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Abstract. We investigate power values of sums of products of
consecutive integers. We give general finiteness results, and also
give all solutions when the terms in the product considered is at
most ten.

1. Introduction

For k = 0, 1, 2, . . . put

fk(x) =
k∑
i=0

i∏
j=0

(x+ j).

For the first few values of k we have

f0(x) = x, f1(x) = x+ x(x+ 1) = x(x+ 2),

f2(x) = x+ x(x+ 1) + x(x+ 1)(x+ 2) = x(x+ 2)2.

In general, fk(x) is a monic polynomial of degree k + 1. Further, the
coefficients of the fk(x) are positive integers, which could easily be
expressed as sums of consecutive Stirling numbers of the first kind.

In this paper we are interested in the equation

(1) fk(x) = yn

in integers x, y, k, n with k ≥ 0 and n ≥ 2. Without loss of generality,
throughout the paper we shall assume that n is a prime.

Equation (1) is closely related to several classical problems and re-
sults. Here we only briefly mention some of them.

When we take only one block (i.e. consider the equation fk+1(x) −
fk(x) = yn, then we get a classical problem of Erdős and Selfridge
[14]. For related results one can see e.g. [30, 17], and the references
there. An important generalization of this problem is when instead
of products of consecutive integers one takes products of consecutive
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terms of an arithmetic progression. For this case, see e.g. the papers
[33, 31, 20, 5, 22, 38, 19] and the references there.

If instead of sums, we take products of blocks of consecutive integers,
we get classical questions of Erdős and Graham [12, 13]. For results
into this direction, see e.g. [39, 3, 10, 37] and the references there.

Finally, if in (1) the products of blocks of consecutive integers are
replaced by binomial coefficients, then we arrive at classical problems
again. In case of one summand see the papers Erdős [11] and Győry
[18]. In case of more summands, we mention a classical problem of
Mordell [26] p. 259, solved by Ljunggren [25] (see Pintér [27] for a
related general finiteness theorem).

In this paper we obtain a general finiteness result concerning (1).
Further, we provide all solutions to this equation for k ≤ 10. These
results are given in the next section. Our first theorem is proved in
Section 3. To prove our result describing all solutions for k ≤ 10,
we need more preparation. We introduce the tools needed in Section
4. Then we give the proof of our second theorem in Section 5 (for
the case n > 2), and Section 6 (for the case n = 2). Altogether, in
our proofs we need to combine several tools and techniques, including
Baker’s method, local arguments, Runge’s method, and a method of
Gebel, Pethő, Zimmer [15] and Stroeker, Tzanakis [34] to find integer
points on elliptic curves.

2. New results

Our first theorem gives a general effective finiteness result for equa-
tion (1).

Theorem 2.1. For the solutions of equation (1) we have the following:

i) if k ≥ 1 and y 6= 0,−1 then n < c1(k),
ii) if k ≥ 1 and n ≥ 3 then max(n, |x|, |y|) < c2(k),

iii) if k ≥ 1, k 6= 2, and n = 2 then max(|x|, |y|) < c3(k).

Here c1(k), c2(k), c3(k) are effectively computable constants depending
only on k.

The following theorem describes all solutions of equation (1) for k ≤
10.

Theorem 2.2. Let 1 ≤ k ≤ 10 such that k 6= 2 if n = 2. Then
equation (1) has the only solutions (x, y) = (−2, 0), (0, 0), k, n ar-
bitrary; (x, y) = (−1,−1), k, n arbitrary with n > 2; (x, y, k, n) =
(−4, 2, 1, 3), (2, 2, 1, 3), (2, 2, 2, 5).

Remark. Note that for k = 0 and k = 2, n = 2 equation (1) obviously
possesses infinitely many solutions, which can be given easily. Hence
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Theorem 2.2 provides a complete description of the solutions to (1) for
k ≤ 10.

3. Proof of Theorem 2.1

To prove Theorem 2.1 we need three lemmas. To formulate them,
we have to introduce some notation. Let g(x) be a non-zero polyno-
mial with integer coefficients, of degree d and height H. Consider the
diophantine equation

(2) g(x) = yn

in integers x, y, n with n being a prime.
The next lemma is a special case of a result of Tijdeman [38]. For a

more general version, see [32].

Lemma 3.1. If g(x) has at least two distinct roots and |y| > 1, then
in equation (2) we have n < c4(d,H), where c4(d,H) is an effectively
computable constant depending only on d,H.

The next lemma is a special case of a theorem of Brindza [8]. For
predecessors of this result see [1, 2], and for an earlier ineffective version
[24].

Lemma 3.2. Suppose that one of the following condition holds:

i) n ≥ 3 and g(x) has at least two roots with multiplicities coprime
to n,

ii) n = 2 and g(x) has at least three roots with odd multiplicities.

Then in equation (2) we have max(|x|, |y|) < c5(d,H), where c5(d,H)
is an effectively computable constant depending only on d,H.

The last assertion needed to prove Theorem 2.1 describes the root
structure of the polynomial family fk(x).

Lemma 3.3. We have

f0(x) = x, f1(x) = x(x+ 2), f2(x) = x(x+ 2)2.

Beside this, for k ≥ 3 all the roots of the polynomial fk(x) are simple.
In particular, 0 is a root of fk(x) for all k ≥ 0, and −2 is a root of
fk(x) for all k ≥ 1.

Proof. For k = 0, 1, 2 the statement is obvious. In the rest of the proof
we assume that k ≥ 3.

It follows from the definition that x is a factor of fk(x) (or, 0 is a
root of fk(x)) for all k ≥ 0. Further, since

x+ x(x+ 1) = x(x+ 2),

ShantaLaishram
Highlight

ShantaLaishram
Highlight



4 L. HAJDU, S. LAISHRAM, SZ. TENGELY

the definition clearly implies that x + 2 is a factor (or, −2 is a root)
of fk(x) for k ≥ 1. So it remains to prove that all the roots of fk(x)
(k ≥ 3) are simple.

For this observe that by the definition we have

fk(1) > 0, fk(−1) = −1 < 0, fk(−1.5) > 0.

The last inequality follows from the fact that writing

Pi(x) = x(x+ 1) . . . (x+ i)

for i = 0, 1, 2, . . . , we have that Pi(−1.5) > 0 for i ≥ 1. Hence
fk(−1.5) ≥ −1.5 + 0.75 + 0.375 + 0.5625 > 0 for k ≥ 3. Further,
as one can easily check, for i = −3, . . . ,−k − 1 we have

(−1)ifk(i) > 0.

These assertions (by continuity) imply that fk(x) has roots in the in-
tervals

(−1, 1), (−1.5,−1), (−3,−1.5), (−4,−3), (−5,−4), . . . , (−k−1,−k).

(Note that in the first and third intervals the roots are 0 and −2,
respectively.) Hence fk(x) has deg(fk(x)) = k + 1 distinct real roots,
and the lemma follows.

�

Now we are ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1. i) By Lemma 3.3 we have that fk(x) is divisible
by x(x + 2) in Z[x]. In particular, for k ≥ 1 the polynomial fk(x) has
two distinct roots, namely 0 and −2. Further, observe that fk(x) does
not take the value 1. Indeed, it would be possible only for x = −1,
however, for that choice by definition we clearly have fk(−1) = −1 for
any k ≥ 0. Hence equation (1) has no solution with y = 1, and our
claim follows by Lemma 3.1.

ii) Let n ≥ 3. Recall that n is assumed to be a prime. By the
explicit form of f1(x) and f2(x) we see that 0 and −2 are roots of these
polynomials of degrees coprime to n. Hence the statement follows from
part i) of Lemma 3.2 in these cases. Let k ≥ 3. Then by Lemma 3.3,
all the roots of fk(x) are simple. Since now the degree k + 1 of fk(x)
is greater than two, our claim follows from part i) of Lemma 3.2.

iii) Let n = 2. Note that for k = 0, 2 equation (1) obviously has
infinitely many solutions in x, y. In case of k = 1, equation (1) now
reads as

x(x+ 2) = y2.

Since x(x+ 2) = (x+ 1)2 − 1, our claim obviously follows in this case.
Let now k ≥ 3. Then by Lemma 3.3, all the roots of fk(x) are simple.
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As now the degree k + 1 of fk(x) is greater than two, by part ii) of
Lemma 3.2 the assertion follows also in this case. �

4. Linear forms in logarithms

In this section, we use linear forms in logarithms to give a bound for
n for the solution (u, v, n) of equations of the form

aun − bvn = c

under certain conditions. These bounds will be used in the proof of
Theorem 2.2 for n > 2. Such equations has studied by many authors.
Note that bounds for such equations were obtained in [21, 4]. We refer
to [4] for earlier results. However, in these papers the restrictions put
on the coefficients a, b, c are not valid in the cases we need later on.

We begin with some preliminaries for linear forms in logarithms.
For an algebraic number α of degree d over Q, the absolute logarithmic
height h(α) of α is given by

h(α) =
1

d

(
log |a|+

d∑
i=1

log max(1, |α(i))

)
where a is the leading coefficient of the minimal polynomial of α over Z
and the α(i)’s are the conjugates of α. When α = p

q
∈ Q with (p, q) = 1,

we have h(α) = max(log |p|, log |q|).
The following result is due to Laurent [23, Theorem 2].

Theorem 4.1. Let a1, a2, h, % and µ be real numbers with % > 1 and
1/3 ≤ µ ≤ 1. Set

σ =
1 + 2µ− µ2

2
, λ = σ log %, H =

h

λ
+

1

σ
,

ω = 2

(
1 +

√
1 +

1

4H2

)
, θ =

√
1 +

1

4H2
+

1

2H
.

Let α1, α2 be non-zero algebraic numbers and let logα1 and logα2 be
any determinants of their logarithms. Without loss of generality we
may assume that |α1| ≥ 1, |α2| ≥ 1. Let

Λ = |b2 logα1 − b2 logα2| b1, b2 ∈ Z, b1 > 0, b2 > 0,

where b1, b2 are positive integers. Suppose that α1 and α2 are multi-
plicativey independent. Put D = [Q(α1, α2) : Q]/[R(α1, α2) : R]] and
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assume that

h ≥ max

{
D

(
log

(
b1
a2

+
b2
a1

)
+ log λ+ 1.75

)
+ 0.06, λ,

D log 2

2

}
,

ai ≥ max {1, % log |αi| − log |αi|+ 2Dh(αi)} , (i = 1, 2),

a1a2 ≥ λ2.

(3)

Then

log Λ ≥ −C
(
h+

λ

σ

)2

a1a2 −
√
ωθ

(
h+

λ

σ

)
− log

(
C ′
(
h+

λ

σ

)2

a1a2

)
with

C =
µ

λ3σ

(
ω

6
+

1

2

√
ω2

9
+

8λω5/4θ1/4

3
√
a1a2H1/2

+
4

3

(
1

a1
+

1

a2

)
λω

H

)2

C ′ =

√
Cσωθ

λ3µ
.

We use Theorem 4.1 to give a bound for n for the equation aun −
bvn = c. For this, we need the following lemma for the proving the
bound on n.

Lemma 4.1. Let a, b, c be positive integers with b > a > 0 and abc ≤
4 · 2018957 · 99 · 467. Then the equation aun− bun = ±c with u > v > 1
imply

u

v
≤


1.00462 if b ≤ 100 and n ≥ 1000

1.00462 if b ≤ 10000 and n ≥ 2000

1.00267 if n ≥ 10000

(4)

and

u > v ≥


217 if b ≤ 100 and n ≥ 1000

217 if b ≤ 10000 and n ≥ 2000

375 if n ≥ 10000.

(5)

Proof. From aun − bvn = ±c, we get (u
v
)n = b

a
± c

avn
≤ b + 1/4 since

n ≥ 1000 and c ≤ 2100a. Therefore

u

v
≤


1000
√

100 + 1/4 if b ≤ 100 and n ≥ 1000
2000
√

10000 + 1/4 if b ≤ 10000 and n ≥ 2000
10000
√

4 · 2018957 · 99 · 467 + 1/4 if n ≥ 10000
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implying (4). The assertion (5) follows easily from (4) by observing
that 1 ≤ u− v ≤ 0.00462v, 0.00267v according as b ≤ 100, n ≥ 1000 or
b ≤ 10000, n ≥ 2000 and n ≥ 2000, respectively. �

Proposition 4.1. Let a, b, c be positive integers with c ≤ 2ab. Then
the equation

aun − bvn = ±c(6)

in integer variables u > v > 1, n > 3 imply

n ≤


max{1000, 824.338 log b+ .258} if b ≤ 100

max{2000, 769.218 log b+ .258} if 100 < b ≤ 10000

max{10000, 740.683 log b+ .234} if b > 10000.

(7)

In particular, n ≤ 3796, 7084, 19736 when b ≤ 100, 10000, 4 ·9 ·11 ·467 ·
2018957, respectively.

Remark: We note here that when c ≤ 3, we can get a much better
bound, see [6]. However we will not be using the bound given in [6] as
we will be using a more general approach.

Proof. We can rewrite (6) as∣∣∣∣ ba (uv)n − 1

∣∣∣∣ =
c

aun
.

Let

Λ =

∣∣∣∣n log
u

v
− log

b

a

∣∣∣∣ .
Then Λ ≤ 2c

aun
implying

log Λ ≤ −n log u+ log

(
2c

a

)
≤ −n log u+ log(4b)(8)

since c ≤ 2ab. We now apply Theorem 4.1 to get a lower bound for Λ.
We follow the proof of [23, Corollary 1, 2]. Let

α1 =
u

v
, α2 =

b

a
, b1 = n, b2 = 1

so that h(α1) = log u, h(α2) = log b and D = 1. Let m = 8 and we
choose %, µ, q0, u0, b0 as follows:

b % µ q0 u0 b0
b ≤ 100 5.7 0.54 log 1.00462 218 log 4
b ≤ 10000 5.6 0.57 log 1.00462 218 log 5
b > 10000 5.6 0.59 log 1.00267 log 376 log 10000
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By Lemma 4.1, we have u ≥ u0, log u/v ≤ q0 and b ≥ b0. We take

a1 = (%− 1)q0 + 2 log u, a2 = (%+ 1) log b

and

h = max

{
m, log

(
n

a2
+

1

a1

)
+ 1.81 + log λ

}
.

Then (3) is satisfied. In fact, we have

h ≥ m, a1 ≥ (%− 1)q0 + 2 log u0, a2 ≥ (%+ 1) log b0.

As in the proof of [23, Corollary 1, 2], we get

log Λ ≥ −C ′′m(%+ 1)(log b)((%− 1)q0 + 2 log u)h2

where C ′′m is the constant C ′′ obtained in [23, Section 4, (28)] by putting
h = m, a1 = (%− 1)q0 + 2 log u0 and a2 ≥ (%+ 1) log b0. Putting Cm =
C ′′m(%+1), we get log Λ ≥ −Cm(log b)((%−1)q0 +2 log u)(max(m,hn))2

where

hn = log

(
n

(%+ 1) log b
+

1

2 log u+ (%− 1)q0

)
+ εm

and

(Cm, εm) =


(5.8821, 2.2524) if b ≤ 100

(5.4890, 2.2570) if b ≤ 10000

(5.3315, 2.2662) if b > 10000.

Comparing this lower bound of log Λ with the upper bound (8), we
obtain

n ≤ Cm(max(m,hn))2(log b)

(
2 +

(%− 1)q0
log u

)
+

log 4b

log u

≤ Cm(max(m,hn))2(log b)

(
2 +

(%− 1)q0
log u0

+
1

log u0

)
+

log 4

log u0

(9)

since u ≥ u0. Recall that m = 8. We now consider two cases.
Assume hn ≥ 8. Then

n ≥ n0 :=

{
exp(m− εm)− 1

2 log u+ (%− 1)q0

}
(%+ 1) log b
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and hn0 = 8. Since the last expression of (9) is a decreasing function
of n, we have for n ≥ n0 that

0 ≤
Cmh

2
n(log b)

(
2 + (%−1)q0

log u0
+ 1

log u0

)
+ log 4

log u0
− n

log b

≤
Cmh

2
n0

(log b)
(

2 + (%−1)q0
log u0

+ 1
log u0

)
+ log 4

log u0
− n0

log b

≤Cmm2

(
2 +

(%− 1)q0
log u0

+
1

log u0

)
+

log 4

(log u0)(log b)

− (%+ 1) exp(m− εm) +
%+ 1

2 log u+ (%− 1)q0

≤Cmm2

(
2 +

(%− 1)q0
log x0

+
1

log u0

)
+

log 4

(log u0)(log b0)

− (%+ 1) exp(m− εm) +
%+ 1

2 log u0 + (%− 1)q0
< 0

since u ≥ u0 and b ≥ b0. This is a contradiction.
Therefore hn < 8. Then from (9), we get

n ≤ Cmm
2(log b)

(
2 +

(%− 1)q0
log u0

+
1

log u0

)
+

log 4

log u0

where m = 8. Hence we get the assertion (7) by putting explicit values
of m = 8, Cm, %, µ, q0, u0, b0 in the above inequality. The statement
after (7) is clear. �

5. Proof of Theorem 2.2 for n ≥ 3

Suppose first that k = 1 or 2. Then equation (1) can be rewritten as

x(x+ 2)k = yn.

We see that for every n odd, (x, n) = (−1, n) is a solution. Hence we
may suppose that x /∈ {−2,−1, 0}. Further we may also assume that
n is an odd prime. Hence gcd(x, x+ 2) ≤ 2 gives

x = 2αun, x+ 2 = 2βvn

with non-negative integers α, β and coprime integers u, v. This implies

2βvn − 2αun = 2(1)n.

Using now results of Darmon and Merel [9] and Ribet [28], our state-
ment easily follows in this case.

Let k ≥ 3. We consider the equation yn = fk(x) = x(x + 2)gk(x)
where gk(x) is a polynomial of degree k − 1. We see that for every k
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and every n odd, (x, n) = (−1, n) is a solution. Hence we may suppose
that x /∈ {−2,−1, 0}. Then we have either x > 0 or x < x + 2 < 0.
Further we may also assume that n ≥ 3 is a prime.

We see that (x, x+ 2) = 1, 2 with 2 only if x is even, (x, gk(x))|gk(0)
and (x + 2, gk(x))|gk(−2). Also gk(x) is odd for every x. We have the
following values of gk(0) and −gk(−2) :

k 3 4 5 6 7 8 9 10
gk(0) 5 17 7 · 11 19 · 23 2957 23117 204557 2018957
−gk(−2) 1 3 32 3 · 11 32 · 17 32 · 97 34 · 73 32 · 11 · 467

If x, x+ 2 are both n−th powers, then we have un − vn = 2 giving the
trivial solution x+ 2 = 1, x = −1 which is already excluded. Hence we
can suppose that both x and x+ 2 are not n−th powers. We write

x = 2δ1s1t
n−1
1 un1 , x+ 2 = 2δ23ν2s2t

n−1
2 un2 , gk(x) = 3ν3(s1s2)

n−1t1t2u
n
3

where

s1t1|gk(0), s2t2|gk(−2) with (s1, t1) = (s2, t2) = 1, 3 - s1s2t1t2

and

δ1, δ2 ∈ {0, 1, n− 1, n}, δ1 + δ2 ∈ {0, n}

and (ν2, ν3) = (0, 0) or

ν2 ∈ {1, · · · , ord3(gk(−2))}, ν3 = n− ν2 or vice versa.

Further, each of si, ti is positive and u1, u2 are of same sign since n is
an odd prime. From x+ 2− x = 2, we get

3ν2s2t1(t2u2)
n − s1t2(t1u1)n = 2t1t2 if δ1 = δ2 = 0, ν2 ≤ ord3(gk(−2))

s2t1(3t2u2)
n − 3ν3s1t2(t1u1)

n = 2 · 3ν3t1t2 if δ1 = δ2 = 0, ν2 > ord3(gk(−2))

3ν2s2t1(2t2u2)
n − 4s1t2(t1u1)

n = 4t1t2 if δ1 = 1, ν2 ≤ ord3(gk(−2))

4 · 3ν2s2t1(t2u2)n − s1t2(2t1u1)n = 4t1t2 if δ2 = 1, ν2 ≤ ord3(gk(−2))

s2t1(6t2u2)
n − 4 · 3ν3s1t2(t1u1)n = 4 · 3ν3t1t2 if δ1 = 1, ν2 > ord3(gk(−2))

4s2t1(3t2u2)
n − 3ν3s1t2(2t1u1)

n = 4 · 3ν2t1t2 if δ2 = 1, ν2 > ord3(gk(−2))

These equations are of the form aun − bvn = c with u, v of the same
sign. Note that from the equation aun − bvn = c, we can get back
x, x+ 2 by

x =
2bvn

c
, x+ 2 =

2aun

c
.
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We see from gk(0) and gk(−2) that the largest value of max(a, b) is
given by k = 10 and equation

(6 · 11 · 467u2)
n − 4 · 32 · 11 · 467 · 2018957un1 = 4 · 32 · 11 · 467.

We observe that |c| ≤ 2ab
s1s2
≤ 2ab. Further from (gk(0), gk(−2)) = 1, we

get (s2t1, s1t2) = 1 giving (a, b) = 1. We first exclude the trivial cases.
1. Let a = b. Then a = b = 1 since gcd(a, b) = 1. Further s1t2 =

s2t1 = 1 and 3ν2 = 1 or 3ν3 = 1 implying c = 2 and we have un−vn = 2
for which we have the trivial solution u = 1, v = −1. Then x =
−1, x+ 2 = 1 which gives fk(x) = (−1)n for all odd n which is a trivial
solution. Thus we now assume a 6= b and further x 6= −1.

2. Suppose uv = 1. Then c|2a and c|2b giving c = 2 since (a, b) = 1
and hence we have (a−b) = ±2. This will imply 3ν2s2(±1)−s1(±1) = 2
as in other cases, c > 2. We find that the only such possibilities are
3(1) − 1(1) = 2, 9(−1) − 11(−1) = 2, 9(1) − 7(1) = 2. Hence x ∈
{1,−11, 7}. This with x = 2δ1s1t

n−1
1 un1 = s1(±1) gives x = 1, k ≤ 10

or (x, k) ∈ {(−11, 5), (7, 5)} and we check that x = 1, k = 2 is the only
solution. Thus we now suppose that uv > 1.

3. Suppose u = v. Then (a − b)vn = c implying c
a−b ∈ Z. Further

c
a−b = vn is an n-th power. We can easily find such triples (a, b, c) and

exponent n. For such triples, we have x = bc
a−b and we check for fk(x)

being an n-th power. There are no solutions. Thus we can now suppose
u 6= v.

4. Suppose u = ±1. Then c|2a, v 6= ±1 and vn = ±a−c
b
∈ Z. We

find all such triplets (a, b, c) and the exponents n. Then x + 2 = ±2a
c

or x = ±2a
c
− 2. We check for fk(x) being an n-th power. We find that

there are no solutions. Hence we now assume u 6= ±1.
5. Suppose v = ±1. Then c|2b and un = c−±b

a
∈ Z is a power. We

find such triples (a, b, c) and the exponent n. Then x = ±2b
c

and we
check for fk(x) being an n-th power. There are no solutions.

Hence from now on, we consider the equation aun − bvn = c with

a ≥ 1, b ≥ 1, c > 1, |u| > 1, |v| > 1 and a 6= b, u 6= v.

If u, v is a solution of aun − bvn = c with u, v negative, then we have
a(−u)n − b(−v)n = −c with −u,−v positive. Therefore it is sufficient
to consider the equation aun − bvn = ±c with u > 1, v > 1. Recall
that abc ≤ 4 · 9 · 11 · 467 · 2018957. Hence we have for n ≥ 40 that(u

v

)n
=
b

a
± c

vn
≥ b

a
− c

2n
≥ 1 +

1

a
− c

240
> 1 if a < b(v

u

)n
=
a

b
± c

un
≥ a

b
− c

2n
≥ 1 +

1

b
− c

240
> 1 if a > b.
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Thus for n > 37, we have u > v if a < b and v > u if a > b. By
Proposition 4.1, we get

n ≤


max{1000, 824.338 log b+ 0.258} if b ≤ 100

max{2000, 769.218 log b+ 0.258} if 100 < b ≤ 10000

max{10000, 740.683 log b+ 0.234} if b > 10000.

(10)

when a < b. We now exclude these values of n.
For every prime n, let r be the least positive integer such that nr+1 =

p is a prime. Then both un and vn are r-th roots of unity modulo p.
Since fk(x) = yn, fk(x) is also an r-th roots of unity modulo p. Let
U(p, r) be the set of r-th roots of unity modulo p. Recall that x = 2bvn

c
.

For every 3 ≤ k ≤ 10, we first list all possible triples (a, b, c). Given
a triple (a, b, c), we have a bound n ≤ n0 := n0(a, b, c) given by (10).
For every prime n ≤ n0, we check for solutions aα− bβ ≡ ±c modulo p
for α, β ∈ U(p, r). We now restrict to such pairs (α, β). For any such
pair (α, β), we check if fk(

2β
c

) modulo p is in U(p, r). We find that
there are no such pairs (α, β).

Therefore, we have no further solutions (k, x, y) of the equation
fk(x, y). Hence the proof of Theorem 2.2 is complete for n > 2. �

6. Proof of Theorem 2.2 for n = 2

For k = 1 equation (1) reads as

f1(x) = (x+ 1)2 − 1 = y2.

Hence the statement trivially follows in this case.
Let k = 3. Equation (1) has the form x(x + 2)(x2 + 5x + 5) = y2.

Here we use the MAGMA [7] procedure

IntegralQuarticPoints([1,7,15,10,0])

to determine all integral points.
Consider the case k = 4. The hyperelliptic curve is as follows

x(x+ 2)(x3 + 9x2 + 24x+ 17) = y2.

We obtain that

x = d1u
2
1,

x+ 2 = d2u
2
2,

x3 + 9x2 + 24x+ 17 = d3u
2
3,

where d3 ∈ {±1,±3,±17,±3 · 17}. It remains to determine all integral
points on certain elliptic curves defined by the third equation, that is
we use the MAGMA procedure

IntegralPoints(EllipticCurve([0, 9d3, 0, 24d23, 17d33])).
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We note that these procedures are based on methods developed by
Gebel, Pethő and Zimmer [15] and independently by Stroeker and
Tzanakis [34].

We apply Runge’s method [16, 29, 40] in the cases k = 5, 7, 9. We
follow the algorithm described in [35]. First we determine the polyno-

mial part of the Puiseux expansions of
√
fk(x). These expansions yield

polynomials P1(x), P2(x) such that either

d2fk(x)− P1(x)2 > 0,

d2fk(x)− P2(x)2 < 0

or

d2fk(x)− P1(x)2 < 0,

d2fk(x)− P2(x)2 > 0

for some d ∈ Z and x /∈ Ik, where Ik is a finite interval. We summarize
some data in the following table.

k d P1(x), P2(x) Ik
5 1 P1(x) = x3 + 8x2 + 16x+ 5 [−10, 3]

P2(x) = x3 + 8x2 + 16x+ 6
7 16 P1(x) = 16x4 + 232x3 + 1070x2 + 1693x+ 473 [−282, 148]

P2(x) = 16x4 + 232x3 + 1070x2 + 1693x+ 474
9 2 P1(x) = 2x5 + 46x4 + 378x3 + 1331x2 + 1819x+ 528 [−291, 278]

P2(x) = 2x5 + 46x4 + 378x3 + 1331x2 + 1819x+ 530

We only provide details of the method in case of k = 9, the other
two cases can be solved in a similar way. We obtain that

4f9(x)− P1(x)2 = 4x5 − 1045x4 − 17958x3 − 108973x2 − 284408x− 278784,

4f9(x)− P2(x)2 = −4x5 − 1229x4 − 19470x3 − 114297x2 − 291684x− 280900.

If x > 278, then

(P1(x)− 2y)(P1(x) + 2y) < 0 < (P2(x)− 2y)(P2(x) + 2y).

If P2(x) − 2y < 0 and P2(x) + 2y < 0, then P1(x) − 2y < −2 and
P1(x) + 2y < −2, which implies that (P1(x) − 2y)(P1(x) + 2y) > 0, a
contradiction. If P2(x)−2y > 0 and P2(x) + 2y > 0, then P1(x)−2y >
−2 and P1(x) + 2y > −2. It follows that

P1(x)− 2y = −1 or P1(x) + 2y = −1.

Consider the case x < −291. Here we get that

(P2(x)− 2y)(P2(x) + 2y) < 0 < (P1(x)− 2y)(P1(x) + 2y).
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If P1(x) − 2y > 0 and P1(x) + 2y > 0, then we have a contradiction.
If P1(x) − 2y < 0 and P1(x) + 2y < 0, then P2(x) − 2y < 2 and
P2(x) + 2y < 2, therefore

P2(x)− 2y = 1 or P2(x) + 2y = 1.

Thus if we have a solution (x, y) ∈ Z2, then either x ∈ I9 or y =
±(x5 + 23x4 + 189x3 + 1331/2x2 + 1819/2x + 529/2). We obtain only
the trivial integral solutions (x, y) = (−2, 0), (0, 0).

It remains to handle the cases k = 6, 8, 10. Consider the equation
related to k = 6. If x ≤ 0, then we obtain that either

x(x5 + 20x4 + 151x3 + 529x2 + 833x+ 437) ≤ 0

or

(x+ 2)(x5 + 20x4 + 151x3 + 529x2 + 833x+ 437) ≤ 0.

Hence −6 ≤ x ≤ 0, and we get no solutions. We may assume that
x > 0. We have that

x = 2α119α423α5u21,

x+ 2 = 2α13α211α3u22,

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 = 3α211α319α423α5u23,

where αi ∈ {0, 1} and ui ∈ Z. Working modulo 720 it follows that the
above system of equations has solutions only if (α2, α3, α4, α5) ∈

(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1), (0, 1, 0, 0),

(0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 0, 0), (1, 0, 0, 1),

(1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1).

We describe an argument which works for all cases except the one with
(α2, α3, α4, α5) = (0, 0, 0, 1). Combining the first two equations yields

(x+ 1)2 − 3α211α319α423α5(2α1u1u2)
2 = 1,

a Pell equation. Computing the fundamental solution of the Pell equa-
tion provides a formula for x. Substituting it into the equation

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 = 3α211α319α423α5u23

we get a contradiction modulo some positive integer m. The following
table contains the possible tuples and the corresponding integer m.
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(α2, α3, α4, α5) m (α2, α3, α4, α5) m
(0, 0, 1, 0) 11 (0, 0, 1, 1) 13
(0, 1, 0, 0) 13 (0, 1, 0, 1) 29
(0, 1, 1, 1) 37 (1, 0, 0, 0) 5
(1, 0, 0, 1) 11 (1, 0, 1, 1) 29
(1, 1, 0, 1) 13 (1, 1, 1, 0) 29
(1, 1, 1, 1) 43

As an example we deal with (α2, α3, α4, α5) = (0, 1, 1, 1). The funda-
mental solution of the Pell equation is

208− 3
√

11 · 19 · 23.

If there exists a solution, then

x =
(208− 3

√
11 · 19× 23)k + (208 + 3

√
11 · 19 · 23)k

2
− 1

for some k ∈ N. If x satisfies the above equation, then

x5 + 20x4 + 151x3 + 529x2 + 833x+ 437 (mod 37) ∈ {17, 20, 22, 29}
and 11 · 19 · 23u23 (mod 37) ∈

{0, 1, 3, 4, 7, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36},
a contradiction. It remains to resolve the equation corresponding to
the tuple (α2, α3, α4, α5) = (0, 0, 0, 1). Here we have that

F (x) = x(x5 + 20x4 + 151x3 + 529x2 + 833x+ 437) = (23u1u3)
2

a Diophantine equation satisfying Runge’s condition. Define

P1(x) = 2x3 + 20x2 + 51x+ 18,

P2(x) = 2x3 + 20x2 + 51x+ 20.

The two cubic polynomials

4F (x)− P1(x)2 = 4x3 + 11x2 − 88x− 324

and
4F (x)− P2(x)2 = −4x3 − 69x2 − 292x− 400

have opposite signs if x /∈ [−12, 5]. The inequalities

P1(x)2 − 4y2 < 0 < P2(x)2 − 4y2,

P2(x)2 − 4y2 < 0 < P1(x)2 − 4y2

imply that if there exists a solution, then y = x3 + 10x2 + 51
2
x + 19

2
.

The polynomial

(x+ 2)F (x)−
(
x3 + 10x2 +

51

2
x+

19

2

)2
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has no integral root. Thus it remains to check the cases x ∈ [−12, 5].
We obtain only the trivial solutions.

The above procedure also works in the cases k = 8 and 10. If x ≤ 0,
then we have that −10 ≤ x ≤ 0. Assuming that x is positive we get
that

x = 2α123117α4u21,

x+ 2 = 2α13α297α3u22,

f8(x)

x(x+ 2)
= 3α297α323117α4u23

for some αi ∈ {0, 1} and ui ∈ Z, and

x = 2α12018957α5u21,

x+ 2 = 2α13α211α3467α4u22,

f10(x)

x(x+ 2)
= 3α211α3467α42018957α5u23.

for some αi ∈ {0, 1} and ui ∈ Z. After that, we exclude as many pu-
tative exponent tuples working modulo 720 as we can. The remaining
exponent tuples are treated via Pell equations and congruence argu-
ments. Everything worked in a similar way as previously. The largest
modulus used to eliminate tuples is 37. �
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