \mathcal{B}^k is the other. Now we restrict to those pairs (i_{11}, i_{13}) for which there are at most two elements $i \in \mathcal{M}^k$ such that $5 \nmid a_i$. There are 31 such pairs. By counting the multiples of 11 and 13 and also the maximum multiples of 5 in \mathcal{M}^k and the maximum number of multiples of 7 in \mathcal{B}^k , we again restrict to those pairs (i_{11}, i_{13}) which do not satisfy (4.5). With this procedure, all pairs (i_{11}, i_{13}) are excluded other than

$$(4.6) (0,6), (1,3), (2,4), (3,5), (4,6), (5,3).$$

We first explain the procedure by showing how $(i_{11}, i_{13}) = (0, 0)$ is excluded. Now $\mathcal{M}^k = \{5, 10\}$ and $\mathcal{B}^k = \{1, 2, 3, 4, 6, 7, 8, 9, 12, 14\}$. Then there are 3 multiples of 11 and 13, at most 2 multiples of 5 in \mathcal{M}^k and at most 2 multiples of 7 in \mathcal{B}^k implying (4.5). Thus $(i_{11}, i_{13}) = (0, 0)$ is excluded.

Let $(i_{11}, i_{13}) = (5, 3)$. Then $\mathcal{M}^k = \{1, 6, 11\}$ and $\mathcal{B}^k = \{0, 2, 4, 7, 8, 9, 10, 12, 13, 14\}$ giving $i_5 = 1$ and $5|a_1a_6a_{11}$. We may assume that $7|a_i$ for $i \in \{0, 7, 14\}$ otherwise (4.5) holds. By taking $p_1 = 5, p_2 = 11$ and $\mathcal{I} = \mathcal{B}^k$, we get $\mathcal{I}_1 = \{4, 10, 13\}$ and $\mathcal{I}_2 = \{0, 2, 7, 8, 9, 12, 14\}$. Since $\binom{2}{5} = \binom{2}{11}, \binom{7}{5} = \binom{7}{11}$ and $\binom{3}{5} \neq \binom{3}{11}$, we observe that $3|a_i$ for $i \in \mathcal{I}_1 \cap \mathcal{B}$ and $3 \nmid a_i$ for $i \in \mathcal{I}_2 \cap \mathcal{B}$. Thus $a_i \in \{3, 6\}$ for $i \in \mathcal{I}_1 \cap \mathcal{B}$ and $a_i \in \{1, 2, 7, 14\}$ for $i \in \mathcal{I}_2 \cap \mathcal{B}$. Now from $\binom{a_i}{7} = \binom{i-0}{7} \binom{d}{7}$ and $\binom{3}{7} = \binom{6}{7}$, we see that at least one of 4, 10, 13 is not in \mathcal{B} implying $i \notin \mathcal{B}$ for at most one $i \in \mathcal{I}_2$. Therefore there are distinct pairs (i_1, i_2) and (j_1, j_2) with $i_1, i_2, j_1, j_2 \in \mathcal{I}_2 \cap \mathcal{B}$ such that $a_{i_1} = a_{i_2}, i_1 > i_2$ and $a_{j_1} = a_{j_2}, j_1 > j_2$ giving $t - |R| \ge 2$. This is a contradiction. Similarly, all other pairs (i_{11}, i_{13}) in (4.6) are excluded.

4.2. The case k = 18. We may assume that $\sigma'_{17} = 1$ and $17 \nmid a_0 a_1 a_2 a_{15} a_{16} a_{17}$ otherwise the assertion follows the case k = 15. If $|\{a_i : P(a_i) = 5\}| = 4$, we see from $\{a_i : P(a_i) = 5\} \subseteq \{5, 10, 15, 30\}$ that $a_{i_5} a_{i_5+5} a_{i_5+10} a_{i_5+15} = (150)^2$ implying $(n + i_5 d)(n + (i_5 + 5)d)(n + (i_5 + 10)d)(n + (i_5 + 15)d)$ is a square, contradicting Eulers' result for k = 4. Thus we have $|\{a_i : P(a_i) = 5\}| \leq 3$. Further for each prime $7 \leq p \leq 13$, we may also assume that $\sigma'_p = \sigma_p$ and for any $i, pq \nmid a_i$ whenever $7 \leq q \leq 17, q \neq p$ otherwise $t - |R| \geq k - 2 - \sum_{7 \leq p \leq 17} \sigma'_p - 3 - 4 \geq 2$ by (2.10) with r = 2.

Let $p_1 = 11$, $p_2 = 13$ and $\mathcal{I} = \{\gamma_1, \gamma_2, \cdots, \gamma_t\}$. Since $\left(\frac{5}{11}\right) \neq \left(\frac{5}{13}\right)$ and $\left(\frac{17}{11}\right) \neq \left(\frac{17}{13}\right)$ but $\left(\frac{q}{11}\right) = \left(\frac{q}{13}\right)$ for $q < k, q \neq 5, 17, 11, 13$, we observe that for $i \in \mathcal{M}$, exactly one of $5|a_i$ or $17|a_i$ holds. Thus $5 \cdot 17 \nmid a_i$ whenever $i \in \mathcal{M}$. For $i \in \mathcal{B}$, either $5 \nmid a_i, 17 \nmid a_i$ or $5|a_i, 17|a_i$. Thus for $i \in \mathcal{B}$, we have $P(a_i) \leq 7$ except possibly for one i for which $5 \cdot 17|a_i$. Since $\sigma_5 \leq 4$ and $\sigma'_{17} \leq 1$, we obtain $|\mathcal{M}^k| \leq 7$ and $5|a_i$ for at least $|\mathcal{M}^k| - 3$ i's with $i \in \mathcal{M}^k$. Hence $|\mathcal{M}^k| = 7$ implies that either

(4.7)
$$\{a+5j: 0 \le j \le 3\} \subseteq \mathcal{I}_1^k \text{ or } \{b+5j: 0 \le j \le 3\} \subseteq \mathcal{I}_2^k$$

for some $a, b \in \{0, 1, 2\}$.

Since $\sigma'_{11} = 2$ and $\sigma'_{13} = 2$, we may suppose that $0 \le i_{11} \le 6$ and $0 \le i_{13} \le 4$. Further $i_{11} \ne i_{13}$ and $i_{11}+11 \ne i_{13}+13$. We observe that either $\min(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \le 6$ or $|\mathcal{I}_1^k| = |\mathcal{I}_2^k| = 7$. For pairs (i_{11}, i_{13}) with $|\mathcal{I}_1^k| = |\mathcal{I}_2^k| = 7$, we check that (4.7) is not valid. Thus we restrict to those pairs satisfying $\min(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \le 6$. There are 16 such pairs. Further we see from $\max(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \ge 8$ that \mathcal{M}^k is exactly one of \mathcal{I}_1^k or \mathcal{I}_2^k with minimum cardinality and hence \mathcal{B}^k is the other one. Now we restrict to those pairs (i_{11}, i_{13}) for which $5|a_i$ for at least 3 elements $i \in \mathcal{M}^k$ otherwise $t - |R| \ge k - 2 - \sum_{7 \le p \le 17} \sigma'_p - 2 - 4 \ge 2$ by (2.10) with r = 2. We find that $(i_{11}, i_{13}) \in \{(1,3), (2,4), (4,0), (5,1)\}$. For these pairs (i_{11}, i_{13}) , we check that there are at most 4 multiples a_i of 5 and 17 with $i \in \mathcal{M}^k \cup \mathcal{B}^k$. Thus if $|\{i : i \in \mathcal{B}, 7|a_i\}| \le 2$, then $t - |R| \ge 2$ by (2.10) with r = 2. Therefore we may assume that $|\{i : i \in \mathcal{B}, 7|a_i\}| = 3$ and hence $|\{i : i \in \mathcal{B}^k, 7|a_i\}| = 3$. We now restrict to those pairs $(i_{11}, i_{13}) \in \{(2, 4), (4, 0)\}$.

Let $(i_{11}, i_{13}) = (2, 4)$. Then by taking $p_1 = 11$ and $p_2 = 13$ as above, we have $\mathcal{M}^k = \{1, 6, 8, 11\}$ and $\mathcal{B}^k = \{0, 3, 5, 7, 9, 10, 12, 14, 15, 16\}$ giving $i_5 = 1$ and $5|a_1a_6a_{11}$. We may assume that $17|a_8$ since $17 \nmid a_{16}$. Hence $P(a_i) \leq 7$ for $i \in \mathcal{B}$. Consequently $P(a_i) \leq 7$ for exactly 8 elements $i \in \mathcal{B}^k$ and other 2 elements are not in \mathcal{B} . Further $7|a_i$ for $i \in \{0, 7, 14\}$ and $0, 7, 14 \in \mathcal{B}$. Now we take $p_1 = 5, p_2 = 11$ and $\mathcal{I} = \mathcal{B}^k$ to get $\mathcal{I}_1 = \{0, 5, 7, 9\}$ and $\mathcal{I}_2 = \{3, 10, 12, 14, 15\}$. Since $(\frac{2}{5}) = (\frac{2}{11}), (\frac{7}{5}) = (\frac{7}{11})$ and $(\frac{3}{5}) \neq (\frac{3}{11})$, we observe that either $3|a_i$ for $i \in \mathcal{I}_1 \cap \mathcal{B}$ or $3|a_i$ for $i \in \mathcal{I}_2 \cap \mathcal{B}$. The former possibility is excluded since $0, 7 \in \mathcal{I}_1 \cap \mathcal{B}$ and the latter is not possible since $14 \in \mathcal{I}_2 \cap \mathcal{B}$. The other case $(i_{11}, i_{13}) = (4, 0)$ is excluded similarly.

4.3. The case k = 20. We may assume that $\sigma'_{19} = 1$ and $19 \nmid a_0 a_{19}$ otherwise the assertion follows from the case k = 18. Also we have $|\{a_i : P(a_i) = 5\}| \leq 3$ by Eulers' result for k = 4. Further for each prime $7 \leq p \leq 17$, we may also assume that $\sigma'_p = \sigma_p$ and for any $i, pq \nmid a_i$ whenever $7 \leq p < q \leq 19$ otherwise $t - |R| \geq k - 2 - \sum_{7 \leq p \leq 17} \sigma'_p - 3 - 4 \geq 2$ by (2.10) with r = 2.

Let $p_1 = 11$, $p_2 = 13$ and $\mathcal{I} = \{\gamma_1, \gamma_2, \cdots, \gamma_t\}$. Then as in the case k = 18, we observe that for $i \in \mathcal{M}$, exactly one of $5|a_i$ or $17|a_i$ holds but $5 \cdot 17 \nmid a_i$. For $i \in \mathcal{B}$, either $5 \nmid a_i, 17 \nmid a_i$ or $5|a_i, 17|a_i$. Since $\sigma_5 \leq 4$ and $\sigma_{17} \leq 2$, we obtain $|\mathcal{M}^k| \leq 8$ and $5|a_i$ for at least $|\mathcal{M}^k| - 4$ *i*'s with $i \in \mathcal{M}^k$. Hence $|\mathcal{M}^k| = 8$ implies that either

(4.8)
$$\{a + 5j : 0 \le j \le 3\} \subseteq \mathcal{I}_1^k \text{ or } \{b + 5j : 0 \le j \le 3\} \subseteq \mathcal{I}_2^k$$

for some $a, b \in \{0, 1, 2, 3, 4\}$.

Since $\sigma'_{11} = 2$ and $\sigma'_{13} = 2$, we may suppose that $0 \le i_{11} \le 8$ and $0 \le i_{13} \le 6$. Further $i_{11} \ne i_{13}$ and $i_{11}+11 \ne i_{13}+13$. We observe that either min $(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \le 7$ or $|\mathcal{I}_1^k| = |\mathcal{I}_2^k| = 8$. For pairs (i_{11}, i_{13}) with $|\mathcal{I}_1^k| = |\mathcal{I}_2^k| = 8$, we check that (4.8) is not valid. Thus we restrict to those pairs satisfying min $(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \le 7$. There are 40 such pairs. Further we see from max $(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \ge 8$ that \mathcal{M}^k is the one of \mathcal{I}_1^k or \mathcal{I}_2^k with minimum cardinality and hence \mathcal{B}^k is the other. Now we restrict to those pairs (i_{11}, i_{13}) for which $5|a_i$ for at least 3 elements $i \in \mathcal{M}^k$ otherwise $t - |R| \ge k - 2 - 1 - \sum_{7 \le p \le 17} \sigma'_p - 2 - 4 \ge 2$ by (2.10) with r = 2. We are left with 22 such pairs. Further by (4.3) and $|\mathcal{I}| = k - 2$, we restrict to those pairs (i_{11}, i_{13}) for which there are at least $|\mathcal{M}^k| - 2$ elements $i \in \mathcal{M}^k$ such that $5|a_i$ or $17|a_i$. There are 12 such pairs (i_{11}, i_{13}) and for these pairs, we check that there are at most 4 multiples a_i of 5 and 17 with $i \in \mathcal{M}^k \cup \mathcal{B}^k$. This implies $t - |R| \ge k - 2 - 1 - 4 - \sum_{11 \le p \le 13} \sigma'_p - 4 \ge 2$ by (2.10) with r = 2. For instance, let $(i_{11}, i_{13}) = (3, 5)$. Then $\mathcal{M}^k = \{2, 7, 9, 12\}$ and $\mathcal{B}^k = \{0, 1, 4, 6, 8, 10, 11, 13, 15, 16, 17, 19\}$. Since $5|a_i$ for at least three elements $i \in \mathcal{M}^k$, we get $5|a_i$ for $i \in \{2, 7, 12\}$ giving $i_5 = 2$. Further $17|a_9$ or $5 \cdot 17|a_{17}$ giving 4 multiples a_i of 5 and 17 with $i \in \mathcal{M}^k \cup \mathcal{B}^k$. Thus $t - |R| \ge 2$ as above.

4.4. The case k = 23. We may assume that $\sigma'_{23} = 1$ and $23 \nmid a_i$ for $0 \leq i \leq 2$ and $20 \leq i < 23$ otherwise the assertion follows from the case k = 20. We have $\sigma'_{11} = 3$ if $11|a_{11j}$ with j = 0, 1, 2 and $\sigma'_{11} \leq 2$ if $11 \nmid a_0 a_{11} a_{22}$. Also $\sigma'_7 = 4$ implies that $7|a_{7j}$ or $7|a_{1+7j}$ with $0 \leq j \leq 3$ and $\sigma'_7 \leq 3$ otherwise. Thus $|\{a_i : 7|a_i \text{ or } 11|a_i\}| \leq 6$. Further by Eulers result for k = 4, we obtain $|\{a_i : P(a_i) = 5\}| \leq 4$. If

$$|\{a_i: p|a_i, 5 \le p \le 23\} \le 4 + \sum_{7 \le p \le 23} \sigma_p - 1 - 2 = 15,$$

then we get from (2.10) with r = 2 that $t - |R| \ge k - 2 - 15 - 4 = 2$, a contradiction. Therefore we have

(4.9)
$$4 + \sum_{7 \le p \le 23} \sigma_p - 2 \le |\{a_i : p | a_i, 5 \le p \le 23\} \le 4 + \sum_{7 \le p \le 19} \sigma_p - 1.$$

Let $p_1 = 11$, $p_2 = 13$ and $\mathcal{I} = \{\gamma_1, \gamma_2, \cdots, \gamma_t\}$. Then as in the case k = 18, we observe that for $i \in \mathcal{M}$, exactly one of $5|a_i$ or $17|a_i$ holds but $5 \cdot 17 \nmid a_i$. Further for $i \in \mathcal{B}$, either $5 \nmid a_i, 17 \nmid a_i$ or $5 \cdot 17|a_i$. Since $\sigma_5 \leq 5$ and $\sigma_{17} \leq 2$, we obtain $|\mathcal{M}^k| \leq 9$ and $5|a_i$ for at least $|\mathcal{M}^k| - 4$ i's with $i \in \mathcal{M}^k$.

By taking the mirror image (4.4) of (1.1), we may suppose that $0 \leq i_{11} < 11$ and $0 \leq i_{13} \leq 11$. For each of these pairs (i_{11}, i_{13}) , we compute $|\mathcal{I}_1^k|, |\mathcal{I}_2^k|$ and check that $\max(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) > 9$. First we restrict to those pairs (i_{11}, i_{13}) for which $\min(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \leq 9$. Therefore \mathcal{M}^k is exactly one of \mathcal{I}_1^k or \mathcal{I}_2^k with minimum cardinality and hence \mathcal{B}^k is the other set. Now we restrict to those pairs (i_{11}, i_{13}) for which there are at least $|\mathcal{M}^k| - 2$ elements $i \in \mathcal{M}^k$ such that either $5|a_i$ or $17|a_i$. There are 31 such pairs. Next we count the number of multiples of 11, 13, maximum multiples of 5, 17 in $\mathcal{M}^k \cup \mathcal{B}^k$ and 7, 19 in \mathcal{B}^k to check that (4.9) is not valid. This is a contradiction. For example, let $(i_{11}, i_{13}) = (0, 2)$. Then $\mathcal{M}^k = \{4, 6, 9, 18, 19, 20\}$ and $\mathcal{B}^k = \{1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 21\}$ giving $5|a_i$ for $i \in \{4, 9, 19\}$, $i_5 = 4$. Further $17|a_i$ for exactly one $i \in \{6, 18, 20\}$ and other two i's in $\{6, 18, 20\}$ deleted. Thus $5 \cdot 17 \nmid a_{14}$ so that (4.9) is not valid. For another example, let $(i_{11}, i_{13}) = (4, 0)$. Then $\mathcal{M}^k = \{6, 9, 11, 16, 21\}$ and $\mathcal{B}^k = \{1, 2, 3, 5, 7, 8, 10, 12, 14, 17, 18, 19, 20, 22\}$ giving $5|a_i$ for $i \in \{6, 11, 16, 21\}$, $i_5 = 1$. Further we have either $17|a_9$, $gcd(5 \cdot 17, a_1) = 1$ or $9 \notin \mathcal{M}, 5 \cdot 17|a_1$. Now $7|a_i$ for at most 3 elements $i \in \mathcal{B}^k$ so that (4.9) is not satisfied. This is a contradiction.

4.5. The case k = 31. From $t - |R| \ge k - 2 - \sum_{7 \le p \le 31} \sigma'_p - 8 \ge k - 2 - \sum_{7 \le p \le 31} \sigma_p - 8 = 1$ by (2.10) and (2.13) with r = 3, we may assume for each prime $7 \le p \le 31$ that $\sigma'_p = \sigma_p$ and for any $i, pq \nmid a_i$ whenever $7 \le p < q \le 31$. Let $\mathcal{I} = \{\gamma_1, \gamma_2, \cdots, \gamma_t\}$. By taking the mirror image (4.4) of (1.1) and $\sigma_{19} = \sigma_{29} = 2$, we may assume that $i_{29} = 0$ and $1 \le i_{19} \le 11, i_{19} \ne 10$. For $p \le 31$ with $p \ne 19, 29$, since $\left(\frac{p}{19}\right) \ne \left(\frac{p}{29}\right)$ if and only if p = 11, 13, 17, we observe that for $i \in \mathcal{M}$, either $11|a_i$ or $13|a_i$ or $17|a_i$. Since $\sigma_{11} + \sigma_{13} + \sigma_{17} \le 8$, we obtain $|\mathcal{M}^k| \le 10$ and $p|a_i$ for at least $|\mathcal{M}^k| - 2$ elements $i \in \mathcal{M}^k$ and $p \in \{11, 13, 17\}$. Now for each of the pair (i_{19}, i_{29}) given by $i_{29} = 0, 1 \le i_{19} \le 11, i_{19} \ne 10$, we compute $|\mathcal{I}_1^k|, |\mathcal{I}_2^k|$. Since $\max(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \ge 14$, we restrict to those pairs (i_{19}, i_{29}) with $\min(|\mathcal{I}_1^k|, |\mathcal{I}_2^k|) \le 10$. Then we are left with the only pair $(i_{19}, i_{29}) = (1, 0)$. Further noticing that \mathcal{M}^k is exactly one of \mathcal{I}_1^k or \mathcal{I}_2^k with minimum cardinality, we get $\mathcal{M}^k = \{3, 5, 6, 7, 11, 14, 15, 19, 24, 25\}$ and $\mathcal{B}^k = \{2, 4, 8, 9, 10, 12, 13, 16, 17, 18, 21, 22, 23, 26, 27, 28, 30\}$. We find that there are at most 7 elements $i \in \mathcal{M}^k$ for which either $11|a_i$ or $13|a_i$ or $17|a_i$. This is not possible.

References

- [Dus99] P. Dusart, Inégalitiés explicites pour $\psi(X), \theta(X), \pi(X)$ et les nombres premiers, C. R. Math. Rep. Acad. Sci. Canada **21(1)**(1999), 53-59, 55.
- [ErSe75] P. Erdős and J.L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 292-301.
- [HiLaShTi06] Hirata-Kohno, S. Laishram, T. N. Shorey and R. Tijdeman, An extension of a theorem of Euler, submitted.
- [Lai06] S. Laishram, An estimate for the length of an arithmetic progression the product of whose terms is almost square, Pub. Math. Debrecen, 68(3) (2006), 451-475.
- [LaSh06a] S. Laishram and T. N. Shorey, The equation $n(n+d)\cdots(n+(k-1)d) = by^2$ with $\omega(d) \le 4$ or $d \le 10^{10}$, to appear.
- [LaSh04] S. Laishram and T. N. Shorey, Number of prime divisors in a product of terms of an arithmetic progression, Indag. Math., 15(4) (2004), 505-521.
- [MuSh03] A. Mukhopadhyay and T. N. Shorey Almost squares in arithmetic progression (II), Acta Arith., 110 (2003), 1-14.
- [MuSh04a] A. Mukhopadhyay and T. N. Shorey Almost squares in arithmetic progression (III), Indag. Math., 15 (2004), 523-533.
- [MuSh04b] A. Mukhopadhyay and T. N. Shorey Square free part of products of consecutive integers, Publ. Math. Debrecen, 64 (2004), 79-99.
- [Sar97] N. Saradha, On perfect powers in products with terms from arithmetic progressins, Acta Arith., 82, (1997), 147-172.
- [SaSh03a] N. Saradha and T. N. Shorey, Almost squares in arithmetic progression, Compositio Math. 138 (2003), 73-111.
- [SaSh03b] N. Saradha and T. N. Shorey, Almost squares and factorisations in consecutive integers, Compositio Math. 138 (2003), 113-124.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

E-mail address: shanta@math.tifr.res.in

 $E\text{-}mail\ address: \texttt{shoreyQmath.tifr.res.in}$