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Abstract. It is shown that a product of k − 2 terms out of k ≥ 15 terms in arithmetic
progression with common difference a prime power > 1 is not a square. In fact it is not of
the form by2 where the greatest prime factor of b is less than k.

1. Introduction

For an integer x > 1, we denote by P (x) and ω(x) the greatest prime factor of x and the
number of distinct prime divisors of x, respectively. Further we put P (1) = 1 and ω(1) = 0.
Let pi be the i−th prime number. Let k ≥ 4, t ≥ k − 2 and γ1 < γ2 < · · · < γt be integers
with 0 ≤ γi < k for 1 ≤ i ≤ t. Thus t ∈ {k, k − 1, k − 2}, γt ≥ k − 3 and γi = i − 1 for
1 ≤ i ≤ t if t = k. We put ψ = k − t. Let b be a positive squarefree integer and we shall
always assume, unless otherwise specified, that P (b) ≤ k. We consider the equation

(1.1) ∆ = ∆(n, d, k) = (n+ γ1d) · · · (n+ γtd) = by2

in positive integers n, d, k, b, y, t. We prove

Theorem 1. Let ψ = 2, k ≥ 15 and d - n. Assume that P (b) < k if k = 17, 19. Then (1.1)
with ω(d) = 1 does not hold.

From Theorem 1, we obtain the following results immediately.

Corollary 1. Let ψ = 1, k ≥ 15 and d - n. Then (1.1) with ω(d) = 1 does not hold.

Corollary 2. Let ψ = 0, k ≥ 15 and d - n. Assume that P (b) ≤ pπ(k)+1 if k = 17, 19 and
P (b) ≤ pπ(k)+2 otherwise. Then (1.1) with ω(d) = 1 does not hold.

For the proof of Corollary 1, we may suppose P (b) = k otherwise it follows from (2.1) and
Theorem 1. Then we delete the term divisible by k on the left hand side of (1.1) and the
assertion follows from Theorem 1. Further Corollary 2 also follow similarly from Theorem
1.

Let ψ = 0. If d = 1, then (1.1) has been completely solved for P (b) < k by Erdős and
Selfridge [ErSe75] and for P (b) = k by Saradha [Sar97]. Let d > 1. We observe that (1.1) has
infinitely many solutions if k = 2, 3 and b = 1. Also (1.1) with k = 4 and b = 6 has infinitely
many solutions. It has been conjectured that (1.1) with gcd(n, d) = 1 and k ≥ 5 does not
hold. Let ω(d) = 1. It has been shown in [SaSh03a] for k > 29 and [MuSh03] for 4 ≤ k ≤ 29
that (1.1) with gcd(n, d) = 1 implies that either k = 4, (n, d, b, y) = (75, 23, 6, 140) or
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k = 5, P (b) = k. In fact we shall derive the preceding result with k ≥ 10 and P (b) < k from
Theorem 1, see Corollary 3.11. We refer to [LaSh06a] for results on (1.1) with 1 < ω(d) ≤ 4.

Let ψ = 1. We may assume that γ1 = 0 and γt = k − 1. It has been shown in [SaSh03b]
that

6!

5
= (12)2,

10!

7
= (720)2

are the only squares that are products of k− 1 distinct integers out of k consecutive integers
confirming a conjecture of Erdős and Selfridge [ErSe75]. This corresponds to the case b = 1
and d = 1 in (1.1). In general, it has been proved in [SaSh03b] that (1.1) with d = 1 and
k ≥ 4 implies that (b, k, n) = (2, 4, 24) under the necessary assumption that the left hand
side of (1.1) is divisible by a prime > k. Further it has been shown in [SaSh03a, Theorem
4] and [MuSh04a] that (1.1) with d > 1, gcd(n, d) = 1, ω(d) = 1 and P (b) < k implies that
k ≤ 8. Thus we derive the preceding result with k ≥ 15 from Corollary 1. Further the
assumption P (b) < k has been relaxed to P (b) ≤ k and the assumption gcd(n, d) = 1 has
been replaced by d - n.

Let ψ = 2. Let d = 1. Then it has been shown in [MuSh04b, Corollary 3] that a product
of k− 2 distinct terms out of k consecutive positive integers is a square only if it is given by

6!

1.5
=

7!

5.7
= 122,

10!

1.7
=

11!

7.11
= 7202.

and 

4!
2.3

= 22, 6!
4.5

= 62, 8!
2.5.7

= 242, 10!
2.3.4.6.7

= 602, 9!
2.5.7

= 722,

10!
2.3.6.7

= 1202, 10!
2.7.8

= 1802, 10!
7.9

= 2402, 10!
4.7

= 3602,

21!
13!.17.19

= 50402, 14!
2.3.4.11.13

= 50402, 14!
2.3.11.13

= 100802.

The above result corresponds to (1.1) with b = 1. For the general case, we have

Theorem 2. Let ψ = 2, d = 1 and k ≥ 6. Assume that the left hand side of (1.1) is divisible
by a prime > k. Then (1.1) is not valid unless k = 6 and n = 45, 240.

We observe that n > k2 since the left hand side of (1.1) is divisible by a prime > k. Then
the assertion follows immediately from [MuSh04b, Theorem 2].

Therefore we take d > 1 from now onwards in this paper. For the proof of Theorem 1,
we show without loss of generality that gcd(n, d) = 1. Let gcd(n, d) > 1. Let pβ =gcd(n, d),
n′ = n

pβ and d′ = d
pβ . Then d′ > 1 since d - n. Now, by dividing (pβ)t on both sides of (1.1),

we have

(1.2) (n′ + γ1d
′) · · · (n′ + γtd

′) = pεb′y′2

where y′ > 0 is an integer, b′ squarefree, P (b′) < k when k = 17 and ε ∈ {0, 1}. Since p|d′
and gcd(n′, d′) = 1, we see that p - (n′+γ1d

′) · · · (n′+γtd′) giving ε = 0 and assertion follows.

2. Notations and Preliminaries

We assume (1.1) with gcd(n, d) = 1 in this section. Then we have

n+ γid = aγi
x2
γi

for 1 ≤ i ≤ t(2.1)
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with aγi
squarefree such that P (aγi

) ≤ max(k− 1, P (b)). Thus (1.1) with b as the squarefree
part of aγ1 · · · aγt is determined by the t−tuple (aγ1 , · · · , aγt). Also

n+ γid = Aγi
X2
γi

for 1 ≤ i ≤ t(2.2)

with P (Aγi
) ≤ k and gcd(Xγi

,
∏

p≤k p) = 1. Further we write

bi = aγi
, Bi = Aγi

, yi = xγi
, Yi = Xγi

.

Since gcd(n, d) = 1, we see from (2.1) and (2.2) that

(bi, d) = (Bi, d) = (yi, d) = (Yi, d) = 1 for 1 ≤ i ≤ t.(2.3)

Let

R = {bi : 1 ≤ i ≤ t}.

For bi0 ∈ R, let ν(bi0) = |{j : 1 ≤ j ≤ t, bj = bi0}|. Let

T = {1 ≤ i ≤ t : Yi = 1}, T1 = {1 ≤ i ≤ t : Yi > 1}, S1 = {Bi : i ∈ T1}.

Note that Yi > k for i ∈ T1. For i0 ∈ T1, we denote by ν(Bi0) = |{j ∈ T1 : Bj = Bi0}|.
Let

δ = min(3, ord2(d)), δ
′ = min(1, ord2(d)),(2.4)

η =

{
1 if ord2(d) ≤ 1,

2 if ord2(d) ≥ 2,
(2.5)

ρ =

{
3 if 3|d,
1 if 3 - d.

(2.6)

and

θ =

{
1 if d = 2, 4

0 otherwise.
(2.7)

Let d = pα. Then we say (d1, d2) is a partition of d if d = d1d2 and gcd(d1, d2) = η and
we take (1, 2) as the partition of d = 2. Further (2, 2) is the only partition if d = 4. For
d 6= 2, 4, we see that (η, d

η
) and (d

η
, η) are the only distinct partitions of d. Let bi = bj, i > j.

Then from (2.1) and (2.3), we have

(γi − γj)

bi
=
y2
i − y2

j

d
=

(yi − yj)(yi + yj)

d
(2.8)

such that gcd(d, yi − yj, yi + yj) = 2δ
′
. Thus a pair (i, j) with i > j and bi = bj corresponds

to a partition (d1, d2) of d such that d1|(yi− yj) and d2|(yi + yj) and this partition is unique.
Similarly, we have unique partition of d corresponding to every pair (i, j) with i > j, i, j ∈ T1

and Bi = Bj.
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Let q be a prime ≤ k and coprime to d. Then the number of i’s for which bi are divisible
by q is at most σq =

⌈
k
q

⌉
. Let σ′q = |{bi : q|bi}|. Then σ′q ≤ σq. Let r ≥ 3 be any positive

integer. Define F (k, r) and F ′(k, r) as

F (k, r) = |{γi : P (bi) > pr}| and F ′(k, r) =

π(k)∑
i=r+1

σpi
.

Then |{bi : P (bi) > pr}| ≤ F (k, r) ≤ F ′(k, r)−
∑

p|d,p>pr

σp. Let

Br = {bi : P (bi) ≤ pr}, Ir = {γi : bi ∈ Br} and ξr = |Ir|.
We have

ξr ≥ t− F (k, r) ≥ t− F ′(k, r) +
∑

p|d,p>pr

σp(2.9)

and

t− |R| ≥ t− |{bi : P (bi) > pr}| − |{bi : P (bi) ≤ pr}|(2.10)

≥ t− F (k, r)− |{bi : P (bi) ≤ pr}|(2.11)

≥ t− F ′(k, r) +
∑

p|d,p>pr

σp − |{bi : P (bi) ≤ pr}|(2.12)

≥ t− F ′(k, r) +
∑

p|d,p>pr

σp − 2r.(2.13)

We write S := S(r) for the set of positive squarefree integers composed of primes ≤ pr.
Let p = 2δ if d is even and p = P (d) if d is odd. Let p = 2δ. Then bi ≡ n(mod 2δ).
Considering modulo 2δ for elements of S(r), we see by induction on r that

|{bi : P (bi) ≤ pr}| ≤ 2r−δ =: g2δ .(2.14)

Let p = P (d). Then all bi’s are either quadratic residues mod p or non-quadratic residues
mod p. We consider two sets

S1(p, r) = {s ∈ S :

(
s

p

)
= 1},

S2(p, r) = {s ∈ S :

(
s

p

)
= −1}

(2.15)

and define

gp(r) = max(|S1(p, r)|, |S2(p, r)|).(2.16)

Then

|{bi : P (bi) ≤ pr}| ≤ gp.(2.17)

In view of (2.14) and (2.17), the inequality (2.12) is improved as

t− |R| ≥ k − ψ − F ′(k, r) +
∑

p|d,p>pr

σp − gp.(2.18)
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Let r = 3, 4, 2 < p ≤ 220. Then we calculate

gp(r) =

{
2r−2 if p ≤ pr
2r−1 if p > pr

(2.19)

except when r = 3, p ∈ {71, 191} where gp = 2r. We close this section with the following
Lemmas which are independent of (1.1). The first Lemma is an estimate on π(x) due to
Dusart [Dus99].

Lemma 2.1. We have

π(x) ≤ x

log x

(
1 +

1.2762

log x

)
for x > 1.

The following lemma is contained in [LaSh04, Theorem 1].

Lemma 2.2. Let k ≥ 9, gcd(n, d) = 1, n > k if d = 2 and (n, d, k) /∈ V where V is given by
n = 1, d = 3, k = 9, 10, 11, 12, 19, 22, 24, 31;

n = 2, d = 3, k = 12; n = 4, d = 3, k = 9, 10;

n = 2, d = 5, k = 9, 10;

n = 1, d = 7, k = 10.

(2.20)

Then

W (n(n+ d) · · · (n+ (k − 1)d)) := |{i : 0 ≤ i < k, P (n+ id) > k}| ≥ π(2k)− πd(k).(2.21)

Let d = 2 and n ≤ k. Then

W (n(n+ d) · · · (n+ (k − 1)d)) ≥ π(2k)− πd(k)− 1.(2.22)

The following lemma is contained in [Lai06, Lemma 8].

Lemma 2.3. Let si denote the i-th squarefree positive integer. Then
l∏

i=1

si ≥ (1.6)ll! for l ≥ 286.(2.23)

3. Lemmas for the equation (1.1)

All the lemmas in this section are under the assumption that (1.1) with ω(d) = 1 is valid
and we shall suppose it without reference.

Lemma 3.1. Let ψ be fixed. Suppose that (1.1) with P (b) ≤ k has no solution at k = k1

with k1 prime. Then (1.1) with P (b) ≤ k and k1 ≤ k < k2 has no solution where k1, k2 are
consecutive primes.

Proof. Let k1, k2 be consecutive primes such that k1 ≤ k < k2. Suppose (n, d, b, y) is a
solution of

(n+ γ1d) · · · (n+ γtd) = by2

with P (b) ≤ k. Then P (b) ≤ k1. We observe that γk1−ψ < k1 and by (2.1),

(n+ γ1d) · · · (n+ γk1−ψd) = b′y′2

holds for some b′ with P (b′) ≤ k1 giving a solution of (1.1) at k = k1. This is a contradiction.
�
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In view of Lemma 3.1, there is no loss of generality in assuming that k is prime whenever
k ≥ 23 in the proof of Theorem 1. Therefore we suppose from now onward without reference
that k is prime if k ≥ 23. The following Lemma gives a lower bound for |T1|, see [LaSh06a,
Lemma 4.1].

Lemma 3.2. Let k ≥ 4. Then

|T1| > t−
(k − 1) log (k − 1)−

∑
p|d,p<k max

(
0, (k−1−p) log p

p−1
− log(k − 2)

)
log (n+ (k − 1)d)

− πd(k)− 1.

(3.1)

We apply Lemmas 2.2 and 3.2 to derive the following result.

Corollary 3.3. Let k ≥ 9. Then we have

|T1| > 0.1754k for k ≥ 81.(3.2)

and

n+ γtd > η2k2.(3.3)

Proof. We observe that π(2k)− π(k) > 2 since k ≥ 9. Therefore P (∆) > k by Lemma 2.2.
Now we see from (1.1) that

n+ γtd > k2.(3.4)

By (3.1), t ≥ k − 2, πd(k) ≤ π(k) and Lemma 2.1, we get

|T1| >k − 3− (k − 1) log k

2 log k
− k

log k

(
1 +

1.2762

log k

)
.

Since the right hand side of the above inequality exceeds 0.1754k for k ≥ 81, the assertion
(3.2) follows.

Now we turn to the proof of (3.3). By (3.4), it suffices to consider d = 2α with α > 1.
From Lemma 2.2 and (1.1), we have n+ (k − 1)d > p2

π(2k)−2. Now we see from (3.1) that

|T1|+ πd(k)− π(2k) >k − 3− (k − 1) log(k − 1)− (k − 3) log 2 + log(k − 2)

2 log pπ(2k)−2

− π(2k)

(3.5)

and

|T1|+ πd(k)− π(2k) >k − 3− (k − 1) log k − (k − 3) log 2 + log k

2 log k
− 2k

log 2k

(
1 +

1.2762

log 2k

)
by Lemma 2.1. When k ≥ 60, we observe that the right hand side of the preceding inequality
is positive. Therefore |T1| + πd(k) > π(2k) implying n + γtd > 4k2 for k ≥ 60. Thus we
may assume k < 60. Now we check that the right hand side of (3.5) is positive for k ≥ 33.

Therefore we may suppose that k < 33 and n+(k−3)d ≤ n+γtd ≤ 4k2. Hence d = 2α < 4k2

k−3
.

For n, d, k satisfying k < 33, d < 4k2

k−3
, n + (k − 3)d ≤ 4k2 and n + (k − 1)d ≥ p2

π(2k)−2, we
check that there are at least three i with 0 ≤ i < k such that n + id is divisible by a prime
> k to the first power. This is not possible. �

The next Lemma follows from (3.3) and [LaSh06a, Corollaries 3.5, 3.7].
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Lemma 3.4. For any pair (i, j) with bi = bj, the partition (dη−1, η) of d is not possible.
Further ν(bi0) ≤ 21−θ and ν(Bi0) ≤ 21−θ.

The following Lemma follows from (3.3), Lemma 3.4 and [LaSh06a, Corollary 3.9].

Lemma 3.5. Let z0 ∈ {2, 3, 5}. Assume that either d is odd or 8|d and z0 = 5 if 8|d. Further
let d = θ1(k − 1)2, n = θ2(k − 1)3 with θ1 > 0 and θ2 > 0. Suppose that t− |R| ≥ z0. Then
we have the partition (η, dη−1) of d such that

dη−1 <
4(k − 1)

q2
(3.6)

and

θ2 <
1

2

{
1

q1q2
− θ1 +

√
1

(q1q2)2
+

θ1

q1q2

}
(3.7)

hold with q1 ≥ Q1, q2 ≥ Q2 where (Q1, Q2) is given by (1, 1), (2, 2), (4, 4) according as z0 =
2, 3, 5, respectively when d is odd and (Q1, Q2) = (2, 8) when z0 = 5, 8|d.
Lemma 3.6. Let z1 > 1 be a real number, h0 > i0 ≥ 0 be integers such that

∏
bi∈R bi ≥

z
|R|−i0
1 (|R| − i0)! for |R| ≥ h0. Suppose that t− |R| < g and let g1 = k − t+ g − 1 + i0. For
k ≥ h0 + g1 and for any real number m > 1, we have

g1 >

k log

(
z1n0

2.71851

∏
p≤m

p
2

p2−1

)
+ (k + 1

2
) log(1− g1

k
)

log(k − g1)− 1 + log z1

−

(1.5π(m)− .5`− 1) log k + log

(
n−1

1 n2

∏
p≤m

p
.5+ 2

p2−1

)
log(k − g1)− 1 + log z1

(3.8)

where

` = |{p ≤ m : p|d}|, n0 =
∏
p|d

p≤m

p
1

p+1 , n1 =
∏
p|d

p≤m

p
p−1

2(p+1) and n2 =

{
2

1
6 if 2 - d

1 otherwise.

For a proof, see [LaSh06a, Lemma 5.3]. The assumption ω(d) = 1 is not necessary for
Lemmas 3.1, 3.2, 3.6 and Corollary 3.3.

Lemma 3.7. We have

t− |R| ≥


5 for k ≥ 81

5− ψ for k ≥ 55

4− ψ for k ≥ 28, k 6= 31

3− ψ for k = 31.

(3.9)

Proof. Suppose t − |R| < 5 and k ≥ 292. Then |R| ≥ 286 since t ≥ k − 2 and
∏

bi∈R bi ≥
(1.6)|R|(|R|)! by (2.23). We observe that (3.8) hold for k ≥ 292 with i0 = 0, h0 = 286,

z1 = 1.6, g1 = 6, m = 17, ` = 0, n0 = 1, n1 = 1 and n2 = 2
1
6 . We check that the right hand side

of (3.8) is an increasing function of k and it exceeds g1 at k = 292 which is a contradiction.



8 SHANTA LAISHRAM AND T. N. SHOREY

Therefore t− |R| ≥ 5 for k ≥ 292. Thus we may assume that k < 292. By taking r = 3 for
k < 50, r = 4 for 50 ≤ k ≤ 181 and r = 5 for 181 < k < 292 in (2.11) and (2.13), we get
t− |R| ≥ k−ψ−F ′(k, r)− 2r ≥ 7−ψ, 5−ψ, 4−ψ for k ≥ 81, 55, 28, respectively except at
k = 29, 31, 43, 47 where t−|R| ≥ k−ψ−F (k, r)−2r ≥ k−ψ−F ′(k, r)−2r = 3−ψ. We may
suppose that k = 29, 43, 47, t− |R| = 3− ψ and F (k, r) = F ′(k, r). Further we may assume
that for each prime 7 ≤ p ≤ k, there are exactly σp number of i’s for which p|bi and for any i,
pq - bi whenever 7 ≤ q ≤ k, q 6= p. Now we get a contradiction by considering the i’s for which
bi’s are divisible by primes 7, 13; 7, 41; 23, 11 when k = 29, 43, 47, respectively. For instance
let k = 29. Then 7|bi for i ∈ {0, 7, 14, 21, 28}. Then 13|bi for i ∈ {h+ 13j : 0 ≤ j ≤ 2} with
h = 0, 1, 2. This is not possible. �

Lemma 3.8. Let 9 ≤ k ≤ 23 and d odd. Suppose that t−|R| ≥ 3 for k = 23 and t−|R| ≥ 2
for k < 23. Then (1.1) does not hold.

Proof. Suppose (1.1) holds. Let Q = 2 if k = 23 and Q = 1 if k < 23. We now apply Lemma
3.5 with z0 = 3 for k = 23 and z0 = 2 for k < 23 to get d < 4

Q
(k − 1), θ1 <

4
Q(k−1)

and

θ1 + θ2 <
1

2

{
1

Q2
+

4

Q(k − 1)
+

√
1

Q4
+

4

Q3(k − 1)

}
=: Ω(k − 1).

Further from (2.21), we have n+(k−1)d ≥ n+γtd ≥ p2
π(2k)−2. Therefore pα = d < 4

Q
(k−1)

and p2
π(2k)−2 ≤ n+(k−1)d < (k−1)3Ω(k−1). For these possibilities of n, d and k, we check

that there are at least three i with 0 ≤ i < k such that n+ id is divisible by a prime > k to
an odd power. This contradicts (1.1). �

Lemma 3.9. Equation (1.1) with k ≥ 9 implies that t− |R| ≤ 1.

Proof. Assume that k ≥ 9 and t − |R| ≥ 2. Let d = 2, 4. Then |R| ≤ t − 2 contradicting
|R| = t by Lemma 3.4. Thus d 6= 2, 4. By Lemma 3.4, we have ν(bi0) ≤ 2 and ν(Bi0) ≤ 2.

Let k ≥ 81. Then t− |R| ≥ 5 by Lemma 3.7. Now we derive from Lemma 3.5 with z0 = 5
that d < k − 1 giving θ1 <

1
k−1

and hence

n+ (k − 1)d = (θ1 + θ2)(k − 1)3 <
(k − 1)3

2

{
1

16
+

1

k − 1
+

√
1

(16)2
+

1

16(k − 1)

}
.

On the other hand, we get from (3.2) and ν(Bi0) ≤ 2 that n+(k−1)d ≥ 0.1754k
2

k2 ≥ 0.1754k
3

2
.

Comparing the upper and lower bounds of n+ (k − 1)d, we obtain

0.1754 <

{
1

16
+

1

k − 1
+

√
1

(16)2
+

1

16(k − 1)

}
≤ 0.144

since k ≥ 81. This is a contradiction.
Thus k < 81. Let d be even. Then 8|d and we see from ν(ai) ≤ 2 and (2.14) that

ξr ≤ 2g2δ ≤ 2r−2. Let r = 3. From (2.9), we get k − 2 − F ′(k, r) ≤ ξr ≤ 2r−2. We find
k − 2− F ′(k, r) > 2r−2 by computation. This is a contradiction.

Thus d is odd. Since ψ ≤ 2, we get from Lemmas 3.7 and 3.5 with z0 = 3, 2 that
d < 2(k − 1) if k ≥ 55 and d < 4(k − 1) if k < 55. Since gp(r) ≤ 2r−1 for r = 4, p < 220 by
(2.19), we get from (2.18) with r = 4 that t− |R| ≥ k − 2− F ′(k, r)− 2r−1 which is ≥ 5 for
k ≥ 29 and ≥ 3 for k = 23.
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Let k ≥ 29. Then we get from Lemma 3.5 with z0 = 5 that d < k − 1. By taking r = 3
for k < 53 and r = 4 for 53 ≤ k < 81, we derive from (2.17), (2.19), ν(ai) ≤ 2 and (2.9)
that k − 2 − F ′(k, r) ≤ ξr ≤ 2gp ≤ 2r. On the other hand, we check by computation that
k − 2− F ′(k, r) > 2r. This is a contradiction.

Thus k ≤ 23. Then t − |R| ≥ 3 for k = 23 and t − |R| ≥ 2 for k < 23. By Lemma 3.8,
this is not possible. �

Corollary 3.10. Let k ≥ 9. Equation (1.1) implies that either k ≤ 23 or k = 31. Also
P (d) > k.

Proof. By Lemmas 3.7 and 3.9, we see that either k ≤ 23 or k = 31. Suppose that P (d) ≤ k.
Since gP (d)(r) ≤ 2r−1 for r = 3 by (2.19), we get from (2.18) with r = 3 that t − |R| ≥
k − 2− F ′(k, r)− 2r−1 ≥ 2 except at k = 9 where t− |R| = 1. This contradicts Lemma 3.9
for k > 9. Let k = 9. By taking r = 4, we get from gP (d)(r) ≤ 2r−2 by (2.19) and (2.18) that
t− |R| ≥ k − 2− F ′(k, 4)− 24−2 ≥ 2. This contradicts Lemma 3.9. �

As a consequence, we derive the following Corollary which is [SaSh03a, Theorem 1 (ii)].

Corollary 3.11. Let ψ = 0. Equation (1.1) with P (b) < k implies that k ≤ 9.

Proof. Let k ≥ 10. By Corollary 3.10, we see that either k ≤ 23 or k = 31. Let k = 10.
Then we get from (2.13) with r = 2 that t−|R| ≥ k−F ′(k, r)−2r = 2 contradicting Lemma
3.9. Thus (1.1) does not hold at k = 10. By induction, we may assume k ∈ {12, 14, 18, 20}
and further there is at most one i for which p|ai with p = k−1. We take r = 2 for k = 12, 14
and r = 3 for k = 18, 20. Now we get from |{bi : P (bi) > pr}| ≤ F ′(k, r)− 1 and (2.10) that
t− |R| ≥ k − F ′(k, r) + 1− 2r ≥ 2. This contradicts Lemma 3.9. �

4. Proof of Theorem 1

Suppose that the assumptions of Theorem 1 are satisfied and assume (1.1) with ω(d) = 1.
By Corollary 3.10, we have P (d) > k and further we restrict to k ≤ 23 and k = 31. Also
t−|R| ≤ 1 by Lemma 3.9. Further it suffices to prove the assertion for k ∈ {15, 18, 20, 23, 31}
since the cases k = 16, 17; k = 19 and k = 21, 22 follows from those of k = 15, 18 and 20,
respectively.

We shall arrive at a contradiction by showing t− |R| ≥ 2. For a prime p ≤ k, we observe
that p - d and let ip be such that 0 ≤ ip < p and p|n + ipd. For any subset I ⊆ [0, k) ∩ Z
and primes p1 and p2, we define

I1 = {i ∈ I :

(
i− ip1
p1

)
=

(
i− ip2
p2

)
} and I2 = {i ∈ I :

(
i− ip1
p1

)
6=
(
i− ip2
p2

)
}.

Then from
(
ai

p

)
=
(
i−ip
p

)(
d
p

)
, we see that either(

ai
p1

)
6=
(
ai
p2

)
for all i ∈ I1 and

(
ai
p1

)
=

(
ai
p2

)
for all i ∈ I2(4.1)

or (
ai
p1

)
6=
(
ai
p2

)
for all i ∈ I2 and

(
ai
p1

)
=

(
ai
p2

)
for all i ∈ I1.(4.2)



10 SHANTA LAISHRAM AND T. N. SHOREY

We define (M,B) = (I1, I2) in the case (4.1) and (M,B) = (I2, I1) in the case (4.2). We
call (I1, I2,M,B) = (Ik1 , Ik2 ,Mk,Bk) when I = [0, k) ∩ Z. Then for any I ⊆ [0, k) ∩ Z, we
have

I1 ⊆ Ik1 , I2 ⊆ Ik2 ,M⊆Mk,B ⊆ Bk

and

|M| ≥ |Mk| − (k − |I|), |B| ≥ |Bk| − (k − |I|).(4.3)

By taking m = n+ γtd and γ′i = γt − γt−i+1, we re-write (1.1) as

(m− γ′1d) · · · (m− γ′td) = by2.(4.4)

The equation (4.4) is called the mirror image of (1.1). The corresponding t-tuple (aγ′1 , aγ′2 , · · · , aγ′t)
is called the mirror image of (aγ1 , · · · , aγt).

4.1. The case k = 15. Then σ′7 = 3 implies that 7|a7j for j = 0, 1, 2 and σ′7 ≤ 2 if
7 - a0a7a14. Similarly σ′13 = 2 implies 13|a0, 13|a13 or 13|a1, 13|a14 and σ′13 ≤ 1 otherwise.
Thus |{ai : 7|ai or 13|ai}| ≤ 4. It suffices to have

|{ai : p|ai for 5 ≤ p ≤ 13}| ≤ 7(4.5)

since then t − |R| ≥ k − 2 − |{ai : p|ai for 5 ≤ p ≤ 13}| − 4 ≥ 2 by (2.10) with r = 2, a
contradiction.

Let p1 = 11, p2 = 13 and I = {γ1, γ2, · · · , γt}. We observe that P (ai) ≤ 7 for i ∈M∪ B.
Since

(
5
11

)
6=
(

5
13

)
but

(
q
11

)
=
(
q
13

)
for a prime q < k other than 5, 11, 13, we observe that

5|ai whenever i ∈ M. Since σ5 ≤ 3 and |I| = k − 2, we obtain from (4.3) that |Mk| ≤ 5
and 5|ai for at least |Mk| − 2 i’s with i ∈Mk. Further 5 - ai for i ∈ B.

By taking the mirror image (4.4) of (1.1), we may suppose that 0 ≤ i13 ≤ 7. For each
possibility 0 ≤ i11 < 11 and 0 ≤ i13 ≤ 7, we compute |Ik1 |, |Ik2 | and restrict to those pairs
(i11, i13) with min(|Ik1 |, |Ik2 |) ≤ 5. We see from max(|Ik1 |, |Ik2 |) ≥ 6 that Mk is exactly one of
Ik1 or Ik2 with minimum cardinality and hence Bk is the other. Now we restrict to those pairs
(i11, i13) for which there are at most two elements i ∈Mk such that 5 - ai. There are 31 such
pairs. By counting the multiples of 11 and 13 and also the maximum multiples of 5 in Mk

and the maximum number of multiples of 7 in Bk, we again restrict to those pairs (i11, i13)
which do not satisfy (4.5). With this procedure, all pairs (i11, i13) are excluded other than

(0, 6), (1, 3), (2, 4), (3, 5), (4, 6), (5, 3).(4.6)

We first explain the procedure by showing how (i11, i13) = (0, 0) is excluded. Now Mk =
{5, 10} and Bk = {1, 2, 3, 4, 6, 7, 8, 9, 12, 14}. Then there are 3 multiples of 11 and 13, at
most 2 multiples of 5 in Mk and at most 2 multiples of 7 in Bk implying (4.5). Thus
(i11, i13) = (0, 0) is excluded.

Let (i11, i13) = (5, 3). Then Mk = {1, 6, 11} and Bk = {0, 2, 4, 7, 8, 9, 10, 12, 13, 14} giving
i5 = 1 and 5|a1a6a11. We may assume that 7|ai for i ∈ {0, 7, 14} otherwise (4.5) holds. By
taking p1 = 5, p2 = 11 and I = Bk, we get I1 = {4, 10, 13} and I2 = {0, 2, 7, 8, 9, 12, 14}.
Since

(
2
5

)
=
(

2
11

)
,
(

7
5

)
=
(

7
11

)
and

(
3
5

)
6=
(

3
11

)
, we observe that 3|ai for i ∈ I1 ∩ B and 3 - ai

for i ∈ I2 ∩B. Thus ai ∈ {3, 6} for i ∈ I1 ∩B and ai ∈ {1, 2, 7, 14} for i ∈ I2 ∩B. Now from(
ai

7

)
=
(
i−0
7

) (
d
7

)
and

(
3
7

)
=
(

6
7

)
, we see that at least one of 4, 10, 13 is not in B implying

i /∈ B for at most one i ∈ I2. Therefore there are distinct pairs (i1, i2) and (j1, j2) with
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i1, i2, j1, j2 ∈ I2∩B such that ai1 = ai2 , i1 > i2 and aj1 = aj2 , j1 > j2 giving t−|R| ≥ 2. This
is a contradiction. Similarly, all other pairs (i11, i13) in (4.6) are excluded.

4.2. The case k = 18. We may assume that σ′17 = 1 and 17 - a0a1a2a15a16a17 otherwise the
assertion follows the case k = 15. If |{ai : P (ai) = 5}| = 4, we see from {ai : P (ai) = 5} ⊆
{5, 10, 15, 30} that ai5ai5+5ai5+10ai5+15 = (150)2 implying (n + i5d)(n + (i5 + 5)d)(n + (i5 +
10)d)(n+ (i5 + 15)d) is a square, contradicting Eulers’ result for k = 4. Thus we have |{ai :
P (ai) = 5}| ≤ 3. Further for each prime 7 ≤ p ≤ 13, we may also assume that σ′p = σp and
for any i, pq - ai whenever 7 ≤ q ≤ 17, q 6= p otherwise t−|R| ≥ k−2−

∑
7≤p≤17 σ

′
p−3−4 ≥ 2

by (2.10) with r = 2.
Let p1 = 11, p2 = 13 and I = {γ1, γ2, · · · , γt}. Since

(
5
11

)
6=
(

5
13

)
and

(
17
11

)
6=
(

17
13

)
but(

q
11

)
=
(
q
13

)
for q < k, q 6= 5, 17, 11, 13, we observe that for i ∈ M, exactly one of 5|ai or

17|ai holds. Thus 5 · 17 - ai whenever i ∈ M. For i ∈ B, either 5 - ai, 17 - ai or 5|ai, 17|ai.
Thus for i ∈ B, we have P (ai) ≤ 7 except possibly for one i for which 5 · 17|ai. Since σ5 ≤ 4
and σ′17 ≤ 1, we obtain |Mk| ≤ 7 and 5|ai for at least |Mk| − 3 i’s with i ∈ Mk. Hence
|Mk| = 7 implies that either

{a+ 5j : 0 ≤ j ≤ 3} ⊆ Ik1 or {b+ 5j : 0 ≤ j ≤ 3} ⊆ Ik2(4.7)

for some a, b ∈ {0, 1, 2}.
Since σ′11 = 2 and σ′13 = 2, we may suppose that 0 ≤ i11 ≤ 6 and 0 ≤ i13 ≤ 4. Further

i11 6= i13 and i11+11 6= i13+13. We observe that either min(|Ik1 |, |Ik2 |) ≤ 6 or |Ik1 | = |Ik2 | = 7.
For pairs (i11, i13) with |Ik1 | = |Ik2 | = 7, we check that (4.7) is not valid. Thus we restrict
to those pairs satisfying min(|Ik1 |, |Ik2 |) ≤ 6. There are 16 such pairs. Further we see from
max(|Ik1 |, |Ik2 |) ≥ 8 that Mk is exactly one of Ik1 or Ik2 with minimum cardinality and
hence Bk is the other one. Now we restrict to those pairs (i11, i13) for which 5|ai for at
least 3 elements i ∈ Mk otherwise t − |R| ≥ k − 2 −

∑
7≤p≤17 σ

′
p − 2 − 4 ≥ 2 by (2.10)

with r = 2. We find that (i11, i13) ∈ {(1, 3), (2, 4), (4, 0), (5, 1)}. For these pairs (i11, i13),
we check that there are at most 4 multiples ai of 5 and 17 with i ∈ Mk ∪ Bk. Thus if
|{i : i ∈ B, 7|ai}| ≤ 2, then t − |R| ≥ 2 by (2.10) with r = 2. Therefore we may assume
that |{i : i ∈ B, 7|ai}| = 3 and hence |{i : i ∈ Bk, 7|ai}| = 3. We now restrict to those pairs
(i11, i13) for which |{i : i ∈ Bk, 7|ai}| = 3. They are given by (i11, i13) ∈ {(2, 4), (4, 0)}.

Let (i11, i13) = (2, 4). Then by taking p1 = 11 and p2 = 13 as above, we have Mk =
{1, 6, 8, 11} and Bk = {0, 3, 5, 7, 9, 10, 12, 14, 15, 16} giving i5 = 1 and 5|a1a6a11. We may
assume that 17|a8 since 17 - a16. Hence P (ai) ≤ 7 for i ∈ B. Consequently P (ai) ≤ 7 for
exactly 8 elements i ∈ Bk and other 2 elements are not in B. Further 7|ai for i ∈ {0, 7, 14}
and 0, 7, 14 ∈ B. Now we take p1 = 5, p2 = 11 and I = Bk to get I1 = {0, 5, 7, 9} and
I2 = {3, 10, 12, 14, 15}. Since

(
2
5

)
=
(

2
11

)
,
(

7
5

)
=
(

7
11

)
and

(
3
5

)
6=
(

3
11

)
, we observe that either

3|ai for i ∈ I1∩B or 3|ai for i ∈ I2∩B. The former possibility is excluded since 0, 7 ∈ I1∩B
and the latter is not possible since 14 ∈ I2 ∩ B. The other case (i11, i13) = (4, 0) is excluded
similarly.

4.3. The case k = 20. We may assume that σ′19 = 1 and 19 - a0a19 otherwise the assertion
follows from the case k = 18. Also we have |{ai : P (ai) = 5}| ≤ 3 by Eulers’ result for k = 4.
Further for each prime 7 ≤ p ≤ 17, we may also assume that σ′p = σp and for any i, pq - ai
whenever 7 ≤ p < q ≤ 19 otherwise t− |R| ≥ k− 2−

∑
7≤p≤17 σ

′
p − 3− 4 ≥ 2 by (2.10) with

r = 2.
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Let p1 = 11, p2 = 13 and I = {γ1, γ2, · · · , γt}. Then as in the case k = 18, we observe
that for i ∈M, exactly one of 5|ai or 17|ai holds but 5 ·17 - ai. For i ∈ B, either 5 - ai, 17 - ai
or 5|ai, 17|ai. Since σ5 ≤ 4 and σ17 ≤ 2, we obtain |Mk| ≤ 8 and 5|ai for at least |Mk| − 4
i’s with i ∈Mk. Hence |Mk| = 8 implies that either

{a+ 5j : 0 ≤ j ≤ 3} ⊆ Ik1 or {b+ 5j : 0 ≤ j ≤ 3} ⊆ Ik2(4.8)

for some a, b ∈ {0, 1, 2, 3, 4}.
Since σ′11 = 2 and σ′13 = 2, we may suppose that 0 ≤ i11 ≤ 8 and 0 ≤ i13 ≤ 6. Further

i11 6= i13 and i11+11 6= i13+13. We observe that either min(|Ik1 |, |Ik2 |) ≤ 7 or |Ik1 | = |Ik2 | = 8.
For pairs (i11, i13) with |Ik1 | = |Ik2 | = 8, we check that (4.8) is not valid. Thus we restrict
to those pairs satisfying min(|Ik1 |, |Ik2 |) ≤ 7. There are 40 such pairs. Further we see from
max(|Ik1 |, |Ik2 |) ≥ 8 that Mk is the one of Ik1 or Ik2 with minimum cardinality and hence Bk
is the other. Now we restrict to those pairs (i11, i13) for which 5|ai for at least 3 elements
i ∈Mk otherwise t− |R| ≥ k− 2− 1−

∑
7≤p≤17 σ

′
p− 2− 4 ≥ 2 by (2.10) with r = 2. We are

left with 22 such pairs. Further by (4.3) and |I| = k − 2, we restrict to those pairs (i11, i13)
for which there are at least |Mk| − 2 elements i ∈ Mk such that 5|ai or 17|ai. There are
12 such pairs (i11, i13) and for these pairs, we check that there are at most 4 multiples ai of
5 and 17 with i ∈ Mk ∪ Bk. This implies t − |R| ≥ k − 2 − 1 − 4 −

∑
11≤p≤13 σ

′
p − 4 ≥ 2

by (2.10) with r = 2. For instance, let (i11, i13) = (3, 5). Then Mk = {2, 7, 9, 12} and
Bk = {0, 1, 4, 6, 8, 10, 11, 13, 15, 16, 17, 19}. Since 5|ai for at least three elements i ∈Mk, we
get 5|ai for i ∈ {2, 7, 12} giving i5 = 2. Further 17|a9 or 5 · 17|a17 giving 4 multiples ai of 5
and 17 with i ∈Mk ∪ Bk. Thus t− |R| ≥ 2 as above.

4.4. The case k = 23. We may assume that σ′23 = 1 and 23 - ai for 0 ≤ i ≤ 2 and
20 ≤ i < 23 otherwise the assertion follows from the case k = 20. We have σ′11 = 3 if 11|a11j

with j = 0, 1, 2 and σ′11 ≤ 2 if 11 - a0a11a22. Also σ′7 = 4 implies that 7|a7j or 7|a1+7j with
0 ≤ j ≤ 3 and σ′7 ≤ 3 otherwise. Thus |{ai : 7|ai or 11|ai}| ≤ 6. Further by Eulers result for
k = 4, we obtain |{ai : P (ai) = 5}| ≤ 4. If

|{ai : p|ai, 5 ≤ p ≤ 23} ≤ 4 +
∑

7≤p≤23

σp − 1− 2 = 15,

then we get from (2.10) with r = 2 that t − |R| ≥ k − 2 − 15 − 4 = 2, a contradiction.
Therefore we have

4 +
∑

7≤p≤23

σp − 2 ≤ |{ai : p|ai, 5 ≤ p ≤ 23} ≤ 4 +
∑

7≤p≤19

σp − 1.(4.9)

Let p1 = 11, p2 = 13 and I = {γ1, γ2, · · · , γt}. Then as in the case k = 18, we observe
that for i ∈ M, exactly one of 5|ai or 17|ai holds but 5 · 17 - ai. Further for i ∈ B, either
5 - ai, 17 - ai or 5 · 17|ai. Since σ5 ≤ 5 and σ17 ≤ 2, we obtain |Mk| ≤ 9 and 5|ai for at least
|Mk| − 4 i’s with i ∈Mk.

By taking the mirror image (4.4) of (1.1), we may suppose that 0 ≤ i11 < 11 and 0 ≤ i13 ≤
11. For each of these pairs (i11, i13), we compute |Ik1 |, |Ik2 | and check that max(|Ik1 |, |Ik2 |) > 9.
First we restrict to those pairs (i11, i13) for which min(|Ik1 |, |Ik2 |) ≤ 9. ThereforeMk is exactly
one of Ik1 or Ik2 with minimum cardinality and hence Bk is the other set. Now we restrict to
those pairs (i11, i13) for which there are at least |Mk| − 2 elements i ∈Mk such that either
5|ai or 17|ai. There are 31 such pairs. Next we count the number of multiples of 11, 13,
maximum multiples of 5, 17 in Mk ∪Bk and 7, 19 in Bk to check that (4.9) is not valid. This
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is a contradiction. For example, let (i11, i13) = (0, 2). Then Mk = {4, 6, 9, 18, 19, 20} and
Bk = {1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 21} giving 5|ai for i ∈ {4, 9, 19}, i5 = 4. Further 17|ai
for exactly one i ∈ {6, 18, 20} and other two i’s in {6, 18, 20} deleted. Thus 5 ·17 - a14 so that
(4.9) is not valid. For another example, let (i11, i13) = (4, 0). Then Mk = {6, 9, 11, 16, 21}
and Bk = {1, 2, 3, 5, 7, 8, 10, 12, 14, 17, 18, 19, 20, 22} giving 5|ai for i ∈ {6, 11, 16, 21}, i5 = 1.
Further we have either 17|a9, gcd(5 · 17, a1) = 1 or 9 /∈ M, 5 · 17|a1. Now 7|ai for at most 3
elements i ∈ Bk so that (4.9) is not satisfied. This is a contradiction.

4.5. The case k = 31. From t−|R| ≥ k−2−
∑

7≤p≤31 σ
′
p−8 ≥ k−2−

∑
7≤p≤31 σp−8 = 1 by

(2.10) and (2.13) with r = 3, we may assume for each prime 7 ≤ p ≤ 31 that σ′p = σp and for
any i, pq - ai whenever 7 ≤ p < q ≤ 31. Let I = {γ1, γ2, · · · , γt}. By taking the mirror image
(4.4) of (1.1) and σ19 = σ29 = 2, we may assume that i29 = 0 and 1 ≤ i19 ≤ 11, i19 6= 10.
For p ≤ 31 with p 6= 19, 29, since

(
p
19

)
6=
(
p
29

)
if and only if p = 11, 13, 17, we observe that

for i ∈ M, either 11|ai or 13|ai or 17|ai. Since σ11 + σ13 + σ17 ≤ 8, we obtain |Mk| ≤ 10
and p|ai for at least |Mk| − 2 elements i ∈ Mk and p ∈ {11, 13, 17}. Now for each of
the pair (i19, i29) given by i29 = 0, 1 ≤ i19 ≤ 11, i19 6= 10, we compute |Ik1 |, |Ik2 |. Since
max(|Ik1 |, |Ik2 |) ≥ 14, we restrict to those pairs (i19, i29) with min(|Ik1 |, |Ik2 |) ≤ 10. Then
we are left with the only pair (i19, i29) = (1, 0). Further noticing that Mk is exactly one
of Ik1 or Ik2 with minimum cardinality, we get Mk = {3, 5, 6, 7, 11, 14, 15, 19, 24, 25} and
Bk = {2, 4, 8, 9, 10, 12, 13, 16, 17, 18, 21, 22, 23, 26, 27, 28, 30}. We find that there are at most
7 elements i ∈Mk for which either 11|ai or 13|ai or 17|ai. This is not possible. �
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